
Photos placed in horizontal position
with even amount of white space

between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Sierra-SM’s NGP experience
JOWOG-34, 2017

SAND2017-1067PE

SIERRA/SM (Solid Mechanics)

 General purpose massively parallel nonlinear finite element code

 explicit transient dynamics

 implicit transient dynamics

 quasi-statics analysis.

 Built upon libraries for

 material models

 solid and structural

 contact

 linear and nonlinear solvers

 Used for analyzing challenging nonlinear mechanics problems for normal,
abnormal, and hostile environments

Sierra/SM GPU strategy

Plan: GPU enable a subset of SM capabilities to run on ATS-2 using Kokkos

• Currently enabled (prototype)
- Explicit dynamics
- Hex & linear beam elements
- Elastic material model
- Displacement BCs
- Gravity
- Basic output

• Additional capabilities needed for primary use cases
- Implicit
- Contact
- Element death
- Tetrahedral, shell, and beam elements
- All production material models
- Additional BCs
- Additional Output
- “MPI+X” parallelism (MPI + OpenMP + GPU)

Adagio on the GPU: First light

 Initial implementation based on prototype Kokkos “FlatMesh”
 uniform element topology and materials

 single GPU only, no MPI

 Kokkos Linear Beam

 Kokkos UG Hex

Total runtime (s)

Timing breakdown
Kokkos hex

(GPU)
Original hex

(CPU)
Kokkos hex

(CPU)
Speedup

Total 335 5820 11951 17x

Internal force only 186 5007 11027 27x

Total runtime (min)

Serial CPU 366

CPU/GPU 17

Speedup 22x

Lost CPU performance
due to SIMD/vectorization

Sears tower model

Baseline version vectorizes

Lesson learned: data must stay on GPU
Strategy 1: Bucket-level GPU copy: ~20X slowdown vs. serial CPU

Host

Device

Strategy 2: Algorithm-level GPU copy: ~8X slowdown

Strategy 3: Run-level GPU copy: ~22X speedup!

May change with NVLink2, but will it change enough to invalidate the conclusion?

Internal
force

Cent
diff

BCs
Internal

force
Cent
diff

BCs
Internal

force
Cent
diff

BCs etc…

Elem
scatter

Cent
diff

BCs IO
Elem

gather
Initialize

Elem
gather

Initialize
Cent
diff

BCs
Cent
diff

BCs
Cent
diff

BCs IO

IOInitialize

Bucket-local
internal force

Internal
force

Internal
force

Internal
force

Bucket-local
internal force

etc...

Lesson learned: serial algorithms dominate

30x speedup

90x speedup

15x speedup

STK ngp::Mesh

 GPU-friendly API for mesh/field access

 Stores data in Kokkos Views on GPU

 Thin wrapper around STK Mesh when running on CPU

 Allow STK apps to start running on GPUs with subset of features

 Easy to prototype different implementations and data layouts

 Hierarchical parallelism over buckets and entities (e.g. nodes and

elements)

ngp::for_each_entity(ngpMesh, ELEM_RANK, selector,
KOKKOS_LAMBDA(ngp::Mesh::MeshIndex elem)
{

kernel(ngpMesh, elem, coords);
});

Using STK ngp::Mesh
 Fundamentally different from prototype “FlatMesh”:

 More indirection, but more generality (different element formulations, parts, materials…)

 Multilevel parallelism (buckets, elements/nodes)

 Different data layout (component-fastest vs. element-fastest)

 Some algorithm refactoring to improve performance:
 Break up large kernels into smaller subsets

 reduces register pressure, more data storage and access

Sears Tower hex model
(835,000 elements)

R
u

n
ti

m
e

0.00E+00

5.00E+00

1.00E+01

1.50E+01

2.00E+01

2.50E+01

CPU Hex STK NGP Mesh (GPU)

Internal force Cenrtral difference Boundary conditions

18.1x speed-up vs. serial

Evaluate force Time integration Boundary conditions

“Flat mesh” was 22x vs. serial
Is this the cost of generality?

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Manual Layout Fast-Component MD View Compile-time Fast-Entity

GPU

Gradient Stress Divergence Time Integration

Importance of optimal layout
vx vy vz
vx vy vz
vx vy vz
vx vy vz
vx vy vz
vx vy vz

vx vy vz
vx vy vz
vx vy vz
vx vy vz
vx vy vz
vx vy vz

0

2

4

6

8

10

12

14

16

18

20

Kokkos subview "pointer" + stride

CPU: Elem-Node Connectivity

Gradient Stress Divergence Time Integration

Kokkos “Subview” expensive at low levels

Profiling Data Game (Max Values)
so, which run is faster?

Metrics Run A Run B

stall_not_selected ↑ 13.43% 3.21%

stall_memory_dependency ↕ 38.47% 65.22%

stall_memory_throttle ↓ 15.58% 6.92%

stall_exec_dependency ↓ 10.44% 12.64%

stall_pipe_busy ↓ 12.09% 2.79%

stall_sync ↓ 0.00% 0.00%

stall_inst_fetch ↓ 2.61% 3.64%

achieved_occupancy ↑ 0.929071 0.951608

gld_requested_throughput ↑ 77.777GB/s 44.186GB/s

gst_requested_throughput ↑ 0.00000B/s 0.00000B/s

gld_efficiency ↑ 47.54% 132.20%

gst_efficiency ↑ 0.00% 0.00%

continued…

Profiling Data Game (Max Values)
so, which run is faster?

Metrics Run A Run B

IPC ↑ 0.843783 1.197995

Flops Efficiency ↑ 0.78% 1.08%

Profile data for Nodal Volume Calculation using
• Run A: Field
• Run B: ConstField (with random access/texture memory)

• faster by 30%

Profiling SM Gradient
incremental performance improvements using profiling data

Metric Baseline
Remove
gathers

Random
access
memory

Coalesced
memory writes

time 0.14 0.11 0.10 0.10

stall_not_selected 9.39% 4.87% 1.47% 1.28%

stall_memory_dependency 36.97% 47.85% 66.83% 72.33%

stall_memory_throttle 32.75% 26.73% 11.74% 8.40%

stall_exec_dependency 10.13% 13.95% 13.43% 12.11%

stall_pipe_busy 8.72% 4.71% 1.83% 1.49%

achieved_occupancy 0.432681 0.308475 0.307971 0.308161

gld_efficiency 35.32% 35.16% 54.86% 64.97%

gst_efficiency 27.03% 27.03% 27.03% 100.00%

gld_requested_throughput 45.53 GB/s 36.91 GB/s 6.074 GB/s 6.075 GB/s

gst_requested_throughput 5.316 GB/s 6.450 GB/s 6.586 GB/s 6.903 GB/s

ipc 0.461778 0.406153 0.410155 0.397081

Optimization Lessons:
Memory access dominates runtime

 Runtime cost is dominated by random memory access
 Gathers cost ~16% percent

 Scatters cost ~65% of total runtime (with atomic adds)

 Coalesced memory access > 3 times faster than gathers

 If we only do math (no memory access), 45 times faster than baseline

 Most other attempts at intuitive optimizations produced a
slowdown

Elements gather from nodal fields
(e.g. velocities) Elements scatter to nodal fields

(e.g. forces)

Big questions and risks

 Current ~20x GPU speedup vs. single core CPU is underwhelming…

 What can we do with additional code restructure? (in progress…)

 How will future hardware perform?

 How do we amortize non-GPU algorithm costs (like results output)?

 How do we avoid algorithm duplication?

 MPI communications will need to reach into GPU data each time step.
Will this be a major performance bottleneck?

 Is the GPU really worth it for unstructured finite element codes?
 May need to fit entire problem on GPU to avoid data copy costs

 Can we develop novel algorithms which efficiently use GPUs relative to CPU?

 Structured grids

 Multi-scale

 FFTs

 Math heavy material models

Additional efforts

 ATS-1: KNL
 KNL threading performance still below MPI everywhere

 Intrinsic based vectorization using stk::simd, a big win!

 Developing Kokkos::SimdView<double*>

 Thread scalable search
 For GPU: Morton Linearized Bounding Volume Hierarchy (LBVH)

 For CPU: either OpenMP parallel KD-tree or LBVH (already Kokkos ready)

 Contact enforcement on the GPU (very early stages)

 Exploiting structured grids (for coalesced memory access)

OpenMP Threading for KNL
 MPI everywhere still gives the best performance

 Oversubscribing MPI seems to help (128 ranks / KNL)

 Best threading performance is close (some routines still scale poorly)

 Node-to-node: Haswell performance slightly better than full KNL

 SIMD/vectorization seems more important

 Use in-house stk::simd to ensure vectorization and get platform portability

MPI only MPI (16 rank)
+ OpenMP

ATDM contact: thread-scalable search
Background:

 Team has implemented thread-scalable proximity search algorithms (Morton
LBVH) for contact

 Prototyped in ATDM minicontact

 Incorporated into Geometry Toolkit in previous sprint work

 In support of ATDM Q4 contact milestone, threaded algorithms incorporated into
suite of STK search algorithms

This sprint:

 Wrote a news note on threaded performance
of Morton algorithm

Future work:

 Continue maintenance/support of search
algorithms in collaboration with STK team

 Process copyright info necessary to
transition code to open domain

Structured grid FE simulations with Kokkos

 GPU explicit dynamics > 100x faster than serial CPU

 1 GPU processes ~250 million element calculations / second

 Up to ~20 million structured grid elements fit on single Kepler-K80

 OpenMP also scales well

High Gc Low Gc

Example problem:
Mode-I crack fracture, transition to branching

stk::simd

 Directly uses vector intrinsics

 Write algorithms to use a simd::double type (via templating)

 Interface designed to be independent of simd-width

 Obtains ~95% the performance of auto-vectorization, but

 always works

 more portable

 easy to outer loop vectorize

 support conditionals

 easier to develop and debug

(no #pragma, vector-reports)

22

x y z w

a b c d

+

=

x+a y+b z+c w+d

What is SIMD?

 SSE2 instructions: (Intel, AMD ~2004)

 2 doubles, 4 floats

 AVX instructions (Intel, AMD)

 4 doubles, 8 floats

 AVX-512 instructions (Intel ~2014)

 8 doubles, 16 floats

 AltiVec (IBM)

 GPU (eg. CUDA): (Nvidia)

 32 doubles

x y z w

a b c d

+

=

x+a y+b z+c w+d

Single Instruction, Multiple Data

SSE2/AVX/AVX512 SIMD in Sierra-SM
for nonlinear element assembly

x y z w

a b c d

+

=

x+a y+b z+c w+d

For simple loops, compilers can
auto-vectorize:

for (int i=0; i < N; ++i) {

a[i] = b[i] + c[i] * d[i];

}

Complicated loops don’t auto-vectorize:

Tensor33 multiply

Eigenvectors

Constitutive law evaluations

Auto-vectorization
 For simple loops, compilers with optimizations on automatically use

SIMD:
for (int i=0; i < N; ++i) {

a[i] = b[i] + c[i] * d[i];

}

 “Complicated” loops are not yet auto-vectorized efficiently:
 Eigenvectors

 Constitutive law evaluations

 Use SIMD vector intrinsics (low level functions):

 Each intrinsic is equivalent to an assembly instruction

SSE2/AVX intrinsics (Intel, AMD)

Compute {1,2,3,4} + 2.1:

double x[4] = {1,2,3,4};

__m256d a = _m256_loadu_pd(x);

__m256d b = _m256_set1_pd(2.1);

__m256d c = _m256_add_pd(a,b);

double result[4];

_m256_store_pd(result,c);

x y z w

__m256d (4 doubles)

1 2 3 4

+

=

3.1 4.1 5.1 6.1

2.1 2.1 2.1 2.1

x y

__m128d (2 doubles)

Sierra SSE2/AVX interface

 Developers can’t know which instruction set is available, as it
differs by processor generation:
 Chama (with Intel Sandy Bridge) has AVX

 Other Sandia machines only have SSE2 (or SSE4)

 Want to be able to write code which works for SSE2, AVX and
even future AVX-512

 We provide an abstraction layer to simplify development

Sierra SSE2/AVX/AVX512 interface

Simd.h:

#if defined(AVX)

const int ndoubles = 4;

class Doubles { __m256d d };
#elif defined(SSE2)

const int ndoubles = 2;

class Doubles { __m128d d };

#else

const int ndoubles = 1;

typedef double Doubles;

#end

main.cc:

#include <Simd.h>

double x[ndoubles];

Doubles a = simd::load(x);

Doubles b = Doubles(2.1);

// operator overload:

Doubles c = a+b;

double output[ndoubles];

simd::store(output,c);

Sierra SSE2/AVX interface
 Difficult to have portable code:

Doubles x = a+c/b;

 Overloaded math operator only available with certain
compilers (gcc, clang)

 Wrapping SIMD type in a class creates some overhead

 Expression templates slightly slower (and harder to read)

 Want to provide a library of math functions

 sqrt, log, exp, pow, max, min, fabs, etc.

 either not implemented or implemented only with
certain compilers (intel)

 Current capabilities: simd::sqrt(x), simd::log(x), simd::min(x,y).

SIMD “EDSL”

Standard math functions:

sqrt, cbrt, log, exp, pow, fabs,

copysign, min, max

Simd boolean types:

<, <=, >, >=, == returns booleans,
e.g.,

Bools isTrue = x < 5;

Simd ternary:

Doubles z = if_then(isTrue, 1.0, y);

Simd reduction:

double a = reduceSum(z);

Operator overloads:

+, -, *, /, +=, -=, *=, /=

Also Simd Loads and
Store

Bottlenecks:

_mm256_sqrt_pd() is only ~2X
faster than std::sqrt()

Same with
_mm512_sqrt_pd()?

Some compilers don’t
implement cbrt, log, exp, etc.

Performance Improvements

SSE2 (on blade, gcc)

 1.83 x speed up (memory
access still a slight bottleneck)

AVX (on chama, Intel compiler)

 2.01 x speed up (AVX often
uses SSE for / and sqrt)

1,000,000 evaluations of random doubles:

Auto-vectorization sometimes gives similar improvements, but…
• can’t use sqrt()?, log(), exp() for all compilers (may work with Intel)
• doesn’t work well for tensor operations/complicated data layouts.

c = (a+b)*(a-b)/a;

SIMD Tensor class

Process 4 tensors at a time (AVX):

double tensors[4*9];

// fill 4 tensor

Tensor33<Doubles> a(tensors)

c = mult(a,b);

Eigenvector(c,vects,vals);

c[0] = a[8] + b[4];

double output[4*9];

c.Store(output);

a1 a2 a3

a5 a6

a9a8

a4

a7

Loading 4 2x2 tensors

Doubles A[4];
for (int i=0; i < 4; ++i) A[i] = simd::load(a+i,tensor_size);

double a[4*tensor_size];

Slow memory access, but necessary unless we change memory layout of a.

Performance improvements

 Tensor multiply: 1.80 x 3.63 x 2.42 x

 Eigenvalue: 1.97 x 3.19 x 5.25 x

 Polar Decomp: 1.7 x 2.28 x 4.89 x

SSE2 AVX AVX512(KNC)

Performance Improvements:
tensor operation which may not auto-vectorize

 Tensor multiply: 1.62 x

 Eigenvalue: 1.96 x

 Eigenvector: 1.61 x

 Polar Decomp: 1.56 x

 Tensor multiply: 3.35 x

 Eigenvalue: 2.90 x

 Eigenvector: 2.35 x

 Polar Decomp: 2.04 x

• SSE2 (on blade) • AVX (on chama)

