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Abstract. We develop a method for time-dependent topic tracking and
meme trending in social media. Our objective is to identify time peri-
ods whose content differs significantly from normal, and we utilize two
techniques to do so. The first is an information-theoretic analysis of the
distributions of terms emitted during different periods of time. In the
second, we cluster documents from each time period and analyze the
tightness of each clustering. We also discuss a method of combining the
scores created by each technique, and we provide ample empirical anal-
ysis of our methodology on various Twitter datasets.

1 Introduction

Social media platforms (Twitter, Facebook, etc.) allow users to instantaneously
publish small, textual utterances. Taken individually, these utterances might
have little content and provide little information. Taken in aggregate, however,
they can provide insights into, for example, public health [6], political sentiment
[22], and personality [7].

We develop a framework which allows us to detect and understand temporal
anomalies in a collection of timestamped documents, such as those produced on
social media. More explicitly, we identify time periods during which the produced
documents’ content differs drastically from the norm or shows unusually high
focus or intensity, but we do not place further restrictions or specifications on
the nature of the anomaly. As such, we focus on unsupervised techniques which
allow the detection of an anomalous state without a prior specification of the
exact nature of the anomaly.

We discuss related research and its relationship to the current work in Sec-
tion 2. In Section 3, we discuss two methods of detecting anomalous behavior,
as well as a way to fuse the results of these two approaches. In Section 4, we
present empirical results of our methods on various Twitter datasets.
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2 Related Work

There has been a significant amount of research on the trends and dynamics of
a corpus of timestamped documents. These methods have been used to study
trends in a diverse collection of corpora, including those consisting of scientific
papers [4, 8, 9], historical speeches [24], news stories [12, 23], and social media
posts [11,25]. Although there are numerous such techniques, they can be broken
into roughly two categories.

The techniques of the first category are generally known as topic detection
and tracking (TDT) algorithms. These algorithms attempt to incorporate tempo-
ral data into traditional topic modeling algorithms — algorithms whose primary
purpose is to produce clusters of similar documents. Some of these algorithms
use predefined categories (e.g., music news, sports news, political news, etc.)
and supervised learning techniques to classify each new document into one of
the predefined categories [11]. Other techniques create vectors from each docu-
ment and use traditional unsupervised clustering algorithms to produce custom
categories [13,18].

Still other TDT algorithms tackle topic detection and tracking using proba-
bilistic Bayesian modeling. These algorithms are usually based loosely on Latent
Dirichlet Allocation (LDA) [5]. LDA represents a topic as a distribution over
words and considers each document to have been generated by sampling from a
mixture of topics. Some temporally sensitive variants of LDA partition a corpus
into time intervals, run LDA on each time interval, and connect the topic distri-
butions from each time interval with the topic distributions of neighboring time
intervals [1, 4]. Other temporally sensitive variants of LDA associate each topic
distribution with a temporal distribution to encourage each topic to occur in a
relatively concentrated time period [24].

The second category of trend-identifying algorithms consists of techniques
which provide the user with a set of memes, defined as (clusters of) important
words or phrases, and the periods of time where each meme is considered es-
pecially important. Memes may or may not need to be specified in advance by
the user, and the importance of a meme is typically related to the frequency of
mentions per time. Various novel approaches have been developed to measure
the importance of a meme. Kleinberg et al. measure the importance of a meme
by fitting an infinite automaton to the temporal distribution of mentions of that
meme [10, 12]. He and Parker construct a physical model of importance using
proxies for a meme’s mass and velocity derived from the temporal distribution
of mentions of a meme and the context in which the meme occurs [9]. Swan and
Allan extract important terms from temporal slices of a corpus using a χ2 signif-
icance test [20]. Shasha et al. deem a meme m important in a time window w if
a user-specified function f(m,w) is greater than a user-specified threshold, and
they have constructed efficient data structures and algorithms for identifying
such memes [26,27].

Although the algorithms discussed in this section successfully track temporal
aspects of topics and/or identify trending memes, they tend to focus more on the
topics and content being tracked and less on the relative importance of different
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slices of time. In this work, we revisit the issue of topic tracking and meme
trending with a temporal focus. Rather than analyzing topics themselves, we
identify time periods with unusually high or anomalous trendiness. Moreover,
our techniques satisfy two properties which allow them to function well with
minimal prior configuration. First, our methods are completely unsupervised
— the algorithms are able to function without specifying categories or memes
to be tracked. Unlike the work of Pennebaker, et al. [14, 21], which focuses on
the temporal correlation of pronoun usage and mental state, we discover both
anomalous time periods and interesting textual markers which provide insights
into the nature of the anomaly. Second, our methods are largely independent
of the arrival rate of documents; we assume that any data we see has been
sampled from a larger distribution, and we would like our methods to be able to
accommodate differing sample sizes and sampling rates.

3 Methods

In this section, we present two techniques for studying term and topic trends
from the perspective of identifying anomalous time periods. The first technique
focuses on the variation of term distributions and highlights time periods whose
term distributions differ drastically from baseline. The second technique uses
clustering to construct a rough metric for topic coherence, which we expect to
be higher when an unusually large percentage of documents share a topic.

We assume that we have time periods t1, t2, . . . , tr and associated corpora
Ct1 , . . . , Ctr of documents, where Cti consists of all documents produced during
time period ti. We also assume that we have a corpus C0 which serves as a
“baseline” for our term distribution analysis. In our experiments, we use as the
baseline corpus C0 the union C0 = Ct1 ∪ · · · ∪ Ctr .

3.1 Term Distribution Analysis

Our first technique utilizes information-theoretic analyses of the distributions
of terms seen across varying time periods. Our analysis begins with Zipf’s law
— the observation that the nth most common word in a corpus occurs with
frequency proportional to n−α for some α > 0 [16]. The parameter α varies
based on language and corpus type (research articles, Twitter posts, etc.), yet α
is surprisingly constant across different corpora of the same type. However, the
distribution of terms in a corpus can vary widely, and it is this variation that
we analyze.

First, for each term w, we construct a probability p(w) (resp. q(w)) associated
with the term w and some corpus Ct (resp. C0) via one of the following:

– Document frequency: p(w) is the proportion of documents in Ct containing
w.

– Term frequency: p(w) is the proportion of all terms in Ct which are equal to
w.
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– Weighted term frequency: p(w) is a document-weighted proportion of all
terms in Ct constructed so that all documents are weighted equally, i.e.,

p(w) =
1

|Ct|
∑
d∈Ct

number of words in d equal to w

number of words in d
, (1)

where |Ct| denotes the number of documents in Ct.

We note that the values {p(w)}w form a distribution (i.e., they are nonnegative
and sum to 1) when defined using the term frequency or weighted term fre-
quency option, but not when defined using the document frequency option. The
non-weighted and weighted term frequency definitions differ in that the term
frequency option assigns equal weight to each term, whereas the weighted term
frequency option assigns equal weight to each document.

The Kullback-Leibler divergence KL (p‖q) between {p(w)}w and {q(w)}w is
defined as

KL (p‖q) =
∑
w

p(w) log

(
p(w)

q(w)

)
. (2)

The Kullback-Leibler divergence is an asymmetric measure of the difference be-
tween two probability distributions which measures the number of extra bits
needed to encode p when using a coding scheme optimized for q rather than a
coding scheme optimized for p.

Since the Kullback-Leibler divergence is asymmetric, it is common practice
to use the Jensen-Shannon divergence, a symmetrized version of the Kullback-
Leibler divergence, when constructing a distance metric on probability distri-
butions. However, we define an antisymmetric version of the Kullback-Leibler
divergence via

AKL (p‖q) = KL (p‖q)−KL (q‖p) =
∑
w

(p(w) + q(w)) log

(
p(w)

q(w)

)
. (3)

When analyzing the trends of a corpus Ct, we find it most useful to an-
alyze the term-wise contributions to AKL (p‖q). We thus define the pointwise
antisymmetric Kullback-Leibler (PAKL) score of a term w to be

PAKL(p‖q)(w) = (p(w) + q(w)) log

(
p(w)

q(w)

)
. (4)

The value PAKL(p‖q)(w) satisfies the following properties:

1. PAKL(p‖q)(w) is positive if p(w) > q(w) and is negative if p(w) < q(w).

2. PAKL(p‖q)(w) approaches zero as p(w) approaches q(w).

3.
∣∣PAKL(p‖q)(w)

∣∣ increases as either (a) p(w) stays constant and q(w) ap-
proaches 0, or (b) q(w) stays constant and p(w) approaches 0.
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Thus, when analyzing a set of timestamped corpora, we can monitor the time
evolution of PAKL scores to determine whether the relative frequency of a term
is increasing, decreasing, or staying constant in time. We can also sum all PAKL
scores, all positive (resp. negative) PAKL scores, or the most n positive (resp.
negative) PAKL scores in each corpus Ct in order to construct a score which
measures the relative trendiness (or, in the case when relative common words
experience a drop in usage, anti-trendiness) exuded by Ct.

We note that the third property listed above is key to our analysis. If we
had instead chosen to analyze a “pointwise” version of the Kullback-Leibler
divergence, we might have defined a score PKL(p‖q)(w) via

PKL(p‖q)(w) = p(w) log

(
p(w)

q(w)

)
. (5)

Note, however, that PKL(p‖q)(w) is unable to differentiate between terms w
such that p(w) ≈ q(w) and terms w such that p(w) ≈ 0, since in both cases,
PKL(p‖q)(w) ≈ 0.

3.2 Cluster Coherence

Our second topic-based approach to the temporal analysis of a series of corpora
is based on the idea that we can construct tighter clusters of documents during a
time period when there is a heightened focus on a relatively small set of concepts.
The procedure for this technique is as follows:

1. Obtain (GloVe) word vectors for the data.
2. Using the word vectors, derive a set of “corpus vectors” to represent the data

in Ct.
3. Cluster the corpus vectors.
4. Obtain scores from the clustering which measure cluster coherence and tight-

ness.

For the first step, we train GloVe vectors on a relatively large corpus con-
sisting of data similar to the data we’ll be analyzing. GloVe is an algorithm
which uses co-occurrence statistics of the terms in a corpus with a weighted
least-squares model in order to derive a vector for each term in a corpus such
that similar terms are associated with vectors with high cosine similarity [15].
The authors of GloVe have different objectives (synonym detection and analogy
completion) for their vectors and find that 300-dimensional vectors are optimal
for their tasks. Such vectors are too large for our purposes. Since the ultimate
goal of these vectors is to construct and cluster a set of vectors from Ct, the di-
mensionality of the vectors should be sufficiently small so as not to be hindered
by the curse of dimensionality (i.e., the idea that as dimensionality grows, the
distance between any two randomly chosen points on the unit sphere approaches√

2).
In the second step, we derive a set of vectors to represent the content of the

target corpus Ct. We describe the method we use here, although other methods
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are possible. For each document d ∈ Ct, we construct a “document vector” v(d)
by taking a weighted and normalized sum of the word vectors for words occurring
in d. Explicitly, we define

ṽ(d) =
∑
w∈d

tfd(w) idfC0(w), (6)

where tfd(w) denotes the number of times the term w occurs in document d, and
idfC0(w) denotes a smoothed version of inverse document frequency of w in C0:

idfC0
(w) = log

(
1 + |C0|

1 + |{d ∈ C0 | w ∈ d}|

)
, (7)

where |{d ∈ C0 | w ∈ d}| represents the number of documents in C0 containing
w.

We define the document vector for d as a normalized version of ṽ(d) defined
by Eq. (6), i.e.,

v(d) =
ṽ(d)

‖ṽ(d)‖
. (8)

This normalization reflects our belief that documents with similar content but
differing lengths should be treated as similar. Finally, we use the set of document
vectors v(d) as our set of “corpus vectors.”

In the third step, we cluster the corpus vectors. Because all of our vectors
have unit length, standard Gaussian or Euclidean clusterings are not appropri-
ate. Instead, we consider three variants of von Mises-Fisher (VMF) clustering,
which are described at length in [2] and [3]. The VMF distribution is defined as
the restriction to the unit sphere of a multivariate Gaussian distribution whose
covariance matrix is a multiple of the identity. The probability density function
of a VMF distribution with location µ (where ‖µ‖ = 1) and concentration κ ≥ 0
is given by

p(x;µ, κ) ∝ exp [κµᵀx] . (9)

The vector µ is analogous to the mean of a multivariate normal distribution,
and the parameter κ ≥ 0 is analogous to the inverse of the variance of a normal
distribution. We consider three VMF mixture models:

1. Spherical k-means clustering. Spherical k-means clustering can be reinter-
preted as a hard VMF mixture model where all mixture components are
forced to have the same concentration [3].

2. Hard VMF mixture model. In this model, we fit to our data a mixture of
VMF components with an underlying assumption that each data point can
belong to only one mixture component.

3. Soft VMF mixture model. In this model, we fit to our data a mixture of
VMF components with an assumption that each datum could have been
drawn (with varying probability) from any mixture component.
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In the fourth step, we construct scores which measure cluster coherence and
tightness. The scores that we generate are dependent on which VMF mixture
model we use. There are multiple such measures; we list here only the most
promising:

– The concentration κ derived from reinterpreting spherical k-means clustering
as a VMF mixture model.

– The median concentration parameter from both the hard and soft VMF
mixture models. After fitting to our data a mixture model consisting of k
mixture components, we collect the set of concentration scores. Empirical
evidence suggests that the median of the concentration scores is higher on
days when relatively few topics are receiving heightened interest. We also
considered the first and third quartiles as potential scores, but the signal
provided by these values is comparatively weak.

– The lognormal location of the concentration parameters from the VMF mix-
ture models. After constructing the set of concentration scores discussed
above, we first discard any outlier concentration scores. Empirically, we have
found that very high concentration scores result when we have a corpus with
many highly similar documents. We next fit a lognormal distribution to the
set of remaining concentration scores. A variable X has a lognormal distri-
bution if ln(X) ∼ N (µ, σ) (i.e., when ln(X) is normally distributed with
mean µ and standard deviation σ). The values µ and σ are typically referred
to as the location and scale of the lognormal distribution, respectively. We
have found that the location parameter is typically higher on days when
relatively few topics are receiving heightened interest, although this effect is
more pronounced with a hard VMF mixture model than a soft VMF mixture
model.

In all three methods detailed above, we rely on the techniques and formulae
presented and explained in detail in [3, 19].

Remark: In future work, we would like to incorporate various successful
time-sensitive Bayesian topic models into our framework [1, 4]. Bayesian topic
models are typically learned using one of two techniques — Gibbs sampling and
variational inference. When trained with variational inference, Bayesian topic
models provide distributions over parameter estimates. Just as we find the con-
centration scores of our von Mises-Fisher mixture models helpful in identifying
anomalous time periods, so too could we utilize the covariance matrices of the
posterior parameter distributions in our analysis. For example, we hypothesize
that the variance var(X) of each parameter X in the posterior distribution is
inversely proportional to the trendiness exhibited by the set of documents in the
corpus.

3.3 Weighted Probabilistic Fusion

In Sections 3.1 and 3.2, we discussed numerous techniques for generating scores.
In this section, we discuss a promising technique for fusing together various
scores. Our technique is almost identical to that discussed in [17].
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Empirical evidence suggests that our score generating techniques suffer from a
lower-than-desired signal-to-noise ratio, and that the scores produced by any one
technique are typically not normally distributed. As such, it would be inappro-
priate to use fusion techniques which return the weighted average or maximum
of normalized scores as is done in other contexts. Instead, our fusion technique
incorporates estimates of the various score distributions.

For each corpus Ct, we assume that we have generated m different scores
zt,1, . . . , zt,m from one of the techniques discussed in Sections 3.1 and 3.2. We
assume that the values {zt,j}t are sampled from some distribution Zj with cu-
mulative distribution function (cdf) Fj . Since the true cdf Fj is not known, we

approximate Fj using either the empirical cdf F
(emp)
t or by using the cdf F

(β)
t

of a beta distribution fit to the scores {zt,j}t (after scaling the zt,j to lie strictly
between 0 and 1). Empirical evidence suggests that our fusion technique pro-

duces a greater number of significant events when using F
(emp)
t than when using

F
(β)
t .

Our fusion technique involves three steps:

1. For all scores of type j, construct a cdf Fj as described above.
2. For each time period t, construct a fused score st via

st = −
m∑
j=1

cj log (1− Fj(zt,j)) , (10)

where cj > 0 denotes the relative weight we wish to give the jth score
generating technique.

3. Fit a gamma distribution with cdf G to the set of fused scores {s1, ..., sn}.
For any given time period t, the value G(st) now quantifies the significance
of the events occurring during t.

Our model assumes stationarity; that is, each cdf Fj is assumed to be time
invariant. If our data spans a sufficiently large period of time, this assumption
may be inappropriate. In such circumstances, we modify step (1) above and fit
a separate cdf Ft,j for each score j and time period t from the scores {zτ,j}τ ,
where τ ranges over a set of time periods which are temporally proximal to the
target time period t. In step (2), we then calculate st using the cdfs {Ft,j}j . Step

(3) remains unchanged. We call the fusion technique described in this paragraph
“windowed fusion” in contrast to the original “global fusion” technique presented
in the enumerated list above.

We now give a rough justification of our empirically successful fusion method,
recognizing that the assumptions made in our justification may be invalid in
a real-world scenario. If we assume that the set of scores {zt,j}t,j have been

independently sampled (where zt,j has been sampled from a distribution with cdf
Fj), then the values {− log (1− Fj(zt,j))}t,j are iid samples from an exponential
distribution. If we additionally assume that cj = 1 for all j, then the values
st are iid samples from a gamma distribution (because the sum of independent
exponential random variables is a Gamma random variable).
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We note that, in general, each Fj only approximates the true cdf of the
corresponding score distribution, and, for any fixed time period t, the scores
{zt,j}j are far from independent. In fact, we rely on the assumption that during
an anomalous time period t, all zt,j will be abnormally high. Furthermore, we
may want to choose our score weights cj to be nonuniform. In our experiments,
we often choose cj so that the scores generated from term distribution analysis
(Section 3.1) have combined weight equal to that of the scores generated by
analyzing cluster coherence (Section 3.2).

4 Experiments

Our overall motivating goal — finding content-based anomalies in temporal seg-
ments of a corpus of social media posts — is somewhat vague and underspecified.
We have thus chosen to focus our analysis on the somewhat more tractable goal
of finding time periods exhibiting unusually high trendiness. Yet even with this
specification, we suffer not only from a lack of a clear and unambiguous definition
of “trendiness” (although we have chosen to use an information-theoretic defini-
tion of “anomaly” and cluster coherence as proxies), but also from the absence
of data with incontrovertible ground truth with labeled anomalous time periods.
Nevertheless, we present the results of applying our methods on multiple diverse
Twitter datasets to demonstrate the capabilities of the proposed algorithm.

4.1 Data

We first apply our algorithm to relatively small subsamples of the Twitter
Streaming API, a free public stream consisting of social media posts containing
at most 140 characters. In total, four datasets are considered. The first, referred
to as TwitterParisEnglish, consists of 50,000 tweets per day sampled uniformly
at random from all English tweets from the Twitter Streaming API from Oc-
tober 11, 2015 to November 29, 2015. The second dataset, TwitterParisFrench,
consists of 53,000 tweets per day sampled uniformly at random from all French
tweets from the Twitter Streaming API from October 16, 2015 to November
29, 2015. Note that the sampling period for both these datasets includes both
November 13, 2015, the date of major terrorist attacks in Paris, France, and
November 26, 2015, the date of the United States holiday Thanksgiving.

We next apply our algorithm to datasets consisting of all tweets emitted by
specified users during a specified timeframe constructed using the Twitter Search
API. In particular, we construct a dataset TwitterUSUniversities by collecting
all 4.2 million tweets emitted from official Twitter accounts of 2,300 United
States universities from May 2014 to December 2016. We further construct a
dataset TwitterOlympics by collecting all 1.1 million tweets emitted from the
accounts of 1,200 Olympians and Olympics professionals (e.g., coaches, sports
journalists) from October 2014 to December 2016.

For the analysis of all our Twitter datasets except TwitterParisFrench, we
use 25-dimensional GloVe vectors trained on roughly 50 million English tweets
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sampled from the Twitter Streaming API from March, 2015 to July, 2015. For
TwitterParisFrench, we use 25-dimensional GloVe vectors trained on roughly
5 million French tweets sampled from the Twitter Streaming API from Jan-
uary, 2015 to August, 2015. Note that the GloVe vectors we use are trained
on tweets temporally separated from the TwitterParisEnglish and TwitterParis-
French datasets by a period of at least two months. We also feel that Twit-
terUSUniversities and TwitterOlympics are largely independent from the data
used to train the GloVe vectors.

4.2 Results

We first run a PAKL analysis (cf. Section 3.1) for our TwitterParisEnglish
dataset using the “document frequency” option. We segment our corpus by day,
and for the analysis of day t, we consider only terms which occur at least 5 times
in Ct and 20 times in the entire corpus. The terms with the highest PAKL scores
for select days can be seen in Table 1. We include terms from both uneventful
days (Oct. 26, 2015 and Nov. 4, 2015) and anomalous days (Nov. 13, 2015 and
Nov. 26, 2015). For the anomalous days, we can successfully find terms of inter-
est. Note also that the top PAKL scores for anomalous days tend to be higher
than those for normal days.

We also wish to mention that on November 26, 2015, roughly 2% of our
tweets mention “#mtvstars,” “Britney Spears,” and “Lana Del Rey.” A post
hoc analysis has revealed that the vast majority (over 98%) of these tweets were
posted by accounts that are now suspended for violating the Twitter Rules. Even
so, other terms associated with Thanksgiving, including “family,” “turkey,” and
“#imthankfulfor,” are included in the 20 highest scoring terms for November
26, 2015.

We also score each document d ∈ Ct using the term PAKL scores for Ct via

score(d) =
ln (|d|)
|d|

∑
w∈d

PAKL(w). (11)

We report the top two documents for select days in Table 2. For anomalous days,
these documents successfully capture the nature of the day’s anomaly.

In order to test our methods’ robustness to corpora of different sizes, we create
subcorpora of TwitterParisEnglish containing 10,000, 20,000, 30,000, and 40,000
tweets per day. We plot the sum of all positive PAKL scores for each day in Fig. 1.
We find that varying the number of tweets considered causes surprisingly little
variation in the score. Similarly, we plot the concentration score for spherical
k-means clustering (with k = 50) in Fig. 2. Although the clustering scores are
less robust to the number of tweets considered each day than the PAKL scores,
they still maintain a level of robustness sufficient to identify anomalous time
periods with high confidence.

Fig. 3 shows the first, second, and third quartiles of the concentration scores
for a hard VMF mixture model with 50 mixture components for the Twitter-
ParisEnglish dataset. Similar graphs, not shown here, were produced for the
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Table 1. Top words for select days and their associated PAKL scores from Twitter-
ParisEnglish.

Oct. 26, 2015

forevermore 0.0286
#pushawardslizquens 0.0154

#aldubpredictions 0.0149
the 0.0149

#aldubnewbeginnings 0.0129
everydayiloveyou 0.0142
#everydayilov. . . 0.0105

#otwolhappytimes 0.0104
i 0.0096

you 0.0092

Nov. 4, 2015

#aldub16thweeksary 0.0203
i 0.0110

#showtimehousemates 0.0103
that 0.0085

it 0.0083
#otwolmanilainlove 0.0082

to 0.0078
#cmaawards 0.0076

#aldubnewcharacter 0.0076
a 0.0075

Nov. 13, 2015

paris 0.1448
in 0.0682

#prayforparis 0.0582
the 0.0572

#madeintheam 0.0485
#aldubhappybdaylola 0.0392

is 0.0381
#paris 0.0341

and 0.0312
prayers 0.0307

Nov. 26, 2015

thanksgiving 0.1743
thankful 0.1159
happy 0.0692

#mtvstars 0.0602
for 0.0402

britney 0.0343
spears 0.0342

rey 0.0322
lana 0.0321
del 0.0315

Table 2. Top documents for select days from TwitterParisEnglish.

Oct. 26, 2015

EVERYDAYILOVEYOU
Forevermore in the night
#PushAwardsLizQuens

I LOOVE EVERYDAYILOVEYOU
Forevermore #PushAwardsLizQuens

Nov. 4, 2015

I’m chillin I’m good
I’m straight

I don’t know, that
that’s a thing that I know.

Nov. 13, 2015

Sending prayers to the
people in Paris #PrayForParis

My thoughts and prayers go
out the victims in the shootings

in Paris #Prayers4Paris

Nov. 26, 2015

thankful for everything
<emoji> Happy Thanksgiving

<emoji> Happy Thanksgiving
<emoji>
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Fig. 1. PAKL scores per day for corpora of varying size taken from TwitterParisEnglish.
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Fig. 2. Cluster scores per day for corpora of varying size taken from TwitterParisEn-
glish.
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other datasets mentioned above. We normalize the scores from each quartile for
a fair comparison of score quality. As mentioned previously, only the second
quartile appears to be a good predictor of anomalous time periods.

Oct 09 Oct 16 Oct 23 Oct 30 Nov 06 Nov 13 Nov 20 Nov 27
Date

-2

-1

0

1

2

3
S

co
re

Q1
Q2
Q3

Fig. 3. VMF mixture cluster scores per day for TwitterParisEnglish.

We have experimented with varying the number of clusters k between 10
and 100. For k in this range, the effects of changing k are noticeable but rel-
atively insignificant. In general, as k decreases, clustering scores become both
more resilient to changing dataset size and less noisy (the randomness inherent
in many clustering algorithms creates a lack of uniformity in clustering scores
across different clusterings of the same data). Unfortunately, the quality of the
clustering scores also tends to decrease with decreasing k.

We also present graphs produced by fusing PAKL scores with clustering
scores. Unless otherwise noted, fusion for these datasets is done via F (β), and
the cdfs used during fusion are calculated from the entire dataset, rather than
from windows around the target time periods.

For the TwitterParisEnglish and TwitterParisFrench datasets, we construct
four PAKL scores by summing, for each day, all PAKL scores, all positive PAKL
scores, the highest 200 PAKL scores, and the highest 50 PAKL scores. We also
construct fifteen cluster scores: we run each clustering algorithm (spherical k-
means, hard VMF, soft VMF) three times with k = 50 clusters. From the spher-
ical k-means clusterings, we record the concentration. From the VMF mixture
models, we collect the lognormal location parameter and the median concentra-
tion. We weight the scores so that the PAKL and clustering scores each account
for 50% of the total fused score. The fused scores for TwitterParisEnglish (resp.
TwitterParisFrench) are shown in Fig. 4 (resp. Fig. 5). Dashed vertical lines
denote the date of the Paris attacks and Thanksgiving, and a dashed horizontal
line indicates the 10% significance level.

For the TwitterOlympics and TwitterUSUniversities datasets, fusion is per-
formed similarly with the following changes to account for the fact that these
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Fig. 4. Fused scores per day for TwitterParisEnglish.
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Fig. 5. Fused scores per day for TwitterParisFrench.
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corpora are smaller in general than TwitterParisEnglish and TwitterParisFrench.
First, we segment these corpora by week rather than by day. We also construct
four PAKL scores, but construct scores by summing the highest 100 and 20
PAKL scores instead of the highest 200 and 50 scores as above. Finally, we run
our clustering score generators with k = 25 instead of k = 50. We again use
dashed horizontal lines to indicate the 10% significance level.

For TwitterOlympics, we produce fused scores using both F (β) (Fig. 6) and
F (emp) (Fig. 7). Although these graphs have very similar shapes, fusion using
F (β) tends to produce fewer significant events than fusion using F (emp). The
three periods in Fig. 6 with significant scores correspond to the various athletic
events in August 2015, the 2016 Olympic trials, and the 2016 Summer Olympics.
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Fig. 6. Fused scores for TwitterOlympics using F (β).
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Fig. 7. Fused scores for TwitterOlympics using F (emp).
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For TwitterUSUniversities, we present a graph of the fused scores based on
the entire corpus (Fig. 8). We note that the Twitter feeds of many US univer-
sities changed drastically between May 2014 and November 2016. Although our
algorithms are robust to changing corpus size and sampling rates, they are not
robust to underlying changes in behavior. For example, the rate of tweet pro-
duction nearly triples throughout our period of collection. Although this first
appears to be a change in corpus size, we see upon further inspection that it
is a change in behavior, and thus, a violation of the assumption of stationarity
— later in our collection period, universities are more likely to tweet about less
pressing matters, so significant events receive less attention in general. Conse-
quently, no time periods register as significant in the latter temporal half of this
corpus when using global fusion.
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Date
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Fig. 8. Fused scores for TwitterUSUniversities during 2014–2016 using global fusion.

However, a much clearer pattern emerges when using windowed fusion to
analyze TwitterUSUniversities (Fig. 9). For this analysis, we fit cdfs Ft,j for the
jth score generating technique and time period t from the scores generated by
the jth score generating technique for the 15 time periods before t and the 15
time periods after t. With this modification, we see peaks for both the 2014-2015
school year and the 2015-2016 school year corresponding to the beginning of the
school year, Thanksgiving break, Winter break, and the end of the school year.

We note that we have found it beneficial to fuse the clustering scores with the
PAKL scores, rather than relying on either alone. For example, the first peak
in Fig. 6 corresponding to the August 2015 athletic events can be attributed
more to clustering scores than PAKL scores. During this event, PAKL scores
barely rise above baseline; since each sport has its own world championship, the
difference in term distribution from baseline is no more than expected. However,
cluster coherence is particularly high during this timeframe due to the large
percentage of tweets related to competition.
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Fig. 9. Fused scores for TwitterUSUniversities during 2014–2016 using windowed fu-
sion.

5 Conclusion

We have introduced two techniques which merge anomaly detection with topic
detection and tracking. Our first technique relies on an information-theoretic
examination of the term distributions of corpora collected over time. Our second
approach produces a set of values which serve as measures for the homogeneity
of the contents of the corpus. For sufficiently large corpora, both techniques are
agnostic to the size of the corpus. We then explain how the scores produced from
our techniques can be combined to form a single summary score. We demonstrate
our algorithms on various Twitter datasets and conclude that our techniques are
successful in identifying portions of a corpus with unusual and interestingly high
trendiness.
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