
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

NNSA Applications and Multi-level Memory
Using Architectural Simulation to Predict NNSA Application

Performance on Future Multi-Level Memory Systems

Gwen Voskuilen, Arun Rodrigues, Mike Frank, Si Hammond
JOWOG 34; Feb 8, 2017

SAND2017-1143PE

Future Systems: Multi-level Memory

 Future memory systems will integrate multiple levels (types)
of memory (MLM)
 E.g., Trinity KNL with DDR DRAM and MCDRAM

 How to place data in memory system to maximize application
performance?

 Place all in MCDRAM: maximizes bandwidth but limits capacity

 Place all in DDR DRAM: maximizes capacity, but limits bandwidth

 Place some in each – how to decide what goes where? Who decides?

2

MLM
Management

MLM
Management

Algorithmic
Changes

Algorithmic
Changes

Manual
Placement

Manual
Placement

Automatic
Management

Automatic
Management

Lower effort /
performance?

Higher effort /
performance?

Analyzing application performance

 Predict how NNSA proxy applications will perform on
hardware
 Analyze memory usage characteristics

 Explore performance as technology parameters change

 Evaluate policies for automatic and manual data placement

 Proxy apps: HPCG, SNAP, PENNANT, MiniPIC

3

3 Paths

4

Regular
Irregular

Few, Well-defined
Regions

Multiple
Regions

 Algorithmic

 Manual (Malloc)
 MemSieve Tool

 Application Modification

 Automatic (Paged)
 Analysis

 Policies

 Performance

 Recommendations

Analyzing application performance

 Used the Structural Simulation Toolkit
(SST) to analyze:
 Memory behavior: MemSieve

 Identifies which application data structures
use disproportionate memory bandwidth

 And behavior over time

 Performance

 Many (small)-core vs. few (large)-core
Hardware caching policies for HBM

– When to move data to cache

– Which data to evict

 Software allocation policies

– Page vs malloc granularity

– Static vs dynamic

5

Tile

HMC

DDR

C C

L1 L1

L2

Core

L1

L2

Memory
Core

L3 slice

Potential Performance

 Many apps show great performance if application fits in HBM
 Harder case: Use both together

6

0

1

2

3

4

5

6

7

MiniPIC
charge

MiniPIC
field

MiniPIC
move

SNAP
begin

SNAP
middle/end

HPCG PENNANT

S
p
e
e
d
u
p
 o

ve
ra

l
a
ll-

D
D

R

Potential Performance

Large-core Many-core

Software-managed data allocation

 Greedy policies do
fairly well
 But may not extend to

larger apps

 Dynamic migration
necessary for some
apps

7

0

2

4

6

8

Greedy -
page

Greedy -
malloc

Static DynamicS
p

e
e

d
u

p
 o

ve
r

D
D

R

o
n

ly

PENNANT

12.50% 25% 50% 100%

0

1

2

3

4

5

6

Greedy -
page

Greedy -
malloc

Static DynamicS
p

e
e

d
u

p
 o

ve
r

D
D

R
 o

n
ly

HPCG

12.50% 25% 50% 100%

0

0.5

1

1.5

2

Greedy -
page

Greedy -
malloc

Static Dynamic

S
p

e
e

d
u

p
 o

ve
r

D
D

R
 o

n
ly

SNAP

12.50% 25% 50% 100%

Caching: hardware-driven allocation

8

0.2

0.4

0.6

0.8

1

1.2

1.4

addMFRPU addMFU addMRPU addRAND addSC addT addSCF

P
e

rf
o

rm
an

ce

Add Policy

Lulesh: MLM Performance vs Policy

BiLRU FIFO

LRU SCLRU

LFU8 LFU

0.2

0.4

0.6

0.8

1

1.2

1.4

addMFRPU addMFU addMRPU addRAND addSC addT addSCF

P
er

fo
rm

an
ce

Add Policy

MiniFE: MLM Performance vs Policy

BiLRU FIFO

LRU SCLRU

LFU8 LFU

Addition policy: big variation

Replacement policy: little variation

“What you put in matters more than what you take out”

Performance on larger data sets

 Looked at highest performing
addition policies
 Variants of most-frequently used

 Baseline: random

 LRU replacement

9

0

1

2

3

4

5

6

7

1024 8192 65536

Pe
rf

 (
1=

n
o

 f
as

t
m

em
)

Pages

Pennant-b Performance: Addition

addMFRPU All Fast
addRand addSCF
addMFU

0

0.5

1

1.5

2

1024 8192 65536

Pe
rf

 (
1

=n
o

 f
as

t
m

em
)

Pages

Snap-p0 Performance: Addition

addMFRPU All Fast

addRand addSCF

AddMFU

0

1

2

3

4

5

6

1024 8192 65536

Pe
rf

 (
1

=n
o

 f
as

t
m

em
)

Pages

HPCG Performance: Addition

addMFRPU Series2

addRAND addSCF

addMFU

Cost & Performance

 Ultimate FoM

 40-380% performance
improvement

 Will Cost Kill it?

 Recommendations for
HW

10

0

1

2

3

4

5

6

1024 4096 16384 65536

P
e

rf
o

rm
an

ce

Performance vs. # Fast Pages

Pennant

snap-p0

snap-p1

Hpcg

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1024 4096 16384 65536

P
er

fo
rm

an
ce

 /
 C

o
st

Performance / Cost vs. # Fast Pages: Fast x1.3 Cost

Pennant

snap-p0

snap-p1

Hpcg

0.5

1

1.5

2

2.5

1024 4096 16384 65536

P
er

fo
rm

an
ce

 /
 C

o
st

Performance / Cost vs # Fast Pages: Fast 5x Cost

Pennant

snap-p0

snap-p1

Hpcg

Not Worth It

Diminishing
Returns

Huh.

Conclusion

 Manual management feasible
 But bandwidth-bound codes will require dynamic migration

 New tool, MemSieve, aids manual management

 Overall, automatic management is comparable to manual
 Varies by application so “one-size” does NOT fit all

 Some apps will need algorithmic changes to better use
HBM/HMC
 MiniPIC, SNAP

11

