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Future Systems: Multi-level Memory

 Future memory systems will integrate multiple levels (types) 
of memory (MLM)
 E.g., Trinity KNL with DDR DRAM and MCDRAM

 How to place data in memory system to maximize application 
performance?

 Place all in MCDRAM: maximizes bandwidth but limits capacity

 Place all in DDR DRAM: maximizes capacity, but limits bandwidth

 Place some in each – how to decide what goes where? Who decides?
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Analyzing application performance

 Predict how NNSA proxy applications will perform on 
hardware
 Analyze memory usage characteristics

 Explore performance as technology parameters change

 Evaluate policies for automatic and manual data placement

 Proxy apps: HPCG, SNAP, PENNANT, MiniPIC
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Analyzing application performance

 Used the Structural Simulation Toolkit 
(SST) to analyze:
 Memory behavior: MemSieve

 Identifies which application data structures 
use disproportionate memory bandwidth

 And behavior over time

 Performance 

 Many (small)-core vs. few (large)-core 
Hardware caching policies for HBM

– When to move data to cache

– Which data to evict

 Software allocation policies

– Page vs malloc granularity

– Static vs dynamic
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Potential Performance

 Many apps show great performance if application fits in HBM
 Harder case: Use both together
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Software-managed data allocation

 Greedy policies do 
fairly well
 But may not extend to 

larger apps

 Dynamic migration 
necessary for some 
apps
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Caching: hardware-driven allocation
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Performance on larger data sets

 Looked at highest performing 
addition policies
 Variants of most-frequently used

 Baseline: random

 LRU replacement
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Cost & Performance

 Ultimate FoM

 40-380% performance 
improvement

 Will Cost Kill it?

 Recommendations for 
HW
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Conclusion

 Manual management feasible
 But bandwidth-bound codes will require dynamic migration

 New tool, MemSieve, aids manual management

 Overall, automatic management is comparable to manual
 Varies by application so “one-size” does NOT fit all

 Some apps will need algorithmic changes to better use 
HBM/HMC
 MiniPIC, SNAP
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