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Abstract

This study explores the performance and scaling of a GMRES Krylov method
employed as a smoother for an algebraic multigrid (AMG) preconditioned Newton-
Krylov solution approach applied to a fully-implicit variational multiscale (VMS)
finite element (FE) resistive magnetohydrodynamics (MHD) formulation. In
this context a Newton iteration is used for the nonlinear system and a Krylov
(GMRES) method is employed for the linear subsystems. The efficiency of this
approach is critically dependent on the scalability and performance of the AMG
preconditioner for the linear solutions and the performance of the smoothers
play a critical role. Krylov smoothers are considered in an attempt to reduce
the time and memory requirements of existing robust smoothers based on ad-
ditive Schwarz domain decomposition (DD) with incomplete LU factorization
solves on each subdomain. Three time dependent resistive MHD test cases
are considered to evaluate the method. The results demonstrate that the GM-
RES smoother can be faster due to a decrease in the preconditioner setup time
and a reduction in outer GMRESR solver iterations, and requires less memory
(typically 35% less memory for global GMRES smoother) than the DD ILU
smoother.

1. Introduction

The resistive magnetohydrodynamics (MHD) model describes the dynam-
ics of charged fluids in the presence of electromagnetic fields and is used as a
base-level continuum plasma model. Resistive MHD is used to model aspects of
fundamental plasma physics phenomena (reconnection and hydromagnetic in-
stabilities), technology applications (e.g. tokamaks, and plasma reactors), and
astrophysical phenomena (e.q. solar physics and planetary dynamos) [1, 2]. The
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MHD system is strongly coupled, highly nonlinear and characterized by coupled
physical phenomena that induce a very large range of time-scales in the response
of the system. These characteristics make the scalable, robust, accurate, and
efficient computational solution of these systems extremely challenging. In this
context fully-implicit formulations, coupled with effective robust iterative so-
lution methods, become attractive, as they have the potential to provide sta-
ble, higher-order time-integration of these complex multiphysics systems when
long dynamical time-scales are of interest (see e.g. [3, 4, 5, 6, 7]). Cwrrently
leading-edge implicit resistive MHD simulations can demand high-resolution
spatial discretization of 2D and 3D geometries with both structured or unstruc-
tured meshes that generate on the order of 10° to 10'° coupled unknowns. For
this reason the implicit transient simulation of these systems requires efficient
and scalable parallel iterative solution methods.

Krylov iterative linear solver algorithms are among the fastest and most ro-
bust iterative solvers for a wide variety of applications [8, 9]. The key factor
influencing the robustness and efficiency of these solution methods is the choice
of preconditioner. Among current preconditioning techniques multilevel type
methods (e.g. two-level domain decomposition, multigrid and algebraic multi-
grid (AMG)) have been demonstrated to provide scalable solutions to a wide
range of challenging linear systems. This includes elliptic scalar problems, linear
elasticity, and computational fluid dynamics as just a few examples [10, 11, 12].
Multigrid scalability and performance is critically dependent on both the pro-
jection and the smoothers. This study focuses on the latter, specifically the
performance of smoothers based on a Krylov type iterative method (GMRES)
applied to the fully-coupled Newton-Krylov algebraic multigrid preconditioned
solution approach described in [7, 13]. In this context the solution of the discrete
system developed by a fully-implicit backward differentiation (BDF) type for-
mulation of a variational multiscale (VMS) finite element spatial discretization
of the resistive MHD system is considered [7].

In the context of fully-coupled direct-to-steady-state solution methods for
VMS CFD and MHD large linear non-symmetric systems, experience has in-
dicated that robust, and therefore more expensive, smoothing methods are re-
quired [14, 15, 16, 5, 17, 7]. For these type systems additive Schwarz domain
decomposition (DD) with local incomplete LU factorizations have been shown
to be an effective smoother [16, 18, 17, 7]. For these methods robustness can be
enhanced by variable overlap between sub-domains and by allowing fill-in for
the ILU factors [19, 20, 16, 18, 17]. This robustness however comes at a price
since these methods are expensive and require large setup time and larger mem-
ory requirements to compute the ILU factors. In an extension to this work we
consider the case of transient resistive MHD problems and carry out an initial
assessment of AMG preconditioned Krylov methods based on a few well known
standard stationary iterative methods (e.g. Jacobi, Gauss-Seidel, etc.) and the
recursive application of a Krylov method used as a smoother.

There has been a fair amount of previous work employing Krylov smoothers
with multigrid for SPD problems, e.g. scalar elliptic problems and elasticity
problems [21, 22, 23, 24, 25]. There has been considerably less previous work



employing Krylov smoothers for Helmholtz problems [26] and for nonsymmetric
systems; for example [27] has considered Krylov smooothers for the convection-
diffusion equation. Additionally and independently we have considered Krylov
smoothers for the MHD equations [28]. This present study is an extension of
[28].

This paper is organized as follows. The resistive MHD equations will be pre-
sented, followed by the finite element discretization approach. The fully-coupled
Newton-Krylov preconditioned with algebraic multigrid solution approach is
then presented. Comparison of smoothers, including the Krylov smoothers,
will be presented for three transient MHD test cases. Finally, we include some
concluding remarks and discussion of future work.

2. Resistive MHD model equations and discretization

The governing equations considered in this study are the 3D resistive iso-
thermal MHD equations including dissipative terms for the momentum and
magnetic induction equations [1]. This model provides a continuum descrip-
tion of charged fluids in the presence of electromagnetic fields. The system of
equations in residual form is:
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Here u is the plasma velocity; p is the ion mass density; P is the plasma pressure;
B is the magnetic induction (also termed the magnetic field) that is subject to
the divergence-free involution V - B = 0. In this formulation the Lagrange
multiplier, ¢ is introduced to allow numerical enforcement of the divergence
involution as a constraint, Ry, = V -B = 0 [29, 7] The associated plasma
current, J, is obtained from Ampere’s law as J = ﬁv x B. The physical
parameters in this model are the plasma viscosity, p, the resistivity, n, and the
magnetic permeability of free space, ug.

This study focuses on the incompressible limit of this system with (V-u = 0).
This limit is characteristic of low-flow-Mach number applications for compress-
ible systems as well, and is the most challenging algorithmically because of the
presence of the elliptic incompressibility constraint. The methods presented in
this work, i.e. the VMS finite element (FE) formulation, Newton-Krylov nonlin-
ear iterative solvers, and the fully-coupled algebraic multilevel preconditioners,
also work in the variable density low-Mach-number compressible case.

For the spatial discretization the VMS FE technique is employed, the semi-
discretized system is then integrated in time with a methods of lines approach
based on BDF methods [7]. Here only a summary of the residual form of the



VMS/stabilized FE formulation is presented. In the weak form residual equa-
tions [w", ¢", C", s"] are the FE weighting functions for velocity, pressure, mag-
netic field respectively [7]. The sum ) indicates the integrals are taken only
over element interiors ). and integration by parts is not performed. 1 denotes
the Lagrange multiplier and 7,,, 7p, 71 and 7y the stabilization parameters
(stabilization parameters are provided in [7]).
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A finite element (FE) discretization of the stabilized equations gives rise to a
system of coupled, nonlinear, non-symmetric algebraic equations, the numerical
solution of which can be very challenging. These equations are linearized using
an inexact form of Newton’s method. A formal block matrix representation of
these discrete linearized equations is given by
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where the block diagonal contribution of the stabilization procedure has been
highlighted by a specific ordering. The block matrix J, corresponds to the
discrete transient, convection, diffusion and stress terms acting on the unknowns
611; the matrix B corresponds to the discrete gradient operator; D, the discrete
representation of the continuity equation terms with velocity (note for a true
incompressible flow this would be the divergence operator); the block matrix
J; corresponds to the discrete transient, convection, and diffusion acting on
magnetic induction; and the matrices Lp and Ly correspond to the discrete
“pressure Laplacian” and “Lagrange multiplier Laplacian” [7]. The right hand
side vectors contain the residuals for Newton’s method. The existence of the
nonzero matrices, Lp and Ly, in the stabilized FE discretization is in contrast
to Galerkin methods using mixed interpolation that produce a zero block on the
total mass continuity and solenoidal constraint diagonal. The existence of these
block matrices helps to enable the solution of the linear systems with a number
of algebraic and domain decomposition type preconditioners that rely on non-
pivoting ILU type factorization, or standard stationary iterative methods such



as Jacobi or a DD Gauss-Seidel sub-domain solver [14, 15]. Although the above
formal block matrix representation provides insight into the system, the actual
linear algebra implementation in the application employs an ordering by FE
mesh node with each degree of freedom ordered consecutively.

3. Fully-coupled Newton-Krylov multigrid preconditioned solution
approach

Numerical discretization of the governing equations produces a large sparse,
strongly-coupled nonlinear system. Although fully-coupled Newton-Krylov tech-
niques [30], where a Krylov solver is used to solve the linear system generated by
a Newton’s method, are robust, efficient solution of the large sparse linear sys-
tem that must be solved for each nonlinear iteration is challenging [9, 18]. The
performance, efficiency and scalability of the preconditioner is critical [9, 31].
It is well known in the literature that Schwarz domain decomposition precon-
ditioners do not scale due to lack of global coupling [32, 19, 33]. Multigrid
methods are one of the most efficient techniques for solving large linear sys-
tems [11, 34, 35]. As we have described our Newton-Krylov preconditioned by
algebraic multigrid solution method in detail in our previous work [18, 36, 7],
we will provide only a very brief description here and refer the reader to our
previous work for further details. Although we employ the ML [37] smoothed
aggregation [38] library, we employ a nonsmoothed aggregation approach (due
to the matrices being nonsymmetric) with uncoupled aggregation. For system
of partial differential equations (PDEs), aggregation is performed on the graph
where all the PDEs per mesh node is represented by a single vertex. The discrete
equations are projected to the coarser level employing a Galerkin fashion with
a triple matrix product, Ay11 = RyA¢Py, where Ry restricts the residual from
level £ to level ¢+1, Ay is the discretization matrix on level ¢ and P, prolongates
the correction from level ¢+1 to £. We typically employ both pre- and post-
smoothing on each level of the multigrid V-cycle (we do not employ W-cycles at
scale because it is well known that W-cycles do not scale, e.g. [39]). During the
aggregation process, at coarser levels there are fewer and fewer aggregates per
MPI process. This will lead to poor quality aggregates as well as the minimum
size of the coarsest level being limited by the number of MPI processes. One
approach to remedy these problems is to perform a repartitioning of the coarser
level matrices by moving them to a subset of the MPI processes, and this ap-
proach is employed by the ML library [37, 36]. This allows the construction
of better quality aggregates, reduces the communication at coarser levels, and
does not constrain the minimum number of aggregates on the coarsest level to
be the number of MPI processes. Although at the coarsest levels many MPI
processes will be idle, the advantages of this approach significantly outweighs
the disadvantages.

The Trilinos framework [40] provides the preconditioned Newton-Krylov
method and preconditioners used for this work. Krylov methods are provided by
the Aztec [41] library and the multigrid cycles and grid transfers are provided by
ML. The Zoltan [42] parallel partitioning, load balancing and data-management



services library provides the recursive coordinate bisection (RCB) partitioning
algorithm, an algorithm that partitions a graph based on the coordinates of
the vertices. ML provides the data movement when repartitioning the matrix
on coarser levels. The Ifpack [43] and Amesos libraries provides the smoothers
and coarsest level solve. A serial sparse direct solver is employed on the coars-
est level of multigrid. Although Trilinos was employed for this work, other
complementary solver packages are available, notably PETSc [44], and other
complementary algebraic multigrid packages are available (e.g. HYPRE [45]).

As mentioned in the introduction, we were interested in evaluating Krylov
smoothers compared with our standard ILU smoother for our MHD test cases.
For our Newton-Krylov solution approach, a GMRES solver is employed that
is preconditioned by multigrid with ILU smoother. Because our test cases ma-
trices are nonsymmetric, the choice of GMRES [46] for the Krylov smoother
for our initial evaluations is appropriate. When the Krylov/GMRES smoother
is employed, there are two levels of Krylov methods and possibly two levels
of preconditioners. Because the preconditioner is changing due to the GM-
RES smoother, it is necessary to employ a GMRES approach such as flexible
GMRES (FGMRES) [47] or GMRESR [48] for the “outer” GMRES Krylov
method. This “outer” GMRESR/FGMRES Krylov method is then precondi-
tioned by multigrid. Each level of the multigrid V-cycle employs a Krylov based
smoother which in our case is based on GMRES. This is denoted as the “in-
ner” GMRES. This “inner” GMRES can be preconditioned, e.g. by a standard
relaxation approach such as point or block Jacobi or Gauss-Seidel, but often
this “inner” GMRES will not be preconditioned. For the transient MHD test
cases investigated in this study the “outer” GMRES solver is Aztec GMRESR,
preconditioned by ML AMG, with “inner” Aztec GMRES smoother on the dif-
ferent multigrid levels, with Ifpack block Jacobi preconditioner (on the “inner”
Aztec GMRES). It should be pointed out that the conventional wisdom heading
towards exascale era is that algorithms should reduce communication. Unfortu-
nately the Krylov smoother actually increases global communication (e.g. dot
products are global operations). In order to avoid this increase in global commu-
nication, we have also explored additive Schwarz Krylov smoothers or domain
decomposition Krylov smoothers where the GMRES matrix-vector multiplica-
tions and dot products are limited to the subdomains. As with typical additive
Schwarz smoothers, these subdomains may or may not have overlap. In this
study, “Krylov smoother,” “GMRES smoother,” or “global GMRES smoother”
will refer to a global smoother, while additive Schwarz Krylov smoothers or
domain decomposition Krylov smoothers will be qualified by adjectives such as
“additive Schwarz,” “domain decomposition” or “local Krylov” smoother.

An estimate of the fine grid memory usage of an “outer” GMRES using
an “inner” GMRES smoother (given in the number of double floating pointer
entries) is provided relative to an “outer” GMRES using an ILU smoother algo-
rithm. Here the number of nonzero entries in the Jacobian matrix corresponding
to a 3D FE discretization with, dof, degrees of freedom at each of the, Nyoges,
nodes of a rectangular domain is estimated as nnz = 27 X dofs X dofs X Npodes-
The estimate of the memory usage for the “outer” and “inner” Krylov subspace



size is, K, X dofs X Npodes, and K; X dofs X Nyodes- This estimate assumes both
methods require roughly the same “outer” GMRES Krylov subspace size. Using
these estimates the ratio of memory usage of the “inner” GMRES preconditioned
method to an additive Schwarz domain decomposition ILU(0) approximate fac-
torization preconditioned method (with no overlap) becomes,

_ (27 X dOfS + Ko + Kq) X dOfS X Nnodes
(2 x 27 x dofs + K,) x dofs X Npodes

For a sufficiently large number of dofs and a fast converging outer iteration such
that, K, << 27 x dofs, and an “inner” Krylov solve for which K;/K, << 1,

the estimate is approximately r = %

4. Results and discussion

Results for three transient resistive MHD test cases are presented. These
included (1) the decay of an initialized hydromagnetic vortex that leads to a
turbulent MHD flow, (2) a transient magnetic flux tube / island coalescence
problem, and (3) a transient MHD hydromagnetic Kelvin-Helmholtz stability
problem, all of which are of recent scientific interest. Using these test prob-
lems initial results are presented for the scalability of the Krylov smoother in
comparison with more traditional stationary iterative methods used as AMG
smoothers. This comparison is carried out for an MPI-only implementation of
the solution methods.

4.1. Taylor-Green MHD turbulent vortex decay

The first transient MHD test case is a Taylor-Green vortex generalized to
MHD as described in [49, 50]. We employ the same domain and initial condi-
tions and for the discretization employ the full VMS formulation as described
in [51]. The domain is a periodic box of size [—m,n]® with Reynolds number
Re = 1800 and magnetic Reynolds number Re,, = 1800. Tables 1-3 present a
weak scaling study for three different mesh sizes: 1283, 2563 and 5123 elements
cubed, or 16.8M, 134M and 1.1B DOFs, respectively. These problems are run
on 256, 2048 and 16384 cores respectively (one MPI process per core) of a linux
cluster that consists of dual-socket Intel Xeon 2.6 GHz oct-core Sandy Bridge
processors with QDR InfiniBand fat-tree interconnect (Tri-lab computing clus-
ter “TLCC2” machine at SNL). 20 time steps were used for all the simulations,
and weak scaling was performed with fixed CFL (CFL ~ 0.5). A BDF3 time
integration approach was employed. We refer to the linear system solve time
or preconditioned iteration time (i.e. not including preconditioner setup) as
the “solve” time. The “linear solve time” is the sum of this “solve” time and
the preconditioner setup time. Table 1 presents results for the Taylor-Green
turbulent vortex decay test case with 1283 element cube mesh (16.8M DOFs)
run on 256 cores for various smoothers: sub-domain Symmetric Gauss-Seidel
(SGS) with no overlap, ILU(0) with overlap of 1 (“ILUOov1”), global GMRES



smoother preconditioner | GMRESR Time(s) mem
iter/At | total | prec | solve | linear solve | (MB)

SGS 87.7 | 1108 18 | 730 748 | 1050
ILUOov1 14.2 732 | 263 97 360 | 1440
GMRES noprec 15.4 | 697 | 22.7 | 267 290 917
bkJac 13.1 | 655 35| 238 273 927

ptGS 13.6 828 24 413 437 917

bkGS 12.0 950 34 539 573 930

DD-GMRES | noprec ov0 214 749 | 21.1 336 357 890
noprec ovl 15.9 814 | 102 334 436 | 1080

bkJac ov0 20.2 785 | 32.6 391 424 892

bkJac ovl 15.5 895 | 127 371 498 | 1082

ptGS ov0 20.2 | 1173 | 20.8 793 814 892

ptGS ovl 12.1 | 1084 | 116 611 727 | 1080

bkGS ov0 20.2 | 1365 | 31.7 | 975 1007 891

bkGS ovl 11.9 | 1218 | 110 | 757 867 | 1081

Table 1: Taylor-Green turbulent MHD vortex decay test case with 1283 element cube mesh
(16.8M DOFSs) run on 256 cores of an Intel Xeon Sandy Bridge linux cluster with InfiniBand
fat-tree interconnect. Columns 3-8: GMRESR iterations per time step (sum of GMRESR
iterations over the Newton steps in a time step), Drekar total wall time, total preconditioner
setup time, total linear system solve time or preconditioned iteration time, sum of total
preconditioner setup and solve time, maximum high water memory over MPI processes.

(“GMRES”) smoother with no preconditioner (“noprec”) as well as block Ja-
cobi (“bkJac”), point Gauss-Seidel (“ptGS”) and block Gauss-Seidel (“bkGS”),
and additive Schwarz/domain decomposition GMRES smoother with the same
preconditioners as the global case, but with either no overlap or one level of
overlap (“ov0” or “ov1”). The third column is the outer GMRESR iterations
per time step, so it is the sum of the GMRESR iterations over the Newton steps
within the time step. So there is actually an interaction between the nonlinear
Newton solver and linear Krylov solver. Fourth column is the total time of the
simulation, including internal mesh generation and Jacobian and residual fill for
the 20 time steps. The fifth and sixth columns are the sum of all the precondi-
tioner setup times and sum of all the linear system solve times respectively for
the the 20 time steps (each time step has multiple Newton steps). The seventh
column is the total linear solve time for the 20 time steps (sum of columns 5 and
6) and is the metric for the comparison of the different smoothers. The eighth




column is the maximum high watermark memory usage over the MPI process’.

In general, standard relaxation smoothers are not sufficiently robust for our
MHD test cases, and we seldom employ them. Here we can see that the outer
GMRESR iterations per time for SGS smoother is considerably higher than for
any smoother, which makes it uncompetitive compared with the standard ILU
smoother (more than double the linear solve time). When the mesh is uniformly
refined to the 2563 element cube mesh (134M DOFSs) in Table 2, with SGS
smoother the outer GMRESR, Krylov solver no longer converges (convergence
stalls). Therefore we do not consider the SGS smoother for the 5123 element
cube mesh (Table 3) or for any further test cases in this work. For the standard
ILU smoother, the cost for smoother setup (time to compute the ILU factors)
is very expensive, and considerably larger than the solve time. For the GMRES
smoothers, while the preconditioner setup time is inexpensive compared to ILU,
the solve time is considerably more expensive compared to the ILU smoother.
GMRES smoother with either no preconditioner or block Jacobi preconditioner
is 20% and 25% faster (for linear solve time) than the standard ILU smoother
respectively, while requiring only 66% of the memory. Additive Schwarz/domain
decomposition GMRES smoother with no overlap without any preconditioner is
the same speed as the standard ILU smoother. The additive Schwarz/domain
decomposition GMRES smoother with either point or block Gauss-Seidel is not
competitive. Note that the additive Schwarz/domain decomposition GMRES
smoother with one level of overlap gives similar GMRESR iterations as the
global GMRES smoother (with the same preconditioner). Unfortunately con-
structing the smoother with one level of overlap is considerably more expensive
than the no overlap case. For all the cases involving GMRES smoother, five it-
erations of GMRES are employed (five iterations are employed for all the studies
in this paper). Table 2 presents the comparison of smoothers after the mesh has
been refined uniformly one level. Other than for the SGS smoother for which
the outer GMRESR Krylov solver no longer converges (convergence stalls), the
trends are similar to the 1283 element cube mesh case.

Table 3 presents the comparison of smoothers after the mesh has been re-
fined uniformly another level, to 1.1B DOFs on 16,384 cores. The GMRES
smoother with either no preconditioner or block Jacobi preconditioner is 10%
and 23% faster (for linear solve time) than the standard ILU smoother respec-
tively, while requiring only 66% of the memory. For ILU smoother, the fac-
torization is expensive, but once the factors are obtained, applying the factors
is considerably less expensive. For the GMRES smoother, the preconditioner
setup is inexpensive, but the solve time is expensive. It is a trade-off between
the expensive ILU factorization for setup versus the expensive solve for GMRES

INote the memory usage shown in all the results in this paper is for a research and devel-
opment testbed code for the flexible development of multiphysics applications and evaluation
of a wide range of iterative nonlinear/iterative linear solver algorithms that is unoptimized.
Currently efforts are underway to reduce the overall memory usage outside of the iterative
solvers and hence the benefit in the percentage decrease in memory usage for employing the
Krylov smoother would actually increase from the levels described in the study.



smoother preconditioner | GMRESR Time(s) mem
iter/At | total | prec [ solve [ linear solve | (MB)
SGS Failed
ILUOov1 20.2 862 | 311 134 445 1440
GMRES noprec 18.7 | 741 | 235 328 352 920
bkJac 15.7 | 749 | 41.3 306 348 933
ptGS 16.9 | 921 | 26.8 516 542 920
bkGS 17.1 | 1376 | 40.9 954 995 936
DD-GMRES | noprec ov0 31.4 | 969 23 565 588 896
noprec ovl 239 | 1229 | 138 676 814 | 1077
bkJac ov0 28.1 | 992 38 572 610 901
bkJac ovl 17.8 | 1173 | 147 | 610 757 | 1086
ptGS ov0 27.4 | 1625 | 27.0 | 1212 1239 895
ptGS ovl 16.9 | 1700 | 119 | 1197 1316 | 1088
bkGS ov0 27.6 | 1963 38 | 1544 1582 901
bkGS ovl 16.9 | 1920 | 134 | 1402 1536 | 1091
Table 2: Taylor-Green turbulent MHD vortex decay test case with 2563 element cube mesh
(134M DOFs) run on 2048 cores of an Intel Xeon Sandy Bridge linux cluster.
smoother preconditioner | GMRESR Time(s) mem
iter/At | total | prec | solve | linear solve | (MB)
ILUOov1 37.3 | 1515 | 414 | 276 690 | 1520
GMRES noprec 31.0 | 1563 34 590 624 | 1000
bkJac 21.9 | 1398 51 482 533 | 1020
ptGS 20.0 | 1660 47 | 1176 1223 | 1023
bkGS 20.0 | 2089 | 110 | 1204 1314
DD-GMRES | noprec ov0 77.0 | 2361 | 57.7 | 1519 1577 | 1030
noprec ovl 54.1 | 3118 | 288 | 1732 2020
bkJac ov0 69.5 | 2519 | 76.2 | 1545 1621 | 1040
bkJac ovl 34.0 | 2389 | 227 | 1227 1454
ptGS ov0 62.6 | 4044 | 45.1 | 3163 3208 | 1040
ptGS ovl 33.5 | 3896 | 186 | 2667 2853
bkGS ov0 59.1 | 4745 | 161 | 3524 3685 | 1040
bkGS ovl 32.1 | 4073 | 280 | 2888 3168

Table 3: Taylor-Green turbulent MHD vortex decay test case with 5123 element cube mesh
(1.1B DOFs) run on 16,384 cores of an Intel Xeon Sandy Bridge linux cluster.
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smoother. The GMRES smoother can considerably lower the number of outer
GMRESR iterations, but cost per iteration is not inexpensive. The additive
Schwarz/domain decomposition GMRES smoother is not competitive with the
standard ILU smoother, especially for the cases with Gauss-Seidel precondi-
tioner (either point or block), although the memory requirement is significantly
less than for the standard ILU smoother.

Taylor-Green MHD: comparison of smoothers
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Figure 1: Taylor-Green turbulent MHD vortex decay 1283 element test case comparing (a)
GMRESR iterations per time step and (b) total time for different smoothers as CFL is in-

creased (At is increased).

For transient simulations, the ability to take larger time steps significantly
reduces the time for a simulation (for the case where numerical stability con-
strains the time step). Figure 1 compares the robustness of five of the smoothers
with increasing CFL, i.e. increasing time step, for the 1282 element cube mesh
case. Figure 1(a) plots outer GMRESR iterations per time step while Figure
1(b) plots total time (total time for entire simulation, i.e. including mesh gen-
eration, Jacobian and residual construction, etc.). One can observe that the
ILU(0) with no overlap smoother and GMRES preconditioned by point Gauss-
Seidel smoother no longer converges for CFL > 0.5. ILU(0) with one level of
overlap smoother, GMRES preconditioned by block Jacobi smoother and GM-
RES with no preconditioner smoother still converge for CFL = 4, which is a
time step 8% larger. Similar trends hold for the refined meshes.

4.2. Island Coalescence

The island coalescence problem follows the unstable evolution of two 3D
current tubes (in the cross plane - islands) embedded in a sheered magnetic
field Harris sheet [7]. The structure of this equilibrium can be seen in the
upper left plot of Figure 2 with and iso-surface of J. The combined magnetic
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smoother preconditioner | GMRESR Time(s) mem
iter/At | total | prec | solve | linear solve | (MB)

ILUOov1 11.9 918 | 410 62 472 917
GMRES noprec 17.5 719 25 244 270 631
bkJac 12.9 705 42 204 246 631

DD-GMRES | noprec ovl 17.1 905 | 122 331 454 735
bkJac ovl 14.7 905 | 139 324 463 735

Table 4: Island coalescence test case with 643 element cube mesh (2.1M DOFs) run on 256
cores of an Intel Xeon Sandy Bridge linux cluster.

field produced by the flux tubes produces Lorentz forces that pull the flux
tubes together, and at finite resistivity the islands coalesce (join) to form one
island. Figure 2 shows iso-surfaces in the 3D volume and iso-lines and filled color
contours on intersecting planes of J, during the reconnection event. Clearly
evident is the formation of the the x-point in the intersecting planes between
the islands (see images at t = 2 and 3), the development of thin current sheets
at that same x-point location (and the corresponding 3D surface), and the
movement of the center of the tubes (island o-points) towards the x-point [52,
53]. The dynamics of island coalescence changes as a function of resistivity. For
larger resistivities, the x- and o-points monotonically approach each other. For
low resistivities, fluid-plasma pressure builds up as the islands approach and a
sloshing or bouncing of the o-point position is encountered that leads to lower
reconnection rates (for more details on the physics see e.g. [52]).

Time = 0.0000 Time = 2.03523 I Time = 3.03523 &

(.
’ iy,
N

I
!
”. I gy

Figure 2: Structure of the current tubes in 3D island coalescence problem with S = 2 x 10* for
the initial condition, and two times in the evolution of the problem ¢ = 2,3. The 3D current
tubes have bent in the z-direction and form current sheets as indicated by the iso-lines and
filled color contours of plasma current at five locations.

Tables 4-6 present a weak scaling study for the problem described in [7]
for 643 element cube mesh (2.1M DOFs), 1283 element cube mesh (16.9M
DOFs) and 2562 element cube mesh (135M DOFs) with Lundquist number
103. For this study, the time step is fixed at 0.1 and run to simulation time
4.0 (40 time steps). Each time the mesh is refined, the CFL is doubled. For
the 256 element cube mesh the time scale for Alfven wave is associated with
CFLy = (\/%At)/Ax ~ 15. Table 4 presents a comparison of smoothers

for the 64° element cube mesh (2.1M DOFs) run on 64 cores of the SNL
TLCC2 linux cluster. For both the global GMRES smoother, or additive
Schwarz/domain decomposition GMRES smoother, when either a point or block
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smoother preconditioner | GMRESR Time(s) mem
iter/At | total | prec | solve | linear solve | (MB)
ILUOov1 15.1 | 1022 | 455 96 552 907
GMRES noprec 216 | 871 30 | 378 407 645
bkJac 14.6 | 792 50 | 362 412 632
DD-GMRES | noprec ovl 20.0 | 1261 | 154 | 638 793 738
bkJac ovl 16.1 | 1182 | 169 | 551 721 736

Table 5: Tsland coalescence test case with 1283 element cube mesh (16.9M DOFs) run on 512

cores of an Intel Xeon Sandy Bridge linux cluster.

smoother preconditioner | GMRESR Time(s) mem
iter/At | total | prec | solve | linear solve | (MB)
ILUOov1 15.5 | 1125 | 528 | 110 638 922
GMRES noprec 21.8 | 911 67 380 448 666
bkJac 15.5 | 865 88 | 317 406 653
DD-GMRES | noprec ovl 204 | 1442 | 191 768 959 753
bkJac ovl 15.9 | 1311 | 206 | 648 854 753

Table 6: Island coalescence test case with 2563 element cube mesh (135M DOFs) run on 4096
cores of an Intel Xeon Sandy Bridge linux cluster.

Gauss-Seidel preconditioner (subdomain preconditioner) is employed the outer
GMRESR stalled. For the 643 element cube mesh, all the Krylov smoothers are
faster than the standard ILU smoother, with the global GMRES smoother with
no preconditioner or block Jacobi preconditioner being 40-50% faster. Table 5
presents a comparison of smoothers for the 1282 element cube mesh (16.9M
DOFs) run on 512 cores. Here the global GMRES smoother is faster than the
standard ILU smoother, but the additive Schwarz/domain decomposition GM-
RES smoothers are slower. Table 6 presents a comparison of smoothers for the
256 element cube mesh (135M DOFs) run on 4096 cores. As with the previous
two coarser meshes, the global GMRES smoother is faster than the standard ILU
smoother (30-35% reduction in time) while only requiring 65% of the memory,
but as with the previous coarser mesh the additive Schwarz/domain decompo-
sition GMRES smoothers are slower (but requires 20% less memory than ILU).

4.3. 3D hydromagnetic Kelvin-Helmholtz shear layer

The final test problem is a 3D hydromagnetic Kelvin-Helmholtz unstable
shear layer [7] (Figure 3). The computational domain is [—2,2] x [0,4] x [—1,1]
and the initial condition is defined by two counter flowing conducting fluid
streams with constant velocities U(xz,y > 0,2,0) = (1,0,0) and U(z,y <
0,2,0) = (—1,0,0) and a Harris sheet sheared magnetic field defined by

B(z,y, 2,0) = (0, Botanh(y/d),0).
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The boundary conditions are periodic on the right and left as well as the front
and back and no flow through the top and bottom. The parameters were chosen
so that Re = 10*, the magnetic Reynolds number Re,, = 10* and the magnetic
field strength is selected so that the Alfvenic Mach number My = v/vg = 3.

Time = 5.65850

Figure 3: 3D hydromagnetic Kelvin-Helmholtz shear layer with Re = 10%, Re,, = 104, M4 =
3. The white vectors show magnetic field, the red vectors the plasma current, and the surface
is of constant vorticity colored by the plasma current.

Figure 4 presents a weak scaling study for the 3D hydromagnetic Kelvin-
Helmholtz shear layer test case with 532K DOFs (run on 32 cores of an Intel
Xeon Sandy Bridge linux cluster), 4.23M DOFs (256 cores) and 33.7M DOF's
(2048 cores). All simulations were run to the same simulation time while the
velocity CFL was kept fixed, which halved the time step for each uniform re-
finement of the mesh. The number of time steps were doubled as the mesh was
refined, therefore the 532K DOFs, 4.23M DOFs and 33.7M DOFs test cases
were run with 480, 960 and 1920 time steps, respectively. Figure 4(a) presents
preconditioner setup time and linear system solve time per Newton step. The
leftmost three columns are with ILU(0) with one level of overlap smoother for
32, 256 and 2048 MPI processes, respectively. The middle three columns are
with GMRES smoother with no preconditioner for 32, 256 and 2048 MPI pro-
cesses, respectively. The rightmost three columns are with GMRES smoother
with block Jacobi preconditioner for 32, 256 and 2048 MPI processes, respec-
tively. For the ILU smoother, the time to construct the multigrid preconditioner
(mostly ILU smoother factorization time) is significantly greater than the solve
time. For the GMRES smoother, the time to construct the preconditioner is
significantly less than the solve time. Figure 4(b) presents the outer GMRESR
iterations per Newton step for the 9 runs. The outer GMRESR iterations per
Newton step for the GMRES smoother with block Jacobi preconditioner is sim-
ilar to ILU smoother, while the GMRES smoother with no preconditioner re-
quires more outer GMRESR iterations. Figure 4(c) presents maximum high
water mark memory over MPI processes for the 9 runs. The standard ILU
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smoother requires 40-50% more memory than the GMRES smoothers.

Drekar Kelvin-Helmholtz weak scaling: Time
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Figure 4: 3D hydromagnetic Kelvin-Helmholtz shear layer test case weak scaling study with
532K DOFs (run on 32 cores of an Intel Xeon Sandy Bridge linux cluster), 4.23M DOFs
(256 cores) and 33.7M DOF's (2048 cores). (a) Preconditioner setup time and linear system
solve time per Newton step. The leftmost three columns are with ILU smoother for 32, 256
and 2048 MPI processes, respectively. The middle three columns are with GMRES smoother
with no preconditioner for 32, 256 and 2048 MPI processes, respectively. The rightmost three
columns are with GMRES smoother with block Jacobi preconditioner for 32, 256 and 2048
MPI processes, respectively. (b) Outer GMRESR iterations per Newton step for the 9 runs.
(c) Maximum over MPI processes of high water mark memory for the 9 runs.

More test cases need to be considered to build more confidence in the Krylov
smoother. But it can be faster due to reduction in outer GMRESR solver iter-
ations and requires less memory (typically 35% less memory for global GMRES
smoother) than the standard ILU smoother.

5. Conclusions

In this study, we evaluated the use of Krylov smoothers for multigrid as an
alternative smoother to our robust but expensive in terms of time and memory
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standard ILU smoother for our fully-coupled Newton-Krylov algebraic precon-
ditioned multigrid solution approach for large-scale VMS resistive MHD simu-
lations. Our study considered three transient MHD simulations, but more test
cases need to be considered to build more confidence in the Krylov smoother.
The GMRES smoother can be faster due to reduction in outer GMRESR, solver
iterations and requires less memory (typically 35% less memory for global GM-
RES smoother) than our standard ILU smoother. However, the conventional
wisdom heading towards the exascale era is that algorithms should reduce
communication. Unfortunately the global Krylov smoother actually increases
communication. Hence our interest in additive Schwarz/domain decomposition
Krylov smoothers. Our next step is to evaluate the Krylov smoother at very
large scales to see how the global Krylov smoother compares with the domain
decomposition Krylov smoother and standard ILU smoother. Even if it does
not perform as well as ILU for very large scales, it holds promise for being a
competitive and robust alternative to ILU at scales in the range of 100M to 1
billion DOF's.
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