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Abstract

Complex systems are comprised of technical, social, political and environmental factors as well
as the programmatic factors of cost, schedule and risk. Testing these systems for enhanced
security requires expert knowledge in many different fields. It is important to test these systems
to ensure effectiveness, but testing is limited to due cost, schedule, safety, feasibility and a
myriad of other reasons. Without an effective decision framework for Test and Evaluation (T&E)
planning that can take into consideration technical as well as programmatic factors and leverage
expert knowledge, security in complex systems may not be assessed effectively. This paper
covers the identification of the current T&E planning problem and an approach to include the
full variety of factors and leverage expert knowledge in T&E planning through the use of
Bayesian Networks (BN).
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Introduction

T&E of enhanced security in complex systems must consider a wide variety of factors beyond
basic performance, cost, schedule and risk!. Even if effective T&E can be identified, it may be
restricted due to cost, schedule, safety, feasibility and a myriad of other reasons®. It is important
to plan T&E early in the development of the system — at a time when experts may not be
available to provide input®. It is also important to perform the T&E within the budget originally
estimated at the beginning of the program*. How can expert knowledge be leveraged to support
these early planning decisions? How can the plan be reassessed later in the program as new
requirements develop or situations change? Can the relationship between the driving factors in
the decision be understood well enough at a later date in order to modify a decision? Can the risk
of such decisions be truly understood? These are all questions that have dominated the T&E field
for years. This paper proposes a method to assess the full scope of driving factors, their
relationships and leverage expert knowledge to provide a decision aid that supports T&E

planning throughout the program development cycle.



Objective

This research examines the viability of using Bayesian Network (BN) models to support T&E
planning in an environment where technical, environmental, social and political constraints are
coupled with the traditional cost, risk and schedule constraints. This initial research narrows the
problem to focus on one aspect of T&E — specifically vibration testing with an emphasis on six
degrees of freedom (6DOF) vibration testing*. Technology has advanced to the state where
6DOF vibration shakers and control systems capable of high frequency tests are possible, but the
problem using these systems is far more complex than traditional single degree of freedom
(SDOF) tests®. This challenges programs as they strive to plan T&E. BN models may provide
the framework to aid planning of T&E with complex constraints. This paper discusses the
application of BN models to 6DOF vibration testing, but this approach and the results of this
research could be applied to other T&E problems, especially in complex systems where
relationships between constraints need to be understood in order to test for enhanced security.
Background

A BN model is a probabilistic graphical model that represents the factors in a decision by a
probability and their relationship to the other factors. The instantiation of a particular factor will
impact a related factor according to their joint probability distribution. The output of a BN
model is a probability reflecting the likelihood or risk of some possibility®. The graphical model
supports the use of this decision aid by providing a visual tool that is readily understood. The BN
is represented as a directed acyclic graph’ where each node in the graph has a probability and the
nodes are connected by arrows that describe their causal relationship®. The arrows communicate
the state of the parent node(s) and represent the operation of calculating the joint probability
value of the dependent node’. BNs are based on the Bayesian theorem which is the inference of
the posterior probability (also called belief) of a hypothesis according to some evidence’. Belief
is expressed as a probability!’.

A simple example of a BN model is shown in Figure 1. This view of the model shows the
probability distribution of each factor and the impact of their relationships while still being a

graphical model. The output of the model (Losses) is a probability reflecting the risk of loss.
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Figure 1: Simple example of a Bayesian network depicting risk control with probability
distributions shown"!

There are two basic types of probabilities that can be assigned to factors in a BN model: physical
and Bayesian. Data, such as from experiments, generate physical (or frequency) probabilities.
These probabilities are associated with random systems and the events tend to occur at a
persistent rate or frequency in a long run of trials'?. There is no physical probability until you
perform an experiment and obtain data. In the Bayesian view, a probability is assigned to a
hypothesis (as in the instance when a system has not yet been developed), whereas under the
physical view, a hypothesis is typically tested without being assigned a probability'®. Bayesian
probabilities can be developed from expert judgement — a key benefit with T&E activities as
there are many experts with years of experience and knowledge that can be captured and utilized.
Benefits of BN Models

There are many benefits to using BN models as they have characteristics that may enable the
planning of T&E to include complex technical, social, political and environmental factors. A

major advantage is that the BN models can be calibrated and validated with expert data and



historical data to derive confidence in results'®. This research resulted in 15 factors delineating
the strengths of BNs valuable to addressing complex problems®. Eight of the strengths are shown
in Table 1.

Table 1. Bayesian Network Model Strengths

Strength

Description

There are available software
packages for generating BN
models®

The software removes the calculation load and allows
one focus on factors, relationships and their behavior.
The ability to display the information in a format that
is readily understood by engineers is a valuable
communication tool. Many packages also include
validation routines such as sensitivity analyses

BN models support expert
evaluation whether the model is a
useful approximation of reality'*

The causal relationships make it possible for domain
knowledge experts to assess the model. For instance,
an expert can readily assess in improbable relationship
between two factors.

BN models support explanation,
exploration and prediction'’

Explanation (bottom-up reasoning) provides a
diagnostic capability. Exploration (top-down
reasoning) supports understanding of the system.
Prediction changes values of factors at any location
and provides details of the type and amount of
change'’.

BN models can be updated quickly
to support adaptive decision
making’

As programs progress and changes are made, the
model can be run with the changes to assess the
impact. Impact data includes what and how much.

BNs have a transparent nature —
relationships between factors are
made explicit'’

Transparency facilities understanding how the model
is built and eases review by domain experts who are
not BN experts'”.

BNs reduce subjectiveness

Allows quantification of qualitative data from
SMEs'".

BNs have a modular structure'’

A modular structure allows parts of the network to be
readily extracted and combined with other structures.
It also allows integration with different sub-models
(i.e. social, economic, ecological)

BN models give a quantitative
output!’

The uncertainties are propagated through the model to
the final output.




BN Models — Use of expert opinion and other subjective input
In some cases, data is rare or not available at all. How can one make decisions in the absence of
data? One method is to model expert judgments. It is common throughout science, engineering
and medicine for experts to make judgments on such matters so it is natural to express these
directly in the BN model'®. Many experts provide input to T&E planning for complex systems.
Because the systems are so complex, there is no single expert for all aspects and a BN model
provides the ability to combine inputs from all the experts.
When building BN from expert input, the probabilities will be Bayesian'®. Bayesian probability
is also called ‘belief’, evidential, subjectivist or personal probability. It can be assigned to any
statement, not just a random process, as a way to represent its subjective likelihood or the degree
to which the statement is supported by the available evidence. There are opposing schools of
thought between the groups supporting the two types of probabilities. However, statisticians of
the Bayesian school typically accept the physical probabilities as important but consider the
calculation of Bayesian probabilities as valid and necessary'?.
Understanding the subjective expert data and how it is used in the BN model is important. Bayes'
theorem provides an expression for the conditional probability of A given B, which is equal to
Pr(A|B) = Pr(B|A) Pr(A) / Pr(B)
where Pr(BJ|A) is the probability of B given A, Pr(A) is the probability of A and Pr(B) is the
probability of B. BN models use Bayesian learning, or updating, by iterating through this
equation. The initial probabilities (initial state of the model) is called the prior. The equation is
calculated with some likelihood (observation or evidence) and the resulting probability is the
posterior. In the next iteration of the equation, the posterior becomes the prior and so on.
Pr(A|B) = (Pr(B|A) Pr(A) / Pr(B)) * Pr(A) where

Pr(A|B) = posterier,Pr(B|A) Pr(A)/Pr(B) = likelihood, Pr(A) = prior
To execute this equation, there must be some initial probability. Physical probabilities do not
exist before there is data. However, Bayesian probabilities can take information from experts or
other sources and a belief probability can be assigned. Through the process of updating as
evidence is gained and the model updated, that initial belief probability may be confirmed or it

may be changed.



This explanation deserves a final note of caution. Even though Bayesian learning can update a
prior probability based on expert opinion, the desire is to ensure the expert data is as accurate as
possible (thus the solicitation of an expert) °. The subjectiveness of the expert must be
considered. Numerous factors can limit a person’s judgment (regardless of their expertise)
including heuristics, biases, values, attitudes and motivations. There are techniques for eliciting
expert judgment to minimize the subjectiveness'®!”. In addition, expert input can be combined
with data. One theory is the best approach is to use expert input for the initial estimate of
probabilities (prior probabilities), which are then updated with observed data. This combined
approach is recommended as purely data driven BN models tend to be too complex and lose
accuracy'’.

BN model application philosophy

How would a BN Model be used in planning T&E activities? The application of the BN model to
aid in T&E planning comes into play after the model has been validated. The validation of the
model provides information about the limitations of the model. These limitations should be
taken into consideration when using the model.

At the beginning of the program information about the proposed program will be gathered and
the BN Model exercised. The steps below outline how the model might be used.

1. Gather information and set assumptions: For all the factors in the model, gather the

information known about the program. Note that there may not be information about
every factor. In those cases, there are three options: a) make assumptions and document
so the model can be revisited should the assumption prove wrong b) let the model choose
the default value for that factor — document this as an assumption as well. This too should
be revisited should the value prove to be something different. Or ¢) Intentionally exercise
different options of the factor in the trial scenarios performed by the model for planning.
Based on the desired outcome, be sure to communicate back to the program what the
required state of the factor should be. Also document this as an assumption so it can be
tracked.

2. Create scenarios: With the gathered data, assumptions, and list of factors desired to be

examined, open the model and create multiple scenarios. For each scenario, document
the value of each factor (most BN model software will let this information be saved as an

instance of the model).



o Default scenario: Create a default scenario where all factors are left at the default
with the exception of the factors for which information was obtained.
o Default/assumption scenario: Create a scenario similar to the default scenario
with the addition of the assumptions
o Trial scenarios: Create scenarios as needed similar to the default/assumption
scenario except adding different values for the factors desired to be examined.
The values for each factor can be entered via a table — for all scenarios at once.
Most BN model software allows this method of entry for ease and timeliness.
Some allow values to be uploaded via various file formats such as .csv.
Run model: Run each scenario through the model. For each result that appears promising
(for instance, a resulting probability of 75 percent or greater), run a sensitivity analysis on
the factors to determine the key contributors. If no results are satisfactory, run a
sensitivity analysis on the default and the default/assumption scenarios to determine key
factors.

Analyze results: Examine the key factors. If the results are acceptable and the key factor

values seem reasonable and logical, the process is complete and you have the
qualification prediction. If the results are not desirable and/or the factor values are such
that they can be changed or do not seem reasonable, assess which factors should change

What-if scenarios: Add additional scenarios to the model to include the proposed factors

changes based on the sensitivity analysis. Run the model with the new scenarios. Analyze
the results. Repeat as necessary.

Make recommendations: Based on the results from the model, make the proposed

recommendation. The recommendation will be T&E option ‘X’ with a certain
probability range (the range ensures the uncertainty is included). Included with the
recommendation is the information on assumptions for various factors as well as the key
drivers. Note that it is possible to have an output from the model that the T&E activity is
not recommended — along with the resulting low probabilities for all test options and an
explanation of the key factors driving that assessment.

Document results: Save an instance of the model with all trials. This could be useful later

in the program if the decision needs to be revisited. Document the recommendation with



the probabilities, key factors and assumptions. Store all in a location where it can be

retrieved.
Table 2. BN models: Overview of function in practice
Step Activity Notes
Build the | Use the body of existing T&E data, The existing body of T&E data is large
model expert information and new research to and is important to build a good model
identify factors, relationships and
probabilities related to the security
system
Validate | Use historical data, peer review and new | Initial validation is needed before using
the model | test data to validate the model the model, but it should continue to be
validated as it is updated throughout its
life.
Use the Gather information about the proposed Information is not required for every
model program — relative to the factors in the factor — available information is used and

model

the model calculates probabilities for all
other factors based on the historical/
expert data used to build/validate the
model

Run a simulation to determine predicted
T&E approach and probabilities

Create one or more scenarios as needed.

Review the results — of the proposed
approach as well as calculated results for
factors that were not pre-defined in this
simulation

The end result of the probability for a
T&E plan may be acceptable but one
factor may have a result that gives it a
value unlikely for this particular program
(i.e. one knows the political approval will
not be granted). The T&E plan has a
final answer but it is the combination of
the factors that make it powerful (and
possibly incorrect if ignored).

If the probability output for the T&E plan
is acceptable and the probabilities for the
non-defined factors seem reasonable,
document this as the plan

Capture the probabilities and the states of
factors — identify program risks around
factors as needed to ensure areas with
larger uncertainty are tracked




Step Activity Notes
If probability output is not acceptable Document the requirements for factors
(too risky), perform sensitivity analyses | that are changed with the revised
to determine key drivers. Can any of simulation. They will become part of the
these be addressed as part of the T&E qualification plan.
plan? If so, re-run simulation with
changes. Continue process until the
probability of the T&E plan is acceptable
Continue | Keep the model and plan current. As the | Even if a factor does not change, but
to update | program progresses, ensure the factors instead becomes more uncertain (say a
the model | used in the model have not changed. If new program risk is opened on a factor),

they do, reassess the model and make
changes to the plan as needed.

the model can be reevaluated with the
updated probability for that factor to
assess any potential impacts

The BN model prediction: To use or not to use?

The output of the BN model is a prediction (of the best T&E method, for instance) along with the

key factors driving that prediction. The output is not the decision; it is information to make a

decision. The argument for BN models is the increased fidelity of information to aid in

decisions?. Table 3 below shows the information provided from the BN model. Information is

provided to accept the prediction, to know how to change the prediction if desired and to know

when to reevaluate the decision.

Table 3. Decision aids resulting from BN model

BN model output

Decision aid

Qualification option prediction

Best qualification option based on a probability

Uncertainty of all the factors
relevant to the decision

The probability is provided in a range so the impact of the
uncertainty can be understood (i.e. 56% + 4%)

Key drivers behind the
prediction

Factors that may be considered for change if the
prediction is undesirable or if the percentage is not as high
as desired. This gives the decision maker the power to
know how to change the decision if the recommendation
is not desired for some reason.

decision

Documentation of the
assumptions that went into the

This gives the decision maker the power to accept the
assumptions and ensure the factors meet the assumptions
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or the ability to know when the decision may need to be
reevaluated (because an assumption proved not to be true)

Conclusion

BN models have unique strengths that facilitate the use of expert knowledge and the assessment
of the driving factors in the full decision space in a quantitative manner. These strengths provide
an opportunity to plan T&E activities for complex systems such as enhanced security systems.
Current research focuses the application of a BN model on 6DOF vibration testing for
qualification. A later expansion of this research could be to extend the methodology to other
T&E disciplines and ultimately to the entire T&E planning effort.
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