SAND2017- 1108PE

Adhesive Joint Failure and the Aging of
Adhesive Joints
TCG-XIV — Munitions Reliability and Lifecycle Technology

Jamie M. Kropka, PI

Sandia National Laboratories

Hill AFB
Utah, USA
February 2, 2017

Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

U AT a7
@ Sandia National Laboratories /| VA‘Q

National Nuclear Security Administration




Our Vision: Validated Model-Based Lifecycle Engineering
for Packaging Design
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Why is Cure Stress Important?

Geometry: Thin Disk on Cylinder Structural Response
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Failure can occur during cure!

thttp://www.sandia.gov/polymer-properties/828_DEA_GMB.html Kropka et aI., SAND2016-5543



Predicting Cure Stress: Parameterizing the SPEC Cure Model

Reaction Kinetics
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Evolution of Equilibrium Shear
Modulus During Cure
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Volumetric Cure Shrinkage
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Evolution of Glass Transition Temperature During Cure
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Predicting Cure Stress: Validation Tests

The Simple Test
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Good agreement between predictions and data,
with known variations in boundary conditions
during the test accounting for the spread in the data

This capability will enable the design of cure schedules to minimize stress

Kropka et al., SAND2013-8681




Designhing an Optimum Cure Schedule

Temperature
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Isothermal reaction at a high temperature may be the fastest method to achieve complete
cure, but other factors may drive the time-temperature profile in a different direction

Kropka et al., SAND2016-5543




Desighing Cure Schedules to Minimize Stress

Confined Cure
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The difference between gel temperature (7,) and final
cure temperature (T;) appears to be a primary factor in
determining residual stress developed

Kropka et al., SAND2016-5543

Free-Surface Cure
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Stress developed during free-surface cure can be reduced
by implementing a post-gelation temperature ramp, as
observed in confined cure

Kropka et al., SANDTBD



Polymer Glass Aging
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SNL NLVE polymer models (e.g., SPEC) have the framework to predict the aging behavior and
are currently being tested against measurements

Clarkson, McCoy and Kropka, Polymer, 94 (2016) 19-30 Arechederra et al., APS 2016



Polymer Failure: Adhesive Joints

Shear Loading: Napkin Ring
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Kropka et al., Int. J. Adhn. & Adhs, 63 (2015) 14-25
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Test geometries to measure the initiation of adhesive failure at an “embedded interface”
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