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Advances in the emerging field of coherent quantum feedback control (CQFC) have led to the development
of new capabilities in the areas of quantum control and quantum engineering, with a particular impact on the
theory and applications of quantum optical networks. We consider a CQFC network consisting of two coupled
optical parametric oscillators (OPOs) and study the squeezing spectrum of its output field. The performance
of this network as a squeezed-light source with desired spectral characteristics is optimized by searching over
the space of model parameters with experimentally motivated bounds. We use the QNET package to model
the network’s dynamics and the PyGMO package of global optimization algorithms to maximize the degree of
squeezing at a selected sideband frequency or the average degree of squeezing over a selected bandwidth. The
use of global search methods is critical for identifying the best possible performance of the CQFC network,
especially for squeezing at higher-frequency sidebands and higher bandwidths. The results demonstrate that the
CQFC network of two coupled OPOs makes it possible to vary the squeezing spectrum, effectively utilize the
available pump power, and overall significantly outperform a single OPO. Additionally, the Hessian eigenvalue
analysis shows that the squeezing generation performance of the optimally operated CQFC network is robust to
small variations of phase parameters.

I. INTRODUCTION

Feedback control is ubiquitous in classical engineering.
However, its extension to the quantum realm has been chal-
lenging due to the unique character of the quantum mea-
surement, which requires coupling of the observed quantum
system to a classical measurement apparatus. Consequently,
measurement-based quantum control has to deal with the fun-
damental effect of stochastic measurement back action on the
quantum system, along with the need to amplify quantum sig-
nals up to macroscopic levels and high latency of classical
controllers in comparison to typical quantum dynamic time
scales [1, 2]. An alternative approach that has attracted sig-
nificant interest in the last decade is coherent quantum feed-
back control (CQFC) [3–5], which considers networks where
the quantum system of interest (called the plant) is controlled
via coupling (either direct or, more often, through interme-
diate quantum fields) to an auxiliary quantum system (called
the controller). CQFC schemes utilize coherent quantum sig-
nals circulating between the plant and controller, thus avoid-
ing the need for signal amplification and associated excess
noise. Also, both plant and controller can evolve on the same
time scale, which eliminates the latency issues. Due to these
advantages, CQFC makes it possible to engineer quantum net-
works with new and unique characteristics [4–7].

The theoretical foundation of CQFC is a powerful frame-
work based on input-output theory, which is used for model-
ing networks of open quantum systems connected by electro-
magnetic fields [8–11] (see also [3–5] for reviews). Moreover,
recent developments, including the SLH formalism [12–14],
the quantum hardware description language (QHDL) [15],
and the QNET software package [16], have added important
capabilities for, respectively, modular analysis, specification,
and simulation of such quantum optical networks. Together,
the existing theoretical tools enable efficient and automated
design and modeling of CQFC networks.

Proposed and experimentally demonstrated applications

of CQFC include the development of autonomous devices
for preparation, manipulation, and stabilization of quantum
states [17–22], disturbance rejection by a dynamic compen-
sator [23], linear-optics implementation of a modular quan-
tum memory [24], generation of optical squeezing [25–28],
generation of quantum entanglement between optical field
modes [29–34], coherent estimation of open quantum sys-
tems [35, 36], and ultra-low-power optical processing el-
ements for optical switching [37–39] and analog comput-
ing [40, 41]. In addition to tabletop bulk-optics implementa-
tions, CQFC networks have been also implemented using inte-
grated silicon photonics [42] and superconducting microwave
devices [43, 44].

Squeezed states of light [45–48] have found numerous
applications in quantum metrology and quantum informa-
tion sciences, including interferometric detection of gravita-
tional waves [49, 50], continuous-variable quantum key dis-
tribution (CV-QKD) [51–56], generation of Gaussian entan-
glement [55–57], and quantum computing with continuous-
variable cluster states [58–61]. Different applications require
squeezed states with different properties. For example, de-
tectable gravitational waves are expected to have frequencies
in the range from 10 Hz to 10 kHz, and, consequently, quadra-
ture squeezed states used to increase the measurement sensi-
tivity in interferometric detectors should have a high degree of
squeezing at sideband frequencies in this range. On the other
hand, in CV-QKD the secure key rate is proportional to the
bandwidth of squeezing, and hence it would be useful to gen-
erate states with squeezing bandwidth extending to 100 MHz
or even higher. It would be also of interest to extend the max-
imum of squeezing to high sideband frequencies.

In recent years, there have been remarkable advances in
the generation of squeezed states [62–74], however, achieving
significant control over the squeezing spectrum still remains
an ongoing effort. In 2009, Gough and Wildfeuer [25] pro-
posed to enhance squeezing in the output field of a degenerate
optical parametric oscillator (OPO) by incorporating the OPO
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into a CQFC network, where a part of the output beam is split
off and then fed back into the OPO. Iida et al. [26] reported an
experimental demonstration of this scheme, while Német and
Parkins [28] proposed to modify it by including a time delay
into the feedback loop. Another significant modification of
this scheme was proposed and experimentally demonstrated
by Crisafulli et al. [27], who included a second OPO to act
as the controller, with the plant OPO and the controller OPO
coupled by two fields propagating between them in opposite
directions. Due to the presence of quantum-limited gains in
both arms of the feedback loop, this CQFC network has a very
rich dynamics. In particular, by tuning the network’s parame-
ters it is possible to significantly vary the squeezing spectrum
of its output field, for example, shift the maximum of squeez-
ing from the resonance to a high-frequency sideband [27].

The full range of performance of the CQFC network of two
coupled OPOs as a squeezed-light source, however, still re-
mains to be explored. In this paper, we study the limits of
the network’s performance by performing two types of opti-
mizations: (1) maximizing the degree of squeezing at a cho-
sen sideband frequency and (2) maximizing the average de-
gree of squeezing over a chosen bandwidth; in both cases,
the searches are executed over the space of network param-
eters with experimentally motivated bounds. To maximize
the chances of finding a globally optimal solution, we use
the PyGMO package of global optimization algorithms [75]
and employ a hybrid strategy which executes in parallel eight
searches (using seven different global algorithms). Before
each optimization is completed, the searches are repeated
multiple times, and intermediate solutions are exchanged be-
tween them after each repetition. This strategy enabled us to
discover that the CQFC network, when optimally operated, is
capable of achieving a remarkably high degree of squeezing
at sideband frequencies and bandwidths as high as 100 MHz,
with a very effective utilization of the available pump power.
We also find that the obtained optimal solutions are quite ro-
bust to small variations of phase parameters.

II. BACKGROUND

The derivations in this section largely follow those in
Refs. [25, 27], with some additional details and modifications.

A. Input-output model of a quantum optical network

Consider a network of coupled linear and bilinear opti-
cal elements such as mirrors, beam-splitters, phase-shifters,
lasers, and degenerate OPOs. The quantum theory of such
a network considers quantized cavity field modes which are
coupled through cavity mirrors to external (input and output)
quantum fields [9–11]. Let n be the number of the network’s
input ports (equal to the number of output ports) and m be the
number of cavities (in this model, we assume that each cavity
supports one internal field mode). Let a, ain, and aout denote
vectors of boson annihilation operators for, respectively, the

cavity modes, the input fields, and the output fields:

a =

a1

...
am

 , ain =

ain,1

...
ain,n

 , aout =

aout,1

...
aout,n

 . (1)

Assuming that all input fields are in the vacuum state,
the network is fully described by the (S,L, H) model (also
called the SLH model) [12–14], which includes the n × n
matrix S that describes the scattering of external fields, the
n-dimensional vector L that describes the coupling of cavity
modes and external fields, and the Hamiltonian H that de-
scribes the intracavity dynamics. For the model considered
here, elements {Sij} of S are c-numbers, while H and ele-
ments {Li} of L are operators on the combined Hilbert space
of all cavity modes in the network. The Heisenberg equations
of motion (also known as quantum Langevin equations) for
the cavity mode operators {a`(t)} are (~ = 1)

da`
dt

= −i[a`, H] + LL[a`] + Γl, ` = 1, . . . ,m. (2)

Here, LL is the Lindblad superoperator:

LL[a`] =

n∑
i=1

(
L†ia`Li −

1

2
L†iLia` −

1

2
a`L
†
iLi

)
, (3)

and Γl is the noise operator:

Γl = a†inS†[a`,L] + [L†, a`]Sain, (4)

where a†in = [a†in,1, . . . , a
†
in,n] and L† = [L†1, . . . , L

†
n] are

row vectors of respective Hermitian conjugate operators. The
generalized boundary condition for the network is

aout = Sain + L. (5)

For the type of networks that we consider, elements of L
are linear in annihilation operators of the cavity modes, i.e.,

L = Ka, (6)

where K is an n ×m complex matrix with elements {Ki` =

[Li, a
†
`]}, and the Hamiltonian has the bilinear form:

H = a†Ωa + i
2a†Wa‡ − i

2aTW†a, (7)

where a† = [a†1, . . . , a
†
m] and a‡ = a†T are, respectively,

row and column vectors of boson creation operators for the
cavity modes, Ω is an m×m Hermitian matrix, and W is an
m×m complex matrix. With such L and H , the Heisenberg
equations of motion (2) take the form:

da

dt
= Va + Wa‡ + Yain, (8)

where V = − 1
2K†K− iΩ is an m×m complex matrix and

Y = −K†S is an m× n complex matrix.
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To obtain the transfer-matrix function from input to output
fields, we seek the solution of Eq. (8) in the frequency domain.
Using the Fourier transform, we define:

b(t) =
1√
2π

∫ ∞
−∞

dω b(ω)e−iωt, (9a)

b†(t) =
1√
2π

∫ ∞
−∞

dω b†(−ω)e−iωt, (9b)

where b(t) stands for any element of a(t), ain(t), and aout(t).
The field operators are in the interaction frame, and therefore
ω is the sideband frequency (relative to the carrier frequency).
We also use the double-length column vectors of the form:

b̆(ω) =

[
b(ω)

b‡(−ω)

]
, (10)

where b(ω) stands for either of a(ω), ain(ω), and aout(ω).
With this notation, Eq. (8) together with its Hermitian conju-
gate can be transformed into one matrix equation and solved
for ă(ω) in the frequency domain:

ă(ω) = (Ă + iωI2m)−1K̆†S̆ ăin(ω). (11)

Here, I2m is the 2m × 2m identity matrix, Ă = ∆(V,W),
K̆ = ∆(K,0), S̆ = ∆(S,0), and we use the notation:

∆(A,B) =

[
A B
B∗ A∗

]
. Analogously, the boundary condition

of Eq. (5) together with its Hermitian conjugate can be trans-
formed into one matrix equation in the frequency domain:

ăout(ω) = S̆ăin(ω) + K̆ă(ω). (12)

In Eqs. (11) and (12), ă(ω) is a 2m-dimensional vector,
ăin(ω) and ăout(ω) are 2n-dimensional vectors, Ă is a 2m×
2m matrix, K̆ is a 2n × 2m matrix, and S̆ is a 2n × 2n ma-
trix. By substituting Eq. (11) into Eq. (12), one obtains the
quantum input-output relations in the matrix form:

ăout(ω) = Z̆(ω)ăin(ω), (13)

where

Z̆(ω) =
[
I2n + K̆(Ă + iωI2m)−1K̆†

]
S̆ (14)

is the network’s transfer-matrix function. The 2n× 2n matrix
Z̆(ω) can be decomposed into the block form:

Z̆(ω) =

[
Z−(ω) Z+(ω)

Z+(−ω)
∗

Z−(−ω)
∗

]
, (15)

where Z−(ω) and Z+(ω) are n × n matrices. Correspond-
ingly, input-output relations of Eq. (13) can be expressed for
each of the output fields (i = 1, . . . , n) as:

aout,i(ω) =

n∑
j=1

[
Z−ij (ω)ain,j(ω)

+ Z+
ij (ω)a†in,j(−ω)

]
, (16a)

a†out,i(−ω) =

n∑
j=1

[
Z+
ij (−ω)

∗
ain,j(ω)

+ Z−ij (−ω)
∗
a†in,j(−ω)

]
. (16b)

B. Squeezing spectrum

Consider the quadrature of the ith output field in time and
frequency domains:

Xi(t, θ) = aout,i(t)e
−iθ + a†out,i(t)e

iθ, (17a)

Xi(ω, θ) = aout,i(ω)e−iθ + a†out,i(−ω)eiθ, (17b)

where θ is the homodyne phase. The power spectral density
of the quadrature’s quantum noise (commonly referred to as
the squeezing spectrum) is [45, 46]:

Pi(ω, θ) = 1 +

∫ ∞
−∞

dω′〈:Xi(ω, θ), Xi(ω
′, θ) :〉, (18)

where : : denotes the normal ordering of boson operators and
〈x, y〉 = 〈xy〉 − 〈x〉〈y〉. Since all input fields are in the vac-
uum state, 〈Xi(ω, θ)〉 = 〈Xi(ω

′, θ)〉 = 0, and one obtains:

Pi(ω, θ) = 1 +Ni(ω) +Ni(−ω)

+Mi(ω)e−2iθ +Mi(ω)
∗
e2iθ, (19)

where

Ni(ω) =

∫ ∞
−∞

dω′〈a†out,i(−ω
′)aout,i(ω)〉, (20a)

Mi(ω) =

∫ ∞
−∞

dω′〈aout,i(ω)aout,i(ω
′)〉. (20b)

By substituting Eqs. (16) into Eqs. (20) and evaluating expec-
tation values for vacuum input fields, one obtains:

Ni(ω) =

n∑
j=1

∣∣Z+
ij (ω)

∣∣2 , (21a)

Mi(ω) =

n∑
j=1

Z−ij (ω)Z+
ij (−ω). (21b)

In this work, we are only concerned with squeezing prop-
erties of the field at one of the output ports. We will designate
this port as corresponding to i = 1 and denote the squeez-
ing spectrum of this output field as P(ω, θ) = P1(ω, θ). In
squeezing generation, the figure of merit is the quantum noise
change relative to the vacuum level, measured in decibels, and
since Pvac(ω, θ) = 1, the corresponding spectral quantity is

Q(ω, θ) = 10 log10 P(ω, θ). (22)

Negative values of Q correspond to quantum noise reduction
below the vacuum level (i.e., squeezing of the quadrature un-
certainty). The maximum degree of squeezing corresponds to
the minimum value of Q. The maximum and minimum of
P(ω, θ) as a function of θ,

P+(ω) = max
θ
P(ω, θ), P−(ω) = min

θ
P(ω, θ), (23)

are power spectral densities of the quantum noise in anti-
squeezed and squeezed quadrature, respectively. Analo-
gously to Eq. (22), logarithmic spectral measures of anti-
squeezing and squeezing for the two quadratures are de-
fined as Q±(ω) = 10 log10 P±(ω), respectively. Expressing
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M(ω) asM(ω) = |M(ω)|eiθM(ω) and using Eq. (19), it is
easy to find (we omit the subscript i = 1 for simplicity):

P±(ω) = 1 +N (ω) +N (−ω)± 2|M(ω)|, (24)

with anti-squeezed and squeezed quadrature corresponding to
θ = θM(ω)/2 and θ = [θM(ω) − π]/2, respectively. Note
that, in general, these optimum values of the homodyne phase
θ depend on the sideband frequency ω, so, for example, if
the goal is to maximize the degree of squeezing at a partic-
ular sideband frequency ωopt, then the optimum phase value
θopt = [θM(ωopt)− π]/2 should be selected accordingly.

III. SQUEEZING FROM A SINGLE OPO

A network that produces squeezed light by means of a sin-
gle degenerate OPO [47] is schematically shown in Fig. 1.
The OPO consists of a nonlinear crystal enclosed in a Fabry-
Pérot cavity. The pump field for the OPO is assumed to be
classical and not shown in the scheme. Each partially trans-
parent mirror in the network (including cavity mirrors and a
beamsplitter) has two input ports and two output ports. A vac-
uum field enters into each input port. The OPO cavity has a
fictitious third mirror to model intracavity losses (mainly due
to absorption in the crystal as well as scattering and Fresnel
reflection at the crystal’s facets). The beamsplitter B models
losses in the output transmission line (e.g., due to coupling
into a fiber) and inefficiencies in the homodyne detector (not
shown) used to measure the squeezing spectrum of the output
field. Taking into account all optical elements, the network is
modeled as having four input ports, four output ports, and one
cavity mode (n = 4, m = 1).

In1

Out1 In2

Out2

In3Out3

OPO

alpha=xi
kappa_1=kappa_1
kappa_2=kappa_2
kappa_3=kappa_3
Delta=omega_0

In1

In2 O
ut1

Out2

(−) B

theta=theta

vac

in3

vac

in1 vac

in2

vac

in4

lock

out2

loss

out3

loss

out4

output

out1

device=OPO_single
module−name=OPO_single
params=xi:complex;kappa_1:real;kappa_2:real;kappa_3:real;omega_0:real;theta:real

FIG. 1. A schematic depiction of the single OPO network.

Parameters of the single OPO network are described in Ta-
ble I. With ξ = |ξ|eiθξ , there is a total of seven real param-
eters. Note that we use angular frequencies throughout this
paper. For each cavity mirror, the leakage rate is

κi =
cTi
2leff

, i = 1, 2, 3, (25)

TABLE I. Parameters of the single OPO network.

Parameter Type Description
κ1 Positive Leakage rate for the left cavity mirror
κ2 Positive Leakage rate for the right cavity mirror
κ3 Positive Leakage rate for intracavity losses
ω0 Real Frequency detuning of the cavity
ξ Complex Pump amplitude of the OPO
θB Real Rotation angle of the beamsplitter

where Ti is the power transmittance of the ith mirror, c is the
speed of light, and leff is the effective cavity length (taking
into account the length and refractive index of the crystal). To
simplify the notation, we also use alternative parameters:

γ = κ1 + κ2 + κ3, (26)

to denote the total leakage rate (including losses) from the
cavity, and

tB = cos(θB), rB = sin(θB), (27)

to denote, respectively, the transmittivity and reflectivity of
the beamsplitter.

The QNET package [16] is used to derive the (S,L, H)
model of the network, and the resulting components of the
model are

S =


0 tB 0 −rB

1 0 0 0

0 0 1 0

0 rB 0 tB

 , L =


√
κ2tBa√
κ1a√
κ3a√
κ2rBa

 ,
H = ω0a

†a+ i
2ξa
†2 − i

2ξ
∗a2,

where a is the annihilation operator of the cavity field mode.
Using the formalism of Sec. II A, we obtain: Ω = ω0, W = ξ,

K = [
√
κ2tB,

√
κ1,
√
κ3,
√
κ2rB]

T
,

V = −η, Y = − [
√
κ1,
√
κ2,
√
κ3, 0] ,

Ă =

[
−η ξ

ξ∗ −η∗

]
,

(Ă + iωI2)−1 = − 1

λ(ω)

[
η∗ − iω ξ

ξ∗ η − iω

]
,

where we defined auxiliary parameters:

η = 1
2γ + iω0, λ(ω) = (η∗ − iω)(η − iω)− |ξ|2.

These results make it straightforward to analytically compute
the transfer-matrix function Z̆(ω) of Eq. (14). Since we are
only interested in squeezing properties of the field at the out-
put port 1, it is sufficient to use only the respective rows of
matrices Z−(ω) and Z+(ω), i.e.,

Z−1 (ω) =

√
κ2tB(η∗ − iω)

λ(ω)
Y + [0, tB, 0,−rB] , (28a)

Z+
1 (ω) =

√
κ2tBξ

λ(ω)
Y. (28b)
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By substituting elements of Z−1 (ω) and Z+
1 (ω) into Eqs. (21),

we obtain:

N1(ω) =
γκ2TB|ξ|2

|λ(ω)|2
, (29a)

M1(ω) =
γ(η∗ − iω)− λ(ω)

|λ(ω)|2
κ2TBξ, (29b)

where TB = t2B is the power transmittance of the beam splitter.
Using Eq. (19), the resulting squeezing spectrum is

P(ω, θ) = 1 + 2κ2TB|ξ|
γ|ξ|+ µ(ω) cosϕ+ γω0 sinϕ

|λ(ω)|2
,

(30)
where µ(ω) = 1

4γ
2 + |ξ|2 + ω2 − ω2

0 and ϕ = θξ − 2θ.
The spectra for anti-squeezed and squeezed quadrature are
obtained as the maximum and minimum (cf. Eq. (23)) of
P(ω, θ) in Eq. (30) for ϕ = tan−1[γω0/µ(ω)] and ϕ =
tan−1[γω0/µ(ω)] + π, respectively, and are given by

P±(ω) = 1± 2κ2TB|ξ|
√
µ2(ω) + γ2ω2

0 ± γ|ξ|
|λ(ω)|2

. (31)

In order to compare the theoretical spectra with experimental
data, it is common to express the pump amplitude as

|ξ| = 1
2γx, x =

√
P/Pth, (32)

where P is the OPO pump power and Pth is its threshold
value. Analogously to the scaled pump amplitude x = 2|ξ|/γ,
it is convenient to use scaled frequencies Ω = 2ω/γ and
Ω0 = 2ω0/γ. With this notation, Eq. (31) takes the form:

P±(ω) = 1± 4TBρx

√
(1 + y2)2 + 4Ω2

0 ± 2x

(1− y2)2 + 4Ω2
, (33)

where ρ = κ2/γ = T2/(T1 +T2 +L) is the escape efficiency
of the cavity, L = T3 denotes the intracavity power loss, and
y2 = x2 + Ω2 − Ω2

0.
In the case of zero detuning, ω0 = 0, the squeezing spec-

trum of Eq. (30) becomes

P(ω, θ) = 1 + 2κ2TB|ξ|
γ|ξ|+ ( 1

4γ
2 + |ξ|2 + ω2) cosϕ

( 1
4γ

2 − |ξ|2 − ω2)2 + γ2ω2
.

(34)
The corresponding spectra for anti-squeezed and squeezed
quadrature are obtained for ϕ = 0 and ϕ = π, respectively.
They can be expressed by taking Ω0 = 0 in Eq. (33), which
reproduces the familiar result [46, 47]:

P±(ω) = 1± TBρ
4x

(1∓ x)2 + Ω2
. (35)

The spectra of Eq. (35) have Lorentzian shapes with max-
imum (for anti-squeezing) and minimum (for squeezing) at
the resonance (zero sideband frequency), and with the degree
of squeezing rapidly decreasing as the sideband frequency in-
creases. For applications such as CV-QKD, it would be valu-
able to significantly extend the squeezing bandwidth. It would
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FIG. 2. Squeezing spectra of the output light field from a single
OPO network with different values of the cavity’s frequency detun-
ing ω0/2π (given in the legend). Logarithmic power spectral den-
sities of the quantum noise in anti-squeezed and squeezed quadra-
ture, Q±(ω) = 10 log10 P±(ω), are shown versus the sideband fre-
quency ω/2π for P±(ω) of Eq. (33). The values of network param-
eters are listed in the text.

be also of interest to achieve a maximum degree of squeezing
(i.e., a minimum value of P−) at a high-frequency sideband.
Therefore, we investigate whether such modifications of the
squeezing spectrum are possible by using a nonzero value of
the cavity’s frequency detuning.

Consider a single OPO with a set of experimentally mo-
tivated parameters: pump power P = 1.5 W, pump wave-
length λp = 775 nm, and signal wavelength λs = 1550 nm;
an MgO:PPLN crystal with length lc = 20 mm, refrac-
tive index (at λs) ns = 2.1, and effective nonlinear coef-
ficient deff = 14 pm/V; a Fabry-Pérot cavity with effective
length leff = 87 mm, left mirror reflectance R1 = 0.98
(T1 = 0.02, κ1/2π ≈ 5.484 MHz), right mirror reflectance
R2 = 0.85 (T2 = 0.15, κ2/2π ≈ 41.132 MHz), intracav-
ity loss L = 0.02 (κ3/2π ≈ 5.484 MHz), and total leak-
age rate γ/2π ≈ 52.1 MHz; output transmission line loss
Ltl = RB = 0 (TB = 1). These parameters correspond to
OPO’s threshold power Pth ≈ 14.86 W and scaled pump am-
plitude x =

√
P/Pth ≈ 0.318. Using these parameters, we

compute the squeezing spectra P±(ω) of Eq. (33) for three
detuning values: ω0/2π = {0, 25, 50} MHz. The result-
ing logarithmic spectra Q±(ω) = 10 log10 P±(ω) for anti-
squeezed and squeezed quadrature are shown in Fig. 2. These
results indicate that, while the use of nonzero detuning can in-
crease the degree of squeezing at higher-frequency sidebands
as compared to the case of ω0 = 0, this increase is very small.
Also, no improvement in the squeezing bandwidth (quantified
as the average degree of squeezing over a selected bandwidth)
is achieved through the use of nonzero detuning. These obser-
vations motivate us to explore the use of the CQFC network
with two coupled OPOs as a light source with the potential to
generate a widely tunable squeezing spectrum.
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FIG. 3. A schematic depiction of the CQFC network of two coupled OPOs.

TABLE II. Parameters of the CQFC network of two coupled OPOs.

Parameter Type Description
κp1 Positive Leakage rate for the left mirror of the plant OPO cavity
κp2 Positive Leakage rate for the right mirror of the plant OPO cavity
κp3 Positive Leakage rate for losses in the plant OPO cavity
ωp Real Frequency detuning of the plant OPO cavity
ξp Complex Pump amplitude of the plant OPO
κc1 Positive Leakage rate for the left mirror of the controller OPO cavity
κc2 Positive Leakage rate for the right mirror of the controller OPO cavity
κc3 Positive Leakage rate for losses in the controller OPO cavity
ωc Real Frequency detuning of the controller OPO cavity
ξc Complex Pump amplitude of the controller OPO
φ1 Real Phase shift of the first phase shifter
φ2 Real Phase shift of the second phase shifter
θ1 Real Rotation angle of the first beamsplitter
θ2 Real Rotation angle of the second beamsplitter
θ3 Real Rotation angle of the third beamsplitter

IV. SQUEEZING FROM A NETWORK OF TWO
COUPLED OPOS

The CQFC network that includes two coupled degenerate
OPOs [27] is schematically shown in Fig. 3. Each OPO con-
sists of a nonlinear crystal enclosed in a Fabry-Pérot cavity.

Pump fields for both OPOs are assumed to be classical and
not shown in the scheme. From the control theory perspective,
OPO1 is considered to be the plant and OPO2 the (quantum)
controller. Each partially transparent mirror in the network
(including cavity mirrors and beamsplitters) has two input
ports and two output ports. A vacuum field enters into each
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input port, except for two input ports of cavity mirrors used
for the feedback loop between the plant and controller. Each
OPO cavity has a fictitious third mirror to model intracavity
losses. Beamsplitters B1 and B2 represent the light diverted
to lock the cavities as well as losses in optical transmission
lines between the OPO cavities. Beamsplitter B3 represents
losses in the output transmission line (e.g., due to coupling
into a fiber) and inefficiencies in the homodyne detector (not
shown) used to measure the squeezing spectrum of the output
field. Phase shifters P1 and P2 are inserted into transmission
lines between the OPOs to manipulate the interference under-
lying the CQFC control. Taking into account the feedback
loop between the plant and controller, the network is modeled
as having seven input ports, seven output ports, and two cavity
modes (n = 7, m = 2).

Parameters of the network of two coupled OPOs are listed
in Table II. With ξp = |ξp|eiθp and ξc = |ξc|eiθc , there is a
total of 17 real parameters. The relationship between leak-
age rate and power transmittance of a cavity mirror is given,
similarly to Eq. (25), by

κpi =
cTpi

2lp,eff
, κci =

cTci

2lc,eff
, i = 1, 2, 3, (36)

where Tpi (Tci) is the power transmittance of the ith mirror
and lp,eff (lc,eff ) is the effective cavity length for the plant
(controller). To simplify the notation, we also use alternative
parameters:

γp = κp1 + κp2 + κp3, γc = κc1 + κc2 + κc3 (37)

to denote the total leakage rate (including losses) from, re-
spectively, the plant and controller cavities,

ti = cos(θi), ri = sin(θi), i = 1, 2, 3 (38)

to denote, respectively, the transmittivity and reflectivity of
each beamsplitter, and

φ = φ1 + φ2 (39)

to denote the total phase shift for the feedback roundtrip path.
Similarly to Eq. (32), we also define the scaled pump ampli-
tudes xp and xc for the plant and controller OPOs, respec-
tively:

xp =
2|ξp|
γp

=

√
Pp

Pp,th
, xc =

2|ξc|
γc

=

√
Pc

Pc,th
, (40)

where Pp (Pc) is the OPO pump power and Pp,th (Pc,th) is its
threshold value for the plant (controller).

The QNET package [16] is used to derive the (S,L, H)
model of the network, and the resulting components of the
model are

S =



t1t2t3e
iφ −r1t2t3e

iφ −r2t3e
iφ2 −r3 0 0 0

r1 t1 0 0 0 0 0

t1r2e
iφ1 −r1r2e

iφ1 t2 0 0 0 0

t1t2r3e
iφ −r1t2r3e

iφ −r2r3e
iφ2 t3 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


,

(41)

L =



t3
(√
κp1t1t2e

iφ +
√
κp2

)
ap +

√
κc2t2t3e

iφ2ac√
κp1r1ap√

κp1t1r2e
iφ1ap +

√
κc2r2ac

r3

(√
κp1t1t2e

iφ +
√
κp2

)
ap +

√
κc2t2r3e

iφ2ac√
κc1ac√
κp3ap√
κc3ac


,

(42)

H = (ωp + Im ν) a†pap + ωca
†
cac +

(
i
2ν12a

†
pac + H.c.

)
+
[
i
2

(
ξpa
†2
p + ξca

†2
c

)
+ H.c.

]
, (43)

where ap and ac denote, respectively, the annihilation opera-
tors of the plant’s and controller’s cavity field modes, and we
defined auxiliary parameters:

ν1 =
√
κc2κp1t1e

iφ1 , ν2 =
√
κc2κp2t2e

iφ2 ,

ν12 = ν∗1 − ν2, ν =
√
κp1κp2t1t2e

iφ.

By comparing Eq. (43) to the corresponding Hamiltonian
without feedback:

Hnf = ωpa
†
pap + ωca

†
cac +

[
i
2

(
ξpa
†2
p + ξca

†2
c

)
+ H.c.

]
,

(44)
we observe that two main effects induced by feedback are
(1) the appearance of an effective interaction between the
plant’s and controller’s cavity modes, governed by the term
i
2ν12a

†
pac + H.c., and (2) the modification of the plant detun-

ing by Im ν which is proportional to sinφ.
Using the formalism of Sec. II A, we obtain:

Ω =

[
ωp + Im ν i

2ν12

− i
2ν
∗
12 ωc

]
, W =

[
ξp 0

0 ξc

]
,

K =



t3
(√
κp1t1t2e

iφ +
√
κp2

) √
κc2t2t3e

iφ2

√
κp1r1 0

√
κp1t1r2e

iφ1
√
κc2r2

r3

(√
κp1t1t2e

iφ +
√
κp2

) √
κc2t2r3e

iφ2

0
√
κc1√

κp3 0

0
√
κc3


,

V = −

[
ηp ν2

ν1 ηc

]
,

Y =



−√κp1 −
√
κp2t1t2e

iφ −√κc2t1e
iφ1

√
κp2r1t2e

iφ √
κc2r1e

iφ1

√
κp2r2e

iφ2 0

0 0

0 −√κc1

−√κp3 0

0 −√κc3



T

,

Ă =


−ηp −ν2 ξp 0

−ν1 −ηc 0 ξc
ξ∗p 0 −η∗p −ν∗2
0 ξ∗c −ν∗1 −η∗c

 ,
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where we used additional auxiliary parameters:

ηp = 1
2γp + iωp + ν, ηc = 1

2γc + iωc.

It is possible to analytically invert the matrix Ă + iωI4 in or-
der to obtain the transfer-matrix function Z̆(ω) and squeezing
spectrum P(ω, θ) in analytic form. However, the resulting ex-
pressions are too complicated and visually uninformative to
be shown here. For practical purposes, it is more efficient to
numerically evaluate Z̆(ω) and P(ω, θ) for any given set of
parameter values.

V. SQUEEZING OPTIMIZATION PROCEDURE

A. Objective function

In order to quantitatively investigate the tunability of the
squeezing spectrum in the CQFC network of two coupled
OPOs, we numerically optimize the degree of squeezing at
various sideband frequencies. Specifically, we minimize the
objective function of the form:

J = P−(ωopt) + gP−(ωopt)P+(ωopt), (45)

where ωopt is the selected sideband frequency. The first term
in Eq. (45) is the minimum of the squeezing spectrum at ωopt,
while the second term is the uncertainty product times the
weight parameter g. This second term is included in order to
eliminate solutions with a very large uncertainty of the anti-
squeezed quadrature. In all optimization results shown below,
the weight parameter is g = 0.001. With such a small value
of g, the difference between the values of J and P− is always
insignificant, and therefore, for the sake of simplicity, we refer
to the problem of minimizing J as squeezing optimization.

All solutions encountered during a search are checked to
satisfy the Routh–Hurwitz stability criterion [76], i.e., that all
eigenvalues of the matrix Ă in Eq. (14) have negative real
parts. Any unstable solution is eliminated from the considera-
tion by assigning to it a very large objective value (J = 106).

B. Optimization variables

For a given ωopt, the objective J is a function of the net-
work parameters — seven real parameters for the single OPO
network:

{T1, T2, L, ω0, x, θξ, Ltl}, (46)

and 17 real parameters for the CQFC network of two coupled
OPOs:

{Tp1, Tp2, Lp, ωp, xp, θp, Tc1, Tc2, Lc, ωc, xc, θc,

φ1, φ2, L1, L2, L3} . (47)

Recall that, for the single OPO network, L = T3 is the intra-
cavity power loss and Ltl = RB is the power loss in the output
transmission line. Similarly, for the CQFC network of two

coupled OPOs, Lp = Tp3 and Lc = Tc3 are the intracavity
power losses for the plant and controller OPOs, respectively,
and Li = r2

i (i = 1, 2, 3) are power losses in the transmission
lines. In cases where the two intracavity loss values are equal,
we denote Lin = Lp = Lc, and where the three transmission
line loss values are equal, we denote Lout = L1 = L2 = L3.

Numerical simulations demonstrate that an increase in any
of the losses always leads to a deterioration of squeezing,
and therefore if a loss parameter can vary in a specified in-
terval [Ll, Lu], an optimization will always converge to the
lower bound Ll. Therefore, it makes sense to to exclude the
loss parameters from the optimization variables, i.e., to exe-
cute each optimization with all loss parameters having pre-
assigned fixed values (of course, these values can vary from
one optimization run to another to explore various experimen-
tally relevant regimes). Consequently, there remain five opti-
mization variables for the single OPO network:

{T1, T2, ω0, x, θξ}, (48)

and 12 optimization variables for the CQFC network of two
coupled OPOs:

{Tp1, Tp2, ωp, xp, θp, Tc1, Tc2, ωc, xc, θc, φ1, φ2}. (49)

Each optimization variable z can vary in an interval [zl, zu]
(where zl is the lower bound and zu is the upper bound). The
bound intervals are

• [0, 2π] for all phase variables (θξ, θp, θc, φ1, φ2);

• [−ωu, ωu] for all cavity detuning frequencies (ω0, ωp,
ωc);

• [0, Tu] for all power transmittances of actual cavity mir-
rors (T1, T2, Tp1, Tp2, Tc1, Tc2);

• [0, xu] for all scaled pump amplitudes (x, xp, xc).

The values of upper bounds ωu, Tu and xu are specified (along
with the values of losses) for each optimization run.

In all optimizations, the fixed physical parameters are se-
lected the same for all OPOs: pump wavelength λp = 775 nm,
signal wavelength λs = 1550 nm; an MgO:PPLN crystal with
length lc = 20 mm, refractive index (at the signal wavelength)
ns = 2.1, and effective nonlinear coefficient deff = 14 pm/V;
a Fabry-Pérot cavity with effective length leff = 87 mm.
These values are characteristic for a typical tabletop experi-
ment with bulk-optics components.

C. Optimization methodology

Preliminary optimization runs using local algorithms (e.g.,
Sequential Least Squares Programming) demonstrated that
different choices of initial parameter values resulted in dif-
ferent solutions of varying quality. These results mean that
the fitness landscape contains multiple local optima. In or-
der to reach a solution of very high quality, we decided to
use global search methods. Specifically, we used PyGMO, a
suite of global (stochastic) algorithms [75]. Since these global
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TABLE III. Performance of different algorithms for squeezing optimization in the CQFC network of two coupled OPOs. The table shows
the best degree of squeezing, Q−(ωopt) = 10 log10 P−(ωopt) (in dB), found using various algorithms, for Lin = 0.01, Lout = 0.05,
ωu/2π = 100.0 MHz, xu = 0.3, Tu = 0.9, and five different ωopt values: ωopt/2π = {5, 25, 50, 100, 200} MHz. Optimizations for each
individual algorithm execute four parallel searches with the population sizes of Npop = 30, and the evolutions are repeated Nev = 30 times
(with solution exchanges between the searches after the completion of each evolution except the last one). Algorithm parameters such as the
number of no improvements before halting the optimization, Nstop, the number of generations, Ngen, and the number of iterations, Niter, are
indicated in the table. The hybrid strategy (eight parallel searches using seven global algorithms) is described in the text.

ωopt/2π

Algorithm 5 MHz 25 MHz 50 MHz 100 MHz 200 MHz
Sequential Least SQuares Programming (local only) −4.270 −4.021 −3.396 −2.676 −1.809
Compass Search (local only) −8.824 −7.540 −8.274 −8.113 −2.527
Compass Search guided by Monotonic Basin Hopping (Nstop = 5) −9.105 −7.611 −7.037 −8.255 −7.540
Artificial Bee Colony (Ngen = 200) −9.791 −8.945 −8.788 −8.427 −7.811
Covariance Matrix Adaptation Evolution Strategy (Ngen = 500) −9.798 −8.869 −8.806 −8.423 −7.811
Differential Evolution, variant 1220 (Ngen = 800) −9.805 −8.626 −8.809 −8.429 −7.813
Differential Evolution with p-best crossover (Ngen = 1000) −9.805 −8.953 −8.808 −8.429 −7.813
Improved Harmony Search (Niter = 1000) −9.805 −8.949 −8.808 −8.429 −7.813
Particle Swarm Optimization, variant 5 (Ngen = 1) −9.219 −8.623 −7.090 −8.332 −7.617
Particle Swarm Optimization, variant 6 (Ngen = 1) −8.811 −7.936 −7.403 −7.536 −5.932
Simple Genetic Algorithm (Ngen = 1000) −9.805 −7.665 −8.809 −8.429 −7.813
Corana’s Simulated Annealing (Niter = 20000) −7.432 −5.015 −4.893 −6.110 −4.754
Hybrid strategy (eight parallel searches using seven global algorithms) −9.805 −8.953 −8.809 −8.429 −7.813

algorithms are heuristic in nature, they do not guarantee the
convergence to a global optimum; in fact, as shown in Ta-
ble III, while multiple global methods are capable of finding
high-quality solutions, the performance varies between differ-
ent algorithms as well as between optimizations with different
values of ωopt for the same algorithm.

To maximize the chances of finding a globally optimal so-
lution, we employed a hybrid strategy, where each optimiza-
tion executes in parallel eight searches (using seven different
global algorithms), with a fully connected topology of solu-
tion exchanges between them. These eight searches include
two instances of Artificial Bee Colony and one instance of
each: Covariance Matrix Adaptation Evolution Strategy, Dif-
ferential Evolution variant 1220, Differential Evolution with
p-best crossover, Improved Harmony Search, Particle Swarm
Optimization variant 5, and Compass Search guided by Mono-
tonic Basin Hopping. Each optimization uses the population
size ofNpop = 30 for each of the global searches, and the evo-
lutions are repeated Nev = 30 times (with solution exchanges
between the searches after the completion of each evolution
except the last one); the algorithm parameters (the number of
no improvements before halting the optimization, Nstop, the
number of generations, Ngen, and the number of iterations,
Niter) used in the searches are the same as those shown in Ta-
ble III for individual algorithms. As indicated by the results in
Table III, this hybrid strategy consistently finds the best solu-
tion, as compared to any individual algorithm. Multiple trials
with larger values of Npop, Nev, Ngen, and Niter did not typi-
cally result in an improvement of the solution quality, and thus
did not warrant the increased run time.

VI. SQUEEZING OPTIMIZATION RESULTS

First of all, we would like to compare the performance
of the CQFC network of two coupled OPOs versus that
of the single OPO network, in terms of the maximum de-
gree of squeezing achievable under comparable conditions.
Figures 4 and 5 show the optimized degree of squeezing,
Q−(ωopt), at ωopt/2π = 100 MHz, for both networks, ver-
sus the upper limits on various network parameters (Tu and
xu in Fig. 4, and ωu and xu in Fig. 5), with constant loss val-
ues: L = Lin = 0.01, Ltl = Lout = 0.1. We observe that
the CQFC network of two coupled OPOs generates stronger
squeezing than the single OPO network, even as total losses
in transmission lines in the former are three times larger than
those in the latter (30% versus 10%). In both networks, the
maximum degree of squeezing increases with both Tu (more
light is allowed to leave the cavities) and xu (higher pump
power), with these increases being roughly linear for the sin-
gle OPO network and faster than linear in the CQFC net-
work of two coupled OPOs. These results demonstrate that
the feedback makes it possible to more effectively utilize the
available pump power.

Figure 5 also shows that, for both networks, the maximum
degree of squeezing is independent of the upper limit ωu on
the cavity detuning frequency; furthermore, we found that
in most cases the maximum degree of squeezing is actually
achieved with zero detuning. In all results shown below, opti-
mizations used the upper limit value ωu/2π = 100 MHz.

We also investigate the dependence of the maximum degree
of squeezing, Q−(ωopt), on the sideband frequency ωopt at
which it is optimized. This dependence is shown in Fig. 6,
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FIG. 4. The optimized degree of squeezing, Q−(ωopt), for (a) the
CQFC network of two coupled OPOs and (b) the single OPO net-
work, versus the upper limits on the power transmittance of cavity
mirrors, Tu, and the scaled pump amplitude, xu. Other parameters
are ωopt/2π = 100 MHz, ωu/2π = 100 MHz, L = Lin = 0.01,
Ltl = Lout = 0.1.
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FIG. 5. The optimized degree of squeezing, Q−(ωopt), for (a)
the CQFC network of two coupled OPOs and (b) the single OPO
network, versus the upper limits on the cavity detuning frequency,
ωu, and the scaled pump amplitude, xu. Other parameters are
ωopt/2π = 100 MHz, Tu = 0.9, L = Lin = 0.01, Ltl = Lout =
0.1.

for both networks, for different values of transmission line
losses and pump amplitude bound. We observe that the CQFC
network of two coupled OPOs not only generates stronger
squeezing than the single OPO network, but that the degra-
dation of squeezing associated with the increase of ωopt is
substantially slower in the former than in the latter. The ca-
pability of the CQFC network to moderate the degradation of
squeezing at higher values of ωopt is associated with a rather
abrupt change in the regime of network operation, which is
manifested by a rapid change in the slope of the curves in
subplots (a) and (c) of Fig. 6.

To explore further the emergence of this new operation
regime, we focus on the CQFC network of two coupled OPOs,
with Fig. 7 showing the dependence of the maximum degree
of squeezing on ωopt for more values of transmission line
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FIG. 6. The optimized degree of squeezing,Q−(ωopt), versus ωopt,
for the CQFC network of two coupled OPOs (subplots (a) and (c))
and the single OPO network (subplots (b) and (d)). The transmission
line losses are Ltl = Lout = 0.01 in subplots (a) and (b), and Ltl =
Lout = 0.1 in subplots (c) and (d). Each subplot shows four curves
corresponding to different values of xu (xu = {0.1, 0.2, 0.3, 0.4}),
as indicated in the legend. Other parameters are Tu = 0.9, L =
Lin = 0.01.
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FIG. 7. The optimized degree of squeezing,Q−(ωopt), versus ωopt,
for the CQFC network of two coupled OPOs. The values of xu are:
(a) xu = 0.1, (b) xu = 0.2, (c) xu = 0.3, and (d) xu = 0.4.
Each subplot shows six curves corresponding to different values of
transmission line losses: Lout = {0.01, 0.05, 0.1, 0.15, 0.2, 0.25},
as indicated in the legend. Other parameters are Tu = 0.9, Lin =
0.01.

losses. We observe that the value of ωopt at which the oper-
ation regime switches, increases with both xu and Lout. The
difference between the curve slopes in the low-ωopt and high-
ωopt regimes decreases as Lout increases.

To understand the physical differences between operations
of the CQFC network in the low-ωopt and high-ωopt regimes,
we consider the dependence of the optimal values of power
transmittances of cavity mirrors, Tp1, Tp2, Tc1, and Tc2, on
ωopt. This dependence is shown in Fig. 8 for optimizations
with Tu = 0.9, Lin = 0.01, and various values of Lout

and xu. First, we see that the optimal values of Tp2 and Tc1

are constant over the entire range of ωopt values; specifically,
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FIG. 8. The optimal values of power transmittances of cavity mirrors, Tp1 (subplots (a), (b), (c)), Tp2 (subplots (d), (e), (f)), Tc1 (subplots (g),
(h), (i)), and Tc2 (subplots (j), (k), (l)), versus ωopt, for the CQFC network of two coupled OPOs. The transmission line losses are Lout = 0.01
(subplots (a), (d), (g), (j)), Lout = 0.1 (subplots (b), (e), (h), (k)), and Lout = 0.2 (subplots (c), (f), (i), (l)). Each subplot shows four curves
corresponding to different values of xu (xu = {0.1, 0.2, 0.3, 0.4}), as indicated in the legend. Other parameters are Tu = 0.9, Lin = 0.01.

Tp2 = 0.9 is at the upper bound, which corresponds to the
maximum flow from the plant cavity to the 1st output field (the
one whose squeezing properties are measured), and Tc1 = 0
is at the lower bound, which corresponds to the minimum
flow from the controller cavity to the 5th output field (the one
which is not used for either squeezing measurement or feed-
back). In contrast to this simple behavior of the optimal val-
ues of Tp2 and Tc1, the optimal values of Tp1 and Tc2, which
regulate the feedback between the plant and controller OPOs,
demonstrate much more intricate dependence on ωopt. The
optimal value of Tp1 and especially that of Tc2 undergo a sub-
stantial and rather abrupt change at the critical ωopt value at
which the network’s operation switches between the low-ωopt

and high-ωopt regimes. As ωopt increases through the critical

TABLE IV. The sideband frequency ω?
opt/2π (in MHz), at which the

high-ωopt regime commences, for the CQFC network of two coupled
OPOs with Tu = 0.9, Lin = 0.01, and various values of Lout and
xu. The accuracy of the reported values is limited by the sampling
interval of 2 MHz.

Lout

xu 0.01 0.05 0.10 0.15 0.20 0.25 0.30
0.1 8 16 22 28 34 42 48
0.2 10 18 26 32 40 48 56
0.3 14 24 30 38 46 56 66
0.4 20 30 36 44 54 68 90

point, Tp1 changes from a lower to a higher value, while Tc2

decreases from the upper bound Tc2 = 0.9 to a much lower
value. In other words, the low-ωopt optimal regime is charac-
terized by the maximum flow of light from the controller to the
plant and a much lower flow in the opposite direction, while
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FIG. 9. The optimal values of the pump power for the plant OPO
in the CQFC network of two coupled OPOs (subplots (a) and (c))
and for the single OPO (subplots (b) and (d)), versus ωopt. The
transmission line losses are Ltl = Lout = 0.01 in subplots (a)
and (b), and Ltl = Lout = 0.1 in subplots (c) and (d). Each
subplot shows four curves corresponding to different values of xu
(xu = {0.1, 0.2, 0.3, 0.4}), as indicated in the legend. Other param-
eters are Tu = 0.9, L = Lin = 0.01.
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FIG. 10. The squeezing spectrum Q−(ω) for the optimal operation of both networks. Each subplot shows four curves corresponding to the
optimally operated CQFC network of two coupled OPOs for different values of ωopt (ωopt/2π = {5, 25, 50, 100}MHz), along with a curve
corresponding to the optimally operated single OPO network for any value of ωopt, as indicated in the legend. The transmission line losses are
Ltl = Lout = 0.01 (subplots (a), (b), (c)), Ltl = Lout = 0.05 (subplots (d), (e), (f)), and Ltl = Lout = 0.1 (subplots (g), (h), (i)). The upper
limit on the scaled pump amplitude is xu = 0.1 (subplots (a), (d), (g)), xu = 0.2 (subplots (b), (e), (h)), and xu = 0.3 (subplots (c), (f), (i)).
Other parameters are Tu = 0.9, L = Lin = 0.01.

the high-ωopt optimal regime is characterized by roughly sim-
ilar flows of light in both directions. These patterns character-
izing the regimes of optimal network operation, their depen-
dencies on pump and loss parameters, and the rapid switch
between the regimes, are quite non-intuitive, and finding them
would be rather unlikely without the use of a stochastic global
search that explores vast areas of the fitness landscape.

The sharp change of the optimal value of Tc2 associated
with the regime switch makes it easy to identify the sideband
frequency ω?opt, at which the high-ωopt regime commences
(the precision of determining the ω?opt/2π values is limited by
the sampling interval, which is 2 MHz in our data). The values
of ω?opt/2π are shown in Table IV for Tu = 0.9, Lin = 0.01,
and various values of Lout and xu. We see that ω?opt increases
monotonously with both Lout and xu.

We also note that the optimal values of the scaled pump am-
plitudes, xp and xc, are almost always at (or very close to) the
upper bound xu, i.e., in either regime the optimally operated
CQFC network usually uses all the pump power it can get.
The maximum use of the pump power is also observed for the
optimal operation of the single OPO network. Indeed, as seen
in Fig. 9, for both networks, the optimal values of the pump
power are virtually independent of ωopt and losses, while they
scale quadratically with xu. Due to the rapid growth of the
optimal pump power with xu, only values xu ≤ 3 should be
considered realistic for the optimal operation with a typical
tabletop experimental setup considered in this paper.

Next, we investigate the squeezing spectrum Q−(ω) gen-

erated under the optimal operation of either network for var-
ious values of ωopt, xu, and transmission line losses. Fig-
ure 10 shows Q−(ω) for both networks for various values of
ωopt, Ltl = Lout, and xu. We see that the optimally operated
single OPO network generates exactly the same Lorentzian
squeezing spectrum for any choice of ωopt. In contrast, the
CQFC network of two coupled OPOs is capable of generat-
ing diverse squeezing spectra, with the specific spectral shape
varying to fit the selected value of ωopt, and overall generates
much stronger squeezing over a major portion of the spec-
trum (especially, at frequencies around ωopt). Interestingly,
the capability of the CQFC network to generate a squeezing
spectrum Q−(ω) that has the minimum at ω = ωopt is at-
tained only if the selected value of ωopt is within the high-
ωopt regime of optimal network operation, i.e., ωopt ≥ ω?opt

(for a given set of bound and loss values). Conversely, as
seen for ωopt/2π = 5 MHz in all subplots of Fig. 10 and
for ωopt/2π = 25 MHz in subplots (h) and (i) of Fig. 10,
the squeezing spectrum has the minimum at ω = 0 if ωopt is
within the low-ωopt regime of optimal network operation.

Finally, we explore further the dependence of the optimized
degree of squeezing, Q−(ωopt), on the intracavity and trans-
mission line losses for the CQFC network of two coupled
OPOs. Figure 11 showsQ−(ωopt) versus (a)Lin andL3 (with
L1 = L2 = 0.1), and (b) Lin and Lout. The situation when
L3 6= L1 = L2 is practically relevant since L3 includes, in
addition to losses in the output transmission line, inefficien-
cies in the homodyne detector used to measure the squeezing



13

L
3

0.0

0.1

0.2

0.3

0.4

0.5

L in

0.00
0.01

0.02

0.03

0.04

0.05

0.06

N
o
is
e
p
o
w
e
r
(d
B
)

−7

−6

−5

−4

−3

−2

−1

(a)

−6.0 −5.5 −5.0 −4.5 −4.0 −3.5 −3.0 −2.5 −2.0

L
out

0.0

0.1

0.2

0.3

0.4

0.5

L in

0.00
0.01

0.02

0.03

0.04

0.05

0.06

N
o
is
e
p
o
w
e
r
(d
B
)

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

(b)

−8.0 −7.2−6.4 −5.6 −4.8 −4.0 −3.2−2.4 −1.6

FIG. 11. The optimized degree of squeezing, Q−(ωopt), for the
CQFC network of two coupled OPOs, versus (a) Lin and L3 (with
L1 = L2 = 0.1), and (b) Lin and Lout. Other parameters are
ωopt/2π = 100 MHz, xu = 0.2, Tu = 0.9.

spectrum of the output field. The results shown in Fig. 11 con-
firm that any increase in losses is detrimental to squeezing and
quantify this relationship.

VII. CORRELATIONS BETWEEN OPTIMAL VALUES OF
PHASE VARIABLES

Since the phase parameters play a significant role in tuning
the quantum interference that governs the CQFC network’s
performance, an interesting question is whether their optimal
values are correlated. Optimal values of a parameter can be
cast as a vector each element of which corresponds to a dis-
tinct value of ωopt, and correlations can be computed between
pairs of such vectors. Specifically, we computed the Pear-
son correlation coefficient for all six pairs of four phase vari-
ables (θp, θc, φ1, φ2), and found that substantial correlations
only exist between φ1 and φ2. Table V shows the values of
the Pearson correlation coefficient r(φ1, φ2), computed for
Tu = 0.9, Lin = 0.01, and various values of Lout and xu.

TABLE V. The Pearson correlation coefficient r(φ1, φ2), for the
CQFC network of two coupled OPOs with Tu = 0.9, Lin = 0.01,
and various values of Lout and xu.

Lout

xu 0.01 0.05 0.10 0.15 0.20 0.25
0.1 0.575 0.438 0.436 0.354 0.275 0.223
0.2 0.381 0.474 0.471 0.244 0.169 -0.041
0.3 0.588 0.322 0.316 0.165 0.132 -0.121
0.4 0.423 0.373 0.189 0.172 -0.057 -0.002

The correlation in Table V generally decreases as Lout and
xu increase. This trend can be compared to the one observed
in Table IV where the sideband frequency ω?opt at which the

high-ωopt regime commences increases as Lout and xu in-
crease. Since the vectors φ1(ωopt) and φ2(ωopt) contain ele-
ments corresponding to both operation regimes, the trend ob-
served in Table V implies that the correlation r(φ1, φ2) gen-
erally decreases as the number of vector components corre-
sponding to the high-ωopt regime decreases. A plausible ex-
planation of this behavior is that the correlation between the
two phase variables is higher in the high-ωopt regime. To test
this hypothesis, we computed the Pearson correlation coeffi-
cient r(φ′1, φ

′
2) for the pair of vectors φ′1 = φ1(ωopt ≥ ω?opt)

and φ′2 = φ2(ωopt ≥ ω?opt) that include only elements cor-
responding to the high-ωopt regime. The values of r(φ′1, φ

′
2)

are shown in Table VI for Tu = 0.9, Lin = 0.01, and vari-
ous values of Lout and xu. The correlations in Table VI are
consistently larger than 0.5, and, furthermore, we find that
r(sinφ′1, sinφ

′
2) = 1.0 and r(cosφ′1, cosφ′2) = −1.0 (up to

numerical precision) for all considered values of Lout and xu.
These findings indicate a significant degree of concerted ac-
tion in how the CQFC network of two coupled OPOs operates
in the high-ωopt regime.

TABLE VI. The Pearson correlation coefficient r(φ′1, φ′2), for the
CQFC network of two coupled OPOs with Tu = 0.9, Lin = 0.01,
and various values of Lout and xu.

Lout

xu 0.01 0.05 0.10 0.15 0.20 0.25
0.1 0.620 0.546 0.592 0.629 0.532 0.599
0.2 0.610 0.604 0.597 0.578 0.650 0.679
0.3 0.649 0.671 0.559 0.644 0.602 0.606
0.4 0.555 0.646 0.540 0.687 0.604 0.582

VIII. ROBUSTNESS OF OPTIMAL SOLUTIONS

Any practical implementation of a quantum optical network
inevitably involves imprecisions and imperfections, which
may affect the desired performance. This issue is of espe-
cial importance in a CQFC network, which relies on a precise
quantum interference between the pump and controller fields
to manipulate the properties of the output field (see, for exam-
ple, the superposition of ap and ac in the first element of the L
vector in Eq. (42)). This interference depends on the values of
phase variables, and a key question is how robust is an optimal
solution to small variations in these values. To analyze this ro-
bustness, we computed the Hessian of the objective function
J with respect to the phase variables, for a variety of optimal
sets of network parameters.

For the single OPO network, J depends on one phase vari-
able θξ, and the Hessian H has one element ∂2J/∂θ2

ξ . H
was computed for 3500 optimal solutions (all combinations of
ωopt/2π = {2, 4, . . . , 100} MHz, xu = {0.1, 0.2, . . . , 0.5},
Tu = {0.5, 0.9}, and Ltl = {0.01, 0.05, 0.1, . . . , 0.3}, with
L = 0.01). The numerical analysis shows that the Hessian is
zero (up to numerical precision) for all of these optimal solu-
tions. Therefore, small fluctuations in the value of the pump
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phase θξ should have no effect on the optimized degree of
squeezing.

For the CQFC network of two coupled OPOs, J depends on
four phase variables (θp, θc, φ1, φ2), and the Hessian H is a
4 × 4 matrix of second-order derivatives. We computed the
eigenvalues {h1, . . . , h4} and eigenvectors {e1, . . . , e4} of
the Hessian H for 3500 optimal solutions (all combinations of
ωopt/2π = {2, 4, . . . , 100} MHz, xu = {0.1, 0.2, . . . , 0.5},
Tu = {0.5, 0.9}, and Lout = {0.01, 0.05, 0.1, . . . , 0.3}, with
Lin = 0.01). The numerical analysis shows that two of the
Hessian eigenvalues (h3 and h4) are zero (up to numerical pre-
cision) for all of these optimal solutions. Therefore, robust-
ness to small phase variations is determined by two nonzero
Hessian eigenvalues (h1 and h2). Figures 12–14 show these
nonzero Hessian eigenvalues as functions of ωopt and xu

(Fig. 12), ωopt and Lout (Fig. 13), and xu and Lout (Fig. 14).
We see that h1 is typically much larger than h2, and hence the
magnitude of h1 is the main factor determining the robustness
properties of the optimal solutions.
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FIG. 12. The first (a) and second (b) Hessian eigenvalues for the
CQFC network of two coupled OPOs, versus ωopt and xu. Other
parameters are Lout = 0.1, Tu = 0.9, Lin = 0.01.

The dependence of h1 on ωopt, seen in Figs. 12 and 13,
demonstrates a significant difference in robustness properties
between the low-ωopt and high-ωopt regimes. The low-ωopt

regime is intrinsically robust for a broad range of parameter
values. In the high-ωopt regime, a reasonable degree of ro-
bustness is achieved for xu ≥ 0.2 (i.e., for pump powers above
4 W for the OPO parameters considered here). Larger losses
in transmission lines (Lout ≥ 0.1) also enhance robustness.

The four components of the Hessian eigenvector e1 (which
corresponds to the largest eigenvalue h1) are shown in Fig. 15
versus ωopt. They also exhibit an abrupt change associated
with the switch of the optimal operation regime at ω?opt. In the
low-ωopt regime, the eigenvector component corresponding to
φ2 has the largest value and the rest of the components have
smaller absolute values, but none is negligible. In the high-
ωopt regime, the components corresponding to φ1 and φ2 have
similar values, while the components corresponding to θp and
θc are close to zero. These results are consistent with the find-
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FIG. 13. The first (a) and second (b) Hessian eigenvalues for the
CQFC network of two coupled OPOs, versus ωopt and Lout. Other
parameters are xu = 0.2, Tu = 0.9, Lin = 0.01.
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FIG. 14. The first (a) and second (b) Hessian eigenvalues for the
CQFC network of two coupled OPOs, versus xu and Lout. Other
parameters are ωopt/2π = 100 MHz, Tu = 0.9, Lin = 0.01.

ings that the low-ωopt regime is characterized by the maxi-
mum flow of light passing through the phase shifter P2 (from
the controller to the plant), while the high-ωopt regime is char-
acterized by roughly similar flows of light passing through the
phase shifters P1 and P2 (in both directions).

The decrease of the optimized degree of squeezing due to
small variations of phase parameters can be quantified using
the computed Hessian eigenvalues or, alternatively, via direct
Monte Carlo averaging over a random distribution of phase
variable values. Figure 16 shows the optimized degree of
squeezing, Q−(ωopt), for the CQFC network of two coupled
OPOs (with ωopt/2π = 100 MHz, xu = 0.2, Tu = 0.9,
and various values of Lout), versus the standard deviation of
phase uncertainty, σphase (for simplicity, we assume a normal
distribution with zero mean and the same value of σphase for
uncertainty in each of the four phase variables). We see a
good agreement between the Hessian-based and Monte Carlo
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FIG. 15. Components of the first Hessian eigenvector for the CQFC
network of two coupled OPOs, versus ωopt. The four curves show
components corresponding to the phase variables (θp, θc, φ1, φ2), as
indicated in the legend. The parameters are xu = 0.2, Tu = 0.9,
Lin = 0.01, Lout = 0.1.

computations for σphase ≤ 0.1 (and even for σphase ≤ 0.2 for
Lout ≥ 0.1). We also see that the deterioration of squeezing
induced by phase variations is quite tolerable for σphase ≤ 0.1
(especially, for Lout ≥ 0.1). Note that our squeezing opti-
mization procedure does not explicitly include a robustness
requirement, and hence the observed high level of robustness
might be surprising, but it is likely related to the natural ten-
dency of stochastic optimization algorithms to eliminate solu-
tions that are very sensitive to small parameter variations.
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FIG. 16. The optimized degree of squeezing, Q−(ωopt), for the
CQFC network of two coupled OPOs, versus the standard deviation
of phase uncertainty, σphase. The four curves correspond to differ-
ent values of Lout (Lout = {0.05, 0.10, 0.15, 0.20}), as indicated in
the legend. Other parameters are ωopt/2π = 100 MHz, xu = 0.2,
Tu = 0.9, Lin = 0.01. For each value of Lout, the plot shows the re-
sults computed using the Hessian eigenvalues (lines) along with the
data computed via Monte Carlo averaging over a random distribution
of phase values (circles).

IX. SQUEEZING BANDWIDTH OPTIMIZATION

In CV-QKD with squeezed states, the secure key rate is
proportional to the bandwidth of squeezing. Therefore, we
also explored the capability of the CQFC network of two cou-
pled OPOs to generate output states with high squeezing band-
width, by optimizing the average degree of squeezing over a
frequency interval [0, ωB], for various values of ωB. Specifi-
cally, the objective function for these optimizations is

JB = P−(ωB) ≡ 〈P−(ω)〉 =
1

NB + 1

NB∑
k=0

P−(ωk). (50)

Here, NB = ωB/hB (i.e., NB + 1 is the number of sampling
points), ωk = khB, and hB is the sampling interval. Except
for the different choice of the objective function, the rest of the
optimization procedure is the same as that described in Sec. V.
In optimization runs that minimized JB, we considered four
bandwidth values ωB/2π = {25, 50, 75, 100} MHz and used
the fixed sampling interval hB/2π = 1 MHz.

For illustration purposes, we use a logarithmic measure of
average squeezing,

Q−(ωB) = 10 log10 P−(ωB), (51)

however, note that Q−(ωB) 6= 〈Q−(ω)〉. Table VII shows
the best values of Q−(ωB) for ωB/2π = 100 MHz, for
both the CQFC network of two coupled OPOs and the sin-
gle OPO network, obtained in optimizations with Tu = 0.9,
L = Lin = 0.01, and various values of Ltl = Lout and xu.
We see that the CQFC network of two coupled OPOs signif-
icantly outperforms the single OPO network in terms of the
average squeezing generated over the 100 MHz bandwidth,
especially for lower values of transmission line losses.

TABLE VII. The best values of Q−(ωB) for ωB/2π = 100 MHz,
for the CQFC network of two coupled OPOs and the single OPO
network, obtained in optimizations with Tu = 0.9, L = Lin = 0.01,
and various values of Ltl = Lout and xu.

CQFC network of two coupled OPOs
Lout

xu 0.01 0.05 0.10 0.15 0.20 0.25
0.1 -3.382 -2.688 -2.408 -2.157 -1.930 -1.724
0.2 -5.773 -4.937 -4.339 -3.829 -3.385 -2.994
0.3 -7.850 -6.857 -5.886 -5.109 -4.463 -3.913
0.4 -9.994 -8.441 -7.073 -6.049 -5.234 -4.559

Single OPO
Ltl

xu 0.01 0.05 0.10 0.15 0.20 0.25
0.1 -1.428 -1.361 -1.277 -1.196 -1.115 -1.037
0.2 -2.843 -2.684 -2.493 -2.310 -2.134 -1.965
0.3 -4.248 -3.966 -3.638 -3.332 -3.047 -2.779
0.4 -5.637 -5.193 -4.696 -4.249 -3.845 -3.475
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FIG. 17. The squeezing spectrum Q−(ω) for the optimal operation of both networks under the minimization of JB = P−(ωB) of Eq. (50).
Each subplot shows four curves corresponding to the optimally operated CQFC network of two coupled OPOs for different values of ωB

(ωB/2π = {25, 75, 50, 100} MHz), along with a curve corresponding to the optimally operated single OPO network for any value of ωB, as
indicated in the legend. The transmission line losses are Ltl = Lout = 0.01 (subplots (a), (b), (c)), Ltl = Lout = 0.05 (subplots (d), (e), (f)),
and Ltl = Lout = 0.1 (subplots (g), (h), (i)). The upper limit on the scaled pump amplitude is xu = 0.1 (subplots (a), (d), (g)), xu = 0.2
(subplots (b), (e), (h)), and xu = 0.3 (subplots (c), (f), (i)). Other parameters are Tu = 0.9, L = Lin = 0.01.

It is also interesting to examine the squeezing spectrum
Q−(ω) generated under the optimal operation of either net-
work when we minimize JB = P−(ωB). Figure 17 shows
Q−(ω) for both networks for various values of ωB, Ltl =
Lout, and xu. Similarly to the results shown in Sec. VI
(cf. Fig. 10), we find that the optimally operated single OPO
network generates exactly the same Lorentzian squeezing
spectrum for any choice of ωB. In contrast, the CQFC net-
work of two coupled OPOs is capable of adapting the gener-
ated squeezing spectrum depending on the selected value of
ωB and overall produces much higher squeezing bandwidth.

X. CONCLUSIONS

We modeled the squeezing spectrum of the output field of
the CQFC network of two coupled OPOs and used a suite of
global optimization methods to examine the limits to which
this spectrum can be varied under conditions typical for table-
top experiments. We found that, in contrast to a single OPO,
the CQFC network can utilize the interference between the
fields in the plant OPO and the controller OPO to significantly
modify the squeezing spectrum of the output field in response
to the selected optimization objective. In particular, when the
objective is to maximize the degree of squeezing at a high-
frequency sideband ωopt, the CQFC network can operate in

an optimal regime characterized by a high degree of coopera-
tivity between the plant OPO and the controller OPO, as quan-
tified by the flows of light between them and the correlation
between the phase shifts φ1 and φ2. In this operation regime,
the optimized squeezing spectrum Q−(ω) of the CQFC net-
work of two coupled OPOs has the minimum at ω = ωopt,
while the minimum of the optimized spectrum of the single
OPO network is always at zero sideband frequency.

For both types of optimization objectives considered in
this work (maximizing the degree of squeezing at a selected
sideband frequency and maximizing the average degree of
squeezing over a selected bandwidth), the CQFC network of
two coupled OPOs significantly outperforms a single OPO in
terms of squeezing achieved under similar conditions, even
with higher losses in the CQFC network due to additional
components and transmission lines. Also, the CQFC network
is more effective in terms of converting a higher pump power
into a stronger squeezing. While this superior performance of
the CQFC network of two coupled OPOs relies on a phase-
sensitive interference between multiple fields, we discovered,
perhaps surprisingly, that squeezing generated by the opti-
mally operated CQFC network is rather robust to small vari-
ations of phase parameters. This robustness can be attributed
to the tendency of global optimization algorithms to avoid so-
lutions that are overly sensitive to small parameter variations,
but the fact that such robust network configurations do actu-
ally exist is quite remarkable.
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Overall, our results strongly indicate that CQFC networks
provide a very effective tool for engineering quantum opti-
cal systems with new properties and unprecedented levels of
performance. This work also demonstrates the usefulness of
advanced optimization methods for analyzing and improving
the performance of such networks.
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