
A distributed-memory hierarchical solver for sparse

matrices

Chao Chena, Hadi Pouransarib, Sivasankaran Rajamanickamc, Erik G.
Bomanc, Eric Darvea,b,∗

aInstitute of Computational and Mathematical Engineering, Stanford University,
Stanford, USA

bDepartment of Mechanical Engineering, Stanford University, Stanford, USA
cCenter for Computing Research, Sandia National Laboratories, Albuquerque, USA

Abstract

We present a parallel hierarchical linear solver for solving large, sparse lin-
ear systems on distributed-memory machines. The fully algebraic algorithm
exploits the low-rank structure of fill-in blocks during the Gaussian elimi-
nation process; thus it is faster and more memory-efficient compared with
sparse direct solvers. Our hierarchical solver can be used as a direct solver
(high-accuracy setting) or a preconditioner (low-accuracy setting). The par-
allel implementation is based on a data decomposition such that only local
communication is needed for updating boundary information on every pro-
cessor. Our algorithm is based on dense linear algebra subroutines, which can
potentially be accelerated using modern many-core processors. We show var-
ious numerical experiments to demonstrate the scalability of our solver and
compare it with a state-of-the-art sparse direct solver. The new hierarchical
solver achieves an average speedup of 45 in factorizing three two-million sized
test problems on 256 cores of a supercomputer.

Keywords: Parallel linear solver, Sparse matrix, Hierarchical matrix

∗Corresponding author
Email addresses: cchen10@stanford.edu (Chao Chen), hadip@stanford.edu (Hadi

Pouransari), srajama@sandia.gov (Sivasankaran Rajamanickam), egboman@sandia.gov
(Erik G. Boman), darve@stanford.edu (Eric Darve)

Sandia National Laboratories is a multi-mission laboratory managed and operated
by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for
the U.S. Department of Energys National Nuclear Security Administration under contract
DE-AC04-94AL85000.

Preprint submitted to Parallel Computing December 21, 2016

SAND2017-0977J



1. Introduction

Solving large sparse linear systems is an important building block in many
engineering applications. For example, the common approach to solve ellip-
tical partial differential equations (PDE) is to first discretize the equations
with local bases such as finite difference or finite element methods, and then
solve the subsequent sparse linear systems. Our goal is to develop a robust,
algebraic, parallel linear solver for solving large-scale sparse linear systems
efficiently on distributed-memory machines.

To solve sparse linear systems more efficiently, several sparse direct solvers
based on Gaussian elimination have been developed for sequential [1, 2, 3],
shared-memory [4, 5] and distributed-memory computers [6, 7]. They orga-
nize computation efficiently (e.g., the multifrontal algorithm [8]), and lever-
age different elimination orderings, such as the nested dissection ordering
[9] and the approximate minimum degree ordering [10] to reduce fill. For
a survey of sparse direct solvers, the reader is referred to Davis et al. [11].
However, those state-of-the-art sparse direct solvers still have O(N2), time
complexity in the factorization phase for solving three-dimensional problems,
where N is the problem size. Sparse direct methods also introduce a large
amount of nonzero entries (fill-in). When used with nested-dissection order-

ing methods the fill-in is O(N
4
3 ) for 3D problems. The quadratic factorization

cost and the high memory usage limits the problem sizes where sparse direct
methods can be used. However, their robustness make them attractive for
harder problems, such as Helmholtz equations.

A completely different approach for solving sparse matrices is to use iter-
ative methods [12]. Unlike sparse direct solvers, iterative methods are more
memory efficient because they treat a sparse matrix as a black-box linear op-
erator and do not modify the matrix itself. For example the multigrid method
[13, 14] is an effective preconditioner for iterative methods, leading to some
of the fastest solvers for many elliptic PDEs. For example, the geometric
multigrid method has O(N) time complexity for solving Poisson’s equation
on regular domains. However, the convergence of iterative methods is not
guaranteed when solving general linear systems, and the iteration number
may grow dramatically for matrices with large condition numbers. For ex-
ample, having varying coefficients in a Poisson equation may slow down the
convergence of multigrid, in some cases, compared to the constant coefficient

2



case. Moreover, multigrid may fail to converge for indefinite systems such as
Helmholtz (see [15, 16, 17] for examples of multigrid algorithms for indefi-
nite systems). Multigrid methods are difficult to develop for linear systems
resulting from the coupling of different PDEs. The convergence of multi-
grid is largely unproven for hyperbolic or parabolic PDEs. The cost of set
up of algebraic multigrid methods depends on sparse matrix-sparse matrix
multiplication which is complex to scale [18, 19].

To reduce the memory usage and improve the time complexity of sparse
direct solvers, several hierarchical solvers [20, 21, 22, 23, 24] based on the H-
matrix theory [25] have been developed, and some parallel algorithms have
been introduced in [26, 27, 28, 29]. The key idea is data sparsity, in the form
of low-rank approximation of dense submatrix blocks such that the mem-
ory footprint is reduced and matrix arithmetic operations become less costly.
As was shown recently in [24], H-preconditioners share similarities with in-
complete LU (ILU) [30] and multigrid but with some important differences.
Similar to ILU, H-preconditioners are based on a factorization of the ma-
trix using sparse triangular factors. However, low-rank approximations are
used to design optimal orthogonal transformations of the variables so that a
higher accuracy than ILU can be achieved (for similar computational cost).
For example, singular values of fill-in blocks are often found to be decreasing
geometrically so that high accuracy can be achieved by varying the rank of
the approximation. This is in contrast with ILU where tuning the accuracy
is difficult and often leads to a rapid increase in computational cost.

Similar to multigrid, H-preconditioners use a series of nested grids, with
increasingly coarser resolutions to achieve an O(N) complexity. In algebraic
multigrid, the construction of restriction and prolongation operators [31, 32]
for general PDE types and matrices is problematic and often requires tun-
ing and manual adjustments. Instead in H-preconditioners, generic algebraic
techniques are used for low-rank approximations (e.g., singular value decom-
position [33], rank revealing LU [34, 35], rank-revealing QR [36, 37], adaptive
cross approximation [38], ULV factorization [39]), from which restriction and
prolongation operators can be naturally extracted in a systematic fashion,
regardless of the underlying PDE or physical problem.

We investigate the parallelization of a recent hierarchical preconditioner
named LoRaSp [24]. LoRaSp is based on H2-matrices [40, 41], which intro-
duce an additional hierarchical structure to reduce the storage requirements
and computational complexity of H-matrices. LoRaSp employs domain par-
titioning as opposed to the multifrontal nested dissection algorithm that is

3



used in [20, 21, 23]. LoRaSp exhibits almost linear time complexity (under
certain assumptions), and is more memory efficient than sparse direct solvers
(when low-rank compression is used). We propose a new parallelization ap-
proach to LoRaSp that is based on data decomposition and graph coloring.
Various optimizations, including asynchronous communications and execu-
tion of computational kernels, are proposed. Specific contributions in this
paper include:

1. New derivation of LoRaSp. This leads to a much simplified presenta-
tion of the algorithm so that the structure of the calculation and data
dependencies are more obvious and easy to reason about.

2. Analysis of the data dependency in the algorithm. Based on this two
parallel approaches are proposed.

3. Bulk synchronous parallel algorithm: this is the simplest to implement.
It decomposes the calculations in 3 phases (per level) with blocking
communications in between.

4. Task-based asynchronous parallel algorithm: an optimal scheduling is
proposed based on a critical path analysis. This algorithm executes
the phase with highest priority first (located along the critical path),
followed by a phase with medium priority, and low priority. Commu-
nication is initiated in an asynchronous manner as soon as the data is
available so that maximum concurrency is achieved, that is the maxi-
mum number of tasks with ready data is generated as soon as possible.
The large number of executable tasks allows hiding some of the com-
munication latency, thereby minimizing the idle time due to communi-
cation.

5. Coloring algorithm to extract concurrency in the execution. Optimizing
the load-balancing in the presence of coloring constraints is discussed.

6. Benchmarks for a variety of problems including: elliptic PDEs, PDEs
with varying coefficients, indefinite systems (Helmholtz equation). We
separately run sequential and parallel benchmarks.

7. Analysis of the parallel efficiency under different conditions

8. Comparison with a conventional, highly-optimized sparse direct solver
of the runtime and memory footprint

9. Breakdown of the running time per kernel and communication phases
for various problems

Our parallel algorithm has the following beneficial features:

4



• Only local communication is needed, since only boundary information
is updated on every processor. This is roughly comparable to the com-
munication pattern in multigrid.

• The communication volume is small compared to the amount of compu-
tation. It will be shown later that the communication-to-computation
ratio is roughly the surface-to-volume ratio for each subdomain. There-
fore good scalability can be expected, provided sufficient memory is
available on each computer node so that large enough leaf subdomains
can be stored.

• The bulk of the work in our parallel algorithm lies in local dense linear
algebra operations. Compared to many iterative methods, our algo-
rithm is well suited to modern architectures and provides an opportu-
nity for using modern many-core processors such as graphics processing
units (GPU) and Intel Xeon Phi processors.

The remainder of this paper is organized as follows. Section 2 reviews
the sequential algorithm in [24] as the foundation for the parallel algorithm.
Section 3 discusses the details of our parallel algorithm. Section 4 shows
numerical benchmarks.

2. Sequential hierarchical solver

Our algorithm is based on the sequential algorithm in [24] to solve a
sparse linear system Ax = b. For simplicity, we assume that A is a symmetric
positive definite (SPD) matrix, although our approach extends to indefinite
and nonsymmetric matrices as well.

Similar to the multifrontal method, our algorithm eliminates all degrees
of freedom (DOFs), i.e., rows/columns, level by level. The difference is that
our algorithm compresses dense fill-in blocks during the elimination process
to maintain the sparsity of A. Instead of using the nested dissection order-
ing as usually used in the multifrontal method, our algorithm starts with a
clustering of all DOFs.

Suppose V is the set of all DOFs and the clustering is V = ∪iπi, where
πi stands for a cluster of DOFs. Our algorithm proceeds by eliminating
some portions of DOFs in every cluster. To be more specific, the DOFs in
a cluster πi are split into fine DOFs πf

i and coarse DOFs πc
i , after the dense

fill-in blocks with respect to πi are compressed. The fine DOFs πf
i are then

5



eliminated; the coarse DOFs πc
i will belong to the next level. After all fine

DOFs are eliminated, we have a smaller linear system corresponding to only
the coarse DOFs. The same idea is applied recursively until the linear system
is small enough to be solved using some other technique, say a conventional
sparse Cholesky factorization.

2.1. Sparsification and Low-rank Elimination

We first illustrate the key step in our algorithm that exploits the low-rank
structure of the dense fill-in blocks. Let’s consider a block decomposition of
the partially factored matrix Ā at some stage in the algorithm, with only 3
blocks as shown in Eq. (1), where:

• s stands for a cluster of DOFs πs to be eliminated (“self”),

• n stands for the union of all neighbor clusters (“neighbor”), and

• w stands for the union of all other clusters (“well-separated”), i.e.,

V \ (πs ∪
j neighbor of s

πj)

Āx =

Ass Asn Asw

AT
sn Ann Anw

AT
sw AT

nw Aww

xs
xn
xw

 =

bs
bn
bw

 (1)

where Ā is the partially factored matrix after few eliminations on the original
matrix A. The non-zero entries of Asw and Aws = AT

sw are fill-ins created
due to elimination of previous blocks.

Different definitions of the well-separated criterion can be used (which
implies a partitioning of the clusters in n and w above). Here, for easier
illustration, we simply decide that two clusters are well-separated if they
are not connected in the original matrix A. This means that well-separated
blocks are associated with fill-in.

We make this connection more precise by using terminology from ILU(k)
preconditioners (incomplete LU with number of levels of fill k). We introduce
a new notation, AB, which is a matrix whose size is the number of clusters,
and such that [AB]IJ 6= 0 if and only if there is an i ∈ I and j ∈ J such
that aij 6= 0. Then, well-separated blocks correspond to entries in [AB]k

that are not in AB for some k >1. This is often called ILU(k − 1) fill-in.
An interesting property of our algorithm is that fill-in entries (not in AB

6



by definition) correspond to non-zero blocks in [AB]2 only, that is the fill-in
never goes beyond ILU(1).2

Now consider the fill-in block Asw and assume that it is approximately
low-rank [24]:

Asw = UZ +O(ε) (2)

where U is an m × r orthonormal matrix, where r < m. We can compute
an orthonormal matrix V that is the A−1

ss -orthogonal complement of U (e.g.,
using a Gram-Schmidt type orthogonalization process):

V TA−1
ss U = 0 (3)

where V is m× (m− r).
We introduce the sparsification matrix, E , which is a block diagonal ma-

trix defined as follows

E =


V TA−1

ss

UTA−1
ss

I
I

 (4)

Since the columns of U and V form a basis for Rn, we can apply the following
decomposition:

Assxs = V xf + Uxc (5)

Therefore, we have:

x =

xs
xn
xw

 = ET


xf
xc
xn
xw


2Note that the fill-in is defined in terms of clusters or blocks, using AB . This is different

from the fill-in in ILU(1) when applied to A directly, that is considering the scalar entries
in A.

7



Multiplying Eq. (1) by E to the left we get

EĀET


xf
xc
xn
xw

 = Eb

The sparsified matrix EĀET is then
(V TA−1

ss V ) V TA−1
ss Asn

(UTA−1
ss U) UTA−1

ss Asn (UTA−1
ss U)Z

AT
snA

−1
ss V AT

snA
−1
ss U Ann Anw

ZT (UTA−1
ss U) AT

nw Aww

 (6)

The key result of this operation is that xf is now disconnected from the
w DOFs, that is the corresponding entries in the matrix are zeros. The
elimination of xf will lead to fill-in only among the neighbor DOFs n.

The elimination of the xf DOFs can be formally defined as a multiplica-
tion of EĀET from left by G and to right by GT , where:

G =


I

I
−AT

snA
−1
ss V (V TA−1

ss V )−1 I
I

 (7)

The elimination of the xc DOFs is then postponed to the next stage or level in
the factorization process. This is similar to the multigrid approach. We start
from a fine grid and end up with a coarser grid that has fewer unknowns. This
process is repeated until the coarse grid is sufficiently small for a conventional
factorization method.

Again, formally, postponing the elimination of the xc DOFs can be defined
as a multiplication by a permutation matrix P :

P


xf
xc
xn
xw

 =


xf
xn
xw
xc



8



2.2. Low-rank Approximation Strategies

If all blocks have full rank and we perform no low-rank approximation,
then our algorithm is a direct solver. The key part of the algorithm is to
identify blocks that have (approximate) low-rank structure and exploit this.
Any low-rank factorization may be used in our algorithm, for example, the
singular value decomposition (SVD), the rank-revealing QR (RRQR), the
rank-revealing LU (RRLU), the adaptive cross approximation (ACA), the
LU factorization with rook pivoting, or the ULV decomposition. In our
implementation, we used the SVD.

We investigated two options to select the rank r: (a) dynamic r based
on the singular values of the fill-in blocks, and computed for a given user-
prescribed error tolerance ε (error in the 2-norm), and (b) a fixed value of r.
The former typically gives better quality preconditioners but may be more
expensive, while the latter puts a strict upper limit on the memory usage
and the factorization cost.

2.3. Hierarchical solver algorithm

We introduced the idea of sparsification for a single block s in A. We now
focus on the details for the full hierarchical factorization.

A (symmetric) sparse matrix can be represented by a graph, where each
vertex represents a row/column and edges between vertices represent nonzero
matrix entries. To get the block structure of A, we partition the adjacency
graph of A (or A+AT for the unsymmetric case) using a graph partitioning
algorithm as found in METIS/ParMETIS [42], Scotch [43], or Zoltan [44].

For a cluster πi of a partitioning Π, we denote the sequence of sparsifica-
tion, elimination and permutation by

LRE(A,Π, πi) = PiGiEiAETi GTi P T
i

where LRE stands for Low-Rank Elimination. After applying LRE to all
clusters of Π, we end up with a set of un-eliminated coarse variables (xc cor-
responding to each cluster). We then use a partitioning of the coarse graph,
and recursively repeat the low-rank elimination steps. This is explained in
Algorithm 1.

Hence, the full process is similar to a Cholesky factorization:

GAGT = I, where G = PkGkEk · · ·P1G1E1 (8)

9



where Ei, Gi, and Pi are the sparsification, elimination, and permutation
matrices at step i, respectively. Since all the factors are sparse triangular
matrices, we can solve the linear system through the standard forward and
backward substitution process. For a detailed explanation of the algorithm
and analysis of the hierarchical solver, we refer the readers to [24].

Algorithm 1 Hierarchical solver: factorization phase

1: procedure Hierarchical Solver(A)
2: if the matrix A is small enough then
3: Factor A using a conventional method
4: return
5: end if
6: Partition the graph of A and compute the vertex clusters Π = ∪i=1πi
7: . The number of clusters is adjusted so the cluster sizes are roughly constant

8: for πi ∈ Π do
9: A← LRE(A, Π, πi)

10: end for
11: Extract Ac, the matrix associated with the coarse DOFs
12: . Ac is the Schur complement resulting from the elimination of all fine nodes at this level

13: Hierarchical Solver(Ac) . Recursive call with smaller matrix Ac

14: end procedure

2.4. Relationship to LoRaSp

In the previous sections, we presented a hierarchical solver algorithm.
Although the derivation is novel, the algorithm is in fact equivalent to the
LoRaSp algorithm [24]. We believe the new formulation is both simpler to
understand and could lead to more efficient implementations.

While the previous algorithm used extended sparsification (introduce new
variables that expands the linear system), the new algorithm uses sparsifi-
cation in-place. While the previous algorithm used a binary tree with black
and red nodes that were later eliminated, the new algorithm avoids all that
complexity. In the special case of recursive bisection used to generate a set of
nested partitionings (clusterings), it reduces to the classic LoRaSp algorithm,
but our new version allows more general partitioning strategies.

10



3. Parallel hierarchical solver

Our algorithm is similar to the multigrid method in that both use mul-
tiple levels of grids. In the parallel algorithm, every processor owns a piece
of the entire grid and exchanges information with its neighbor processors
to update information at the boundary of the grid. With this data de-
composition scheme, the communication is always local, and importantly
the communication-to-computation ratio can be bounded by the surface-to-
volume ratio of each subdomain (owned by a processor). In other words, the
amount of communication can be made small compared to the computation
for subdomains that are large enough.

Furthermore, our algorithm uses more flops than the multigrid method
per grid node (higher arithmetic intensity), so it has the potential to be more
scalable than the multigrid method.

3.1. Data decomposition

We present our parallel algorithm for the finest grid; the same algorithm
applies for the other levels as well. The fine grid is the quotient graph G of
matrix A with respect to a clustering of the row/column indices. The entire
graph G is decomposed over all processors: G = ∪PGP , where processor P
owns subgraph GP . We will use the term nodes and clusters interchange-
ably in the rest of the paper. With this decomposition, nodes on the same
processor can be classified into three categories:

1. d1 nodes: boundary nodes, that is nodes that share an edge with a
node on another processor

2. d2 nodes, which are the neighbors of d1 nodes (and are not d1)

3. d3 nodes, which are the remaining nodes (not d1 or d2)

Figure 1 shows a simple example, where the entire grid is decomposed in two
subdomains with processors P0 and P1.

We assume the matrix A is distributed by rows among the processes. Each
process P owns the submatrix corresponding to the locally owned graph GP

and also stores the edges to neighboring processes. For example, the matrix
A0 owned by process 0 in Fig. 1 is

A0 =

 Ad3
0 Ad3,d2

0

Ad2,d3
0 Ad2

0 Ad2,d1
0

Ad1,d2
0 Ad1

0 Ad1
0,1


11



Figure 1: A two-processor example showing d1 nodes, d2 nodes and d3 nodes on each
processor. The structured grid represents the quotient graph; this is the graph obtained
by grouping original DOFs in matrix A into clusters. The nodes are distributed across
two processors P0 and P1. Boundary nodes on each processor are the d1 nodes, and d2
nodes are their neighbors. The remaining interior nodes are the d3 nodes.

where for simplicity we assumed that d3 nodes were ordered before d2 and d1
nodes. The remote coupling to process 1 is contained within the Ad1

0,1 block,
since only d1 nodes have edges to process 1.

In our algorithm, no fill-in is introduced between nodes farther than dis-
tance two from each other, where the distance is measured as the length
of the shortest path in the original quotient graph G. If we denote AG the
adjacency matrix of the quotient graph, this corresponds to the sparsity of
A2

G [24]. As a result, a processor can work on its d3 nodes independently
from the other processors.

Since the distance between a pair of d2 nodes owned by two different
processors is at least three, all processors can work on their d2 nodes in
parallel. Because the distance between a d2 node on one processor P and a
d1 node owned by one of P ’s neighbors can be two, a fill-in edge may exist
between them. The amount of data to communicate this information is at
most proportional to the number of d1 nodes.

Last, d1 nodes on different processors are coupled. We use a coloring
scheme such that all processors can work on d1 nodes with the same color in
parallel. The details of the coloring scheme are given in Section 3.2. Since
the distance between a d1 node on processor P and another d1 node on a
neighbor of P ’s neighbors can be two, a fill-in edge may exist between this
pair of d1 nodes, so the two processors may need to communicate. The
amount of communication is again proportional to the number of d1 nodes.

12



With the above observations, we have the parallel algorithm shown in
Algorithm 23, where Nk(P ) are the distance-k neighboring processor of pro-
cessor P (for example, N2(P ) is neighbor of neighbor).

In Algorithm 2, the communications correspond to “right-looking style”
communications in a conventional sparse direct solver. There are two types
of data to be communicated:

1. When we eliminate f for a d1 node, say in processor P , the Schur com-
plement will contain edges that connect nodes on processor P with its
neighbors, and also edges that connect nodes on neighboring processors.
Only neighboring processors, N1(P ), receive data.

2. When we sparsify edges, a sparsification of a d2 node leads to commu-
nications with N1(P ) only, while sparsification of a d1 node involves
the larger set N2(P ).

The ratio of communication vs. computation can be controlled by adjust-
ing the subdomain size assigned to a processor. The communication volume
is proportional to the number of d1 nodes (note in particular that d2 nodes
only exchange data with d1 nodes, never with other d2 nodes), while the
amount of computation is proportional to the total number of d1 nodes, d2
nodes and d3 nodes. This communication-to-computation ratio is therefore
proportional to the surface-to-volume ratio of the subdomain.

The previous algorithm described a classical bulk synchronous style of
programming. We also explored an asynchronous “task-based” (based on
an MPI implementation) algorithm. If one considers the critical path in the
algorithm, we identify 3 priorities: d1 nodes must be processed first, followed
by d2 and d3. This is detailed in Algorithm 3. Essentially, we attempt to
process d1 nodes; if none are ready, we attempt to process a d2 node, and
finally a d3 node if all else fails. The pattern of communication can be
organized as follows.

Processing of d1-node v, with color i, on processor P :

1. Check that all communications for v from all d1 nodes in N2(P ), with
color < i, are complete

2. Sparsify distance-2 edges connected to v

3. Send updated edges (distance-2 from v) for all d1 nodes in N2(P ), and
d2 nodes in N1(P )

3all parallel pseudo-code is written in single program multiple data (SPMD) style.

13



Algorithm 2 Bulk synchronous parallel algorithm
1: function HSolver Bulk Synchronous(local vertex clusters Π, local sub-

graph G, submatrix A for G)
2: P = processor rank
3: Partition Π into d1 clusters Π(1), d2 clusters Π(2), and d3 clusters Π(3)

4: Parallel (distance-2) coloring of the graph of d1 clusters, Π(1)

5: for color i = 1 to NumColors do
6: for πj ∈ Π(1) with color i do
7: A← LRE(A, Π, πj)
8: end for
9: Communicate with N2(P ) processors . Neighbor of neighbor processors

10: end for
11: for πi ∈ Π(2) do
12: A← LRE(A, Π, πi)
13: end for
14: Communicate with N1(P ) processors
15: for πi ∈ Π(3) do
16: A← LRE(A, Π, πi)
17: end for
18: Create the required data for the coarse DOF matrix for rank P
19: HSolver Bulk Synchronous(ΠC , GC , AC)
20: end function

14



4. Eliminate fine DOFs in v on processor P
5. Send updated edges (Schur complement) for all d1 nodes in N1(P )

Processing of d2-node v:

1. Check that all communications for v from all d1 nodes in N1(P ) are
complete

2. Sparsify distance-2 edges connected to v
3. Send updated edges (distance-2 from v) for all d1 nodes in N1(P ) (this

data is only required at the next level of the elimination, when moving
to the coarser grid)

4. Eliminate fine DOFs in v

Processing of d3-nodes can be straightforward eliminations that can all
be done in parallel in all processors. It does not require any additional
communication. Algorithm 3 presents a simplified version of this.

3.2. Coloring of d1 nodes

To coordinate all processors in eliminating d1 nodes in parallel, we assign
colors to all d1 nodes so that all processors can process d1 nodes with the
same color at the same time. To avoid any conflict, every pair of d1 nodes
within distance two must have different colors if they belong to different
processors, i.e.,

∀ v, w ∈ V s.t. w ∈ N2(v) and v, w belong

to different processors, then: Color(v) 6= Color(w) (9)

This is distance-2 coloring of the boundary graph. For best performance
such a coloring should both minimize the number of colors and should also
be load-balanced, that is the number of nodes for a given color should be
roughly constant across all processors. Even with only the first objective,
this problem is NP-hard but fast linear-time greedy heuristics work well in
practice for graph coloring. One option is to bring the boundary graph to a
single process and compute the coloring sequentially, but this is not scalable
in terms of memory. We therefore compute the coloring itself in parallel[45].
Parallel software is available in the Zoltan [44] library.

For a structured grid in 2D or 3D, the maximum number of colors needed
is 4. One example showing the node coloring scheme is given in Figure 2,
where the graph is divided into four pieces and owned by four processors
respectively.

15



Algorithm 3 Parallel asynchronous algorithm
1: function HSolver Asynchronous(local vertex clusters Π, local sub-graph

G, submatrix A for G)

2: P = processor rank

3: Partition Π into d1 clusters Π(1), d2 clusters Π(2), and d3 clusters Π(3)

4: Parallel (distance-2) coloring of the graph of d1 clusters, Π(1)

5: color i = 0

6: while Π(1) ∪Π(2) ∪Π(3) is not empty do

7: if πj ∈ Π(1) has color i and all communications (for πj) with d1-nodes

with colors < i in N2(P ) are complete then

8: A← LRE(A, Π, πj)

9: Send data to N2(P ) processors . Data is needed for colors > i

10: Pop πj from Π(1)

11: else if all communications for πj ∈ Π(2) with d1-nodes in N1(P ) are

complete then

12: A← LRE(A, Π, πj)

13: Send data to d1-nodes in N1(P )

14: . Data is not needed until this function returns

15: Pop πj from Π(2)

16: else if there is πj ∈ Π(3) then

17: A← LRE(A, Π, πj)

18: Pop πj from Π(3)

19: end if

20: If we are done with color i, increment i

21: end while

22: Wait for all remaining communications to complete

23: Create the required data for the coarse DOF matrix of rank P

24: HSolver Asynchronous(ΠC , GC , AC)
25: end function

16



Figure 2: A four-processor example of node coloring for d1 nodes. Nodes that are at a
distance less than 2 from each other cannot have the same color, unless they are on the
same processor. With this coloring scheme, all four processors are able to process a subset
of the d1 nodes concurrently. As seen in this example however, load imbalance is hard
to reduce. Each processor has one node for 3 given colors and 2 nodes for last 4th color,
leading to 2/1 imbalance during the loop over colors.

4. Numerical results

To demonstrate the performance of our parallel solver, we ran both se-
quential and parallel experiments to solve different types of PDEs with ran-
domly initialized Dirichlet boundary condition. The discretization scheme
uses the standard seven-point stencil, and we don’t assume symmetry of the
matrices to be solved. Our parallel solver is implemented with the mes-
sage passing interface (MPI) [46], and we obtained the sequential results by
running our code with one MPI process.

Three types of PDEs are tested. The first one is Poisson’s equation:

−∆u(x) = f(x)

on a cube. The second one is variable-coefficient Poisson’s equation:

−∇ · (a(x)∇u(x)) = f(x)

on a cube, where a(x) is a quantized high-contrast random field generated in
the following way: (1) initialize a(x) randomly with a uniform distribution;
(2) convolve the initial a(x) with Gaussian distribution of deviation 4h, where
h is the stencil spacing; and (3) set a(x) to 102 if it is larger than 0.5, or 10−2

otherwise. We chose a quantized high-contrast random field because these are
problems known to be difficult to solve using iterative methods. Although the

17



performance worsens with our hierarchical solver, the algorithm still remains
very efficient and is faster than some direct sparse solvers.

The third one is the Helmholtz equation:

(−∆− k2)u(x) = f(x)

where k is the wave number. We fix the number of DOFs per wave length
and increase k proportionally to the number of DOFs in each dimension.
Helmholtz problems are indefinite and are very challenging for iterative solvers.
Multigrid methods for example fail on this type of problems. As the frequency
increases, hierarchical solvers will eventually break down because the ranks
required to reach a good accuracy become too large for the method to be
efficient. However, in the mid-frequency range we still observe very good
performance, as illustrated by our numerical results.

In Section 4.1, we show the number of iterations and the total time (fac-
torization + solve) corresponding to choosing different criteria for the low-
rank truncation: fixing the rank K directly, or setting an upper bound for the
low-rank truncation error ε. In Section 4.2, we show the parallel performance
of our solver, including wall-clock time, speedup and parallel efficiency. In
Section 4.3, we show the fraction of time spent in the different components
with computation and communication time, and analyze the performance
bottleneck. In Section 4.4, we compare with SuperLU-Dist [47, 7] for the
total time for solving a single right-hand-side, and the memory footprint.

Sequential experiments in Section 4.1 were run on the Vesper a large
shared-memory machine at Sandia National Laboratories. It uses AMD Mag-
nycour processors and has 128GB of main memory. All other results were
run at NERSC’s Edison4, a Cray XC30 supercomputer. Each node of Edison
has two 12-core Intel “Ivy Bridge” processors. Nodes are connected by a
Cray Aries high-speed interconnect with Dragonfly topology.

4.1. Sequential results

For sequential results, we ran our code with one MPI process. We present
the number of iterations and total CG/GMRES time with respect to using
different low-rank truncation criteria: either fixing the rank K directly or
fixing the error ε. For Poisson’s equation and variable-coefficient Poisson’s
equation, we use our solver as a preconditioner for CG [48] with a tolerance

4http://www.nersc.gov/users/computational-systems/edison/configuration/

18



of 10−12; for Helmholtz equation, we use our solver as a preconditioner for
GMRES [49] with a lower tolerance of 10−3 because the Helmholtz equation
is often solved with relatively low accuracy in applications such as seismic
imaging. The sizes of tests matrices are generated on regular grids ranging
from 32 thousand (323) to 2 million (1283). For the Helmholtz equation, we
fixed the resolution to 32 DOFs per wavelength and the frequencies increase
from f = 1Hz (323 grid) to f = 4Hz (1283 grid).

Results corresponding to three types of PDEs: Poisson’s equation, variable-
coefficient Poisson’s equation and Helmholtz equation are shown in Figure 3,
Figure 4 and Figure 5 respectively. From the results, we can see that fixing
the truncation error ε usually leads to smaller number of iterations, but the
total time can be larger compared to the cases where the rank K is fixed.

32k 65k 131k 262k 524k 1m 2m
matrix size

0

10

20

30

40

50

60

n
u
m

b
e
r 

o
f 

it
e
ra

ti
o
n
s

rank=8

rank=16

rank=32

eps=0.1

eps=0.01

(a) Iteration number

32k 65k 131k 262k 524k 1m 2m
matrix size

100

101

102

103

104

To
ta

l 
ti

m
e
 (

s)

rank=8

rank=16

rank=32

eps=0.1

eps=0.01

(b) Total time

Figure 3: Poisson’s equation: number of iterations and total CG time for a sequential run.
Different low-rank truncation criteria have been used, including fixing the rank K = 8, 16,
32 and fixing the truncation error ε = 0.1, 0.01.

4.2. Parallel results

In this section, we analyze the parallel performance of our solver. We
present both sequential factorization time on a single processor and corre-
sponding parallel timing results on up to 256 processors (16 processors per
node).

Factorization time for Poisson’s equation with respect to the low-rank
truncation criteria K = 8 are shown in Figure 6. Figure 6(a) shows the
sequential and parallel factorization time. Figure 6(b) shows the speedups

19



32k 65k 131k 262k 524k 1m 2m
matrix size

0

20

40

60

80

100

120

140

n
u
m

b
e
r 

o
f 

it
e
ra

ti
o
n
s

rank=8

rank=16

rank=32

eps=0.1

eps=0.01

(a) Iteration number

32k 65k 131k 262k 524k 1m 2m
matrix size

100

101

102

103

104

To
ta

l 
ti

m
e
 (

s)

rank=8

rank=16

rank=32

eps=0.1

eps=0.01

(b) Total time

Figure 4: Variable coefficient Poisson’s equation: number of iterations and total CG time
for a sequential run. Different low-rank truncation criteria have been used, including fixing
the rank K = 8, 16, 32 and fixing the truncation error ε = 0.1, 0.01.

32k 65k 131k 262k 524k 1m 2m
matrix size

0

20

40

60

80

100

120

n
u
m

b
e
r 

o
f 

it
e
ra

ti
o
n
s

rank=16

rank=32

rank=64

eps=0.1

eps=0.01

(a) Iteration number

32k 65k 131k 262k 524k 1m 2m
matrix size

100

101

102

103

104

To
ta

l 
ti

m
e
 (

s)

rank=16

rank=32

rank=64

eps=0.1

eps=0.01

(b) Total time

Figure 5: Helmholtz equation: number of iterations and total GMRES time for a sequential
run. Different low-rank truncation criteria have been used, including fixing the rank
K = 16, 32, 64 and fixing the truncation error ε = 0.1, 0.01.

20



for the factorization phase in our parallel solver. For a fixed problem size,
we measure the efficiency of the parallel factorization when increasing the
number of processors. Define T (N,P ) as the wall-clock time to factorize a
matrix of size N on P processors. The parallel speedup S(N,P ) is:

S(N,P ) =
T (N, 1)

T (N,P )

and the efficiency is:

Es =
S(N,P )

P
(10)

The other way to measure parallel performance is to fix the problem size per
processor, i.e., the total problem size increases proportionally as the number
of processors increases, i.e., the problem size on every processor is fixed. The
efficiency is defined as:

Ew =
T (N, 1)

T (N P,P )
(11)

We want to clarify that a constant efficiency Ew with a fixed problem
size per processor should not be expected, even if our parallel algorithm
was implemented perfectly with perfect underlying hardware (no network
saturation, fixed diameter). In our case, maintaining an efficiency of 1 implies
that the number of processors scales at most as fast as O(N/ log(N)), where
N is the problem size. For example, the leaf size should scale as log(N),
which is not the case here. In our weak scaling benchmarks, we keep a fixed
leaf size, which is implies that the efficiency is in O(1/ lnN) as N → ∞.
This type of result is similar to the behavior observed when computing a
reduction in parallel using a tree structure.

The factorization time for variable-coefficient Poisson’s equation with re-
spect to the low-rank truncation criteria K = 16 is shown in Figure 7. Figure
7(a) shows the sequential and parallel factorization time. Figure 7(b) shows
the speedups of factorization in our parallel solver. Two kinds of efficiency
corresponding to fixed total problem size and fixed problem size per proces-
sor, as defined in Eqns. (10) and (11), are shown.

The factorization time for Helmholtz equation with respect to the low-
rank truncation criteria K = 32 is shown in Figure 8. Figure 8(a) shows the
sequential and parallel factorization time. Figure 8(b) shows the speedups
of factorization in our parallel solver. Two kinds of efficiency corresponding
to fixed total problem size and fixed problem size per processor, as defined

21



1 16 32 64 128 256
number of processes

100

101

102

103

Ti
m

e
 (

s)

262k

524k

1m

2m

4m

8m

16m

(a) Factorization time

1 16 32 64 128 256
number of processes

100

101

102

S
p
e
e
d
u
p

262k

524k

1m

2m

4m

8m

16m

(b) Factorization speedup

1 16 32 64 128 256
number of processes

0.0

0.2

0.4

0.6

0.8

1.0

E
ff

ic
ie

n
cy 262k

524k

1m

2m

4m

8m

16m

(c) Fixed total problem size

16 32 64 128 256
number of processes

0.0

0.2

0.4

0.6

0.8

1.0

E
ff

ic
ie

n
cy

16k/p

32k/p

65k/p

131/p

(d) Fixed problem size per processor

Figure 6: Factorization time for Poisson’s equation with respect to the low-rank truncation
criteria K = 8. Figure 6(a) shows the factorization time for different problem sizes on
different number of processors. We used 16 processors per node. Figure 6(b) shows
speedups on multiple processors. Figure 6(c) and Figure 6(d) show two kinds of efficiency
corresponding to fixed total problem size and fixed problem size per processor as defined
in Eqns. (10) and (11).

22



1 16 32 64 128 256
number of processes

100

101

102

103

Ti
m

e
 (

s)

262k

524k

1m

2m

4m

8m

16m

(a) Time

1 16 32 64 128 256
number of processes

100

101

102

S
p
e
e
d
u
p

262k

524k

1m

2m

4m

8m

16m

(b) Speedup

1 16 32 64 128 256
number of processes

0.0

0.2

0.4

0.6

0.8

1.0

E
ff

ic
ie

n
cy 262k

524k

1m

2m

4m

8m

16m

(c) Fixed total problem size

16 32 64 128 256
number of processes

0.0

0.2

0.4

0.6

0.8

1.0

E
ff

ic
ie

n
cy

16k/p

32k/p

65k/p

131/p

(d) Fixed problem size per processor

Figure 7: Factorization time for variable-coefficient Poisson’s equation equation with re-
spect to the low-rank truncation criteria K = 16. Figure 7(a) shows the factorization time
for different problem sizes on different number of processors. We used 16 processors per
node. Figure 7(b) shows speedups on multiple processors. Figure 7(c) and Figure 7(d)
show two kinds of efficiency corresponding to fixed total problem size and fixed problem
size per processor as defined in Eqns. (10) and (11).

23



in Eqns. (10) and (11), are shown. Note that, in all three cases, we stop the
scaling experiments for fixed total problem size when number of unkowns are
fewer than 8K. The communication costs dominate at that scale.

1 16 32 64 128 256
number of processes

100

101

102

103

Ti
m

e
 (

s) 262k

524k

1m

2m

4m

8m

16m

(a) Time

1 16 32 64 128 256
number of processes

100

101

102

S
p
e
e
d
u
p

262k

524k

1m

2m

4m

8m

16m

(b) Speedup

1 16 32 64 128 256
number of processes

0.0

0.2

0.4

0.6

0.8

1.0

E
ff

ic
ie

n
cy 262k

524k

1m

2m

4m

8m

16m

(c) Fixed total problem size

16 32 64 128 256
number of processes

0.0

0.2

0.4

0.6

0.8

1.0

E
ff

ic
ie

n
cy

16k/p

32k/p

65k/p

131/p

(d) Fixed problem size per processor

Figure 8: Factorization time for Helmholtz equation equation with respect to the low-rank
truncation criteria K = 32. Figure 8(a) shows the factorization time for different problem
sizes on different number of processors. We used 16 processors per node. Figure 8(b)
shows speedups on multiple processors. Figure 8(c) and Figure 8(d) show two kinds of
efficiency corresponding to fixed total problem size and fixed problem size per processor
as defined in Eqns. (10) and (11).

4.3. Analysis of the parallel running time

To further understand the performance and bottleneck of our solver, we
show the time fractions of all components in our algorithm: computation

24



time for d1 nodes, d2 nodes and d3 nodes, communication time for d1 nodes
and d2 nodes and others including coloring, graph coarsening and so on.

Results for three PDEs: Poisson’s equation (K = 8), variable-coefficient
Poisson’s equation (K = 16) and Helmholtz equation (K = 32) are shown in
Figure 9, Figure 10 and Figure 11 respectively. For a fixed total problem size,
the computation time for d1 nodes, d2 nodes and d3 nodes almost halved
when the number of processors doubled. But the communication time and
time spent in other things remain almost constant. For fixed problem size
per processor, the computation time for d1 nodes, d2 nodes and d3 nodes
remain almost constant when the number of processors increase. But the
communication time and time spent in other things grow slowly.

Two bottlenecks exist in our current implementation. The first one is our
implementation of communication for d1 nodes and d2 nodes. The second is
time spent in calling the coloring subroutine from the Zoltan [44] package.
The coloring only needs to be computed once (symbolic phase), so this cost
could be amortized when solving a sequence of linear systems. Note that this
coloring problem is atypical of coloring a graph as we color an interface graph
resulting in high communication costs for the coloring implementation.

32 64 128 256
Number of processors

0

2

4

6

8

10

12

14

Ti
m

e
(s

)

d1

d2

d3

d1 Comm

d2 Comm

Other

(a) Fixed four-million problem size

16 32 64 128 256
Number of processors

0

2

4

6

8

10

12

14

16

18

Ti
m

e
(s

)

(b) Fixed 131-thousand problem size per
processor

Figure 9: Breakup of parallel factorization time for Poisson’s equation (K = 8). “d1”, “d2”
and “d3” stand for computation. “d1 Comm” and “d2 Comm” stand for communication.
“Other” includes the node coloring, and the graph coarsening (a fast step in principle but
not implemented in parallel in our code). Node coloring is done using the Zoltan [44]
library.

25



32 64 128 256
Number of processors

0

5

10

15

20

25

Ti
m

e
(s

)

d1

d2

d3

d1 Comm

d2 Comm

Other

(a) Fixed four-million problem size

16 32 64 128 256
Number of processors

0

5

10

15

20

25

30

Ti
m

e
(s

)

(b) Fixed 131-thousand problem size per
processor

Figure 10: Breakup of parallel factorization time for variable-coefficient Poisson’s equation
(K = 16). “d1”, “d2” and “d3” stand for computation. “d1 Comm” and “d2 Comm” stand
for communication. “Other” includes the node coloring, and the graph coarsening (a fast
step in principle but not implemented in parallel in our code). Node coloring is done using
the Zoltan [44] library.

32 64 128 256
Number of processors

0

10

20

30

40

50

60

Ti
m

e
 (

s)

d1

d2

d3

d1 Comm

d2 Comm

Other

(a) Fixed four-million problem size

16 32 64 128 256
Number of processors

0

10

20

30

40

50

60

70

Ti
m

e
 (

s)

(b) Fixed 131-thousand problem size per
processor

Figure 11: Breakup of parallel factorization time for Helmholtz equation (K = 32). “d1”,
“d2” and “d3” stand for computation. “d1 Comm” and “d2 Comm” stand for commu-
nication. “Other” includes the node coloring, and the graph coarsening (a fast step in
principle but not implemented in parallel in our code). Node coloring is done using the
Zoltan [44] library.

26



4.4. Comparison with SuperLU-Dist

We show some results comparing our parallel performance to SuperLU-
Dist [47, 7], a state-of-the-art parallel sparse direct solver. We show compar-
isons of the total time for solving a single right-hand-size for three PDEs on
16 processors. The subroutine pdgssvx() in SuperLU-Dist was called with
the default options. Timing results and corresponding memory footprint are
shown in Figure 12. For Poisson’s equation and variable-coefficient Poisson’s
equation, our solver was used as a preconditioner (K = 8, 16 respectively)
for CG with a tolerance of 10−12. For the Helmholtz equation, our solver
(K = 32) was used as a preconditioner for GMRES with a tolerance of 10−3

. (In seismic imaging, the Helmholtz equation is often solved with relatively
low accuracy.)

The relative accuracy ‖x− xtrue‖/‖x‖ of the solution from SuperLU-Dist
was at the order of 10−14 for Poisson equation, 10−11–10−10 for variable-
coefficient Poisson equation, 10−9–10−8 for Helmholtz equation.

From Figure 12, we can see that for a small problem size of 262k (1283),
our solver was a little slower and used more memory than SuperLU-Dist
for Helmholtz equation because of using a relatively large rank. But the
total time and memory cost of our solver scales linearly as problem size
increases. Therefore, our solver becomes faster and more memory-efficient
than SuperLU-Dist for solving a two-million (2563) problem.

5. Conclusions and Future Work

We have presented the first parallel algorithm and implementation of
the LoRaSp hierarchical solver. It can be used either as a solver or as a
preconditioner, depending on the accuracy in the factorization phase. There
are several attractive features for our parallel algorithm: the factorization
time, the solve time and the memory usage all scale nearly linearly. When
our solver is used as a preconditioner for an iterative solver, the iteration
number stays almost constant. This nearly optimal scaling leads to faster
running times on large matrices which beats many existing sparse direct
solvers.

To solve really large problems that cannot be stored on a single machine,
distributed memory parallel computing has to be used. We have shown
our solver achieves good speed-ups up to 256 processes (cores). The parallel
algorithm requires an exchange of only boundary information between neigh-
boring processors, the amount of which is typically an order of magnitude

27



262k 524k 1m 2m
Matrix size

0.0

0.3

0.6

0.9

1.2

1.5

1.8

N
o
rm
a
liz
e
d
 T
im
e

Po
is
so
n

Po
is
so
n

Po
is
so
n

Po
is
so
n

V
C
-P
o
is
so
n

V
C
-P
o
is
so
n

V
C
-P
o
is
so
n

V
C
-P
o
is
so
n

H
e
lm
h
o
lt
z

H
e
lm
h
o
lt
z

H
e
lm
h
o
lt
z

H
e
lm
h
o
lt
z

S
u
p
e
rL
U
-D
is
t

S
u
p
e
rL
U
-D
is
t

S
u
p
e
rL
U
-D
is
t

S
u
p
e
rL
U
-D
is
t

factorization
solve

(a) Total time

262k 524k 1m 2m
Matrix size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M
e
m
o
ry
 f
o
o
tp
ri
n
t 
p
e
r 
p
ro
ce
ss
 (
G
B
)

Poisson
VC-Poisson
Helmholtz
SuperLU-Dist

(b) Memory footprint

Figure 12: Comparison with SuperLU-Dist of the total time and memory footprint for
solving a single right-hand-side on 16 processors. Every group of time is normalized by
the total time of SuperLU-Dist (which was the same for all three test problems: Poisson,
variable-coefficient Poisson (VC-Poisson) and Helmholtz). The memory cost of SuperLU-
Dist was also the same for all three test problems.

28



less than the amount of computation to be done. It uses a great deal of dense
linear algebra, giving opportunity for an additional layer of parallelism using
modern many-core architectures.

We have presented the sequential algorithm and the parallel algorithm
for SPD matrices, but they can be extended to general matrices. For exam-
ple, the sequential algorithm works for unsymmetric matrices [24] and dense
matrices [50].

There are several directions for future work:

• Other low-rank approximations than SVD may be more efficient.

• Our graph coloring of the boundary is conservative and other strategies
may reduce the number of colors. One could also color the process
graph instead of the boundary vertices, which gives more coarse-grained
communication but worse load-balance, so it should be studied further.

• One could study various partitioning strategies: geometric, graph, and
hypergraph partitioning.

• We plan an MPI+X implementation that exploits thread parallelism
on the node for dense linear algebra. We believe such an approach may
improve parallel scalability on large number of nodes (cores).

• A more asynchronous MPI implementation of the code would improve
performance by removing artificial synchronization points. This would
lead to lower load imbalance and less time spent waiting on communi-
cations.

Acknowledgments

Chao Chen, Hadi Pouransari, and Eric Darve were partially supported
by the Department of Energy National Nuclear Security Administration un-
der Award Number DE-NA0002373-1; Sivasankaran Rajamanickam and Erik
Boman were partially supported by Sandia’s LDRD program, the US DOE
Office of Science, and the National Nuclear Security Administration’s ASC
program.

[1] Y. Chen, T. A. Davis, W. W. Hager, S. Rajamanickam, Algorithm 887:
CHOLMOD, supernodal sparse cholesky factorization and update/downdate,
ACM Transactions on Mathematical Software (TOMS) 35 (2008) 22.

29



[2] T. A. Davis, Algorithm 832: UMFPACK V4. 3—an unsymmetric-pattern
multifrontal method, ACM Transactions on Mathematical Software (TOMS)
30 (2004) 196–199.

[3] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, J. W. H. Liu, A
supernodal approach to sparse partial pivoting, SIAM J. Matrix Analysis
and Applications 20 (1999) 720–755.

[4] A. Kuzmin, M. Luisier, O. Schenk, Fast methods for computing selected
elements of the greens function in massively parallel nanoelectronic device
simulations, in: F. Wolf, B. Mohr, D. Mey (Eds.), Euro-Par 2013 Paral-
lel Processing, volume 8097 of Lecture Notes in Computer Science, Springer
Berlin Heidelberg, 2013, pp. 533–544.

[5] J. W. Demmel, J. R. Gilbert, X. S. Li, An asynchronous parallel supernodal
algorithm for sparse Gaussian elimination, SIAM J. Matrix Anal. Appl. 20
(1999) 915–952.

[6] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, J. Koster, MUMPS: A general
purpose distributed memory sparse solver, in: Applied Parallel Computing.
New Paradigms for HPC in Industry and Academia, Springer, 2001, pp. 121–
130.

[7] X. S. Li, J. W. Demmel, SuperLU DIST: A scalable distributed-memory
sparse direct solver for unsymmetric linear systems, ACM Transactions on
Mathematical Software (TOMS) 29 (2003) 110–140.

[8] I. S. Duff, A. M. Erisman, J. K. Reid, Direct Methods for Sparse Matrices,
Clarendon press Oxford, 1986.

[9] A. George, Nested dissection of a regular finite element mesh, SIAM Journal
on Numerical Analysis 10 (1973) 345–363.

[10] P. R. Amestoy, T. A. Davis, I. S. Duff, An approximate minimum degree
ordering algorithm, SIAM Journal on Matrix Analysis and Applications 17
(1996) 886–905.

[11] T. A. Davis, S. Rajamanickam, W. M. Sid-Lakhdar, A survey of direct meth-
ods for sparse linear systems, Acta Numerica 25 (2016) 383–566.

[12] Y. Saad, Iterative Methods for Sparse Linear Systems, Siam, 2003.

[13] W. Hackbusch, Multi-grid Methods and Applications, volume 4, Springer
Science & Business Media, 2013.

30



[14] J. Xu, Iterative methods by space decomposition and subspace correction,
SIAM review 34 (1992) 581–613.

[15] J. Mandel, Multigrid convergence for nonsymmetric, indefinite variational
problems and one smoothing step, Applied Mathematics and Computation
19 (1986) 201–216.

[16] J. H. Bramble, J. E. Pasciak, J. Xu, The analysis of multigrid algorithms for
nonsymmetric and indefinite elliptic problems, Mathematics of Computation
51 (1988) 389–414.

[17] J. H. Bramble, D. Y. Kwak, J. E. Pasciak, Uniform convergence of multigrid
v-cycle iterations for indefinite and nonsymmetric problems, SIAM journal
on numerical analysis 31 (1994) 1746–1763.

[18] P. Lin, M. T. Bettencourt, S. P. Domino, T. C. Fisher, M. Hoemmen, J. J. Hu,
E. T. Phipps, A. Prokopenko, S. Rajamanickam, C. Siefert, S. R. Kennon,
Towards extreme-scale simulations with second-generation Trilinos, Parallel
Processing Letters (2014).

[19] P. Lin, M. Bettencourt, S. Domino, T. Fisher, M. Hoemmen, J. Hu, E. Phipps,
A. Prokopenko, S. Rajamanickam, C. Siefert, et al., Towards extreme-
scale simulations with next-generation Trilinos: a low Mach fluid application
case study, in: Parallel & Distributed Processing Symposium Workshops
(IPDPSW), 2014 IEEE International, IEEE, pp. 1485–1494.

[20] J. Xia, S. Chandrasekaran, M. Gu, X. S. Li, Superfast multifrontal method
for large structured linear systems of equations, SIAM Journal on Matrix
Analysis and Applications 31 (2009) 1382–1411.

[21] K. L. Ho, L. Ying, Hierarchical interpolative factorization for elliptic oper-
ators: Differential equations, Communications on Pure and Applied Mathe-
matics (2015).

[22] P. Amestoy, C. Ashcraft, O. Boiteau, A. Buttari, J.-Y. L’Excellent, C. Weis-
becker, Improving multifrontal methods by means of block low-rank repre-
sentations, SIAM Journal on Scientific Computing 37 (2015) A1451–A1474.

[23] A. Aminfar, S. Ambikasaran, E. Darve, A fast block low-rank dense solver
with applications to finite-element matrices, Journal of Computational
Physics 304 (2016) 170–188.

31



[24] H. Pouransari, P. Coulier, E. Darve, Fast hierarchical solvers for sparse ma-
trices, arXiv preprint arXiv:1510.07363 (2015).

[25] W. Hackbusch, A sparse matrix arithmetic based on H-matrices. Part i:
introduction to H-matrices, Computing 62 (1999) 89–108.

[26] P. Ghysels, X. S. Li, F.-H. Rouet, S. Williams, A. Napov, An efficient multi-
core implementation of a novel HSS-structured multifrontal solver using ran-
domized sampling, arXiv preprint arXiv:1502.07405 (2015).

[27] S. Wang, X. S. Li, F.-H. Rouet, J. Xia, M. V. De Hoop, A parallel geo-
metric multifrontal solver using hierarchically semiseparable structure, ACM
Transactions on Mathematical Software (TOMS) 42 (2016) 21:1–21:21.

[28] Y. Li, L. Ying, Distributed-memory hierarchical interpolative factorization,
arXiv preprint arXiv:1607.00346 (2016).

[29] F.-H. Rouet, X. S. Li, P. Ghysels, A. Napov, A distributed-memory package
for dense hierarchically semi-separable matrix computations using random-
ization, arXiv preprint arXiv:1503.05464 (2015).

[30] Y. Saad, ILUT: a dual threshold incomplete LU factorization, Numerical
linear algebra with applications 1 (1994) 387–402.

[31] A. Brandt, Algebraic multigrid theory: The symmetric case, Applied math-
ematics and computation 19 (1986) 23–56.

[32] K. Stüben, A review of algebraic multigrid, Journal of Computational and
Applied Mathematics 128 (2001) 281–309.

[33] G. H. Golub, C. Reinsch, Singular value decomposition and least squares
solutions, Numerische mathematik 14 (1970) 403–420.

[34] C.-T. Pan, On the existence and computation of rank-revealing LU factor-
izations, Linear Algebra and its Applications 316 (2000) 199–222.

[35] L. Miranian, M. Gu, Strong rank revealing LU factorizations, Linear algebra
and its applications 367 (2003) 1–16.

[36] T. F. Chan, Rank revealing QR factorizations, Linear algebra and its appli-
cations 88 (1987) 67–82.

[37] M. Gu, S. C. Eisenstat, Efficient algorithms for computing a strong rank-
revealing QR factorization, SIAM Journal on Scientific Computing 17 (1996)
848–869.

32



[38] K. Zhao, M. N. Vouvakis, J.-F. Lee, The adaptive cross approximation al-
gorithm for accelerated method of moments computations of emc problems,
IEEE Transactions on Electromagnetic Compatibility 47 (2005) 763–773.

[39] J. Xia, S. Chandrasekaran, M. Gu, X. S. Li, Fast algorithms for hierarchi-
cally semiseparable matrices, Numerical Linear Algebra with Applications 17
(2010) 953–976.

[40] W. Hackbusch, S. Börm, Data-sparse approximation by adaptiveH2-matrices,
Computing 69 (2002) 1–35.

[41] W. Hackbusch, H2-matrices, in: Hierarchical Matrices: Algorithms and
Analysis, Springer, 2015, pp. 203–240.

[42] G. Karypis, V. Kumar, A fast and high quality multilevel scheme for par-
titioning irregular graphs, SIAM Journal on scientific Computing 20 (1998)
359–392.

[43] C. Chevalier, F. Pellegrini, Pt-scotch: A tool for efficient parallel graph
ordering, Parallel computing 34 (2008) 318–331.

[44] E. G. Boman, U. V. Catalyurek, C. Chevalier, K. D. Devine, The Zoltan and
Isorropia parallel toolkits for combinatorial scientific computing: Partitioning,
ordering, and coloring, Scientific Programming 20 (2012) 129–150.

[45] D. Bozdağ, U. Çatalyürek, A. H. Gebremedhin, F. Manne, E. G. Boman,
F. Özgüner, Distributed-memory parallel algorithms for distance-2 coloring
and related problems in derivative computation, SIAM J. Sci. Comput. 32
(2010) 2418–2446.

[46] W. Gropp, E. Lusk, N. Doss, A. Skjellum, A high-performance, portable
implementation of the MPI message passing interface standard, Parallel com-
puting 22 (1996) 789–828.

[47] X. Li, J. Demmel, J. Gilbert, L. Grigori, M. Shao, I. Yamazaki, SuperLU
Users’ Guide, Technical Report LBNL-44289, Lawrence Berkeley National
Laboratory, 1999. http://crd.lbl.gov/~xiaoye/SuperLU Last update: Au-
gust 2011.

[48] M. R. Hestenes, E. Stiefel, Methods of Conjugate Gradients for Solving Linear
Systems, volume 49, NBS, 1952.

33

http://crd.lbl.gov/~xiaoye/SuperLU


[49] Y. Saad, M. H. Schultz, GMRES: a generalized minimal residual algorithm
for solving nonsymmetric linear systems, SIAM Journal on scientific and
statistical computing 7 (1986) 856–869.

[50] P. Coulier, H. Pouransari, E. Darve, The inverse fast multipole method: Using
a fast approximate direct solver as a preconditioner for dense linear systems,
arXiv preprint arXiv:1508.01835 (2015).

34


	Introduction
	Sequential hierarchical solver
	Sparsification and Low-rank Elimination 
	Low-rank Approximation Strategies
	Hierarchical solver algorithm
	Relationship to LoRaSp

	Parallel hierarchical solver
	Data decomposition
	Coloring of d1 nodes

	Numerical results
	Sequential results
	Parallel results
	Analysis of the parallel running time
	Comparison with SuperLU-Dist

	Conclusions and Future Work

