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Abstract
In the study of the dynamics of nonlinear systems, experimental measurements often convolute 

the response of the nonlinearity of interest and the effects of the experimental setup. To reduce the 

influence of the experimental setup on the deduction of the parameters of the nonlinearity, the 

response of a mechanical joint is investigated under various experimental setups. The experiments 

first focus on quantifying how support structures and measurement techniques affect the natural 

frequency and damping of a linear system. The results indicate that support structures created from 

bungees have negligible influence on the system in terms of frequency and damping ratio 

variations. The study then focuses on the effects of the excitation technique on the response for a 

linear system. The findings suggest that thinner stingers should not be used, because under the 

high force requirements the stinger bending modes are excited adding unwanted torsional 

coupling. The optimal configuration for testing the linear system is then applied to a nonlinear 

system in order to assess the robustness of the test configuration. Finally, recommendations are 

made for conducting experiments on nonlinear systems using conventional/linear testing 

techniques. 
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1 Introduction
The principles of modal analysis are based on linear vibration theory [1]. This assumes that the 

modes are uncoupled, that natural frequencies and damping ratios are constant, and that the 

response is linearly proportional to the excitation. For nonlinear systems, even those that might be 

considered weakly nonlinear, these assumptions break down: the modes are coupled, the natural 

frequencies and damping ratios are amplitude dependent, the response is not proportional to the 
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excitation, etc. As a result, a new theory for nonlinear analysis of experiments is needed and a 

large amount of research effort is currently focused on developing it (e.g., Nonlinear normal 

modes) [2, 3]. Until said theory is developed, though, the limitations and dangers of linear methods 

to assess the dynamics of a nonlinear system must be better understood. This paper is a first step 

in that process. 

Studying the response of nonlinear systems is a challenging effort. The increased effort stems 

from multiple stable and unstable equilibria, resulting in the measurements of the system being 

sensitive to excitation and initial conditions. The effort also arises from an insufficient

understanding of the physics governing the nonlinearity’s response. The nonlinearity often 

manifests itself when a small change in the constitutive model generates a large change in the

response [4, 5, 6]. 

Because of this, experimental measurements often convolute the effects of the nonlinearity of 

interest with the experimental setup [7, 8]. The very act of measuring the response of a system can 

fundamentally change the system (much like the observer effect in quantum physics [9]). By 

creating a support structure or attaching a gage or other instruments to a specimen, the system is 

no longer the original specimen, but rather a combination of the specimen and the experimental 

setup. A shaker, for instance, can change the impedance of a system dramatically due to the method 

by which it is attached to the system. Further, a fixed boundary condition is difficult to achieve; in 

most cases torsional stiffness, friction, and even gaps are still present. By contrast, a free boundary 

condition is often accurately emulated via bungee cords or foam pads, which act as weak springs. 

These issues are further influenced by the test specimen itself. Attaching a five-gram accelerometer 

to a solid cube that weighs 50 kg will have less of an effect then attaching the same accelerometer 

to a highly flexible, light weight body such as an aero-shell. The effects of accelerometer mass 

have a larger influence in nonlinear analysis on highly flexible structures; this is from the need of 

high amplitudes of excitation and the potential need to measure many harmonics. 

Considering these known issues, the following questions emerge: 

1. What support structure will minimally affect the dynamics of a system?

2. What is the optimal manner in which to excite the system?

To address these questions, a benchmark nonlinear structure, commonly termed the Brake-Reuß 

Beam (BRB), containing a lap joint is used, the beam is detailed in [10] using 5/16”-24 bolts 

instead of M8 bolts. The beam, shown in Figure 1, is designed to have a simple geometry that 

contains nonlinear effects from a lap-joint. The lap-joint is an ideal system due to the effect of the 

nonlinearity on the transfer function (TF) [10], which is not always obvious in all systems [3, 11]. 
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Figure 1: The Geometry of the Brake-Reuß Beam.

In this work, an analysis of a monolithic beam and the BRB is conducted. The analysis studies 

the effects of different loading/excitation conditions, instrumentation configurations, and 

boundary conditions. The experiments are conducted with either a “free-free” or “fixed-free”

boundary condition. First, in Section 2, a monolithic beam with the same dimensions as the BRB 

is studied by using a modal hammer with different boundary and equipment setups. Next, in 

Section 3, the study is expanded to uncontrolled shaker signals (e.g., white noise, sweeps, etc.);

and then to the study of the linear control parameters using the BRB. Finally, recommendations 

for the measurements of a nonlinear system with a mechanical joint are given in Section 4.

2 Effects	of	Experimental	Setup
Isolating the effects of a lap-joint on the dynamic response of a system necessitates a linear, or 

as close as possible, design of the test setup; this is needed so that the nonlinearity of the joint is 

not convoluted with any other nonlinearities. Sources of unwanted nonlinearities are: 

misalignment, pre-loads, cable rattling, poor transducer mounting, etc. [12]. These unwanted 

nonlinearities are more likely to occur under high levels of excitation; and their effects need to be 

accounted. The damping added due to the test setup need to be measured and studied for any 

nonlinearities that maybe added into the system [13, 14].

To study the effects of the test setup, a monolithic beam is fabricated using stainless steel 304. 

The experimental setup, shown in Figure 2, includes the beam, two bungee cords, two PCB 

356A01 Triaxial ICP Accelerometers (Accels), two PCB 356A03 Triaxial Accels used in a second 

experimental setup, a PCB 086C03 ICP Impact Hammer (Hammer), a Brüel & Kjær PM Vibration 

Exciter Type 4809 (Shaker), LMS 16 Channel Spectral Analyzer, and a modular test rig made 

using Newport X95 rails. 

To gain an understanding of the vibration of the monolithic beam, modal analysis using the 

roving hammer technique [15]  was performed. The mode shapes, natural frequencies, and modal 

damping ratios of the monolithic beam (without shaker attached) are measured with the use of 58 

impact lines and two impacts per line. The natural frequencies and modal damping ratios are listed 

in Table 1, and the mode shapes are displayed in Figure 3. The mode numbers used in Figure 3 are 

those calculated using the Finite Element software Abaqus 6.10; similar values are found via other 
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software packages as well, such as SIERRA and Hyperworks [16]. The seventh mode (3472 Hz

from analytical equations) is the first axial mode, which is not excited in the present experiment. 

Figure 2: Basic test setup for testing the effects of boundary conditions, excitation techniques, and sensor 
setup.

Table 1: Modal testing results on the monolithic beam.

Mode Frequency 
(Hz)

Modal 
Damping (%)

1st Bending 246.3 0.03
2nd Bending 674.5 0.04
3rd Bending 1308.5 0.03
1st Torsional 1965.0 0.03
4th Bending 2130.7 0.04
5th Bending 3126.8 0.04

2nd Torsional 3931.8 0.05

Figure 3: Mode shapes measured in modal analysis.

2.1 Experimental	Setup	Excited	by	Impact	Hammer
The effects of the experimental setup are grouped into four categories: 1) impact hammer 

excitation effects, 2) “free-free” boundary condition approximation effects, 3) instrumentation 

effects, and 4) test rig effects. The various experimental setups tested in this category are listed in 

Table 2; with each test conducted with a metal and plastic hammer tip, and high and low impact 

levels.
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Table 2: Experimental setups tested for nonlinear influences.
Test 

Number
Bungee 

Cord 
Stiffness

Bungee 
Cord 

Location

Bungee 
Cord 

Length 
(m)

Accelerometer 
Mass (gm)

Accelerometer 
Attachment

Hammer 
Mass 
(gm)

Accelerometer 
Cable 

Orientation

1 High Inside 0.318 1 Glue 160 Above
2 High Inside 0.318 1 Glue 235 Above
3 High Outside 0.318 1 Glue 160 Above
4 High Outside 0.165 1 Glue 160 Above
5 Low Outside 0.318 1 Glue 160 Above
6 Low Outside 0.318 1 Wax 160 Above
7 Low Outside 0.318 10.5 Wax 160 Above
8 Low Outside 0.318 1 Glue 160 Across
9 Low Outside 0.318 1 Glue 160 Unsupported

2.1.1 Impact	Hammer	

Impact hammers are only in contact with a system long enough to transmit a short duration 

force (typically <1ms), unlike a shaker that is typically attached to a system for an entire 

experiment. As a result, the response due to an impact hammer excitation is often considered the 

“true” representation of a system. Of course, impact hammers are limited in the range, type, and 

duration of forces that they can transmit to a system, which make other excitation techniques more 

attractive for some studies. In the first set of experiments, the effects of the impact hammer tips

(metal versus plastic) and mass (160gm versus 235gm) are studied for different impact levels (high 

versus low). The tests are summarized in Table 2 as Tests 1 and 2, and the FRFs for the hammer 

setups are shown in Figure 4. 
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Figure 4: The FRFs of the impact hammer study (Table 2 Tests 1 and 2) for (a) the entire frequency range, 
(b) the first bending, and (c) first torsional mode.

The results of the tests show that the hammer tip, mass, and impact level do not have an

appreciable influence on the response of the linear system, as expected. For linear systems, the 

response is linearly proportional to the excitation amplitude. The selection of the impact hammer 

tip and mass is governed by the frequency range of interest. For higher frequencies a harder tip 

and lighter hammer are needed. The difference in the first torsional mode could be from the 

impacts being in a slightly different location, which highlights the downside of using an impact 

hammer.

2.1.2 Support	Structure

The second set of experiments consider the support structure: the length (0.318m versus

0.1651m), position (inside, 10.2cm separated centered, or outside, 5.72cm from edges of the beam) 

and stiffness (low ~37.8N/m, or high ~49.5N/m, which are measured) of the bungee cords used to 

approximate a “free” boundary condition; listed in Table 2 as Tests 1 and 3 through 5. The inside 

location was selected to keep the beam balanced as well as allow the edges of the beam to more 

freely vibration; the outside location was selected to have enough space that if the bungees slid 

there was room to keep the specimen suspended. The bungees are crossed to keep the specimen 

aligned. The FRFs for the support structure variations are shown in Figure 5.

Figure 5: The FRFs of the bungee support structure testing (Table 2 Tests 1, 3, 4, and 5) for (a) the 
entire frequency range, (b) the first bending, and (c) first torsional mode.
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The most of the modes do not show any significant nonlinearity due to the test setup, which is 

desirable and confirms the findings in [14]. The only nonlinearity observed occurs in the torsional 

modes, which are constrained by the bungee cords. Unlike the impact hammer tests, in which the 

natural frequencies of the torsional modes are approximately constant, the measured natural 

frequencies are observed to shift by 3Hz. The shift of frequencies could be happening from the 

bungees slipping, which leads to some friction which generates damping and softening. Previous 

studies have observed that the damping caused by the boundary conditions can influence lightly 

damped structures [17]. The torsional mode nonlinearities observed could potentially be removed 

by alternative suspension materials. A slight improvement can be obtained by using a hybrid 

bungee-fishing line support structure (hereafter referred to as the hybrid support) in which the 

fishing line is directly supporting the specimen. This setup is further illustrated in Figure 6, as well 

as a typical foam support and fishing line support. The foam support tested only supported the 

beam for five centimeters at each end in order to minimize the stiffness and damping that the foam 

might add to the system. The foam used was not the softest available, because the soft foam 

touched all but the top surface of the beam which would constrain the response more than a slightly 

stiffer foam. The response with the hybrid support, fishing line support, and foam support is 

compared to the response of Test 3 in Figure 7. 
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Figure 6: Alternative boundary conditions – (a) Bungee-fishing line hybrid, (b) foam supports and 
(c) fishing line.
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Figure 7: The FRFs of the alternative support materials for (a) the entire frequency range, (b) the 
first bending, and (c) first torsional mode.

The responses show that the hybrid support and fishing line support have lower damping than 

those seen in Test 3, displayed for comparison purposes. This indicates that the hybrid support and 

fishing line support do not constrain the first torsional mode as much as the bungees directly 

touching the specimen did. The foam, however, constrains the bending modes, which is not a

desirable outcome from a support that is intended to emulate a free boundary condition. The 

bungee cords and foam constrain the torsional and/or translational motion of the beam, similarly 

to the pipe collar in [18], and needed to be considered in the system models. 

2.1.3 Instrumentation

The third set of experiments consider the effects of the accelerometer attachment technique 

(glued versus waxed), and cable orientation. The results of attaching via glue or wax and the size 

of the accelerometer are shown in Figure 8. As can be seen the accelerometer attachment technique 

do not show any effects on the response of the structure, over the frequency range of interest; 

however, increasing the size of the accelerometer does affect the response. The attachment 

technique was expected to be the same up to about 4kHz (from discussion with someone in the 

field for over 30 years), and only after that wax would not be able to keep up the with response of 

the structure. 
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Figure 8: The FRFs of attachment technique and sensor size testing for (a) the entire frequency 
range, (b) the first bending, and (c) first torsional mode.

The cable orientations (hanging, supported out the side, or straight down) are shown in Figure 

9, with the results shown in Figure 10. The largest shift occurs with the cables down with the 

hardest impact which shifts the damping from 0.05% to 0.15%; this shift could be from the way 

the cables are loading the beam resulting in the cables adding more damping when they hang 

unsupported. The cable orientation has a negligible effect on the response of the system, such that 

any shift could be attributed to human error for not hitting exactly the same spot. 

Figure 9: Sensor cable positions: (a) supported above, (b) supported across, and (c) unsupported.
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Figure 10: The FRFs of the cable orientation testing for (a) the entire frequency range, (b) the first 
bending, and (c) first torsional mode.

The second set of instrumentation experiments studied the effects of the number of sensors 

attached to the specimen. The general rule of thumb for the total mass of the sensors is less than 

5% of the mass of the specimen; it is recommended by Ewins [19] to keep the mass of the sensors 

as small as possible. Additional sensors (with a mass of 5gm, when all are applied total 

approximately 0.02% of the mass of the beam) were attached to the beam as shown in Figure 11

for three additional testing scenarios, all other boundary parameters are the same as Test 3 in Table 

2. The results, shown in Figure 12, show that the torsional modes of this system are influenced the 

most by the additional mass; the frequency for the first torsional mode shifted by 17 Hz (1%), and 

the damping for the second torsional mode increased from 0.05% to 0.79%. 
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Figure 11: Added sensor testing scenarios.

Figure 12: The FRFs of the added mass test scenarios for (a) the entire frequency range, (b) the first torsion
and fourth bending, and (c) second torsion and sixth bending measured natural frequencies.
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(Figure 12c), groupings of two loading scenarios appear. In Figure 12b the reference and Scenario 
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grouped together. These groupings come about from the additional sensors being placed on a node 

of those particular modes, resulting in them responding the same as the reference scenario. The 

shifts in frequency and damping may be from the sensors changing the moment of inertia of the 
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nodes of the bending modes, the responses are unaffected (e.g. the peaks at 240, 670, and 1300 

Hz). The sensors change the stiffness and mass effect of the beam less in the bending modes than 

the torsional modes. A simple finite element analysis confirms that the masses shift the frequency 

approximately the amount seen in the experimental results. 

2.1.4 Test	rig

The final study in this set looks at the influence of the test rig. This is to ensure that the specimen 

is isolated from all external sources other than the impact hammer (or shaker). The test rig is 

impacted with each change in bungee length or location at three different locations: at the center 

of the cross bar, at a location adjacent to the bungee cord, and at the attachment location to the 

table. The results of the test rig experiment are in the noise floor of the accelerometers; which 

indicates that any excitation from an outside source other than those wanted, may not be transferred 

to the specimen from the test rig.

2.1.5 Discussion

The testing of the experimental setup using an impact hammer resulted in all but additional 

sensors having little effect on the response of the system. The additional sensors significantly 

influenced the test beam via mass and moment of inertia changes; in the next subsection, a Polytec 

OFV-552 Fiber-optic Interferometer (LDV) will be tested. If using the results from an experiment 

with multiple sensors for model validation, all sensors should be included in computational models 

to match the response of the system more accurately. Testing the support structure is important, 

because there is potential for a shaker to excite the support structure, which would then be 

transferred to the bungees. The test performed by hitting the structure near the support structure 

indicates that the structure gave enough isolation from all but the desired inputs. The severities of 

the nonlinear effects from all impact hammer tests are listed in Table 3.

Table 3: Severity of the nonlinear influence from different experimental setups on the natural frequency and 
modal damping of the beam.

Category Effects on 
Frequency

Effects on 
Damping

Notes

Hammer

Metal Tip REF REF Frequency range with good 
coherence: 0-8 kHz

White Plastic Tip Low Low Frequency range with good 
coherence: 0-3.2 kHz

Metal tip with added 
mass (75 gm)

Low Low More energy input into structure as 
low frequencies

Bungees

Full length (0.318 m) REF REF
Half length Low Low Marginal frequency shifts (~1 Hz)

Position: Inside REF REF
Position: Outside Low Low Marginal frequency shifts (~1 Hz)

Boundary 
Material

Bungees REF REF
Fishing Line Low Low Marinal frequency shift (<1 Hz) 

and completely constrains vertical 
motion

Bungee-fishing Hybrid Low Low Marinal frequency shift (<1 Hz)
Foam Moderate Moderate Frequency shift of ~4 Hz

Damping increase ~367%
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Sensor Size
1 gm REF REF

10.5 gm Low Low The increased size results in atleast 
a 2 Hz frequency shift

Accelerometer

2 accelerometers glued REF REF Accelerometers glued at one end of 
beam, each ~1 gm

2 accelerometers 
attached via wax

Low Low Marginal frequency shifts (~1 Hz)

Number of sensors: 
Scenario 1

Moderate Moderate Moderate change in frequency and 
damping

Number of sensors: 
Scenario 2

High High Frequency shifts from ~1 Hz to 
~30 Hz down (mode dependent); 
torsional & higher bending modes 

highly damped
Number of sensors: 

Scenario 3
High High The frequency shifted up for the 

2nd torsional but down for higher 
Cable orientation: 

above, across, 
unsupported

Low Low Cable down causes slightly higher 
damping for some modes (+0.1%)

Test rig None None Impacts on different spots of the 
test rig & table

2.2 Experimental	Setup	Excited	by	Shaker
The next series of experiments utilize a shaker to study the effects of stinger type, signal type, 

sweep direction, and the use of a LDV compared to accelerometer measurements. The shaker is 

attached to the monolithic beam via a stinger connected to a PCB 208A03 force transducer at one-

third the length of the beam from the edge. The type of stinger is tested to determine which of the 

three stingers, shown in Figure 13, has the smallest deviation from measured FRFs using the 

impact hammer. The results of the stinger tests using a swept sine signal are shown in Figure 14. 

Figure 13: The three stingers tested for nonlinear effects.
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Figure 14: The FRFs of the stinger tests and one impact test for (a) the entire frequency range, (b) the first 
and second bending modes, and (c) the first torsional and fourth bending modes.

From the test it is seen that the wire and M2 stingers have a significant influence on the 

response; these stingers excite the torsional mode, which should not have been excited as the 

attachment location is along the center line of the beam. The excitation of the torsional modes 

indicates that these stingers are bending, which causes energy to be inputted into the modes; this 

bending could be from the force levels used or the shaker and beam not being perfectly aligned. 

The 10-32 UNF stinger is used in all subsequent shaker experiments. The use of the 10-32 stinger 

is contradictory to experience by researchers and the recommendations by Ewins [19]. A thin 

stinger is desired to decouple the shaker from the specimen motion not in the direction of 

excitation; thus, removing the bending moment applied at the force transducer [20]. However, the 

stingers available during the testing are much longer than recommended [19]; resulting in the 

larger diameter being a better choice for this experiment. 

The final experiments on the monolithic beam test the sweep direction and speed, the signal 

type, and the use of an LDV; the results of these tests are shown in Figure 15. The results show 

that the white noise should not be used as the torsional modes are excited, which could be from 

the stinger modes being excited more with white noise than a sweep signal. The LDV has a 

significant frequency shift that can be associated with the sensors being removed from the beam. 

The severity of the nonlinear effects from the various shaker setup tests are listed in Table 4. 
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Figure 15: The FRFs of the shaker signal tests over (a) the entire frequency range, (b) near the second 
bending mode, and (c) near the fourth bending mode.

Table 4: Severity of the nonlinear influence of shaker test setups on frequency and damping of the beam
Category Effects on 

Frequency
Effects on 
Damping

Notes

Stingers

None REF REF Impact hammer test
10-32 UNF (9in) Low Low No torsional modes excited, 

matches best to hammer tests
M2 (5.5in) Moderate None Frequency shift down
Wire (3in) Moderate None Frequency shift down, torsional 

modes excited, stinger bending 
occurs

Excitation 
Amplitude (V)

Nominal REF REF 2V amplitude
(1V) None Low Marginal frequency shift ~1 Hz

Signals

Chirp Up REF REF Swept at 195.3Hz/s
Chirp Down None Low Linear structure tested
Sweep Rate 
(987.5Hz/s)

None None No visable influence

White noise Low None Noisy FRFs; anti-resonances 
observed

Accelerometer Two accelerometers REF REF Accelerometers Glued on
No acclerometers 

(LDV)
Moderate Low Frequency shifts to slightly higher 

frequencies

2.3 Effects	of	Boundary	Condition	Type
A “fixed-free” boundary is difficult to achieve using clamps [7]. To try and create a “fixed” 

boundary, a method that can be used is to epoxy the specimen to a larger-stiffer structure. Here, 
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one end of a half-beam is epoxied to a 0.127m x 0.127m x 0.1524m, 20kg steel block, which is 

then clamped to the table (Figure 16). The boundary is then tested by attaching a shaker to the 

beam using an off-center hole located one-third the length of the beam in from the free end.

Figure 16: Experimental setup for the “fixed-free” boundary test.

The rigidness of the “fixed” boundary is tested, utilizing a stepped-sine signal, ranging from 

584.5 Hz to 585.5 Hz (around the second bending). To investigate the relative displacement in the 

joint, two accelerometers (PCB 354A01) are attached to the beam and block, near the interface, as 

shown in Figure 17. The amplitude of response on the beam and block are measured for 5 g and 

15 g acceleration input control. The acceleration of the beam is compared to that of the block,

shown in Figure 18. The results of this study indicate that the boundary is not truly fixed, but closer 

to that of a pinned joint with translational and rotational springs. A truly fixed boundary would be 

a point at the origin or a small vertical line, because there should be no motion in the boundary or 

on the beam at the boundary. Thus, together with [7], [21] and [22], it is evident that extraordinary 

lengths are needed to achieve a fixed boundary condition, created using epoxy or clamping the 

beam; and these conditions should be avoided if possible. 

Figure 17: Locations of the accelerometers for testing the rigidness of the “fixed” boundary, the 
yellow star is the location on block, and red the location on the beam.
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Figure 18: Acceleration on the beam in the vs. acceleration on the block with (a) sensor direction 
parallel and (b) perpendicular, to test the rigidness of the “fixed” boundary.

3 Effects	of	Control	Parameters
The nonlinearities in a jointed beam are difficult to identify due to part-to-part and experiment-

to-experiment variability associated with the interfacial conditions [10] (including distribution of 

asperities, grain boundaries, dislocation surfaces, other microstructure related quantities, and 

global geometry of effects, e.g. curved interfaces). To measure the effects of the nonlinearity, the 

amplitude of excitation or input force needs to be held constant. Whether the amplitude or force 

are held constant, is dependent on:

1) If the effects of force-drop-out at resonance will distort the measured response due to the 

measurement of noise [23]

2) If using linear assumptions to extract the data as the damping and stiffness of nonlinear 

systems can be amplitude dependent [23]

3) Comparing to numerical models; most are based on constant force as constant amplitude 

cause numerical computation errors [16].

To test a control algorithm, a jointed beam with the “free-free” boundary conditions is 

implemented. The “free-free” condition is implemented two different ways; the first is the same 

as those presented in the previous section (Figure 2), and the second is by using 1.2m of 50lb 

fishing line. 

An open loop control algorithm can possibly have five parameters that affect the measurement 

of a transfer function (TF). The first parameter is the confidence in measured system FRF, which 
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dictates whether the algorithm can deviate from the measured system FRF (received from a low 

level white noise test). The next parameter is the proportional gain, which specifies the amount the 

algorithm corrects divergence from the control level in one step. The third parameter is the number 

of delay cycles; this parameter specifies how long to wait for steady state to be reached before 

taking a measurement. The fourth parameter is the number of hold cycles (NHCs); this parameter 

is how many periods the algorithm measures the response of the system. The last parameter is the 

step size, which controls the frequency resolution of the TF. 

The control algorithm tested is LMS Test.Lab 15A MIMO Sweep & Stepped Sine, which is a 

linear control algorithm (it does not control higher harmonics, such as in [24]). The control 

parameters tested are listed in Table 5, with the default parameters in Test.Lab listed (Note: 

Proportion Gain is named Error Correction Factor (ECF) in Test.Lab), as well as how the 

parameters are tested. The last column (“optimal”) is discussed later in the section. The default 

parameters are tested using the bungee “free-free” BRB under 1.75N force control, the results are 

shown for various torque levels; this is used as an example of the response from the default 

parameters. As can be seen in Figure 19, the default parameters do not produce a smooth TF, which 

is what is expected when using a control algorithm. 

Table 5: Control parameters used in control study.
Control Parameters Default Test Optimal

Confidence in Measured 
System FRF

High Low Low

Error Correction Factor 100% Vary 60%
Number of Delay Cycles 1 30 30
Number of Hold Cycles 15 Vary 40

Step Size 0.1Hz 0.05Hz 0.05Hz

(a)

(b) (c)
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Figure 19: The TFs of the default control parameters for (a) the entire frequency range, (b) the second 
bending mode, and (c) the fourth bending mode.

Further investigation into how the control algorithm works, indicated that the confidence in 

measured system FRF, number of delay cycles, and step size should be set to Low confidence, 30 

cycles, and 0.05Hz, respectively, for best performance when exciting a nonlinear system. The ECF 

and NHC are then tested for how they affect the response TFs. The measurements are performed

on the “free-free” (fishing line) boundary condition BRB, with a 10Nm torque applied to the bolts. 

Different values of the ECF are compared in the frequency ranges of 570-580Hz (second 

bending) and 1176-1184Hz (third bending), with 40 hold cycles, and a 5N input force level or 10g 

amplitude input level. The results, shown in Figure 20 and Figure 21, compare the measurements 

for stepping up (top row) or stepping down (bottom row) through the defined frequency ranges. 
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Figure 20: TFs of 5N force control to locate optimal ECF; (top row) sweep up, (bottom row) sweep 
down, (left column) second bending mode, and (right column) third bending modes.

Figure 21: TFs of 10g acceleration control to locate optimal ECF; (top row) sweep up, (bottom row) 
sweep down, (left column) second bending mode, and (right column) third bending modes.

An ECF of 60% is the best balance of speed and accuracy for the control algorithm for most 

input control types. When the value is set higher than 60% the TF exhibits a sawtooth-like look in 
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the default parameter test; while values below 60% did not correct errors, when the levels are 

inside the control bands or corrected slowly back to the desired levels. 

The NHCs are then tested after the optimal EFC is determined, shown in Figure 22 and Figure 

23 for force and amplitude control, respectively. As shown in Figure 22 and Figure 23, 40 and 60 

NHCs result in the smoothest TFs. The optimal NHCs is set to 40 cycles, because 60 cycles result 

in the experimental time to be nearly double that of 40. The optimal parameters for this system are 

listed in Table 5. 

Figure 22: TFs of 5N force control to locate optimal NHC; (top row) sweep up, (bottom row) sweep 
down, (left column) second bending, and (right column) third bending modes.



23

Figure 23: TFs of 10g acceleration control to locate optimal NHC; (top row) sweep up, (bottom 
row) sweep down, (left column) second bending, and (right column) third bending mode.

Figures Figure 20 through Figure 23 show that the longer the signal is held the smoother the 

response in the frequency domain will be, this is because the response reaches the steady state 

response of the system fully. The correction factor value also drives the smoothness of the 

frequency response because if the input deviates to far this will drive how much the system will 

be corrected in one step. The lower ECFs do not correct deviation from the control level as fast if 

at all, and the higher ECFs over correct and cause a jump in the response.

The figures also show that the saw tooth effect is seen in force control more than acceleration 

amplitude control. The source of this could come from the force level dropping drastically at 

resonance, requiring the controller to output more voltage quickly in order to maintain the same 

force level. The increase in voltage also dictates that the force level cannot be set high as the shaker 

can only handle up to a certain level of amperage. Acceleration control does not have as great of 

an effect because the opposite happens, as long as the range of interest does not have anti-

resonances which have the same effect as force on resonance: as the acceleration increases, the 

voltage needs to decrease, which is easier and less restrictive. It is recommend to use acceleration 

control, which is similar to the method in [23], if the shaker being used cannot handle the desired 

force levels. 

The optimal parameters and default parameters are compared using a 10g acceleration 

amplitude control, shown in Figure 24. The TF comparison (Figure 24a) shows that the optimal 

parameters have removed the saw tooth effect from the default parameters. The amount of time 

for the test (Figure 24b & c) does increase; however, the acceleration was controlled to the level 

specified. Thus, even for a system with a strong nonlinearity, such as the BRB, it is possible to 
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find control parameters that allow for the measurement of a smooth TF. Responses that contain 

sawtooth-like features should therefore be rejected until optimal control parameters can be found. 

Figure 24: Comparison of the (a) TF and time signals using (red) the default parameters and (blue) 
optimal parameters of the (b) force and (c) acceleration.

4 Conclusions
This work sought to identify a set of recommendations for conducting experiments on nonlinear 

systems using conventional measurement techniques. The effects of the test setup (boundary 

conditions, excitation techniques, and measurement techniques) are studied to understand the 

effect on the system’s stiffness and damping. This research highlights that it is important to think 

of the experimental system as the entire test setup, not just the test specimen. Changes to this 

system are shown to have varying effects. Specific recommendations are: 

 Impact hammer measurements: the tip and hammer mass do not significantly affect the 

measurements of damping and stiffness over the frequency range of interest. Therefore, 

the hammer configuration should be such that the bandwidth of interest is excited. 

 Boundary Conditions: the response of the system is insensitive to: the length, stiffness, 

and position of bungee cables used for making the “free” boundary condition. The 

bungee setup should be such that the rigid body modes are much less than the first elastic 

mode of the test specimen.

 Boundary Conditions: the use of fishing line is desirable as the torsional modes of the 

specimen are less constrained. However, a pure boundary of fishing line is not 

recommended, as the vertical motion of the specimen is constrained in the downward 

direction. 

Default Parameters

Optimal Parameters

(a)

(b) (c)
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 Boundary Conditions: the use of foam is not recommended as it constrains bending and 

torsional modes at the same time. Due to the material, foam also adds damping into the 

system and needs to be accounted for when analyzing the response of the specimen. 

 Boundary Conditions: if a “fixed-free” boundary is desired, any model being compared 

needs to include the stiffness of the attachment technique, and recognize that this is an 

additional joint with its own nonlinear effects. 

 Accelerometers: even when the mass of the accelerometers is less than 0.02% of the 

structure’s, they need to be included in models. When used, accelerometers should be 

located away from nodes, included in modeling, and kept to the minimum necessary. 

 Shaker measurements: care should be taken when selecting a stinger for shaker tests, 

because the force level required to drive and identify the nonlinearity may cause the 

stinger to bend. A thinner stinger may be the most desired stinger due to low mass effect

and reduced coupling between the specimen and shaker; however, the thinner the stinger

the lower the stiffness, which results in stinger modes bleeding into the response of the 

structure. 

Control parameters are tested and recommendations for the optimal parameters are: 

 The system FRF measured with white noise should not be considered an accurate 

representation of the system.

 The proportional gain should be set such that the control algorithm does not completely

correct for a deviation in one step.

 A sufficient number of delay cycles should be used such that steady state is reached 

after each step, more delay cycles maybe needed for nonlinear systems with greater 

damping than a linear system.

 A Convergence study on the number of hold cycles should be conducted to ensure that

the steady state response can be fully measured.

It is also recommended that acceleration amplitude control be used instead of force control; 

however, care must be taken in using the results as the response may jump between different 

response curves. 
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