SAND2017- 1067PE

JOWOG-34, 2017

U.S. DEPARTMENT OF Il VAT =
ENERGY INVJSA

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

SIERRA/SM (Solid Mechanics) UL

= General purpose massively parallel nonlinear finite element code
= explicit transient dynamics
= implicit transient dynamics
= quasi-statics analysis.

= Built upon libraries for
= material models
= solid and structural
= contact
* linear and nonlinear solvers

= Used for analyzing challenging nonlinear mechanics problems for normal,
abnormal, and hostile environments

Sierra/SM GPU strategy 7

Plan: GPU enable a subset of SM capabilities to run on ATS-2 using Kokkos

* Currently enabled (prototype) T
- Explicit dynamics
- Hex & linear beam elements
- Elastic material model
- Displacement BCs

- Gravity 15 Lioue "
- Basic output target 5 mponer\tS
code ©
"~ caSW
* Additional capabilities needed for primary use cases S\e“al 2\
- Implicit ok 00 '@
- Contact \ov

- Element death

- Tetrahedral, shell, and beam elements
- All production material models

- Additional BCs

- Additional Output

- “MPI+X” parallelism (MPI + OpenMP + GPU)

Adagio on the GPU: First light) S,

= |nitial implementation based on prototype Kokkos “FlatMesh”
= uniform element topology and materials
= single GPU only, no MPI

= Kokkos Linear Beam

Total runtime (min)
Serial CPU 366
CPU/GPU 17
Speedup 22x

= Kokkos UG Hex

Total runtime (s)
Kokkos hex | Original hex | Kokkos hex
Timing breakdown Speedu
& (GPU) (CPU) (CPU) P P Sears tower model
Total 335 5820 11951 17x
Internal force only 186 5007 11027 27x
l« ‘l: Lost CPU performance
Baseline version vectorizes due to SIMD/vectorization

Lesson learned: data must stay on GPU =,

Strategy 1: Bucket-level GPU copy: ~20X slowdown vs. serial CPU

H Elem Elem Cent Elem
Initiali
ost nitialize gather scatter diff == & gather etc

Device

Strategy 2: Algorithm-level GPU copy: ~8X slowdown

L Cent Cent Cent
Initialize diff BCs diff BCs diff BCs [0]

Strategy 3: Run-level GPU copy: ~22X speedup!

Initialize [0]

May change with NVLink2, but will it change enough to invalidate the conclusion?

Lesson learned: serial algorithms dominate

25000
m Accel
20000 - B Gravity _
= Kin BC]- 15x speedup
© (@ nitiaize)
) 15000 - \ mCentDiff 90x speedup
g \ ® Internal Force 30x speedup
S5 10000
5000 \:§
0 _

CPU Only CPU + GPU

STK ngp::Mesh) £

= GPU-friendly API for mesh/field access

= Stores data in Kokkos Views on GPU

= Thin wrapper around STK Mesh when running on CPU
Allow STK apps to start running on GPUs with subset of features
Easy to prototype different implementations and data layouts

Hierarchical parallelism over buckets and entities (e.g. nodes and
elements)

ngp::for each entity(ngpMesh, ELEM RANK, selector,

KOKKOS LAMBDA (ngp: :Mesh: :MeshIndex elem)
{

kernel (ngpMesh, elem, coords);

}) s

Using STK ngp::Mesh =

= Fundamentally different from prototype “FlatMesh”:
= More indirection, but more generality (different element formulations, parts, materials...)

= Multilevel parallelism (buckets, elements/nodes)
= Different data layout (component-fastest vs. element-fastest)
= Some algorithm refactoring to improve performance:

= Break up large kernels into smaller subsets
= reduces register pressure, more data storage and access

Sears Tower hex model
(835,000 elements)

2.50E+01
2.00E+01
1.50E+01
QJ .
£ 18.1x speed-up vs. serial
c
& 1.00E+01
5.00E+00
0.00E400 I
CPU Hex STK NGP Mesh (GPU) “Flat mesh” was 22x vs. serial
mEvaluateforce g Time integration g Boundary conditions Is this the cost of generality?

Importance of optimal layout

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

><< ><< ><< ><< ><<

Vx

_<< _<< _<< _<<
N< N< N< N< N<

Vy
Vy

<
N

m Gradient

Manual Layout Fast-Component

m Stress

< << <K
< << <.

GPU

V, vy V,

MD View Compile-time Fast-Entity

mDivergence mTime Integration

Sandia
Laboratories

B
National
Laboratories

Kokkos “Subview” expensive at low levels

CPU: Elem-Node Connectivity

Kokkos subview "pointer" + stride

m Gradient mStress mDivergence mTime Integration

Profiling Data Game (Max Values)) i

Laboratories
so, which run is faster?
Metrics Run A Run B
stall_not_selected 1 13.43% 3.21%
stall_ memory dependency] 38.47% 65.22%
stall_memory _throttle | 15.58% 6.92%
stall_exec_dependency | 10.44% 12.64%
stall_pipe_busy | 12.09% 2.79%
stall_sync | 0.00% 0.00%
stall_inst _fetch | 2.61% 3.64%
achieved_occupancy 1 0.929071 0.951608
gld_requested throughputt 77.777GB/s 44.186GB/s
gst requested throughputt 0.00000B/s 0.00000B/s
gld_efficiency 1 47.54% 132.20%
gst_efficiency 1 0.00% 0.00%
continued...

Profiling Data Game (Max Values) =) s,
so, which run is faster?

Metrics Run A Run B
IPC 1 0.843783 1.197995
Flops Efficiency 1 0.78% 1.08%

Profile data for Nodal Volume Calculation using

 Run A: Field

* Run B: ConstField (with random access/texture memory)
 faster by 30%

Profiling SM Gradient

incremental performance improvements using profiling data

Random
Metric Baseline SOINE access Coalesce-d
gathers memory memory writes

time 0.14 0.11 0.10 0.10
stall_not_selected 9.39% 4.87% 1.47% 1.28%
stall._ memory dependency 36.97% 47.85% 66.83% 72.33%
stall_memory _throttle 32.75% 26.73% 11.74% 8.40%
stall_exec_dependency 10.13% 13.95% 13.43% 12.11%
stall_pipe_busy 8.72% 4.71% 1.83% 1.49%
achieved_occupancy 0.432681 0.308475 0.307971 0.308161
gld_efficiency 35.32% 35.16% 54.86% 64.97%
gst_efficiency 27.03% 27.03% 27.03% 100.00%
gld_requested throughput 45.53GB/s 36.91GB/s 6.074 GB/s 6.075 GB/s
gst requested throughput 5.316 GB/s 6.450 GB/s 6.586 GB/s 6.903 GB/s
ipc 0.461778 0.406153 0.410155 0.397081

Optimization Lessons:) e,
Memory access dominates runtime

= Runtime cost is dominated by random memory access
= Gathers cost ¥16% percent
= Scatters cost ~65% of total runtime (with atomic adds)
= Coalesced memory access > 3 times faster than gathers
= |f we only do math (no memory access), 45 times faster than baseline

)

Elements gather from nodal fields
(e.g. velocities) Elements scatter to nodal fields

(e.g. forces)

@

= Most other attempts at intuitive optimizations produced a
slowdown

Big questions and risks

Current ~20x GPU speedup vs. single core CPU is underwhelming...

= What can we do with additional code restructure? (in progress...)
= How will future hardware perform?

= How do we amortize non-GPU algorithm costs (like results output)?
= How do we avoid algorithm duplication?

= MPI communications will need to reach into GPU data each time step.
Will this be a major performance bottleneck?

= |s the GPU really worth it for unstructured finite element codes?
= May need to fit entire problem on GPU to avoid data copy costs
= Can we develop novel algorithms which efficiently use GPUs relative to CPU?
= Structured grids
= Multi-scale
= FFTs
= Math heavy material models

Additional efforts) i

ATS-1: KNL

= KNL threading performance still below MPI everywhere
= |ntrinsic based vectorization using stk::simd, a big win!
= Developing Kokkos::SimdView<double*>

= Thread scalable search

= For GPU: Morton Linearized Bounding Volume Hierarchy (LBVH)
= For CPU: either OpenMP parallel KD-tree or LBVH (already Kokkos ready)

= Contact enforcement on the GPU (very early stages)

= Exploiting structured grids (for coalesced memory access)

OpenMP Threading for KNL T,

= MPI everywhere still gives the best performance
= Qversubscribing MPI seems to help (128 ranks / KNL)
= Best threading performance is close (some routines still scale poorly)

= Node-to-node: Haswell performance slightly better than full KNL

= SIMD/vectorization seems more important
= Use in-house stk::simd to ensure vectorization and get platform portability

Overall Runtime

300

MPI only MPI (16 rank)

| | + OpenMP

0

A Al gk AP @6‘5 7

(=3
o

w
o

ATDM contact: thread-scalable search) S,

Background:

= Team has implemented thread-scalable proximity search algorithms (Morton
LBVH) for contact
= Prototyped in ATDM minicontact
" |ncorporated into Geometry Toolkit in previous sprint work

= |n support of ATDM Q4 contact milestone, threaded algorithms incorporated into
suite of STK search algorithms

This sprint:

= Wrote a news note on threaded performance
of Morton algorithm

\®)
S

—_
()]
|
]

Future work: ®—® Morton LBVH

)) A& A STK R-tree
= Continue maintenance/support of search i |
algorithms in collaboration with STK team -

. . I
= Process copyright info necessary to 0 2 4 6 8 10 12 14 16
transition code to open domain Number of threads

Runtime (s)
>
|

9,1

S

Structured grid FE simulations with Kokkos @ =

= GPU explicit dynamics > 100x faster than serial CPU

= 1 GPU processes ~250 million element calculations / second

= Up to ~20 million structured grid elements fit on single Kepler-K80
= OpenMP also scales well

10° Thread scalability
Example problem: i
Mode-| crack fracture, transition to branching
B 10°%
o e
o}
velo Y @
40 o
E o
2~
= Q
< -
2 o 107}
Ezo 1
10 —— Cuda, NVIDIA Tesla K-40 | |
— Open MP, Intel Haswell
. - - Ideal
High G, Low G, 108 s —
100 101 102

Threads

stk::simd

= Directly uses vector intrinsics

= Write algorithms to use a simd::double type (via templating)

Interface designed to be independent of simd-width

= (QObtains ¥95% the performance of auto-vectorization, but

always works
more portable
easy to outer loop vectorize

+
support conditionals H

easier to develop and debug
(no #pragma, vector-reports)

22

What is SIMD? =
Single Instruction, Multiple Data

= SSE2 instructions: (Intel, AMD ~2004)
= 2 doubles, 4 floats

= AVX instructions (Intel, AMD)
= 4 doubles, 8 floats

= AVX-512 instructions (Intel ~2014)
= 8 doubles, 16 floats

= AltiVec (IBM)
= GPU (eg. CUDA): (Nvidia)
= 32 doubles

i1

SSE2/AVX/AVX512 SIMD in Sierra-SM (@),
for nonlinear element assembly

For simple loops, compilers can
auto-vectorize:
for (int i=0; i < N; ++i) {

+
afi] = bfi] + cfi] * d[i);
H)

Complicated loops don’t auto-vectorize:
Tensor33 multiply
Eigenvectors
Constitutive law evaluations

7| Netora

Auto-vectorization

= For simple loops, compilers with optimizations on automatically use
SIMD:
for (int i=0; i < N; ++i) {
ali] = b[i] + c[i] * d[i];
}
= “Complicated” loops are not yet auto-vectorized efficiently:
= Eigenvectors

= Constitutive law evaluations

= Use SIMD vector intrinsics (low level functions):

= Each intrinsic is equivalent to an assembly instruction

SSE2/AVX intrinsics (Intel, AMD))

__m128d (2 doubles) __m256d (4 doubles)

o e

Compute {1,2,3,4} + 2.1:
double x[4] ={1,2,3,4};

- m256d a=_m256_ loadu_pd(x); +

~m256d b=_m256_setl pd(2.1);
~ _m256d c=_m256 add pd(a,b);

double result[4];
mase_store_pd{result o) 31 415161

Sierra SSE2/AVX interface) S,

= Developers can’t know which instruction set is available, as it
differs by processor generation:
= Chama (with Intel Sandy Bridge) has AVX
= Other Sandia machines only have SSE2 (or SSE4)
= Want to be able to write code which works for SSE2, AVX and
even future AVX-512

= We provide an abstraction layer to simplify development

Sierra SSE2/AVX/AVX512 interface

Simd.h: main.cc:
#if defined(AVX) #include <Simd.h>

const int ndoubles = 4;

class Doubles{ m256dd};
t#elif defined(SSE2)

const int ndoubles = 2;
class Doubles{ m128dd };

double x[ndoubles];

Doubles a = simd::load(x);
Doubles b = Doubles(2.1);

#else /I operator overload:
const int ndoubles = 1; Doubles ¢ = a+b:
typedef double Doubles;

#end double output[ndoubles];

simd::store(output,c);

Sierra SSE2/AVX interface

= Difficult to have portable code:
Doubles x = a+c/b;

= Overloaded math operator only available with certain
compilers (gcc, clang)

= Wrapping SIMD type in a class creates some overhead
= Expression templates slightly slower (and harder to read)
= Want to provide a library of math functions
= sqgrt, log, exp, pow, max, min, fabs, etc.
= either not implemented or implemented only with
certain compilers (intel)

= Current capabilities: simd::sqrt(x), simd::log(x), simd::min(x,y).

SIMD “EDSL” (]

Standard math functions: Operator overloads:

sqrt, cbrt, log, exp, pow, fabs, +, -5/, += = *= =
copysign, min, max Also Simd Loads and
Simd boolean types: Store

<, <=, > >= ==returns booleans,

e.g., Bottlenecks:

Bools isTrue = x < 5; ~mm256_sqgrt_pd() is only ~2X

faster than std::sqrt()
Simd ternary:

Doubles z = if_then(isTrue, 1.0, y); [Same with
~mmd12_sqgrt_pd()?
Simd reduction:

double a = reduceSum(z); Some compilers don't

Implement cbrt, log, exp, etc.

Performance Improvements) .

1,000,000 evaluations of random doubles:

c = (a+b)*(a-b)/a;

SSE2 (on blade, gcc) AVX (on chama, Intel compiler)
= 1.83 x speed up (memory = 2.01 x speed up (AVX often
access still a slight bottleneck) uses SSE for / and sqrt)

Auto-vectorization sometimes gives similar improvements, but...
e can't use sqrt()?, log(), exp() for all compilers (may work with Intel)
« doesn’t work well for tensor operations/complicated data layouts.

SIMD Tensor class)

Process 4 tensors at a time (AVX):

double tensors[4*9];

// fill 4 tensor
Tensor33<Doubles> a(tensors)
c = mult(a,b);

Eigenvector(c,vects,vals);
c[0] = a[8] + b[4];

double output[4*9];
c.Store(output);

Loading 4 2x2 tensors

double a[4*tensor_size];

e

- S

"R

Doubles A[4];
for (int i=0; i < 4; ++i) A[i] = simd::load(a+i,tensor_size);

Slow memory access, but necessary unless we change memory layout of a.

Performance improvements

SSE2 AVX AVX512(KNC)

= Tensor multiply: 1.80 x 3.63 x 2.42 x

= Eigenvalue: 1.97 x 3.19 x 5.25 x

= Polar Decomp: 1.7 x 2.28 x 4.89 x

Performance Improvements:

7| Netora

tensor operation which may not auto-vectorize

 SSE2 (on blade)

Tensor multiply: 1.62 x
Eigenvalue: 1.96 x
Eigenvector: 1.61 x

Polar Decomp: 1.56 x

 AVX (on chama)

Tensor multiply: 3.35 x
Eigenvalue: 2.90 x
Eigenvector: 2.35 x

Polar Decomp: 2.04 x

