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Motivation: Stress Relief in Thermoset Polymers

1. Jones, B. H.; Wheeler, D. R.; Stavig, M. E.; Black, H. T.; Sawyer, P. S.; Giron, N. H.; Celina, M. C.; Alam, T. M., Stress Relaxation in Highly Crosslinked Epoxy Thermosets via a Ferrocene-Based Curing Agent. Submitted 2017.
2. S. Chaudhary, S. Parthasarathy, C. Rajagopal, P. Roy, D. Kumar “Simple toughening of epoxy thermosets by preformed thermoplastics”, Plastics Research Online (2014)

http://www.4spepro.org/view.php?article=005409-2014-04-09&category=Polymer+Modifiers
3. Yayla, P., Fracture Surface Morphology of Delamination Failure of Polymer Fiber Composites Under Different Failure Modes. Journal of Failure Analysis and Prevention 2016, 16 (2), 264-270.
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 Cure stress due to polymerization shrinkage.

 Crosslinks prevent terminal viscoelastic behavior (flow).

 Stress formation a function of cure temperature.

 Stress formation a function of the curing agent.

Cure Stress Variation
Epon 828 + MDA (C, methylenedianaline) or IPD (D, isophorene diamine)

Increasing Stress
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Alternative Chemistries For Stress Mediation
(Self Repair)

[a] Bailey, W. J., Matrices that expand on curing for high strength composites and adhesives. Materials Science and Engineering: A 1990, 126 (1–2), 271-279.; Alcoutlabi, M.; McKenna, G. B.; Simon, S. L., Analysis of the development of isotropic residual stresses 
in a bismaleimide/spiro orthocarbonate thermosetting resin for composite materials. Journal of Applied Polymer Science 2003, 88 (1), 227-244. [1] Chen, X.; Dam, M. A.; Ono, K.; Mal, A.; Shen, H.; Nutt, S. R.; Sheran, K.; Wudl, F., A Thermally Re-mendable Cross-
Linked Polymeric Material. Science 2002, 295 (5560), 1698-1702. [2] Scott, T. F.; Schneider, A. D.; Cook, W. D.; Bowman, C. N., Photoinduced Plasticity in Cross-Linked Polymers. Science 2005, 308 (5728), 1615-1617. [3] Kloxin, C. J.; Scott, T. F.; Bowman, C. 
N., Stress Relaxation via Addition−Fragmentation Chain Transfer in a Thiol-ene Photopolymerization. Macromolecules 2009, 42 (7), 2551-2556. [4] Nicolaÿ, R.; Kamada, J.; Van Wassen, A.; Matyjaszewski, K., Responsive Gels Based on a Dynamic Covalent 
Trithiocarbonate Cross-Linker. Macromolecules 2010, 43 (9), 4355-4361. [5] Lu, Y.-X.; Tournilhac, F.; Leibler, L.; Guan, Z., Making Insoluble Polymer Networks Malleable via Olefin Metathesis. Journal of the American Chemical Society 2012, 134 (20), 8424-8427.  
[6] Ghosh, B.; Urban, M. W., Self-Repairing Oxetane-Substituted Chitosan Polyurethane Networks. Science 2009, 323 (5920), 1458-1460. [7] Montarnal, D.; Capelot, M.; Tournilhac, F.; Leibler, L., Silica-Like Malleable Materials from Permanent Organic Networks. 
Science 2011, 334 (6058), 965-968.[8] Capelot, M.; Montarnal, D.; Tournilhac, F.; Leibler, L., Metal-Catalyzed Transesterification for Healing and Assembling of Thermosets. Journal of the American Chemical Society 2012, 134 (18), 7664-7667.

Volume Expandable

Covalent Adaptable Network (CAN)

Diels-Alder [1]

Addition-Fragmentation Chain Transfer [2,3,4]

 Oxetane Ring Opening [6]
 Chain Exchange Reaction [7]
 Transesterfication [8]
 Transcarbamoylation
 Transamination
 Transalkylation

Catalyzed Olefin Metathesis [5]

Spiro Ortho Carbonates [a]
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Metallocene Curing Agents for Stress Relief 

1. Jones, B. H.; Wheeler, D. R.; Stavig, M. E.; Black, H. T.; Sawyer, P. S.; Giron, N. H.; Celina, M. C.; Alam, T. M., Stress Relaxation in Highly Crosslinked Epoxy Thermosets via a Ferrocene-Based Curing Agent. Submitted 2017.

Ferrocene Fluxional Mechanism

No bond breakage Linkages on both
Ferrocene rings
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Rotation Barriers in Ferrocene Derivatives

1. Pazur, R.J., et al., Proton spin-lattice relaxation time studies and atom–atom non-bonded potential calculations on ferrocenecarbaldehyde (η5-C5H5)Fe(η5-C5H4CHO). Canadian Journal of Chemistry, 1987. 65(8): p. 1940-1944.
2. Mann, B.E., et al., A determination of the activation energy of cyclopentadienyl group rotation and molecular tumbling in [Fe(h5-C5H5)(h

5-C5H4R)](R = CMe2Et or Bun) using carbon-13 nuclear magnetic resonance relaxation measurements. Journal of the 
Chemical Society, Dalton Transactions, 1984(9): p. 2027-2028.
3. Appel, M.A., Ring Rotation in Ferrocene and Ferrocene-Containing Polymers. 2015, Technische Universität: Darmstadt, Germany. p. 137.
4. Abel, E.W., et al., Dynamic NMR studies of ring rotation in substituted ferrocenes and ruthenocenes. Journal of Organometallic Chemistry, 1991. 403(1–2): p. 195-208.
5. Holm, C.H. and J.A. Ibers, NMR Study of Ferrocene, Ruthenocene, and Titanocene Dichloride. J. Chem. Phys., 1959. 30(4): p. 885-888.
6. Luke, W.D. and A. Streitwieser, Barriers to Ring Rotation in 1,1',4,4'-Tetra-tert-butyluranocene and 1,1',3,3'-tetra-tert-butylferrocene. J. Am. Chem. Soc., 1981. 103(12): p. 3241-3243.

Compound ΔG† [Ea] kJ mol-1 Ref.

Fe(η5-C5H5)2 4.4,5.4,7.5

Fe(η5-C5H5)(η
5-C5H4CHO) 15.2 [1]

Fe(η5-C5H5)(η
5-C5H4CMe2Et) 10.2

15.2

[2]

Fe(η5-C5H5)(η
5-C5H4Bun) 8.0

11.7

[2]

PVFc 9.6 [3]

Fe(η5-C5H3(t-Bu)4) 55.6, 54.8 [4]

Fe(η5-C5H3(t-Pentyl)4) 56.7 [4]

Fe(η5-C5H2(TMS)6) 46.0 [4]

Ru(η5-C5H5)2 9.6 [5]

Ru(η5-C5H3(t-Pentyl)2) 45.7 [4]

Ni(η5-C5H5)2 7.5 [6]

Co(η5-C5H5)2 7.5 [6]

Cr(η5-C5H5)2 7.5 [6]

“Fe ball bearing”
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Ferrocene in Polymers 
(Including Epoxies)

[1] Kulbaba, K.; Macdonald, P. M.; Manners, I., Molecular Motions in Poly(ferrocenes):  Solid-State Deuterium NMR Studies of Poly(ferrocenylsilanes) near Their Glass Transition Temperature. Macromolecules 1999, 32 (4), 1321-1324. [2] Kulbaba, K.; 
Manners, I.; Macdonald, P. M., Molecular Motions in Metal-Containing Polymers:  Solid-State Deuterium NMR Studies of Polyferrocenylsilanes near Their Glass Transition Temperature. Macromolecules 2002, 35 (27), 10014-10025. [3] Wright, M. E.; Laub, 
J.; Stafford, P. R.; Norris, W. P., Synthesis of new ferrocene containing diamines and their use in epoxy resins. Journal of Organometallic Chemistry 2001, 637–639, 837-840. [4] Veronelli, M.; Dechert, S.; Demeshko, S.; Meyer, F., 1,1′-Bis(pyrazol-3-
yl)ferrocene: A Clip Ligand That Forms Supramolecular Aggregates and Prismatic Hexanuclear Coinage Metal Complexes. Inorganic Chemistry 2015, 54 (14), 6917-6927. [5] Yu, H.; Wang, L.; Huo, J.; Ding, J.; Tan, Q., Synthesis and Curing Behavior of a 
Novel Ferrocene-Based Epoxy Compound. J. Appl. Polymer Sci. 2008, 110, 1594-1599. [6] Yu, H.; Wang, L.; Huo, J.; Li, C.; Tan, Q., Synthesis of Glycidyl Ether of Poly(bisphenol-A-1,1'-ferrocene dicarboxylate) and Its Electrochemical Behavior. Designed 
Monomers and Polymers 2009, 12, 305-313.

[1,2]

 Propellent Burn Rate Catalyst
 Conductivity
 Electrochemical
 Magnetic Ceramics
 Refractive Index 
 Electron Beam Resistance
 Self Assembly (fluxional impact)[6]

[5]

[3] [4]
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13C MAS NMR  - Looking for Dynamics…

Local motions will reduce CSA
Line shape specific to motion
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Solution 13C NMR Reveals Multiple Conformers
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Static 1H NMR – Temperature Variations

Dipolar Coupling and Motional Averaging
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1H NMR – Mapping Internal Polymer Motions

Leads to Concept of 
Time-Temperature

Superposition
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Static 1H NMR Line Width - Dynamics
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Line shape 
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Static 1H NMR – Dynamics From Line Width

 0 exp /i aE RT 

Epoxy Sample Tg DSC (oC) Tg NMR (oC)a ba Tg Ea (kJ/mol)b Sub Tg Ea’ (kJ/mol)c

EPON 828 + MDA 180 182 -11.1 33.5 2.8

EPON 828 + D230 90 106 -9.6 62.1 2.9

EPON 828 + FcDA 125 137 -13.8 35.3 1.8

EPON 828 + FcDA

(postcure)

113 138 -15.6 27.4 2.0

Temperature dependence of
this molecular correlation time
can be used to estimate Tg

activation energy.

*



13

1H NMR – Double Quantum (DQ) NMR
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1H NMR – DQ NMR During Cure

No signal Sb ~ 0
Isotropic Dynamics

Increasing DQ signal, Sb > 0
Topological Constraints

Cure Kinetics Followed by Segmental Topology

Martin-Gallego, M.; González-Jiménez, A.; Verdejo, R.; Lopez-Manchado, M. A.; Valentin, J. L., Epoxy resin 
curing reaction studied by proton multiple-quantum NMR. Journal of Polymer Science Part B: Polymer Physics 
2015, 53 (18), 1324-1332.

EPON 828 + 2,2’-dimethyl-4,4’-methylenebis(cyclohexylamine)

<Sb
2>
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1H NMR – DQ NMR Fully Cure

High temperature region T > Tg

DQ NMR directly measures Sb
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1H NMR – DQ NMR Fully Cure
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DQ 1H NMR – Fully Cure Epoxy
Normalized DQ Buildups

Increasing large 
fluctuations

Decreasing Sb
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DQ 1H NMR
Extraction of Effective Dipolar Coupling
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So What…. 
How is this Related to Polymer Physics?

 
 

2

2 2
2

1 3
cos

5cos
res

b t t
stat

D
S P k

D LP



  

R

2 2
0

2 2

2

; ; /

3 3

5 5

M M

b

N l Na

Na L Na r

r
S

L N



  

 

R R R

R

 2 2

2 2

~

lim /

n

N M M

C nl Flexible Chain

C N l 

R

R

R

L

Freely Jointed Chain (FJC) Model

Scaling to N Kuhn segments of Length a
Follow Gaussian Statistics
Used to get cross link densities
Connects to Flory Constant C∞

Connects to Freely Rotating Chain (FRC)
and Hindered Rotation Models (HRC)

a

Kuhn 
segment

Has been used to 
measure cross-link 

densities



FcDA/MDA FcDA/D230 D230/MDA

S
b

(1
) /S

b
(2

)

0.0

0.2

0.4

0.6

0.8

20

DQ 1H NMR Derived Order Parameters

   

(1) (1) (2) (1)

(2) (2)

2 2

1 1
/

cos cos
b res res res

b stat stat res

S D D D
k k

S D D DP P 
 

(1) (1) (2) (1)2 2 (2)

(2) (2) (1) (2) (1) (1) (2)

3 3
/

5 5
b res

b res

S D n Cr r N

S D N N N n C




   
      

   

R

L

a

Kuhn 
segment

FcDA effectively 10x 
more flexible than MDA
in crosslinked network



21

DQ 1H NMR Distribution of Dres
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Chassé, W.; Valentín, J. L.; Genesky, G. D.; Cohen, C.; Saalwächter, K., Precise dipolar coupling constant distribution analysis in proton multiple-quantum NMR of elastomers. 
The Journal of Chemical Physics 2011, 134 (4), 044907.
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Conclusions

• 1H NMR line width variation used to probe local polymer dynamics as a function of temperature. 

• Allows evaluation of Ea for segmental motions at glass transition.

• DQ 1H NMR can be used to look at epoxy curing from purely segmental motion viewpoint (Sb).

• For T > >Tg the DQ build up curves allow the order parameter Sb in the rubber plateau to be measured.

• The FcDA cured epoxy shows a heterogeneous cross-link (dynamic) environment. 

• Order parameters can be related to polymer models and crosslink properties.

• Examples are an average over all 1H and most likely includes distributions in segmental contributions.

Thank You for Your Attention!


