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Motivation: Stress Relief in Thermoset Polymers

Cure Stress Variation
Epon 828 + MDA (C, methylenedianaline) or IPD (D, isophorene diamine) (1]
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= Cure stress due to polymerization shrinkage. Fiber : "\ : - R

= Crosslinks prevent terminal viscoelastic behavior (flow).

= Stress formation a function of cure temperature.
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Alternative Chemistries For Stress Mediation

(Self Repair)
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Metallocene Curing Agents for Stress Relief

Ferrocene Fluxional Mechanism
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Rotation Barriers in Ferrocene Derivatives
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“Fe ball bearing”
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Ferrocene in Polymers

Including Epoxies
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13C MAS NMR - Looking for Dynamics...

3C NMR Chemical Shielding Anisotropy (CSA)

Local motions will reduce CSA
Line shape specific to motion
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Solution 3C NMR Reveals Multiple Conformers
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Static 'TH NMR - Temperature Variations

FcDA (post cure) MDA D-230
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'H NMR - Mapping Internal Polymer Motions
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Static '"H NMR Line Width - Dynamics
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Static 'H NMR — Dynamics From Line Width
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"H NMR - Double Quantum (DQ) NMR

= 5 —pulse DQ sequence (Pines).
= 7 pulses for refocusing.

DQ Excitation DQ Reconversion Detection = Variation on t- for buildups
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"H NMR - DQ NMR During Cure

Cure Kinetics Followed by Segmental Topology
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Log C(t)

"H NMR — DQ NMR Fully Cure
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"H NMR — DQ NMR Fully Cure

EPON 828 + MDA
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DQ 'H NMR - Fully Cure Epoxy

Normalized DQ Buildups
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DQ 'H NMR

Extraction of Effective Dipolar Coupling
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So What....

How is this Related to Polymer Physics?
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DQ 'H NMR Derived Order Parameters
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DQ '"H NMR Distribution of D
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Conclusions

* 'H NMR line width variation used to probe local polymer dynamics as a function of temperature.

* Allows evaluation of E, for segmental motions at glass transition.

* DQ 1H NMR can be used to look at epoxy curing from purely segmental motion viewpoint (S,).

* For T >>T, the DQ build up curves allow the order parameter S, in the rubber plateau to be measured.
* The FcDA cured epoxy shows a heterogeneous cross-link (dynamic) environment.

* Order parameters can be related to polymer models and crosslink properties.

* Examples are an average over all *H and most likely includes distributions in segmental contributions.

Thank You for Your Attention!
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