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Abstract

The advent of fabrication techniques like additive manufacturing has focused

attention on the considerable variability of material response due to defects and

other micro-structural aspects. This variability motivates the development of

an enhanced design methodology that incorporates inherent material variability

to provide robust predictions of performance. In this work, we develop plasticity

models capable of representing the distribution of mechanical responses observed

in experiments using traditional plasticity models of the mean response and

recently developed uncertainty quantification (UQ) techniques. We demonstrate

that the new method provides predictive realizations that are superior to more
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traditional ones, and how these UQ techniques can be used in model selection

and assessing the quality of calibrated physical parameters.

Keywords: Plasticity, additive manufacturing, material variability,
uncertainty quantification.

1. Introduction

Variability of material response due to defects and other micro-structural

aspects has been well-known for some time [1, 2, 3, 4]. In many engineering

applications inherent material variability has been ignorable, and traditionally

the design process is based on the mean or lower-bound response of the chosen5

materials. Material failure is a notable exception since it is particularly sensitive

to outliers in the distributions of micro-structural features [5, 6, 7].

Currently, additive manufacturing (AM) is of particular technological in-

terest and provides strong motivation to not only model the mean response of

materials but also their intrinsic variability. Additive manufacturing has the10

distinct advantages of being able to fabricate complex geometries and acceler-

ate the design-build-test cycle through rapid prototyping [8]; however, currently,

fabrication with this technique suffers from variability in mechanical response

due to various sources, including defects imbued by the process, the formation

of residual stresses, and geometric variation in the printed parts. As an exam-15

ple, high throughput tensile data from Boyce et al. [9] clearly shows pronounced

variability in the resultant yield and hardening.

Given this current state of the technology, the need to enhance design

methodology to account for this variability in order to meet performance thresh-

olds with high confidence is clear. In this work, we leverage tools from uncer-20

tainty quantification (UQ) [10, 11, 12] to provide material variability models,

realizations, and, ultimately, robust performance predictions.

It is well-known that any model is an approximation of the physical response

of a real system. Typically, models are characterized by many parameters, and

thus appropriately tuning them becomes a key step toward reliable predictions.25
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The most common approach to model calibration is least-squares regression

which yields a deterministic result appropriate for design to the mean. Bayesian

inference methods provide a more general framework for model calibration and

parameter estimation by providing a robust framework for handling multiple

sources of calibration information as well as a full joint probability density on30

the target parameters. Traditionally, Bayesian techniques have been applied

in conjunction with additive noise models that are appropriate for modeling

external, uncorrelated influences on observed responses. Recently, a technique

to embed the modeled stochasticity in distributions on the physical parameters

of the model itself was developed by Sargsyan, Najm, and Ghanem [13], and in35

this work we adapt it to model the inherent variability of an AM metal [9]. This

is not the only method available in this emerging field of probabilistic modeling

of physical processes for engineering applications. There are commonalities

between many of the methods. Notably, the work of Emery et al. [7] applied

the stochastic reduced order model (SROM) technique [14] to weld failure. The40

SROM technique has many of the basic components of embedded noise model: a

surrogate model of the response to physical parameters, a means of propagating

distributions of parameters with Monte Carlo (MC) sampling and computing

realistic realizations of the predicted response.

In Sec. 2 of this work, we describe the selected experimental dataset [9] that45

motivates this effort and provides calibration data. This deep dataset provides

real-world relevance that a synthetic dataset would not; however, we apply some

pre-processing and simplifying assumptions to facilitate the task of developing

the methodology. In Sec. 3, we review the basic plasticity theory that provides

the basis for the material variability models developed in Sec. 4. In Sec. 4, we50

develop the methods necessary to perform Bayesian calibration of the material

parameters: selection of prior distributions to represent the state of knowledge

prior to calibration, design of the likelihood function that determines how close

the model response is to the calibration data, and the Markov chain Monte

Carlo sampling needed to evaluate the posterior distribution of the parameters55

that quantifies their means and uncertainties. In particular, we adapt both the
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traditional additive error [15] and the newer embedded error [13] UQ methods

to the representation of the observed mechanical response; and we develop sur-

rogate models of the full finite element simulation tailored to the elastic-plastic

response of interest to facilitate efficient Monte Carlo sampling. In Sec. 5, we60

provide the results of the surrogate response building and calibration processes

in order to compare the two methods in light of the selected data. We also

employ sensitivities provided by the surrogate in order to discuss model selec-

tion, and make assessments about the importance of the various parameters.

In Sec. 6, we discuss the results in light of a simple analytic version of the rep-65

resentation problem that serves to illustrate the flow of the calibration process

and emphasizes the attributes that make the embedded noise model particularly

suitable to representing inherent material variability. We also describe how the

variability models can be used in an enhanced design process. In Sec. 7, we em-

phasize the innovations of the proposed approach to modeling the mechanical70

response to microstructural material variability.

2. Experimental Data

We focus this work on the analysis of high-throughput, micro-tension ex-

perimental measurements of additively manufactured stainless steel. From the

experiments of Boyce et al. [9], we have six experimental datasets, each consist-75

ing of 120 stress-strain curves from the array of nominally identical dogbone-

shaped specimens shown in Fig. 1(a). (The data from distinct builds of the array

are referred to as batches throughout the remainder of the manuscript.) Each

stress-strain curve Fig. 1(b) is qualitatively similar and behaves in a classically

elastic-plastic fashion; however, the material displays a range of yield strengths,80

hardening and failure strengths and some variability in its elastic properties.

To simplify the data and remove some of the uncertainties associated more

with the loading apparatus than the material, we omit the pre-load cycle to

approximately 0.2% strain. The remainder of the mechanical response is mono-

tonic tensile loading at a constant strain rate, see Fig. 1(c). We associate zero
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strain reference configuration with the zero-stress, mildly worked material re-

sulting from the pre-load cycle. The resulting stress, σ, and strain, ε, values

are derived from the customary engineering stress and strain formulas. We as-

sume the measurement noise to be Gaussian with ± 0.009% standard deviation

in the strain measurement and ± 20.0 MPa in the stress measurement based

on the analysis of the random variations for individual curves and the noise in

their zero-stress/zero-strain intercepts. Since we do not try to model failure in

this effort, we discard tests that do not reach at least 3% strain. This thresh-

old was chosen to be sufficiently large that each sample curve is well within

the plastic regime (and near peak stress), and yet retain sufficient data to en-

able calibration. This preprocessing yielded Nb = 6 batches of stress data with

Ni = {64, 77, 91, 79, 64, 46} curves, respectively. To make the data suitable for

the inverse problem of parameter calibration, we interpolate each curve and

extract nε = 151 points over the interval (0,3)% to finally arrive at

D = {Di}Nbi=1, with Di = {D(k)
i }

Ni
k=1 and D(k)

i = {σ(i,k)
j }nε−1

j=0 , (1)

where i enumerates the batches, k enumerates the Ni stress curves within the

i-th batch, and σ
(i,k)
j = σ(i,k)(εj) represents the stress measured at the j-th

strain value, εj = 0.03j/(nε − 1), for the k-th curve of the i-th batch. The

resulting dataset is shown in Fig. 1(c).85

To expedite development of the appropriate analysis and modeling of ma-

terials with significant intrinsic variations, we assume all variability beyond

the nearly negligible measurement noise stems from the underlying material re-

sponse. This will lead to conservative estimates of material variability; however,

given relevant data, variations in the as-built geometry could be included in the90

variability analysis or corrected for in pre-processing of the stress-strain data.

3. Plasticity Theory

To model the observed behavior which resembles standard von Mises plastic

response, we adopt a standard finite deformation framework [16] with a mul-

tiplicative decomposition of the deformation gradient into elastic and plastic
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parts

F = FeFp , (2)

where Fe is associated with lattice stretching and rotation, and Fp is associated

with plastic flow. Following Ref. [17], we assume an additive stored energy

potential written in terms of the elastic deformation

W =
κ

2

(
1

2
(J2
e − 1)− log(Je)

)
+
µ

2

(
tr[b̄e]− 3

)
. (3)

Here, the elastic volumetric deformation is given by Je = det(Fe) = det(F) since

plastic flow is assumed to be isochoric, and the deviatoric elastic deformation is

measured by b̄e = J
−2/3
e FeF

T
e . We associate the elastic constants κ and µ with

the bulk modulus and shear modulus, respectively, and relate them to Young’s

modulus, E, and Poisson’s ratio, ν, via the linear elastic relations κ = E
3(1−2ν)

and µ = E
2(1+ν) . The Kirchhoff stress resulting from the derivative of the stored

energy potential, W , is

τ =
κ

2
(J2
e − 1) I + s with s = µdev[b̄e]. (4)

For the inelastic response, we employ a J2 (von Mises) yield condition be-

tween an effective stress derived from s = dev[τ ] and an associated flow stress,

Υ, as

f :=

√
2

3
‖s‖ −Υ ≤ 0. (5)

The rate independent, associative flow rule is written in the current configura-

tion as the Lie derivative of the elastic left Cauchy-Green tensor (cf. Ref. [17])

Lvbe = −2

3
γ tr[be]

s

‖s‖
. (6)

The Lagrange multiplier γ enforces consistency of the plastic flow with the yield

surface, obeys the usual Kuhn-Tucker conditions, and can be interpreted as the

rate of plastic slip. Finally, we make the flow stress

Υ(ε̄p) = Y +Hε̄p +K(1− exp(−Bε̄p)), (7)

a function of the equivalent plastic strain

ε̄p =

√
2

3

∫ t

0

γdt, (8)
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and the following parameters: initial yield, Y ; linear hardening coefficient, H,

and nonlinear exponential saturation modulus K and exponent B. In tension,

the yield strength, Y , determines the onset of plasticity; the hardening coef-95

ficient H determines the linear trend of the post-yield behavior; and K, B

superpose a more gradual transition in stress-strain from the trend determined

by Young’s modulus E in the elastic regime to H in the plastic regime. These

material parameters form the basis of our analysis of material variability. To

be clear, this standard J2 plasticity model is a coarse-grained representation of100

the microstructural variations that engender the variability in the mechanical

response, with the plastic strain representating a wide variety of underlying

inelastic mechanisms and the physical definitions of the material parameters

shaping our interpretation of the underlying causes of the variable response.

We approximate the tensile test with a boundary value problem on a rectan-105

gular parallelepiped of the nominal gauge section with prescribed displacements

on two opposing faces and traction free conditions on the remaining faces to

effect pure tension. Finite element simulations are performed in Albany [18]

using the constitutive model described in this section. The engineering stress σ

and strain ε corresponding to that measured in the experiments are recovered110

from the reaction forces, prescribed displacements, original cross-sectional area

and gauge length.

4. Calibration formulation

In general, a calibration problem involves searching for the parameters θ

of a given model that minimize the difference between model predictions and115

observed data. In this work, we adopt a Bayesian approach to the calibration

problem [15, 19, 20, 21, 13, 22]. In contrast to least-squares fitting resulting

in a single set of parameter values, in a Bayesian perspective the parameters

are considered random variables with associated probability density functions

(PDFs) that incorporate both prior knowledge and measured data. The choice120

of Bayesian methods is well motivated by the data which agree with the chosen
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model to a high degree, but uncertainty is present in the model parameters both

within and across all batches. Bayesian calibration results in a joint distribution

of the parameters p(θ|D,M) that best fits the available observations D given

the model choice M . The width of the distribution depends on the consistency125

of the model with the data and the amount of data. By using this probabilistic

framework and physical interpretations of the parameters, we aim to quantify

the material variability.

4.1. Bayesian inference for parameter calibration

Consider our model M for stress σ = M(ε;θ) comprised of Eqs. (4–8), where130

ε is the independent variable and θ = {E, Y,H,K,B} are the parameters of

interest. By setting to {H,K,B} or {K,B} zero we can form a nested sequence

of models with 2, 3, or 5 parameters with perfect plastic, linear hardening, or

saturation hardening phenomenology, respectively. Given that we only have

one dimensional tension data, we fix the Poisson’s ratio ν = 0.3; however, we135

allow the Young’s modulus, E, to vary, so that the locus of yield points is not

constrained to a line.

Bayes rule relates the data and prior assumptions on the parameters into

the posterior density of the target parameters as

p(θ|D,M) =
p(D|θ,M) p(θ|M)

p(D|M)
, (9)

where p(D|θ,M) is the likelihood of observing the data D given the parameters

θ and model M , p(θ|M) is the prior density on the parameters reflecting our

knowledge before incorporating the observations, and p(D|M) is the evidence.140

It is important to note that the denominator is typically ignored when sam-

pling from the posterior since it is a normalizing factor, independent of θ, that

ensures the posterior PDF to integrate to unity. Here, we will employ rela-

tively uninformative uniform prior densities based on plausible ranges for each

of the parameters (more details will be given in Sec.5). Experimental data influ-145

ences the resulting posterior probability only through the likelihood p(D|θ,M),

which is based on the difference between the data D and the model predictions
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M(ε;θ). The likelihood plays an analogous role to the cost/objective function

in traditional fitting/optimization in the sense that it defines what model pre-

dictions are close to the data. Specific forms of the likelihood will be discussed150

in Sec.4.3. As Eq. (9) suggests, the outcome is conditioned on the model chosen

which leads questions of model discrepancy, comparison and selection which will

be briefly discussed in Sec. 4.3 and Sec. 5. In general, given the complexities of

the model M , the posterior density p(θ|D,M) is not known in closed form and

one has to resort to numerical methods to evaluate it. Markov Chain Monte155

Carlo (MCMC) methods [23, 24] provide a suitable way to sample from the

posterior density, and to estimate it using, e.g. , kernel density estimation.

4.2. Surrogate Model

MCMC sampling of the posterior density involves many sequential evalu-

ations of the model M(ε;θ). Since the finite-element based forward model160

M(ε;θ) is relatively expensive to query (each tension simulation takes approx-

imately 1 cpu-hour), the inverse problem of determining the parameters θ be-

comes infeasible. We overcome this by building an efficient, sufficiently accurate

surrogate model M̃(ε;θ) of the physical response M(ε,θ) over the region of in-

terest with a polynomial chaos expansion (PCe, see Appendix A for a brief165

review of polynomial chaos expansions). The fidelity of the surrogate with the

full model will be discussed in detail in Sec. 5.1.

Since rough bounds of each of the parameters can be estimated from the

data and knowledge of similar materials, we assume that the model parameters θ

follow a uniform prior density p(θ). We construct a corresponding PC expansion

of the random vector θ via

θ(ξ) =

Pθ∑
I=0

θIΨI(ξ), (10)

where ξ is a vector of standard uniform random variables and Pθ defines the

number of terms in the expansion. A corresponding expansion of the model
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response can be written as

M̃(ε; ξ) =

PM∑
I=0

σI(ε)ΨI(ξ), (11)

and serves as a suitable surrogate model which, given {σI}, can be evaluated by

drawing samples from the distribution of ξ and then evaluating the polynomial

expansion, Eq. (11). Methods to obtain the coefficients {σI} are discussed in170

Appendix A. A by-product of this expansion is the direct access to parametric

sensitivities over the range of interest. The sensitivities of the response to the

input parameters can be used to identify the most influential parameters. This

analysis is particularly useful for parameter elimination in problems with large

dimensionality, as described in more detail in Sec. 5.175

4.3. Likelihood Formulation

As mentioned before, the likelihood is the term in Eq. (9) that accounts for

the data. To formulate the likelihood, one needs to reason about what data is

available and its relationship with the model predictions. From the discussion

in Sec. 2, one can argue that the batches are independent. Furthermore, within180

a given batch, we assume all the Ni stress-strain curves are independent since

each experiment is a self-contained test, performed on separate specimens, i.e.

the variability of each specimen is the result of its specific microstructure.

We consider two different formulations of the likelihood, which lead to dif-

ferent formulations of the inverse problem, and hence models of the material185

variability. The formulations differ by how they account for measurement noise

and other variability, and how they are affected by (systematic) model dis-

crepancies. Since each formulation leads to qualitatively different predictions,

interpretations, and realizations, we are interested in how each is able to dis-

criminate material variability from other sources of randomness. In this section190

and in the Results section we will discuss how, given that plastic strain is a

coarse metric of the inelastic deformation in additively manufactured materi-

als, discrepancies between the observed data and the model predictions can be
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interpreted physically. The results in Sec. 5 will illustrate how the posterior

responds to the quantity of data and its variability.195

4.3.1. Additive error formulation

Consider the k-th stress-strain curve from the i-th batch which consists of

a sequence of stress observations {σ(i,k)
j }nε−1

j=0 obtained at the strain locations

{εj}nε−1
j=0 . A widely-adopted approach is to express the discrepancy between an

observation and surrogate model prediction using an additive noise model as

σ
(i,k)
j = M̃(εj ;θ) + η

(i,k)
j , (12)

where {η(i,k)
j }nε−1

j=0 is the (i, k) sample from the set of random variables {ηj}nε−1
j=0

capturing the discrepancy between observations and model predictions at a given

εj . This formulation is predicated on the assumption that the model M̃(ε;θ)

accurately represents the true, physical process occurring with fixed, but un-200

known, parameters. This a strong assumption (and one of the main deficiencies

of this approach) since models are, in general, only approximations of observed

behavior. Nevertheless, this is a commonly used method due to its simplicity.

In lieu of a completely characterized measurement error model (which is

rarely obtained in practice), it is reasonable to assume the errors to be indepen-

dent and identically distributed (i.i.d.) Gaussian random variables with zero

mean, i.e. ηj ∼ N (0, ς2), where ς2 is the variance. This yields the following

likelihood

p(D(k)
i |θ, M̃) =

nε−1∏
j=0

(2πς2)−1/2 exp

(
−

(σ
(i,k)
j − M̃(εj ;θ))2

2ς2

)
, (13)

where we recall that D(k)
i represents the stress observations collected from the

k-th stress-strain curve of the i-th batch. By assuming that each curve is inde-

pendent from another, we can write

p(Di|θ, M̃) =

nε−1∏
j=0

Ni∏
k=1

(2πς2)−1/2 exp

(
−

(σ
(i,k)
j − M̃(εj ;θ))2

2ς2

)
. (14)

for the full dataset of the i-th batch. The standard deviation ς can either be

fixed in advance, if some knowledge about the experimental process is available,205
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or it can be inferred along with the target parameters θ. Moreover, it can be

assumed to be either constant or varying with the data points.

The basic additive error formulation can be enriched by adding a term cap-

turing the discrepancy between the model prediction and truth represented by

the physical data, leading to

σ
(i,k)
j = M̃(εj ;θ) + η̂

(i,k)
j + η

(i,k)
j , (15)

where η̂ represents the discrepancy between the model prediction and truth. A

structure for the model error is more difficult to prescribe than that for the data

error. In fact, the calibrated model now effectively becomes M̃(ε,θ) + η̂(ε),210

and not simply the original M̃(ε,θ). Given that this additional term is not

physically associated with the presumed sources of non-measurement variability

its applicability outside the training regime is delicate. Lastly, this additive term

can yield difficulties because it can lead to violations of physical laws [25, 26].

4.3.2. Embedded model discrepancy215

A more suitable approach to representing variability embedded in the physi-

cal model involves adding the model discrepancy error [27, 28] to the parameters

σ
(i,k)
j = M̃(εj ;θ + η̂) + η

(i,k)
j , (16)

where η
(i,k)
j is an additive noise term akin to that in Eq. (13). In this case, θ+ η̂

is a random vector with density and moments to be estimated, whereas η
(i,k)
j

is determined by a priori estimates of measurement noise. The random vector

θ + η̂ can be represented with a PCe. For instance, for a single parameter θ we

can write

θ + η̂ =
∑
I

αIΨ(ξ). (17)

The problem is thus transformed into a density estimation problem, where our

objective is now to estimate α = {α0, α1, . . .} that parametrize and define the

density of θ + η̂. This is in contrast to the conventional use of Bayesian infer-

ence for parameter estimation, i.e. additive error formulations, in which one

strictly infers the parameter and not its density. Also, the data for our present220
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calibration problem motivates the embedded approach since it suggests the un-

certainties are aleatoric/irreducible rather than epistemic/reducible.

In the conventional case, as more data is taken into account, the width of the

posterior density shrinks, tending to a Dirac delta function at the true parameter

value assuming informative data and negligible model discrepancy. On the other

hand, in the present context of density estimation, the objects of inference are

the parameters α, and the posterior density is thus on α. Thus, the more

data is taken into account, provided the data is sufficiently informative, the

distribution on α narrows while the width of the distribution of the parameters

θ remains finite and conforms to the data. For this embedded technique, the

model calibration problem thus involves finding the posterior distribution on α

via Bayes theorem Eq. (9)

p(α|D, M̃) ∼ p(D|α, M̃) p(α|M̃), (18)

where α has been substituted for θ and, again, p(α|D, M̃) is the posterior,

p(D|α, M̃) is the likelihood, and p(α|M̃) is the prior. Once the posterior for

the parameters is characterized, it can be propagated through the model to225

obtain the posterior predictive distributions for quantities of interest (namely

stress in this case). The key feature of these predictions is that their uncertainty

is affected by both parameter and model uncertainties. For brevity, we leave the

full mathematical details of this embedded approach, including the likelihood

formulation, to Appendix B.230

5. Results

In this section, we present the details of the construction of the particular

surrogate models from the full finite element plasticity model, their calibration

to the experimental data, and the physical interpretation of the resulting predic-

tions and parameter estimates. Most of the numerical results presented below235

are obtained using the UQ Toolkit [29] package.
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5.1. Surrogate Model

To describe the material stress-strain behavior we analyze, calibrate and

compare three nested plasticity models of increasingly complex phenomenol-

ogy, namely perfect plasticity, linear hardening and saturation hardening. As

mentioned in Sec. 3, we focus on five parameters: Young’s modulus, E; yield

strength, Y ; hardening modulus, H; saturation modulus, K; and saturation ex-

ponent, B, which control the elastic-plastic stress response. We build Legendre-

Uniform PC expansions of these parameters by assuming that they are uniformly

distributed over a chosen range

E = 200 + 80 ξ1 [GPa],

Y = 1.2 + 0.5 ξ2 [GPa],

H =3.005 +2.995 ξ3 [GPa], (19)

K = 0.2 + 0.2 ξ4 [GPa],

B = 1750 + 1250 ξ5

where {ξ1, ξ2, ξ3, ξ4, ξ5} ∼ U(−1, 1) are independent identically distributed (i.i.d.)

standard uniform random variables. We chose these parameters ranges to be

large enough that the corresponding predictions can capture the variability of240

the experimental data shown in Fig. 1b. Also, we remark that the expansion

with i.i.d. random variables is a common step to build the surrogate model. Any

correlations between the parameters will then be discovered through the inverse

problem, see e.g. Refs. [20, 21, 22]. The priors for α are constructed such that

the target physical parameters have their target priors, Eq. (19).245

5.1.1. Two parameter perfect plasticity model

For the two parameter model, the stress is expressed as a function of strain

and Young’s modulus, E, and yield strength, Y according to

σ(ε) = M (2)(ε; {E, Y }), (20)

where we use the superscript “(2)” to identify this as the two parameter model.

As mentioned before, the full tension simulation is expensive to evaluate, so we
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leverage the PC expansions of the inputs, Eq. (19), to create PCes of the stress

at each strain {εj} value

σ(εj) = M̃
(2)
j (ξ1, ξ2) ≈M (2)(εj , E(ξ1), Y (ξ2)), j = 0, . . . , nε − 1. (21)

To build this sequence of PCes, {M̃ (2)
j , j = 0, nε−1}, we employ regression using

uniform random samples in the two-dimensional space (ξ1, ξ2). In particular, we

generate 1004 training (1000 samples in the inner domain and four additional

ones for the corners) to build the surrogate model, and 250 validation samples250

to assess its accuracy and check for over-fitting. (We chose regression over the

more computationally efficient stochastic collocation via sparse quadrature grids

given the superior results in constructing the piece-wise smooth surrogates to

be introduced forthwith.) Fig. 2 shows the training samples mapped back to

the physical domain (E, Y ) using Eq. (19), and the corresponding plasticity255

simulations. Given the number of samples, the regression approach is suitable

for constructing PC expansions of up to ninth order. Computing a higher-

order expansion would lead to an under-determined problem. The ensemble

of responses, shown in Fig. 2b, are clearly piece-wise linear, as expected, with

a slight downward slope in the post-yield response due to finite deformation260

effects.

For the two parameter model, a key feature is that the stress-strain behavior

has a discontinuity of the first derivative when the behavior switches from elastic

to plastic as the stress, which depends on E, exceeds the particular yield Y

value. This dependence on both parameters can be observed in Fig. 3, which265

shows the stress plotted as a function of E and Y at three different strain

locations, ε = 0.12, 0.39, 1.95%. These points have been chosen such that the

first, ε = 0.12%, is within a regime for which all points in the (E, Y ) space are

fully elastic; the second value, ε = 0.39%, is in a mixed elastic-plastic regime,

and the third point, ε = 1.95%, identifies a fully plastic regime. Fig. 3 shows that270

within the elastic and plastic regimes, the behavior is linear, and the separator

is a line. We will exploit this observation, and use the plastic strain (which is

zero in the elastic regime) as a classifier to sub-divide the training data.
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To compare the accuracy of global PC expansions up to ninth order and

a piecewise linear surrogate built over the elastic and plastic sub-domains, in275

Fig. 4 we show the relative error based on the `2-norm and `∞-norm for the

various PCes as a function of the strain. From Fig. 4 we observe that a global

linear PCe is accurate where the regime is either fully elastic or plastic, but

inaccurate in the mixed region where the discontinuity in the response makes

a global representation sub-optimal. Also, as we increase the order of the PCe280

from first to fifth order, the results do not change within the elastic and plastic

regions, but improve in the mixed region. However, when the order of the

expansion is at least fifth order, the errors do not decrease as rapidly which

suggests over-fitting. Lastly, the low-order piece-wise linear surrogate has the

lowest error in both norms across the strain range and, hence, it is more suitable285

than a high order global surrogate for this model response.

5.1.2. Three parameter linear hardening model

Augmenting the two parameter model with the post-yield phenomenology

controlled by the hardening modulus (H) results in the three parameter model,

σ(ε) = M (3)(ε; {E, Y,H}). In this case, we use a total of 2008 training samples290

(2000 in the inner domain and the 8 additional ones for the corners), and 500

validation points.

Again, we build global polynomial surrogates of increasing order and a piece-

wise low order polynomial surrogate to represent the response surface. To cap-

ture the additional complexity in the post-yield response we used a quadratic295

PC in the plastic regime of the mixed, piece-wise surrogate which is linear in

the elastic regime. The resulting `2-norm and `∞-norm errors (not shown for

brevity) have the same trends as those for the two parameter model shown in

Fig. 4 due to similarity in the slope discontinuity of the response and, likewise,

the piece-wise surrogate is the best representation of the full simulation response300

for linear hardening.
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5.1.3. Five parameter saturation hardening model

The five parameter model adds the saturation modulus (K) and saturation

exponent (B), yielding σ(ε) = M (5)(ε; {E, Y,H,K,B}). To build and check

this surrogate, we collected 5032 training and 500 validation samples. As shown305

in Fig. 5, the five parameter model adds a smoother elastic-plastic transition

through the presence of the saturation modulus and exponent.

Fig. 6 shows the relative error based on the `2-norm and `∞-norm for the

various PCes as a function of the strain. As with the piece-wise surrogate for the

three-parameter model, here we use a linear PCe for the elastic and a quadratic310

PCe for the plastic. Unlike the results for the two simpler models, the piece-wise

surrogate does not outperform the global surrogates. In this case, a global PCe

of order ≥6 gives the lowest errors. Since the errors are comparable for these

polynomials, orders >6 are likely over-fitting the full simulation data.

5.2. Sensitivity Analysis315

As mentioned, one advantage of building a PCe surrogate is that one can

obtain global Sobol sensitivities of a target quantity of interest with respect to

the input parameters [30]. Here we compute the total sensitivities [30] of the

stress using the surrogate built at each strain point. Fig. 7 shows the sensitivities

obtained over the range of the surrogate for the: (a) two, (b) three, and (c) five320

parameter models. The sensitivities are influenced by the range chosen to build

the surrogate model. The experimental stress-strain curves show little harden-

ing and so the surrogate was constructed with over a narrow range of hardening

parameters, Eq. (19), which appropriately minimizes their importance. Also, it

is apparent that the relative importance of the parameters evolves with strain.325

As expected, Fig. 7 shows that the Young’s modulus E is the dominant param-

eter within the elastic regime. At larger strains, in the transition between the

elastic and plastic regimes, E becomes gradually less important and the yield

Y starts to dominate. In the more complex models, the hardening H and the

saturation parameters K and B play a relative minor role due to the fact that330

the data displays little hardening and the two parameter model is a good rep-
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resentation of the majority of the stress behavior. In both the three and five

parameter models the sensitivity to H is slim and almost negligible, whereas

the added K in the five parameter model is clearly not negligible apparently

for its role in determining the “knee” in the stress-strain at the elastic-plastic335

transition. More discussion of this behavior will be given in Sec. 5.3.3.

5.3. Calibration

In this section, we discuss and contrast the results obtained from the inverse

problem formulated the additive error and those obtained using the embedded

formulation. We use the three parameter, linear hardening model as a reference340

case, which we discuss in detail, and then show the main results for the other

models.

5.3.1. Inversion with the additive error model

We assume the measurement noise to be constant, ς2, along the strain axis,

i.e. the measurement error does not depend on the strain ε. Hence, the pa-345

rameters to be inferred are θ = {E, Y,H, ς2}. As priors, we choose uniform

densities with ranges coinciding with those chosen to build the surrogate model

in Eq. (19). For the variance, we choose a uniform prior over the positive axis.

This is typically appropriate because the surrogate might not be reliable outside

the range where it was computed on. The prior plays a minor role if a substan-350

tial amount of data is available, making the problem likelihood-informed rather

than prior-informed in the large data limit.

We leverage this case to highlight some key features of Bayesian calibration

applied to the present problem of representing material variability: first, the

dependence on the type of surrogate model used, second, the batch-to-batch355

differences in the resulting parameters, third, the correlations between the target

parameters, and finally, convergence of the results with the amount of data used

in the inverse problem.

Fig. 8 shows the joint posteriors between the physical parameters, Fig. 8(a,b,c),

and the marginalized posterior for the standard deviation of the measurement360
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error, Fig. 8(d), obtained using 10 stress-strain curves randomly chosen from D3.

Results are shown for each of the surrogates we constructed. The convergence

of the resulting PDFs with polynomial order gives us confidence that the higher

order global surrogates and the piece-wise surrogate lead to sufficiently accurate

posterior parameter distributions. Since the distributions are not skewed, it is365

apparent that the extracted elastic modulus E is not correlated with the yield

Y , or the hardening H, whereas there is a weak negative correlation between

yield and hardening. We conjecture that the pre-yield data informs E indepen-

dent of the other parameters and, likewise, the yield point informs Y ; however,

there is a trend in the experimental data, see Fig. 1c, for high yield points to370

lead to subsequent low post yield slopes and vice versa. The maximum a pos-

teriori (MAP) value of the inferred standard deviation is around 0.027 GPa.

This value is larger than the one estimated directly from the experimental data

(0.020 GPa). This is expected because we are not accounting for model error

and, therefore, the model discrepancy is lumped into the measurement error.375

Note that the range used for the plots are much smaller than those originally

chosen for the surrogate construction, Eq. (19).

Fig. 9 shows the joint posteriors among the physical parameter for the sep-

arate batches obtained using 40 randomly selected curves from each batch.

Clearly, the mean parameters of the batches are quite variable and the dis-380

tributions are, for the most part, distinct and well-separated. However, the

correlation structures are similar, suggesting that the batches behave qualita-

tively in the same way.

Fig. 10 illustrates the convergence trend in the posterior distributions as a

function of the number N of curves used in the calibration. The panels of Fig. 10385

show samples of the joint posteriors p(E, Y ), p(E,H) and p(Y,H) obtained from

the third batch, as a function of the number N of curves used to run the problem.

The densities shift and narrow as more data is taken into account, and, given the

range of the graphs, it appears that the densities have more-or-less converged

which suggests sufficient data has been obtained to characterize the parameters.390

Fig. 11 shows the predictions using the posterior distribution along with an
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ensemble of curves from the third batch used to run the inference. The er-

ror bars represent the posterior predictive uncertainty stemming from the data

noise, while the black solid line represents the mean prediction and the gray

band represents the ±2 standard deviations due to posterior uncertainty. In395

this case, the data set leads to a narrow posterior distribution around the mean

curve, which is reflected in a tight gray band. Overall, we see that the model

prediction and the superimposed error bars cover the experimental data and,

hence, provide a good representation of it. However, the inferred value of the

measurement noise is not representative of the actual noise that was estimated400

from the experimental data since the lack of model discrepancy term amplifies

the inferred data noise. Hence, despite the predictive analysis showing that we

are able to recover the variability of the data, our conclusion is this is an un-

suitable inversion model since the full variability is represented as measurement

error. Consequently, predictions made using this model would underestimate405

and inadequately account for the actual variability in the material.

5.3.2. Inversion with embedded error model

In this section, we discuss some key calibration results obtained using the

embedded error model.

Fig. 12 shows the posterior predictive plots for the 2, 3, and 5 parameter410

models along with an ensemble of stress-strain curves from D3. (For brevity we

only show the results for one representative batch, since the others yield similar

results.) For each plot, the blue bars represent the posterior uncertainty from

the data noise, the black solid line represents the mean prediction, the dark gray

band represents the ±2 standard deviations due to posterior uncertainty, and415

the light gray band represents the ±2 standard deviations due to model error.

We observe that in all cases the experimental data is captured and described well

by the model predictions. Here, the variability of the data is mostly described

by the prediction uncertainty due to parameter variability, while the data noise

is small and comparable to the estimate of the measurement error obtained from420

the data itself. This is the key difference with respect to the additive results
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shown in Fig. 11. By accounting for model discrepancy through the embedded

error terms, we are able to characterize the variability more properly because it

is not artificially lumped in the data noise. The contribution stemming from the

posterior uncertainty is again quite small, suggesting that we have accounted425

for sufficient amount of data. The results for three models show that overall

they have similar predictive capabilities.

5.3.3. Comparison of additive and embedded error models

To illustrate the differences between the additive and embedded error-based

inference results, Fig. 13 shows the posterior PDFs for each parameter using the430

data from the third batch obtained from the additive inference (left column)

and embedded error approach (right column). We note in both cases, the con-

tribution stemming from the posterior uncertainty of the parameter estimates

is again quite small, as shown in Fig. 11 and Fig. 12, suggesting that we have

accounted for a sufficiently large amount of data. The key difference in the pa-435

rameter posterior distributions is the embedded term which explicitly enables

the calibrated models to reflect the inherent variability in the material param-

eters. In contrast, calibration with the additive error term tends to attribute

variability to that component of the model which cannot be interpreted as a

specific level of variability in any particular parameter.440

Posterior PDFs of the two parameters common to all the models, the Young’s

modulus E and yield strength Y , highlight this difference in uncertainty quan-

tification strategies. Fig. 13 shows that the embedded approach attributes

a significant amount of variability in E based on the data while the additive

approach has a small uncertainty. In effect, the distribution in the additive445

approach converges to the best average value for E, since E is treated as a

constant rather than a distribution. All variability arising from data varia-

tion, as opposed to measurement error and finite sample size, is attributed to

the additive term where it is confused with all other uncertainties. With the

embedded approach, the distributions of the elastic modulus E for the three450

models are broad, flat, and fairly consistent. Likewise, the difference in the two
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approaches is readily apparent in the distributions of Y shown in Fig. 13. The

distributions of the yield strength Y for the two simpler plasticity models are

essentially the same, as they treat yield as a well-defined point unlike the more

complex 5-parameter, saturation hardening model. When interpreted in light455

of the model sensitivities shown in Fig. 7 and discussed in Sec. 5.2, Y is well in-

formed by the data, resulting in the narrow distribution and small uncertainties

in the additive approach and consistent broad distributions using the embedded

approach. The low sensitivity to H in the 3 and 5-parameter models gives rise

to broad Gaussian distributions with the additive formulation indicating more460

informative data is needed. This deficiency also contributes to the qualitative

differences in the densities for H and Y with the additive formulation. In con-

trast to H, the 5 parameter model is sensitive to both the Y and K, as shown

in Fig. 7, and yet the data is not sufficient to fully inform each independently.

Instead, the calibration results in a broad joint PDF of the two parameters465

since they effect similar changes in the model’s behavior near the elastic-plastic

transition. This confounding effect also likely gives rise to the bimodal poste-

rior distributions of these parameters. Lastly, given that the sensitivity to B is

essentially negligible, it is not surprising that the prior, restricted by the range

of the surrogate, exerts significant influence on the posterior distribution of this470

parameter in both formulations.

Fig. 14 shows 100 posterior predictive realizations obtained using the 5 pa-

rameter model for the additive approach Fig. 14(a,c) and embedded approach

Fig. 14(b,d) calibrated using D3. The top row shows the results obtained by

sampling the joint posterior density of the parameters θ, and pushing these475

samples through the model M̃(εj ;θ) only; while the bottom row shows the re-

sults with the contribution of the measurement noise η
(3,k)
j . It is evident from

comparing Fig. 14 to the data shown in Fig. 1b that the embedded error ap-

proach yields a suitable representation where the variability of the response is

determined by the variability of the material parameters. On the contrary, the480

additive approach yields a tight envelope of predictions, and the full variability

is only captured by the added (and over-estimated) measurement noise. Com-
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paring individual realizations to the curves obtained experimentally, it is clear

that the embedded approach with noise yields curves that match quite well the

trends observed in the experiment, the classical method deviates considerably485

and is highly dominated by the high frequency, uncorrelated noise.

6. Discussion

Following the discussion begun in Sec. 4.3.2, we will use a simplification

of the model M(ε,θ) to summarize the key concepts in this work and help

generalize the intuition needed to model variability. Let us consider only the

elastic response so that the nominal model is:

σ(ε) = M(ε;E) = Eε , (22)

and limit our attention to data for a single batch in the elastic regime. The

embedded model of the data is

σj = M(εj ;E + α η̂) + ηj = (E + αη̂)εj + ηj , (23)

where η̂ and ηj are mean zero random variables. The additive model omits α η̂

which varies the slope of the stress-strain curve. In both cases,

E [σj ] = (E + α η̂)εj + ηj = E E [εj ] , (24)

so, in the limit of infinite informative data, both formulations recover the cor-

rect mean E =
E[σj ]
E[εj ]

. This is illustrated in the comparison of Fig. 14a with

the average of Fig. 14b in the elastic regime. The difference between the two490

formulations becomes clear when examining the variance at a given εi and co-

variance across all samples εi of the calibrated representations. Recall that the

stress-strain data for a single specimen has virtually no measurement noise and

yet the stress-strain curves are essentially lines with slopes that vary across a

batch. Without the α η̂ term, the simplest additive model, where the sequence495

of random variables {ηj} are assumed independent and identically distributed,

obtains a variance around the mean that is determined by the total variance of
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the dataset. Furthermore, the realizations are not smooth. They have a wide

and constant variation around their mean trends and, consequently, have dis-

tinct offsets in stress at zero strain, as can been seen in Fig. 14c. In contrast to500

this model employing only uncorrelated noise ηj , the embedded model accounts

for most of the variation in the data with a distribution of slopes effected by the

α η̂ term. This is consistent with the variations in the dataset which is composed

of highly correlated data for each test, i.e. each test gives essentially the same

linear relationship between σj and εj at every j. The fan-like ensemble of re-505

alizations shown in Fig. 14d clearly represents the continuity and the particular

type of variation seen in the data.

This basic illustration was motivated by our data where each individual ex-

periment is well-described by the hypothesized model. When that is the case,

the example shows that the embedded model better represents the intrinsic ma-510

terial variability and, by extension, the underlying physics. If, however, external

measurement noise were the primary source of uncertainty, the additive model

would provide a good representation. As in traditional constitutive modeling, a

rational choice of how to formulate the representation of observed variability can

only be assessed by examination of the data, and then confirming the validity of515

that choice by comparing synthetically replicated experiments to the observed

behavior, as in Fig. 14. This choice can be guided by examining whether or

not the apparent noise is correlated with the mean behavior and the model

prediction, as was done in this work.

In general, there are three kinds of uncertainty that should be considered520

during calibration to experimental data: (A) external measurement error, (B)

intrinsic variability, and (C) model form error. Given that measurement noise is

typically uncorrelated with the underlying physical response it is typically mod-

eled with white noise. Moreover, it is reducible by replicating the experiment

and collecting more data in the sense that the posterior distributions of model525

parameters converge and narrow. In contrast, variability in the material prop-

erties cannot be reduced by increased data gathering, although more data will

typically better inform the estimated joint distribution of material parameters.
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The hallmark of inherent variability is individual experimental curves which are

well explained by a model with appropriate physical parameters, but have sys-530

tematic parametric discrepancies across the set of curves. The embedded error

formulation is well-suited to represent this source of variability. Finally, model

form error refers to relevant physics which are unincorporated in the model, and

manifests itself through discrepancies between model predictions and the actual

data. When present, a model of a single realization will display a systematic535

discrepancy from the data it is trying to emulate. Since this error can confound

the determination of the other errors it is crucial to perform model selection, as

was done in this work albeit for a dataset that was generally well-represented by

all members of the model family. (It should be noted the embedded formulation

[13] was originally developed to mitigate this type of error.)540

7. Conclusions

We have presented a method which can model the variability of a mate-

rial which is well-described by existing plasticity models of mean response, but

contains microstructural variability leading to different macroscopic material

properties. By leveraging the embedded error method of Sargsyan et al. [13]545

(which, as mentioned, was originally developed to address model discrepancy),

we can mathematically represent the material variability as material parameters

drawn from a well-calibrated joint distribution. This Bayesian approach is con-

sistent with our understanding of microstructural variability and appropriate for

UQ studies requiring forward propagation of this variability. In particular, we550

developed a constitutive model of variability that is amenable to non-intrusive

sampling and adaptable to direct evaluation in simulation codes that handle

fields of distributions. This enables a robust design methodology that can pre-

dict performance margins with high confidence.

Another important contribution of this work is to contrast the proposed ap-555

proach with commonly used uncertainty formulations. The standard, additive

error formulation appropriately accounts for the uncertainty in the experiments
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arising from measurement error. Yet, in the case of inherent variability, it char-

acterizes all the uncertainty as measurement error which results in unwarranted

confidence in the material properties and an inability to correctly understand560

how that variability would manifest in applications. We have demonstrated that

the embedded method accurately characterizes the aleatoric uncertainty present

in the experimental observations and enables “black-box” engineering UQ anal-

ysis. It gives insight into what aspects of a homogeneous, macroscale constitu-

tive model are most strongly affected by microstructural variability and enables565

quantitative model selection. It is able to distinguish the variability of different

batches and therefore assess their relative performance. It demonstrates con-

vergence with increasing data and the convergence of common parameters in a

nested hierarchy of models. Moreover, it is capable of representing both signif-

icant external noise and inherent variability in a unified formulation. In future570

work, we will extend the methodology to the post-necking failure behavior of

similar materials.
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Figure 1: (a) An array of nominally identical micro-tension “dogbone” specimens, (b) exper-

imental data from Boyce et al. [9] color-coded by batch, and (c) the reduced data set used in

this work.
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Figure 2: Two parameter surrogate data: (a) training samples in the space (E, Y ) and (b)

corresponding stress-strain curves used to build the surrogate for the two parameter model.
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Figure 3: Stress plotted as a function of elastic modulus (E) and yield (Y ) at three different

strains: (a) fully elastic, ε =0.12%, (b) elastic-plastic, 0.39%, and (c) fully plastic 1.95%, over

the domain of the two parameter model.
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Figure 4: Surrogate error for the two parameter model at each target strain location based

on (a) the `2-norm (a) and (b) the `∞-norm. Results are shown for global PC expansions of

orders up to nine, as well as the piece-wise surrogate based on linear polynomials for both the

elastic and plastic response.
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Figure 5: Stress-strain curves samples used to build the surrogate for the five parameter

model.
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Figure 6: Surrogate error for the five parameter model at each target strain location based on

(a) the `2-norm and (b) the `∞-norm. Results are shown for global PC expansions of orders

up to nine, as well as the piece-wise surrogate with a linear polynomial over the elastic regime,

and a quadratic within the plastic regime.
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Figure 7: Total sensitivities as a function of the strain obtained for the (a) two, (b) three, and

(c) five parameter model.
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(a) (b)

(c) (d)

Figure 8: Results for the additive-model-based inversion run with the three parameter model

using 10 stress-strain curves from D3 showing the effect of the surrogate. We plot samples of

the joint posteriors: (a) p(E, Y ), (b) p(E,H), and (c) p(Y,H), as well as (d) the marginalized

posterior for the standard deviation of the measurement error, p(ς).
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Figure 9: Batch-to-batch comparison of the joint posteriors: (a) p(E, Y ), (b) p(E,H), and (c)

p(Y,H) (c) resulting from additive inversion with the piecewise elastic/plastic surrogate for

the three parameter model using 40 stress-strain curves for each batch.
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(b)

(c)

Figure 10: Convergence of posterior distributions with data: (a) p(E, Y ), (b) p(E,H), and (c)

p(Y,H). Results are obtained using the additive inversion with the piece-wise elastic/plastic

surrogate for the three parameter model M̃(3) and different number N of curves from batch

D3.
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Figure 11: Posterior predictive results obtained for the additive inversion using the three

parameter model along with 40 curves (green) from D3. The blue bars represent the posterior

uncertainty from the data noise, while the black solid line represents the mean prediction and

the gray band represents the ±2 standard deviations due to posterior uncertainty.
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Figure 12: Posterior predictive results obtained with the embedded model-based inversion

using the (a) 2, (b) 3, and (c) 5-parameter models using 91 curves (green) from D3. The

blue bars represent the posterior uncertainty from data noise, the black solid line represents

the mean prediction, the light gray band represents the ±2 standard deviations due to model

inadequacy and the dark gray band is the posterior uncertainty.
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Figure 13: Comparison of posterior PDFs of the material parameters obtained using the

additive (left) and embedded (right) model inference using the data from D3.
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Figure 14: Sample posterior predictive realizations obtained using the 5 parameter model for

the additive (left) and embedded (right) approach calibrated using D3. The top row shows the

results obtained by sampling the joint posterior density and pushing these samples through

the model only, while the bottom row shows the results with the contribution of measurement

error.
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Appendix A. Polynomial chaos expansion675

A polynomial chaos expansion (PCe) is a spectral representation of a random

variable. Here we provide a brief description of the PCe construction and refer

readers to Refs. [31, 32, 33] for more details. A PCe representation of any real-

valued random variable λ with finite variance is an expansion of the form

λ =

∞∑
|I|=0

λIΨI(ξ1, ξ2, . . .), (A.1)

where ξI are independent identically distributed (i.i.d.) standard random vari-

ables, λI are the coefficients, I = (I1, I2, . . .) ∀Ij ∈ N0 is an infinite-dimensional

multi-index, |I| = I1 + I2 + . . . is the `1 norm, and ΨI are multivariate nor-

malized orthogonal polynomials written as products of univariate orthonormal

polynomials:

ΨI(ξ1, ξ2, . . .) =

∞∏
j=1

ψIj (ξj). (A.2)

The basis functions ψIj are polynomials of order Ij in the independent variable

ξj orthonormal with respect to the probability density p(ξj). For instance, if

the germ ξ is a standard Gaussian random variable, then the PCe is based

on Hermite polynomials. Different choices of ξj and ψm are available via the

generalized Askey family [32]. The PCe (A.1) converges to the true random680

variable λ in the mean-square sense [34].

For computational purposes, the infinite dimensional expansion (A.1) must

be truncated:

λ =
∑
I∈I

λIΨI(ξ1, ξ2, . . . , ξns), (A.3)

where I is some index set, and ns is some finite stochastic dimension that

typically corresponds to the number of stochastic degrees of freedom in the

system. For example, one popular choice for I is the total-order expansion of

degree p, where I = {I : |I| ≤ p}, see e.g. Ref. [33].685

Given the expansion for the input λ(ξ), the PCe for a target quantity of

interest Q produced by the model evaluation Q = M(λ) can be wriiten in a
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similar form

Q(ξ) = M(λ(ξ)) =
∑
I∈I

qIΨi(ξ1, ξ2, . . . , ξns). (A.4)

Methods to compute PC coefficients are broadly divided into two groups,

namely intrusive and non-intrusive [33]. The former involves substituting the

expansions into the governing equations, and applying orthogonal projection to

the resulting equations, resulting in a larger and modified system for the PCe

coefficients. This approach is applicable when one has access to the full forward690

model and can readily modify the governing equations in the simulator. The

other, non-intrusive approach is more generally applicable and involves finding

an approximation in the subspace spanned by the basis functions by evaluating

the original model many times.

One such non-intrusive method relies on orthogonal projection of the solution

qI = E[M(λ)ΨI ] =

∫
Ξ

M(λ(ξ))ΨI(ξ)p(ξ) dξ. (A.5)

and is known as non-intrusive spectral projection (NISP). In general, this inte-

gral must be estimated numerically. An alternative method of non-intrusively

obtaining PCe coefficients is regression, which involves solving the linear system:
ΨI1(ξ(1)) · · · ΨIK (ξ(1))

...
...

ΨI1(ξ(K)) · · · ΨIK (ξ(K))


︸ ︷︷ ︸

A


qI1

...

qIK


︸ ︷︷ ︸

c

=


M(λ(ξ(1)))

...

M(λ(ξ(K)))


︸ ︷︷ ︸

M

, (A.6)

where ΨIn is the nth basis function, qIn is the coefficient corresponding to that695

basis, and ξ(m) is the mth regression point. In the regression matrix A each

column corresponds to a basis element and each row corresponds to a regression

point from the training set.

Appendix B. Embedded discrepancy

As discussed in Ref. [27], the embedded discrepancy likelihood often involves

highly nonlinear and near-degenerate features, thus forcing one to find an alter-

native way to approximate it in a computationally feasible manner. Sargsyan et
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al. [27] suggest several options based on the assumption of conditional inde-

pendence between the data points. In this work, we rely on the Gaussian ap-

proximation to the marginalized likelihood, which for the i-th batch Di, can be

written as

p(Di|α, M̃) =
1

(2π)
Ninε

2

nε−1∏
j=0

Ni∏
k=1

1

ςj(α)
exp

[
−

(µj(α)− σ(i,k)
j )2

2ς2j (α)

]
, (B.1)

where

µj(α) ≡ µ(εj ;α) = Eξ[M̃(εj ; (θ + η̂)(ξ)] (B.2)

and

ς2j (α) ≡ ς2(εj ;α) = Vξ[M̃(εj ; (θ + η̂)(ξ)] (B.3)

are the mean and variance of the model at fixed α and strain point. These

moments are computed by constructing a PCe for the outputs by propagating

the PCe of the input argument in Eq. (17):

M̃(ε;θ + η̂) = M̃

(
ε;
∑
I

αIΨI(ξ)

)
≈
∑
I

M̃I(ε;α)ΨI(ξ). (B.4)

This can be done using NISP mentioned in Appendix A together with quadra-

ture, and the moments can be computed from the expansion coefficients as

µ(ε;α) ≈ M̃0(ε;α) and ς2(ε;α) ≈
∑
I 6=0

M̃I(ε;α). (B.5)

After obtaining α using Bayesian calibration and the likelihood just dis-

cussed the model can be used in a predictive manner. Let φ(ε;α) = M̃(ε; (θ +

η̂)(ξ)) be the probabilistic prediction of the model for a fixed α. We remark

that even if α is fixed, the prediction M̃(ε; (θ + η̂)(ξ)) remains probabilistic

because of the additional variability of the random variable θ stemming from

its PCe with ξ. We can then inspect the posterior predictive random variable

φ(ε;α). The posterior predictive random variable has the following mean

φmean(ε) = Eα[µ(ε;α)] (B.6)
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and variance

φvar(ε) = Eα[ς2(ε;α)]︸ ︷︷ ︸
model error

+ Vα[µ(ε;α)],︸ ︷︷ ︸
posterior uncertainty

(B.7)

where Vα denotes variance with respect to the posterior distribution of α. Here700

ς2(α) is the forward-propagated variance of the function M̃(ε; (θ + η̂)(ξ)) at

location ε for given α. The contribution of model error and posterior uncertainty

are identified and separated leveraging the law of total variance. The uncertainty

due to model error is independent of how much data we use during the inference

process and, thus, it can be only improved by refining the model and/or its705

accuracy. On the other hand, the posterior uncertainty tends to shrink with

more data. Note that, in practice, the posterior distribution is described via

samples, therefore the expectation (Eα) and the variance (Vα) are computed

via Monte-Carlo integration using MCMC samples.
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