SAND2017-0777J

The Recommendations for Linear Measurement
Techniques on the Measurements of Nonlinear
System Parameters of a Joint

Scott A. Smith?2%, Simone Catalfamo3, Matthew R.W. Brake?#4, Christoph W.
Schwingshackl®, and Pascal Reuf3®

University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
Sandia National Laboratories®, 1515 Eubank Blvd SE, Albuquerque, NM 87123, USA
University of Stuttgart, Keplerstrafle 7, 70174 Stuttgart, Germany

William Marsh Rice University, 6100 Main St, Houston, TX 77005, USA
Imperial College London, London SW7 2AZ, United Kingdom

Daimler AG, 70546 Stuttgart, Germany

Abstract

In the study of the dynamics of nonlinear systems, experimental measurements often convolute
the response of the nonlinearity of interest and the effects of the experimental setup. To reduce the
influence of the experimental setup on the deduction of the parameters of the nonlinearity, the
response of a mechanical joint is investigated under various experimental setups. The experiments
first focus on quantifying how support structures and measurement techniques affect the natural
frequency and damping of a linear system. The results indicate that support structures created from
bungees have negligible influence on the system in terms of frequency and damping ratio
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variations. The study then focuses on the effects of the excitation technique on the response for a
linear system. The findings suggest that thinner stingers should not be used, because under the
high force requirements the stinger bending modes are excited adding unwanted torsional
coupling. The optimal configuration for testing the linear system is then applied to a nonlinear
system in order to assess the robustness of the test configuration. Finally, recommendations are
made for conducting experiments on nonlinear systems using conventional/linear testing
techniques.
Keywords: Bolted joints; Nonlinear vibration; Experimental setup; Measurement effects; Testing guidelines

1 Introduction

The principles of modal analysis are based on linear vibration theory [1]. This assumes that the
modes are uncoupled, that natural frequencies and damping ratios are constant, and that the
response is linearly proportional to the excitation. For nonlinear systems, even those that might be
considered weakly nonlinear, these assumptions break down: the modes are coupled, the natural
frequencies and damping ratios are amplitude dependent, the response is not proportional to the
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excitation, etc. As a result, a new theory for nonlinear analysis of experiments is needed and a
large amount of research effort is currently focused on developing it (e.g., Nonlinear normal
modes) [2, 3]. Until said theory is developed, though, the limitations and dangers of linear methods
to assess the dynamics of a nonlinear system must be better understood. This paper is a first step
in that process.

Studying the response of nonlinear systems is a challenging effort. The increased effort stems
from multiple stable and unstable equilibria, resulting in the measurements of the system being
sensitive to excitation and initial conditions. The effort also arises from an insufficient
understanding of the physics governing the nonlinearity’s response. The nonlinearity often
manifests itself when a small change in the constitutive model generates a large change in the
response [4, 5, 6].

Because of this, experimental measurements often convolute the effects of the nonlinearity of
interest with the experimental setup [7, 8]. The very act of measuring the response of a system can
fundamentally change the system (much like the observer effect in quantum physics [9]). By
creating a support structure or attaching a gage or other instruments to a specimen, the system is
no longer the original specimen, but rather a combination of the specimen and the experimental
setup. A shaker, for instance, can change the impedance of a system dramatically due to the method
by which it is attached to the system. Further, a fixed boundary condition is difficult to achieve; in
most cases torsional stiffness, friction, and even gaps are still present. By contrast, a free boundary
condition is often accurately emulated via bungee cords or foam pads, which act as weak springs.
These issues are further influenced by the test specimen itself. Attaching a five-gram accelerometer
to a solid cube that weighs 50 kg will have less of an effect then attaching the same accelerometer
to a highly flexible, light weight body such as an aero-shell. The effects of accelerometer mass
have a larger influence in nonlinear analysis on highly flexible structures; this is from the need of
high amplitudes of excitation and the potential need to measure many harmonics.

Considering these known issues, the following questions emerge:

1. What support structure will minimally affect the dynamics of a system?

2. What is the optimal manner in which to excite the system?

To address these questions, a benchmark nonlinear structure, commonly termed the Brake-Reuf3
Beam (BRB), containing a lap joint is used, the beam is detailed in [10] using 5/16”-24 bolts
instead of M8 bolts. The beam, shown in Figure 1, is designed to have a simple geometry that
contains nonlinear effects from a lap-joint. The lap-joint is an ideal system due to the effect of the
nonlinearity on the transfer function (TF) [10], which is not always obvious in all systems [3, 11].
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Figure 1: The Geometry of the Brake-Reuf§ Beam.

In this work, an analysis of a monolithic beam and the BRB is conducted. The analysis studies
the effects of different loading/excitation conditions, instrumentation configurations, and
boundary conditions. The experiments are conducted with either a “free-free” or “fixed-free”
boundary condition. First, in Section 2, a monolithic beam with the same dimensions as the BRB
is studied by using a modal hammer with different boundary and equipment setups. Next, in
Section 3, the study is expanded to uncontrolled shaker signals (e.g., white noise, sweeps, etc.);
and then to the study of the linear control parameters using the BRB. Finally, recommendations
for the measurements of a nonlinear system with a mechanical joint are given in Section 4.

2 Effects of Experimental Setup

Isolating the effects of a lap-joint on the dynamic response of a system necessitates a linear, or
as close as possible, design of the test setup; this is needed so that the nonlinearity of the joint is
not convoluted with any other nonlinearities. Sources of unwanted nonlinearities are:
misalignment, pre-loads, cable rattling, poor transducer mounting, etc. [12]. These unwanted
nonlinearities are more likely to occur under high levels of excitation; and their effects need to be
accounted. The damping added due to the test setup need to be measured and studied for any
nonlinearities that maybe added into the system [13, 14].

To study the effects of the test setup, a monolithic beam is fabricated using stainless steel 304.
The experimental setup, shown in Figure 2, includes the beam, two bungee cords, two PCB
356A01 Triaxial ICP Accelerometers (Accels), two PCB 356A03 Triaxial Accels used in a second
experimental setup, a PCB 086C03 ICP Impact Hammer (Hammer), a Briiel & Kjar PM Vibration
Exciter Type 4809 (Shaker), LMS 16 Channel Spectral Analyzer, and a modular test rig made
using Newport X95 rails.

To gain an understanding of the vibration of the monolithic beam, modal analysis using the
roving hammer technique [15] was performed. The mode shapes, natural frequencies, and modal
damping ratios of the monolithic beam (without shaker attached) are measured with the use of 58
impact lines and two impacts per line. The natural frequencies and modal damping ratios are listed
in Table 1, and the mode shapes are displayed in Figure 3. The mode numbers used in Figure 3 are
those calculated using the Finite Element software Abaqus 6.10; similar values are found via other



software packages as well, such as SIERRA and Hyperworks [16]. The seventh mode (3472 Hz
from analytical equations) is the first axial mode, which is not excited in the present experiment.
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Figure 2: Basic test setup for testing the effects of boundary conditions, excitation techniques, and sensor
setup.

Table 1: Modal testing results on the monolithic beam.

Mode Frequency Modal
(Hz) Damping (%)
Ist Bending 246.3 0.03
2nd Bending 674.5 0.04
3rd Bending 1308.5 0.03
Ist Torsional 1965.0 0.03
4th Bending 2130.7 0.04
5th Bending 3126.8 0.04
2nd Torsional 3931.8 0.05
—
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Figure 3: Mode shapes measured in modal analysis.

2.1 Experimental Setup Excited by Impact Hammer

The effects of the experimental setup are grouped into four categories: 1) impact hammer
excitation effects, 2) “free-free” boundary condition approximation effects, 3) instrumentation
effects, and 4) test rig effects. The various experimental setups tested in this category are listed in
Table 2; with each test conducted with a metal and plastic hammer tip, and high and low impact
levels.



Table 2: Experimental setups tested for nonlinear influences.

Test Bungee Bungee Bungee | Accelerometer | Accelerometer | Hammer | Accelerometer
Number Cord Cord Cord Mass (gm) Attachment Mass Cable
Stiffness | Location Length (gm) Orientation
(m)

1 High Inside 0.318 1 Glue 160 Above

2 High Inside 0.318 1 Glue 235 Above

3 High Outside 0.318 1 Glue 160 Above

4 High Outside 0.165 1 Glue 160 Above

5 Low Outside 0.318 1 Glue 160 Above

6 Low Outside 0.318 1 Wax 160 Above

7 Low Outside 0.318 10.5 Wax 160 Above

8 Low Outside 0.318 1 Glue 160 Across

9 Low Outside 0.318 1 Glue 160 Unsupported

2.1.1 Impact Hammer

Impact hammers are only in contact with a system long enough to transmit a short duration
force (typically <lms), unlike a shaker that is typically attached to a system for an entire
experiment. As a result, the response due to an impact hammer excitation is often considered the
“true” representation of a system. Of course, impact hammers are limited in the range, type, and
duration of forces that they can transmit to a system, which make other excitation techniques more
attractive for some studies. In the first set of experiments, the effects of the impact hammer tips

(metal versus plastic) and mass (160gm versus 235gm) are studied for different impact levels (high
versus low). The tests are summarized in Table 2 as Tests 1 and 2, and the FRFs for the hammer
setups are shown in Figure 4.
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Figure 4: The FRFs of the impact hammer study (Table 2 Tests 1 and 2) for (a) the entire frequency range,
(b) the first bending, and (c) first torsional mode.

The results of the tests show that the hammer tip, mass, and impact level do not have an
appreciable influence on the response of the linear system, as expected. For linear systems, the
response is linearly proportional to the excitation amplitude. The selection of the impact hammer
tip and mass is governed by the frequency range of interest. For higher frequencies a harder tip
and lighter hammer are needed. The difference in the first torsional mode could be from the
impacts being in a slightly different location, which highlights the downside of using an impact
hammer.

2.1.2 Support Structure

The second set of experiments consider the support structure: the length (0.318m versus
0.1651m), position (inside, 10.2cm separated centered, or outside, 5.72cm from edges of the beam)
and stiffness (low ~37.8N/m, or high ~49.5N/m, which are measured) of the bungee cords used to
approximate a “free” boundary condition; listed in Table 2 as Tests 1 and 3 through 5. The inside
location was selected to keep the beam balanced as well as allow the edges of the beam to more
freely vibration; the outside location was selected to have enough space that if the bungees slid
there was room to keep the specimen suspended. The bungees are crossed to keep the specimen
aligned. The FRFs for the support structure variations are shown in Figure 5.
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Figure 5: The FRFs of the bungee support structure testing (Table 2 Tests 1, 3, 4, and 5) for (a) the
entire frequency range, (b) the first bending, and (c) first torsional mode.



The most of the modes do not show any significant nonlinearity due to the test setup, which is
desirable and confirms the findings in [14]. The only nonlinearity observed occurs in the torsional
modes, which are constrained by the bungee cords. Unlike the impact hammer tests, in which the
natural frequencies of the torsional modes are approximately constant, the measured natural
frequencies are observed to shift by 3Hz. The shift of frequencies could be happening from the
bungees slipping, which leads to some friction which generates damping and softening. Previous
studies have observed that the damping caused by the boundary conditions can influence lightly
damped structures [17]. The torsional mode nonlinearities observed could potentially be removed
by alternative suspension materials. A slight improvement can be obtained by using a hybrid
bungee-fishing line support structure (hereafter referred to as the hybrid support) in which the
fishing line is directly supporting the specimen. This setup is further illustrated in Figure 6, as well
as a typical foam support and fishing line support. The foam support tested only supported the
beam for five centimeters at each end in order to minimize the stiffness and damping that the foam
might add to the system. The foam used was not the softest available, because the soft foam
touched all but the top surface ofthe beam which would constrain the response more than a slightly
stiffer foam. The response with the hybrid support, fishing line support, and foam support is
compared to the response of Test 3 in Figure 7.
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Figure 7: The FRFs of the alternative support materials for (a) the entire frequency range, (b) the
first bending, and (c) first torsional mode.

The responses show that the hybrid support and fishing line support have lower damping than
those seen in Test 3, displayed for comparison purposes. This indicates that the hybrid support and
fishing line support do not constrain the first torsional mode as much as the bungees directly
touching the specimen did. The foam, however, constrains the bending modes, which is not a
desirable outcome from a support that is intended to emulate a free boundary condition. The
bungee cords and foam constrain the torsional and/or translational motion of the beam, similarly
to the pipe collar in [18], and needed to be considered in the system models.

2.1.3 Instrumentation

The third set of experiments consider the effects of the accelerometer attachment technique
(glued versus waxed), and cable orientation. The results of attaching via glue or wax and the size
ofthe accelerometer are shown in Figure 8. As can be seen the accelerometer attachment technique
do not show any effects on the response of the structure, over the frequency range of interest;
however, increasing the size of the accelerometer does affect the response. The attachment
technique was expected to be the same up to about 4kHz (from discussion with someone in the
field for over 30 years), and only after that wax would not be able to keep up the with response of
the structure.
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Figure 8: The FRFs of attachment technique and sensor size testing for (a) the entire frequency
range, (b) the first bending, and (c) first torsional mode.

The cable orientations (hanging, supported out the side, or straight down) are shown in Figure
9, with the results shown in Figure 10. The largest shift occurs with the cables down with the
hardest impact which shifts the damping from 0.05% to 0.15%; this shift could be from the way
the cables are loading the beam resulting in the cables adding more damping when they hang
unsupported. The cable orientation has a negligible effect on the response of the system, such that
any shift could be attributed to human error for not hitting exactly the same spot.

Figure 9: Sensor cable positions: (a) supported above, (b) supported across, and (c) unsupported.
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Figure 10: The FRFs of the cable orientation testing for (a) the entire frequency range, (b) the first
bending, and (c) first torsional mode.

The second set of instrumentation experiments studied the effects of the number of sensors
attached to the specimen. The general rule of thumb for the total mass of the sensors is less than
5% of the mass of the specimen,; it is recommended by Ewins [19] to keep the mass of the sensors
as small as possible. Additional sensors (with a mass of 5gm, when all are applied total
approximately 0.02% of the mass of the beam) were attached to the beam as shown in Figure 11
for three additional testing scenarios, all other boundary parameters are the same as Test 3 in Table
2. The results, shown in Figure 12, show that the torsional modes of this system are influenced the
most by the additional mass; the frequency for the first torsional mode shifted by 17 Hz (1%), and
the damping for the second torsional mode increased from 0.05% to 0.79%.
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Figure 12: The FRFs of the added mass test scenarios for (a) the entire frequency range, (b) the first torsion
and fourth bending, and (c) second torsion and sixth bending measured natural frequencies.

Upon closer inspection of the first torsional mode (Figure 12b) and the second torsional mode
(Figure 12c¢), groupings of two loading scenarios appear. In Figure 12b the reference and Scenario
3 responses are grouped together, while in Figure 12c¢ the reference and Scenario 1 responses are
grouped together. These groupings come about from the additional sensors being placed on a node
of those particular modes, resulting in them responding the same as the reference scenario. The
shifts in frequency and damping may be from the sensors changing the moment of inertia of the
beam at the anti-nodes of vibration. By contrast, when the sensors are placed at nodes versus anti-
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nodes of the bending modes, the responses are unaffected (e.g. the peaks at 240, 670, and 1300
Hz). The sensors change the stiffness and mass effect of the beam less in the bending modes than
the torsional modes. A simple finite element analysis confirms that the masses shift the frequency
approximately the amount seen in the experimental results.

2.1.4 Testrig

The final study in this set looks at the influence of the test rig. This is to ensure that the specimen
is isolated from all external sources other than the impact hammer (or shaker). The test rig is
impacted with each change in bungee length or location at three different locations: at the center
of the cross bar, at a location adjacent to the bungee cord, and at the attachment location to the
table. The results of the test rig experiment are in the noise floor of the accelerometers; which
indicates that any excitation from an outside source other than those wanted, may not be transferred
to the specimen from the test rig.

2.1.5 Discussion

The testing of the experimental setup using an impact hammer resulted in all but additional
sensors having little effect on the response of the system. The additional sensors significantly
influenced the test beam via mass and moment of inertia changes; in the next subsection, a Polytec
OFV-552 Fiber-optic Interferometer (LDV) will be tested. If using the results from an experiment
with multiple sensors for model validation, all sensors should be included in computational models
to match the response of the system more accurately. Testing the support structure is important,
because there is potential for a shaker to excite the support structure, which would then be
transferred to the bungees. The test performed by hitting the structure near the support structure
indicates that the structure gave enough isolation from all but the desired inputs. The severities of
the nonlinear effects from all impact hammer tests are listed in Table 3.

Table 3: Severity of the nonlinear influence from different experimental setups on the natural frequency and
modal damping of the beam.

Category Effects on | Effects on Notes
Frequency | Damping
Metal Tip REF REF Frequency range with good
coherence: 0-8 kHz
White Plastic Tip Low Low Frequency range with good
Hammer coherence: 0-3.2 kHz
Metal tip with added Low Low More energy input into structure as
mass (75 gm) low frequencies
Full length (0.318 m) REF REF
Bungees Half length Low Low Marginal frequency shifts (~1 Hz)
Position: Inside REF REF
Position: Outside Low Low Marginal frequency shifts (~1 Hz)
Bungees REF REF
Fishing Line Low Low Marinal frequency shift (<1 Hz)
and completely constrains vertical
Boundary .
. motion
Material Bungee-fishing Hybrid Low Low Marinal frequency shift (<1 Hz)
Foam Moderate | Moderate Frequency shift of ~4 Hz
Damping increase ~367%
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1 gm REF REF
Sensor Size 10.5 gm Low Low The increased size results in atleast
a 2 Hz frequency shift
2 accelerometers glued REF REF Accelerometers glued at one end of
beam, each ~1 gm
2 accelerometers Low Low Marginal frequency shifts (~1 Hz)
attached via wax
Number of sensors: Moderate | Moderate | Moderate change in frequency and
Scenario 1 damping
Number of sensors: High High Frequency shifts from ~1 Hz to
Accelerometer Scenario 2 ~30 Hz down (mode dependent);
torsional & higher bending modes
highly damped
Number of sensors: High High The frequency shifted up for the
Scenario 3 2nd torsional but down for higher
Cable orientation: Low Low Cable down causes slightly higher
above, across, damping for some modes (+0.1%)
unsupported
Test rig None None Impacts on different spots of the
test rig & table

2.2 Experimental Setup Excited by Shaker

The next series of experiments utilize a shaker to study the effects of stinger type, signal type,
sweep direction, and the use of a LDV compared to accelerometer measurements. The shaker is
attached to the monolithic beam via a stinger connected to a PCB 208A03 force transducer at one-
third the length of the beam from the edge. The type of stinger is tested to determine which of the
three stingers, shown in Figure 13, has the smallest deviation from measured FRFs using the
impact hammer. The results of the stinger tests using a swept sine signal are shown in Figure 14.

wire, @1mm, 3“

M2, 5.5

10-32 UNF, 9°

Figure 13: The three stingers tested for nonlinear effects.
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Figure 14: The FRFs of the stinger tests and one impact test for (a) the entire frequency range, (b) the first
and second bending modes, and (c) the first torsional and fourth bending modes.

From the test it is seen that the wire and M2 stingers have a significant influence on the
response; these stingers excite the torsional mode, which should not have been excited as the
attachment location is along the center line of the beam. The excitation of the torsional modes
indicates that these stingers are bending, which causes energy to be inputted into the modes; this
bending could be from the force levels used or the shaker and beam not being perfectly aligned.
The 10-32 UNF stinger is used in all subsequent shaker experiments. The use of the 10-32 stinger
is contradictory to experience by researchers and the recommendations by Ewins [19]. A thin
stinger is desired to decouple the shaker from the specimen motion not in the direction of
excitation; thus, removing the bending moment applied at the force transducer [20]. However, the
stingers available during the testing are much longer than recommended [19]; resulting in the
larger diameter being a better choice for this experiment.

The final experiments on the monolithic beam test the sweep direction and speed, the signal
type, and the use of an LDV the results of these tests are shown in Figure 15. The results show
that the white noise should not be used as the torsional modes are excited, which could be from
the stinger modes being excited more with white noise than a sweep signal. The LDV has a
significant frequency shift that can be associated with the sensors being removed from the beam.
The severity of the nonlinear effects from the various shaker setup tests are listed in Table 4.

15



(a) 100 1
10k:: 100e-3
? N10e-3
300e-3@ 1R NN 71e-3
£ 8100e-3 g
30e-3 — Chirp Up (1V, 195.3Hz/s) 100e-6
10e-3| Chirp Up (2V, 195.3Hz/s)
= — Chirp Down (2V, 195.3Hz/s) 10e-6
3e-3f Faster Chirp Up (2V 987.5Hz/s)
1e-3$ —— White Noise (2V) 166
‘ + — No Accelerometers (Chirp Up, 2V, 195.3Hz/s)
100e-6[" I I i i i 100e-9
0 500 1000 1500 2000 2500 3000
Hz
(®) 100 100e-3
40 40e-3
20 20e-3
10 10e-3
%_’ o 4 4e-3 D
-2 263
1 1e-3
600e-6
300e-3] 300e-6
100e-3 | |100e-6
650 660 670 680 690 700 2070 2100 2130 2160 2190
Hz Hz

Figure 15: The FRFs of the shaker signal tests over (a) the entire frequency range, (b) near the second
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bending mode, and (c) near the fourth bending mode.

Table 4: Severity of the nonlinear influence of shaker test setups on frequency and damping of the beam

Category Effects on | Effects on Notes
Frequency | Damping
None REF REF Impact hammer test
10-32 UNF (9in) Low Low No torsional modes excited,
matches best to hammer tests
Stingers M2 (5.5in) Moderate None Frequency shift down
Wire (3in) Moderate None Frequency shift down, torsional
modes excited, stinger bending
occurs
Excitation Nominal REF REF 2V amplitude
Amplitude (V) av) None Low Marginal frequency shift ~1 Hz
Chirp Up REF REF Swept at 195.3Hz/s
Chirp Down None Low Linear structure tested
Signals Sweep Rate None None No visable influence
(987.5Hz/s)
White noise Low None Noisy FRFs; anti-resonances
observed
Accelerometer | Two accelerometers REF REF Accelerometers Glued on
No acclerometers Moderate Low Frequency shifts to slightly higher
(LDV) frequencies

2.3 Effects of Boundary Condition Type

A “fixed-free” boundary is difficult to achieve using clamps [7]. To try and create a “fixed”

boundary, a method that can be used is to epoxy the specimen to a larger-stiffer structure. Here,
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one end of a half-beam is epoxied to a 0.127m x 0.127m x 0.1524m, 20kg steel block, which is
then clamped to the table (Figure 16). The boundary is then tested by attaching a shaker to the
beam using an off-center hole located one-third the length of the beam in from the free end.

/ 7

Figure 16: Experimental setup for the “fixed-free” boundary test.

The rigidness of the “fixed” boundary is tested, utilizing a stepped-sine signal, ranging from
584.5 Hz to 585.5 Hz (around the second bending). To investigate the relative displacement in the
joint, two accelerometers (PCB 354A01) are attached to the beam and block, near the interface, as
shown in Figure 17. The amplitude of response on the beam and block are measured for 5 g and
15 g acceleration input control. The acceleration of the beam is compared to that of the block,
shown in Figure 18. The results of this study indicate that the boundary is not truly fixed, but closer
to that of a pinned joint with translational and rotational springs. A truly fixed boundary would be
a point at the origin or a small vertical line, because there should be no motion in the boundary or
on the beam at the boundary. Thus, together with [7], [21] and [22], it is evident that extraordinary
lengths are needed to achieve a fixed boundary condition, created using epoxy or clamping the
beam; and these conditions should be avoided if possible.

Figure 17: Locations of the accelerometers for testing the rigidness of the “fixed” boundary, the
yellow star is the location on block, and red the location on the beam.

17



(a) _ ()

4 4
—— 5 g Amplitude
15 g Amplitude
3F 3F
2r 2t

Acceleration on the Block
g)
o

Acceleration on the Block

So|
- A
2 - 2 -
3+ 3k
4L 1 1 L 1 1 | 1 4L 1 L 1 1 1 1 L J
-4 -3 2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4
Acceleration on the Beam Acceleration on the Beam
(9) (9)

Figure 18: Acceleration on the beam in the vs. acceleration on the block with (a) sensor direction
parallel and (b) perpendicular, to test the rigidness of the “fixed” boundary.

3 Effects of Control Parameters
The nonlinearities in a jointed beam are difficult to identify due to part-to-part and experiment-
to-experiment variability associated with the interfacial conditions [10] (including distribution of
asperities, grain boundaries, dislocation surfaces, other microstructure related quantities, and
global geometry of effects, e.g. curved interfaces). To measure the effects of the nonlinearity, the
amplitude of excitation or input force needs to be held constant. Whether the amplitude or force
are held constant, is dependent on:
1) If the effects of force-drop-out at resonance will distort the measured response due to the
measurement of noise [23]

2) If using linear assumptions to extract the data as the damping and stiffness of nonlinear
systems can be amplitude dependent [23]

3) Comparing to numerical models; most are based on constant force as constant amplitude
cause numerical computation errors [16].

To test a control algorithm, a jointed beam with the “free-free” boundary conditions is
implemented. The “free-free” condition is implemented two different ways; the first is the same
as those presented in the previous section (Figure 2), and the second is by using 1.2m of 501b
fishing line.

An open loop control algorithm can possibly have five parameters that affect the measurement
of a transfer function (TF). The first parameter is the confidence in measured system FRF, which
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dictates whether the algorithm can deviate from the measured system FRF (received from a low
level white noise test). The next parameter is the proportional gain, which specifies the amount the
algorithm corrects divergence from the control level in one step. The third parameter is the number
of delay cycles; this parameter specifies how long to wait for steady state to be reached before
taking a measurement. The fourth parameter is the number of hold cycles (NHCs); this parameter
is how many periods the algorithm measures the response of the system. The last parameter is the
step size, which controls the frequency resolution of the TF.

The control algorithm tested is LMS Test.Lab 15A MIMO Sweep & Stepped Sine, which is a
linear control algorithm (it does not control higher harmonics, such as in [24]). The control
parameters tested are listed in Table 5, with the default parameters in Test.Lab listed (Note:
Proportion Gain is named Error Correction Factor (ECF) in Test.Lab), as well as how the
parameters are tested. The last column (“optimal”) is discussed later in the section. The default
parameters are tested using the bungee “free-free” BRB under 1.75N force control, the results are
shown for various torque levels; this is used as an example of the response from the default
parameters. As can be seen in Figure 19, the default parameters do not produce a smooth TF, which
is what is expected when using a control algorithm.

Table 5: Control parameters used in control study.

Control Parameters Default Test Optimal
Confidence in Measured High Low Low
System FRF
Error Correction Factor 100% Vary 60%
Number of Delay Cycles 1 30 30
Number of Hold Cycles 15 Vary 40
Step Size 0.1Hz 0.05Hz | 0.05Hz
(a)
(b) (©)
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Figure 19: The TFs of the default control parameters for (a) the entire frequency range, (b) the second
bending mode, and (c) the fourth bending mode.

Further investigation into how the control algorithm works, indicated that the confidence in
measured system FRF, number of delay cycles, and step size should be set to Low confidence, 30
cycles, and 0.05Hz, respectively, for best performance when exciting a nonlinear system. The ECF
and NHC are then tested for how they affect the response TFs. The measurements are performed
on the “free-free” (fishing line) boundary condition BRB, with a I0Nm torque applied to the bolts.

Different values of the ECF are compared in the frequency ranges of 570-580Hz (second
bending) and 1176-1184Hz (third bending), with 40 hold cycles, and a 5N input force level or 10g
amplitude input level. The results, shown in Figure 20 and Figure 21, compare the measurements
for stepping up (top row) or stepping down (bottom row) through the defined frequency ranges.
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Figure 20: TFs of SN force control to locate optimal ECF; (top row) sweep up, (bottom row) sweep
down, (left column) second bending mode, and (right column) third bending modes.
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Figure 21: TFs of 10g acceleration control to locate optimal ECF; (top row) sweep up, (bottom row)
sweep down, (left column) second bending mode, and (right column) third bending modes.

An ECF of 60% is the best balance of speed and accuracy for the control algorithm for most
input control types. When the value is set higher than 60% the TF exhibits a sawtooth-like look in
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the default parameter test; while values below 60% did not correct errors, when the levels are
inside the control bands or corrected slowly back to the desired levels.

The NHCs are then tested after the optimal EFC is determined, shown in Figure 22 and Figure
23 for force and amplitude control, respectively. As shown in Figure 22 and Figure 23, 40 and 60
NHCs result in the smoothest TFs. The optimal NHCs is set to 40 cycles, because 60 cycles result
in the experimental time to be nearly double that of 40. The optimal parameters for this system are
listed in Table 5.
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Figure 22: TFs of SN force control to locate optimal NHC; (top row) sweep up, (bottom row) sweep
down, (left column) second bending, and (right column) third bending modes.
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Figure 23: TFs of 10g acceleration control to locate optimal NHC; (top row) sweep up, (bottom
row) sweep down, (left column) second bending, and (right column) third bending mode.
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Figures Figure 20 through Figure 23 show that the longer the signal is held the smoother the
response in the frequency domain will be, this is because the response reaches the steady state
response of the system fully. The correction factor value also drives the smoothness of the
frequency response because if the input deviates to far this will drive how much the system will
be corrected in one step. The lower ECFs do not correct deviation from the control level as fast if
at all, and the higher ECFs over correct and cause a jump in the response.

The figures also show that the saw tooth effect is seen in force control more than acceleration
amplitude control. The source of this could come from the force level dropping drastically at
resonance, requiring the controller to output more voltage quickly in order to maintain the same
force level. The increase in voltage also dictates that the force level cannot be set high as the shaker
can only handle up to a certain level of amperage. Acceleration control does not have as great of
an effect because the opposite happens, as long as the range of interest does not have anti-
resonances which have the same effect as force on resonance: as the acceleration increases, the
voltage needs to decrease, which is easier and less restrictive. It is recommend to use acceleration
control, which is similar to the method in [23], if the shaker being used cannot handle the desired
force levels.

The optimal parameters and default parameters are compared using a 10g acceleration
amplitude control, shown in Figure 24. The TF comparison (Figure 24a) shows that the optimal
parameters have removed the saw tooth effect from the default parameters. The amount of time
for the test (Figure 24b & c) does increase; however, the acceleration was controlled to the level
specified. Thus, even for a system with a strong nonlinearity, such as the BRB, it is possible to
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find control parameters that allow for the measurement of a smooth TF. Responses that contain
sawtooth-like features should therefore be rejected until optimal control parameters can be found.
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Figure 24: Comparison of the (a) TF and time signals using (red) the default parameters and (blue)

optimal parameters of the (b) force and (c) acceleration.

4 Conclusions

This work sought to identify a set of recommendations for conducting experiments on nonlinear
systems using conventional measurement techniques. The effects of the test setup (boundary
conditions, excitation techniques, and measurement techniques) are studied to understand the
effect on the system’s stiffness and damping. This research highlights that it is important to think
of the experimental system as the entire test setup, not just the test specimen. Changes to this
system are shown to have varying effects. Specific recommendations are:

Impact hammer measurements: the tip and hammer mass do not significantly affect the
measurements of damping and stiffness over the frequency range of interest. Therefore,
the hammer configuration should be such that the bandwidth of interest is excited.
Boundary Conditions: the response of the system is insensitive to: the length, stiffness,
and position of bungee cables used for making the “free” boundary condition. The
bungee setup should be such that the rigid body modes are much less than the first elastic
mode of the test specimen.

Boundary Conditions: the use of fishing line is desirable as the torsional modes of the
specimen are less constrained. However, a pure boundary of fishing line is not
recommended, as the vertical motion of the specimen is constrained in the downward
direction.
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e Boundary Conditions: the use of foam is not recommended as it constrains bending and
torsional modes at the same time. Due to the material, foam also adds damping into the
system and needs to be accounted for when analyzing the response of the specimen.

e Boundary Conditions: if a “fixed-free” boundary is desired, any model being compared
needs to include the stiffness of the attachment technique, and recognize that this is an
additional joint with its own nonlinear effects.

e Accelerometers: even when the mass of the accelerometers is less than 0.02% of the
structure’s, they need to be included in models. When used, accelerometers should be
located away from nodes, included in modeling, and kept to the minimum necessary.

e Shaker measurements: care should be taken when selecting a stinger for shaker tests,
because the force level required to drive and identify the nonlinearity may cause the
stinger to bend. A thinner stinger may be the most desired stinger due to low mass effect
and reduced coupling between the specimen and shaker; however, the thinner the stinger
the lower the stiffness, which results in stinger modes bleeding into the response of the
structure.

Control parameters are tested and recommendations for the optimal parameters are:

e The system FRF measured with white noise should not be considered an accurate
representation of the system.

e The proportional gain should be set such that the control algorithm does not completely
correct for a deviation in one step.

e A sufficient number of delay cycles should be used such that steady state is reached
after each step, more delay cycles maybe needed for nonlinear systems with greater
damping than a linear system.

e A Convergence study on the number of hold cycles should be conducted to ensure that
the steady state response can be fully measured.

It is also recommended that acceleration amplitude control be used instead of force control;
however, care must be taken in using the results as the response may jump between different
response curves.
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