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Introduction

We develop and demonstrate a new, hybrid simulation approach for charged fluids, which combines
the accuracy of the nonlocal, classical density functional theory (cDFT) with the efficiency of the
Poisson-Nernst-Planck (PNP) equations. The approach is motivated by the fact that the more accu-
rate description of the physics in the cDFT model is required only near the charged surfaces, while
away from these regions the PNP equations provide an acceptable representation of the ionic sys-
tem. We formulate the hybrid approach in two stages. The first stage defines a coupled hybrid model
in which the PNP and cDFT equations act independently on two overlapping domains, subject to
suitable interface coupling conditions. At the second stage we apply the principles of the alternat-
ing Schwartz method to the hybrid model by using the interface conditions to define the appropriate
boundary conditions and volume constraints exchanged between the PNP and the cDFT subdomains.

Ionic Fluid Density Models

The Poisson–Nernst–Planck equations are given as
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and the classical Density Functional Theory equations are given as
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is the excess Free Energy contributitions to the grand free energy functional. Through phenomeno-
logical evidence, it is observed that the solution of the PNP equations is a good description of the
charged particle behavior away from surfaces in the system, therefore, it is reasonable to use the
cDFT equations only in the neighborhood of surfaces, and the PNP equations everywhere else in the
system.

The Hybrid cDFT–PNP model

Consider the following prototypical domain configuration.

To simplify the presentation let LcDFT and LPNP denote the cDFT and PNP operators, respec-
tively. We collect the densities and the chemical potentials of the N species into vectors denoted
by ρ = (ρ1, ρ2, . . . , ρN ) and µ = (µ1, µ2, . . . , µN ), respectively. The coupled hybrid cDFT–PNP
model comprises the subdomain governing equations
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LcDFT(ρD,φD,µD) = 0 in ΩcDFT

ρD = ρD
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LPNP(ρP,φP) = 0 in ΩPNP

ρP = ρP
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along with the interface conditions:
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Solution Method: Extending the Schwarz alternating method to the hybrid
model

Here we use the interface conditions (4) to define the proper data exchange between the two different
models in (3). This yields the following generalized Schwarz alternating procedure for the solution

of the coupled hybrid problem (3)–(5):

Begin with initial guesses ρD
0 and φD

0 on ΓPNP.
Set k = k + 1 and solve:
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Application Problem: Flow Through a Porous Membrane
In this example we consider diffusion across a charged, semi-permeable planar membrane with thick-
ness 10d ≈ 3 nm. The description of the problem is given in the following diagram.

.
As we see below, the PNP solution neglects the oscillations near the membrane predicted by the cDFT
model.

x
0 20 40 60 80 100 120

;

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Charged Densities - cDFT

;
+

;
-

x
0 20 40 60 80 100 120

;

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Charged Densities - PNP

;
+

;
-

The Hybrid solution after three Schwarz iterations is presented below
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Application Problem: Flow Through a Nanochannel with Inhomogeneously
Charged Walls
We consider steady-state ion transport through a nanochannel with inhomogeneously charged channel
walls. Consider the nanochannel geometry of this problem below

The channel occupies the middle of the domain, with a reflective boundary at the channel’s axis for
computational convenience. This allows us to model only half of the device. A comparison between
the PNP, cDFT, and Hybrid anion density profile near the charged wall is given below for this appli-
cation problem

The computational costs are summarized in the following table comparing the normalized wall clock
times of the three models.

h PNP cDFT Hybrid cDFT/Hybrid Hybrid/PNP
1/2 0.350 1.000 0.556 1.7987 1.589
1/4 3.656 8.238 4.213 1.9557 1.152
1/5 6.811 30.260 8.604 3.5171 1.263

Summary
On this poster, we have presented a multifidelity modeling approach to computing the behavior of
ionic flows in the microscale regime. We demonstrated that the hybrid solution preserves the oscilla-
tions predicted in the cDFT model. In addition, for large 2D problems, we demonstrate that we can
achieve significant computational cost savings by using this approach.
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