

1 *Geophys. J. Int. Revised*

2

3 Ground Motion Response to a M_L 4.3 Earthquake Using Co-Located Distributed Acoustic
4 Sensing and Seismometer Arrays

5

6 Herbert F. Wang^{1*}, Xiangfang Zeng^{1,2}, Douglas E. Miller³, Dante Fratta⁴, Kurt L. Feigl¹,
7 Clifford H. Thurber¹, and Robert J. Mellors⁵

8

9

10

11

12

- 13 1. Department of Geoscience, University of Wisconsin–Madison, Madison, WI 53706, USA
- 14 2. State Key Laboratory of Geodesy and Earth’s Dynamics, Institute of Geodesy and Geophysics, Chinese
15 Academy of Sciences, Wuhan, 430077, China
- 16 3. Silixa, Ltd, 230 Centennial Park, Centennial Avenue, Elstree, Hertfordshire WD6 3SN, UK and Earth Resource
17 Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
- 18 4. Geological Engineering, Department of Civil and Environmental Engineering, University of Wisconsin–
19 Madison, Madison, WI 53706, USA
- 20 5. Atmospheric, Earth, and Energy Division, Lawrence Livermore National Laboratory, Livermore, CA 94550

21

22 * Corresponding Author. Email address: hfwang@wisc.edu.

23

24

25

26

27

28

29

30

31

32

March 19, 2018

33

34 **Summary**

35 The PoroTomo research team deployed two arrays of seismic sensors in a natural laboratory
36 at Brady Hot Springs, Nevada in March 2016. The 1500 m (length) by 500 m (width) by 400 m
37 (depth) volume of the laboratory overlies a geothermal reservoir. The surface Distributed
38 Acoustic Sensing (DAS) array consisted of 8700 m of fiber-optic cable in a shallow trench,
39 including 340 m in a well. The conventional seismometer array consisted of 238 three-
40 component geophones. The DAS cable was laid out in three parallel zig-zag lines with line
41 segments approximately 100 meters in length and geophones were spaced at approximately 60-
42 meter intervals. Both DAS and conventional geophones recorded continuously over 15 days
43 during which a moderate-sized earthquake with a local magnitude of 4.3 was recorded on March
44 21, 2016. Its epicenter was approximately 150-km south-southeast of the laboratory. Several
45 DAS line segments with co-located geophone stations were used to compare signal-to-noise
46 (SNR) ratios in both time and frequency domains and to test relationships between DAS and
47 geophone data. The ratios were typically within a factor of five of each other with DAS SNR
48 often greater for P-wave but smaller for S-wave relative to geophone SNR. The SNRs measured
49 for an earthquake can be better than for active sources, because the earthquake signal contains
50 more low frequency energy and the noise level is also lower at those lower frequencies. ■

51 Amplitudes of the sum of several DAS strain-rate waveforms matched the finite difference
52 of two geophone waveforms reasonably well, as did the amplitudes of DAS strain waveforms
53 with particle-velocity waveforms recorded by geophones. Similar agreement was found between
54 DAS and geophone observations and synthetic strain seismograms. The combination of good
55 SNR in the seismic frequency band, high-spatial density, large N, and highly accurate time
56 control among individual sensors suggests that DAS arrays have potential to assume a role in
57 earthquake seismology.

58

59 **Keywords:** Distributed Acoustic Sensing (DAS), ground motion, strain, particle velocity,
60 signal-to-noise ratio, earthquake seismology

61

62

63 **Introduction**

64 Distributed Acoustic Sensing (DAS) for sensing ground motion has been applied to
65 geophysical studies (Parker et al., 2014; Bakku, 2015). DAS technology has the potential to
66 image the subsurface using dense arrays whose spatial resolution is on the order of ten meters
67 and whose dimensions can be tens of kilometers given the relatively low cost of fiber-optic cable
68 and currently available interrogator and processing technology. The flexibility of fiber-optic
69 cable allows for many possible geometric configurations. Its use for Vertical Seismic Profiling
70 (VSP) in oil-and-gas reservoirs and CO₂ sequestration sites has been demonstrated in several case
71 studies (Johannessen et al. 2012; Miller et al, 2012; Madsen et al. 2013; Mateeva et al. 2014;
72 Miller et al, 2016). The fiber-optic cable can be permanently cemented behind casing in a
73 borehole to be used for repeat surveys. Fewer examples exist of horizontal deployments. The
74 University of Wisconsin-Madison and Silixa, Ltd. have conducted four trials beginning with a
75 90-meter layout on lake ice (Castongia et al., 2017), a 762-meter layout at Garner Valley,
76 California (Zeng et al., 2017a; Lancelle et al., 2017), a 9-km array at the Brady Hot Springs, NV
77 geothermal site (Feigl and PoroTomo Team, 2017; Zeng et al., 2017b), and a 250-m array in an
78 operating, underground limestone mine in N. Aurora, Illinois (Wang et al., 2017). Likewise,
79 Lawrence Berkeley National Laboratory (LBNL) and Silixa have an extensive program of
80 deploying fiber-optic cable layouts of increasing spatial size for monitoring carbon sequestration
81 and permafrost sites using a 150-meter receiver line and a 36-kilometer array at the Otway
82 (Australia) carbon sequestration site (Daley et al. 2013; Freifeld et al., 2016; Yavuz et al., 2016;
83 Dou et al., 2017; Lindsey et al., 2017). A 17-kilometer DAS array at the Nevada Test Site has
84 been reported by Mellors et al. (2014).

85 This paper utilizes data from the Brady Hot Springs 9-km DAS array together with a co-
86 located array of 238 three-component geophones (Fig. 1) to assess and correlate the different
87 physical measurements obtained with the two sets of arrays. Understanding the relationship
88 between DAS and geophone recordings is foundational for plans to apply DAS in earthquake
89 seismology. During the 15 days of continuous recording in March 2016, both arrays recorded
90 data from a ML 4.3 earthquake, whose epicenter at Hawthorne, NV, was about 150-km south-
91 southeast of the field site (Fig. 2). The focal depth was 9.9 km. The data from this earthquake are
92 the basis for examining how DAS records ground motion as a sensor for use in earthquake
93 seismology.

94 The paper is organized as follows. 1) First, a brief overview of the Brady field experiment is
95 provided. 2) Second, the principles of DAS are described. 3) Finally, the different characteristics
96 of DAS are illustrated and compared with geophone responses for the M_L 4.3 Hawthorne
97 earthquake.

98

99

100 **Brady Hot Springs**

101 The DAS array at Brady Hot Springs was deployed as part of a large, coordinated
102 hydrogeophysical experiment for Poroelastic Tomography (PoroTomo) conducted over a two-
103 week period in March 2016 in a geothermal field operated by Ormat Technologies (Feigl and
104 PoroTomo Team, 2017). The field laboratory encompasses a volume that covered a surface area
105 of 1500 m by 500 m down to a depth of 400 m (Fig. 1). The subsurface geology consists of
106 several hundred meters of alluvium beneath which is the geothermal reservoir of layered Tertiary
107 volcanic rocks that overlie Mesozoic crystalline intrusions (e.g., Siler & Faulds, 2013; Jolie et
108 al., 2015). Subsidence has been measured using geodetic techniques and modeled using elastic
109 dislocations (Ali et al., 2016).

110 A variety of sensors were emplaced throughout the volume. The 8700-meter DAS fiber-
111 optic sensing array was installed horizontally in three, parallel zig-zag patterns in a trench
112 approximately 0.50 m in depth (Fig. 1). The array included approximately 360 meters of cable
113 emplaced in a borehole in the southwest corner of the layout. Results for the borehole DAS using
114 a Vibroseis source are discussed by Miller et al. (2018). DAS specifications included calibration
115 factors that converted field recorded raw data into physical units of nanostrain per second. The
116 array recorded continuously. DAS data associated with the analysis of the Hawthorne earthquake
117 are available at the National Geothermal Data Repository (University of Wisconsin, 2016a).

118 A conventional, 3-component array of 238 Fairfield Nodal ZLand 3C seismometers also
119 recorded continuously. Seismometers were buried in shallow holes at a nominal depth of 0.3 m.
120 Nodal specifications included calibration factors that converted signal counts into physical units
121 of micrometers per second. The Nodal Zland 3C has a natural frequency of 5 Hz and a

122 documented frequency response,¹ which transforms phase and amplitude of coil-case velocity
123 into ground velocity. At 5 Hz the phase response is 90° and it approaches polarity reversal (180°)
124 at 0.1 Hz. The amplitude response decreases about 2 decades per decade of decrease in
125 frequency between 5 Hz and 0.1 Hz. Nodal geophone data associated with the analysis of the
126 Hawthorne earthquake are available at the National Geothermal Data Repository (University of
127 Wisconsin, 2016b).

128 Both active source and ambient noise studies are underway for three-dimensional,
129 tomographic imaging of the experimental volume to determine the ability of the DAS and/or
130 seismometer arrays to image the experimental volume (Zeng et al., 2017b; Thurber et al., 2017;
131 Matzel et al., 2017).

132

133

134 **DAS Recording of Ground Motion**

135 The ground-motion information contained in DAS data is examined in this paper in
136 physically meaningful ways by analyzing them in conjunction with the data recorded by the
137 geophone array. First, the physical quantity measured by DAS is described. Second, the basic
138 signal-to-noise characteristics of DAS data are presented using the geophone results as a
139 benchmark in both time and frequency domain. Then, several physically based relationships
140 between DAS data and co-located geophone data are examined using different cable segments.

141

142 DAS Strain-Rate Data

143 Silixa's DAS technology records ground motion as strain rate, $\dot{\epsilon}$, measured in the direction
144 of the cable (Parker et al., 2014; Daley et al., 2015). Light pulses (typically 50-100 nsec long) are
145 sent into the fiber at a rate that is typically one pulse every 100 microseconds, i.e., at a frequency
146 of 10 kHz. At each spatial sampling location x (channel) and at each time t , the Silixa DAS
147 interrogator passes the backscattered light over a fixed distance (gauge length) L centered at x
148 through optical components that create a coherent interference signal. The change in optical

¹ Zland 3C reference sheet: <http://static.fairfieldnodal.com/assets/media/pdf/ZLand-3C-typical-specs.pdf> and PASSCAL Instrument Center: <https://www.passcal.nmt.edu/content/fairfieldnodal-zland-3-channel-sensor>.

149 phase at each channel between successive pulses is computed and represents an accurate proxy
150 for change in average optical length of a gauge-length segment of fiber, centered at the
151 corresponding channel location. The data for our survey were calibrated in physical units by a
152 gain of 11.6 nanometers per radian of optical phase change to obtain the change in displacement
153 u between pulses over the gauge length L between time steps t and $t + dt$ (Daley et al., 2015).

154

$$155 \left[u\left(x + \frac{L}{2}, t + dt\right) - u\left(x - \frac{L}{2}, t + dt\right) \right] - \left[u\left(x + \frac{L}{2}, t\right) - u\left(x - \frac{L}{2}, t\right) \right]. \quad (1)$$

156

157 Dividing by L and dt gives fiber strain-rate averaged over the gauge length. The gauge
158 length sets the spatial resolution of the DAS array, which was 10 m in the PoroTomo survey.
159 Typical value ranges from 7 to 35 meters (Mateeva et al., 2014). In theory longer gauge lengths
160 should lead to higher SNR but lower spatial resolution. The spatial resolution is distinct from the
161 spatial sampling, which may be as small as 0.25 meters (Miller et al., 2016) because Silixa's
162 acquisition system oversamples both spatially and temporally to provide denoised raw files (see
163 Daley, et al., 2015 for a detailed discussion of the optical noise).

164 The Brady strain-rate data were provided as a two-dimensional array at 1-m spacing
165 between channels and 1 msec in time. The general practice of time integration was adopted to
166 convert strain rate $\dot{\epsilon}$ to cumulative strain ϵ . This processing step reduced optical noise.
167 Because strain rate or strain is measured in the direction of cable, its amplitude decreases
168 theoretically as $\cos^2\alpha$ ("broadside effect") (Mateeva et al., 2014), where α is the angle between
169 the orientation of the cable and direction of earth particle motion for a perfectly coupled incident
170 homogeneous compressional signal.

171 The DAS fiber cable in the Brady field is laid out in a zigzag pattern with 71 contiguous
172 segments. To map the locations of the DAS channels, "tap" testing was performed at corners of
173 the cable layout. The channel number associated with a sharp tap response was combined with its
174 location by real-time GPS to provide a fiducial point identifying a specific cable channel with its
175 UTM coordinates. Channels between tap-test locations were interpolated. Because channels
176 within ten meters of a corner in the cable layout are influenced by the changing directional
177 sensitivity, they are excluded from analyses that assume a constant direction for a cable segment.

178 The DAS data were stored in contiguous 30-second files in SEG-Y format. The delivered result
179 of Silixa's processing of raw field data at the Brady site was about 45 terabytes of data.

180

181 Signal-to-Noise Ratio

182 An overview of the signal-to-noise ratio (SNR) characteristics of DAS data in the time
183 domain is shown in Fig.3 for a four-second window around the P-wave arrival from the
184 Hawthorne earthquake. Traces from Segments 60 through 71 comprise channels 6994 through
185 8671. We estimate the earthquake Signal-to-Noise Ratio (SNR) by comparing root-mean-square
186 (RMS) amplitudes in representative one-second windows before and immediately following the
187 P arrival. For the raw strain-rate data (Fig. 3b), this computation gives signal RMS = 0.40 $\mu\epsilon/\text{sec}$,
188 noise RMS = 0.09 $\mu\epsilon/\text{sec}$, and an SNR = 4.4 or 13 dB. Because the raw signal is derived from
189 optical interferometry, there is a small sensitivity to vibration of the interrogator that results in an
190 easily estimated common signal present on all the DAS traces. After time-integration, which
191 removes the interrogator system's photonic noise, and rejection of the common signal associated
192 with interrogator shake, the data accurately represent a running 10-m average of fiber strain (Fig.
193 3c). For the fiber strain, signal RMS = 6.9 $n\epsilon$, noise RMS = 0.23 $n\epsilon$, and an SNR = 30 or 30 dB, a
194 significant improvement over the strain-rate SNR. As is evident in Fig. 3c, the noise in the strain
195 signal consists substantially of heterogeneous propagating environmental signal. The earthquake
196 arrival is similarly affected both by heterogeneity of the arriving signal and heterogeneity of the
197 coupling to fiber strain, particularly at the corners of the zigzag deployment.

198 Next, we compared the signal-to-noise ratio (SNR) characteristics of several co-located
199 DAS channels and Nodal geophones. In order to compare the same component of horizontal
200 ground motion as DAS, the waveforms of the two horizontal components of a geophone were
201 rotated into the direction of cable. A representative comparison is shown in Fig. 4 for Nodal
202 geophone N131 and DAS channel CH346 in the southwestern part of the array at local
203 coordinates X = 156.5 m; Y = -1.6 m in Fig. 1. The incident arrival from the ML 4.3 Hawthorne
204 earthquake is at an angle of $\sim 35^\circ$ relative to the orientation of the DAS cable segment, which is
205 parallel to the X-axis. The noise window ('Noise' in Fig. 4) was defined to be a two-second-long
206 interval before the P-wave arrival. The P and S windows were also chosen to be 2-second
207 intervals after their respective arrivals. The time-domain SNR is defined to be the ratio between
208 the maximum absolute value and the root-mean-square scatter during the noise window. For

209 comparing the SNR obtained for different DAS channels and nearby geophones, we accounted
210 for the angle α between the particle direction of the incident signal and the cable direction. The
211 DAS strain is proportional to $\cos^2\alpha$, whereas the geophone velocity is linearly proportional to \cos
212 α . A preliminary beamforming analysis using the geophone array indicated that the incident
213 angles of P and S waves are only a few degrees from the back azimuth to the earthquake. For
214 CH346 the SNR uncorrected for angle α was 13 for the P wave and it was 37 for the S wave.
215 Dividing by $\cos^2\alpha$ and $\cos\alpha$ for DAS and geophone, respectively, the corrected SNRs were 21
216 and 58, respectively. For N131 the P-wave SNR uncorrected for angle α was 22 and the S-wave
217 SNR was 94. The corrected SNRs were 27 and 117, respectively. Based on several dozen other
218 comparisons, the time-domain P-arrival SNRs for geophone records ranged for the most part
219 between 0.2 and 2 times the time-domain SNR of co-located DAS records (Fig. 5a). Although
220 the range of SNRs was similar for the time-domain S-arrival, a significant number of geophone
221 SNRs were greater than twice DAS SNRs (Fig. 5b), which may be related to the direction of the
222 S-wave polarization.

223 Because of the frequency-dependent response of seismometers and DAS, the SNR is also
224 frequency-dependent as discussed by Daley et al. (2015). Therefore, we also computed a
225 frequency-domain SNR after obtaining the power spectral density (PSD) of noise and signal as a
226 function of frequency using Welch's (1967) method. The left side of Fig. 6 shows spectrograms
227 for the 50-second windows recorded by Nodal N131 and DAS CH346 that were shown in Fig. 4.
228 The frequency content of the waveforms of the two sensors are remarkably similar as a function
229 of time. The right side of Fig. 6 shows the power spectra for the two-second noise, P-arrival, and
230 S-arrival windows. The P- and S-wave spectra contain more energy below 10 Hz than at higher
231 frequencies where all three spectra converge.

232 The frequency-domain SNR was defined to be the power ratio at a given frequency. A
233 comparison for the same example shown in Fig. 4 for the time domain SNR is shown in Fig. 7
234 for the frequency domain SNR. The frequency-domain SNRs of DAS and the geophone are very
235 similar. The SNRs measured for the Hawthorne earthquake at Brady were better than those
236 Daley et al. (2015) observed for active sources. In their study, they employed datasets from an
237 active-sweep source to compare the quality of geophone and DAS records. After stacking they
238 investigated the SNR of DAS to geophones with the result that DAS SNR was 18-to-24 dB
239 lower. Compared with active sources, an earthquake signal contains more low frequency energy

240 and the noise level is much lower at those lower frequencies (Fig. 7). Therefore, the SNR in our
241 case is better even without any stacking.

242 The quality of DAS sensitivity to ground motion at the approximately 1-Hz frequency
243 signal present in recordings of regional earthquakes is shown in Fig. 8. Two low-pass filters with
244 cut-off frequencies of 1.0 and 0.5 Hz were applied to the raw data of co-located DAS channel
245 0346 and geophone N131. The results show that comparable P- and S-wave signals were
246 recorded at frequencies down to 0.5 Hz (Fig. 8).

247

248

249 **DAS Strain Rate as Finite Difference of Geophone Particle Velocities**

250 Strain rate is defined mathematically by

$$251 \quad \dot{\varepsilon} = \frac{\partial \varepsilon}{\partial t} = \frac{\partial}{\partial t} \left(\frac{\partial u}{\partial x} \right), \quad (2)$$

252

253 where u is the particle displacement in the cable direction x . The definition of strain rate in Eqn.
254 (2) combined with the fact that DAS measures the average strain rate over the gauge length, L ,
255 leads to a finite difference relationship between strain rate as measured by a DAS channel and
256 particle velocity as measured by a geophone.

$$257 \quad \dot{\varepsilon}_{DAS}(x) = \frac{1}{L} \int_{x-\frac{L}{2}}^{x+\frac{L}{2}} \dot{\varepsilon}(l) dl = \frac{1}{L} \int_{x-\frac{L}{2}}^{x+\frac{L}{2}} \frac{\partial}{\partial t} \frac{\partial u}{\partial l} dl = \frac{1}{L} \int_{x-\frac{L}{2}}^{x+\frac{L}{2}} \frac{\partial}{\partial l} \frac{\partial u}{\partial t} dl = \frac{\dot{u}(x + \frac{L}{2}) - \dot{u}(x - \frac{L}{2})}{258 \quad L} \quad . \quad (3)$$

260

261 This relationship was derived by Bakku (2015) for a plane acoustic wave propagating along the
262 fiber-optic cable. Eqn. (3) carries assumptions of a homogeneous medium and long wavelengths
263 with respect to the gauge length. Eqn. (3) states that the DAS-measured strain rate is the finite
264 difference of the particle velocity that is recorded one-half gauge length on either side of the
265 DAS channel (Fig. 9 (top)). In other words, if there are two geophones whose compensated
266 records represent particle velocity, the strain rate recorded by a DAS channel at the midpoint of
267 the cable segment between them equals the difference of the two (velocity) seismograms divided
268 by their separation distance. Eqn. (3) can be generalized to any pair of geophones spaced an
269 integer number of gauge lengths apart by repeatedly summing channels one gauge length apart.

270 For example, if there are four geophones and three DAS channels, the sum of three DAS
271 channels at $x = -L$, 0, and $+L$ is equal to the difference of geophones at $x = +3L/2$ and $-3L/2$
272 divided by L (Fig. 9 (bottom)). The intermediate geophones at $x = -L/2$ and $L/2$ cancel out.
273

274

$$\dot{\varepsilon}(-L) + \dot{\varepsilon}(0) + \dot{\varepsilon}(L) = \frac{\dot{u}(-\frac{L}{2}) - \dot{u}(-\frac{3L}{2})}{L} + \frac{\dot{u}(\frac{L}{2}) - \dot{u}(-\frac{L}{2})}{L} + \frac{\dot{u}(\frac{3L}{2}) - \dot{u}(\frac{L}{2})}{L} 275 \quad (4)$$

277

$$= \frac{\dot{u}(\frac{3L}{2}) - \dot{u}(-\frac{3L}{2})}{L} . \quad 276$$

278

279 In general, the summation leads to cancellation of terms representing interior geophones
280 leaving only the difference of geophones at the end of a line segment of length nL when the
281 seismic wavelength is much larger than the length of the line segment.

282

283

$$\dot{\varepsilon}\left[-\frac{(n-1)L}{2}\right] + \dots + \dot{\varepsilon}[0] + \dots + \dot{\varepsilon}\left[\frac{(n-1)L}{2}\right] = \frac{\dot{u}(\frac{nL}{2}) - \dot{u}(-\frac{nL}{2})}{L}, \quad (5)$$

284

285 The finite difference relationship Eqn. (5) between DAS strain rate and geophone particle
286 velocity was tested along several cable segments (Fig. 10 (left)). Waveforms of the two
287 horizontal geophone components were rotated into the direction of the fiber-optic cable to obtain
288 the same component of ground motion as the DAS channels. The records of the DAS channels
289 were converted to nanostrain per second using the calibration factor 11.6 nanostrain per radian
290 supplied by Silixa. The first DAS channel used in Eqn. (5) is 5 m from the first geophone in the
291 $+x$ direction whereas the last channel is 5 m from the second geophone but in the $-x$ direction.
292 The interior channels used in Eqn. (5) were evenly sampled between the two ends in 10-channel
293 (one, gauge length) steps (Fig. 10 (right)). The cable segment lengths vary from 20 to 100
294 meters; thus, the number of DAS channels in the summation in Eqn. (5) varies from 3 to 10. The
295 angle between the cable segments and the incident wave from the Hawthorne epicenter varies
296 between 13° and 67°.

297 For the comparisons, the raw waveforms obtained by the geophones were converted from
298 counts to velocity seismograms in micrometers per second using the instrument calibration and
299 frequency response information provided by Fairfield Nodal. Both DAS strain rate and geophone

300 waveforms were bandpass filtered to select frequencies between 1 and 5 Hz. Because the shallow
301 structures on the highway and hill sides (separated by a service road) are quite different (Zeng et
302 al., 2017b), two series are shown for different cable segments to investigate possible effects of
303 different incident wave azimuths and site conditions for DAS sensing versus geophones. Figs. 11
304 and 12 show the comparison of the left- and right-hand sides of Eqn. (5) for the configuration of
305 geophones and DAS shown in Fig. 10 for the highway and hill side traces, respectively. Highway
306 and hill side differences were not apparent. The plots include a time shift that maximizes
307 absolute value of the cross-correlation coefficient between the two waveforms over the 50-
308 second window. The time shift of 0.1 seconds or less includes effects from several factors.
309 Although the timing of both acquisition systems was supposed to be synchronized via GPS,
310 small time differences are still present. Second, the location of DAS cable is not exactly the same
311 as the “co-located” geophone, which introduces an additional time difference. Third, the phase
312 response of the geophone around the resonant/natural frequency is another factor that affects the
313 waveform.

314 The left (DAS) and right (Nodals) hand sides of Eqn. (5) show high cross-correlation
315 coefficients and very similar waveforms. The P- and S-wave arrivals appear distinctly for each
316 sensor type. The amplitudes for the first several cycles of the P waves are also approximately the
317 same. The S-wave comparisons are poorer possibly due to interference from P-wave coda. The
318 coda is associated with converted phases and locally scattered signals off small-scale
319 heterogeneities near the surface. The coda might affect DAS differently than geophones because
320 of differences in ground coupling. Although both the geophones and DAS cable are buried at
321 similar depths of a few tenths of a meter, geophones are coupled with a single spike whereas
322 DAS’ 10-meter gauge length can be irregular due to heterogeneity of the backfill or near-surface
323 alluvium. Thus, the two sensors represent different spatial samples of ground motion.

324 In summary, the raw waveforms of the Hawthorne earthquake recorded by DAS and
325 geophones appear very similar (Fig. 4). They do, however, sense different physical variables, are
326 coupled differently, and have different response functions. The Silixa DAS system is configured
327 to measure strain rate with a gauge length of 10 meters. Integrating time samples readily converts
328 strain rate to strain. Definitions of strain in terms of displacement led to a finite-difference type
329 of relation between DAS strain and geophone particle velocity (Eqns. (3) – (5)). Testing the
330 equation with calibrated DAS and co-located geophones produced similar amplitudes in many

331 cases (Figs. 11 and 12), which is surprising given the obvious differences in how the two sensors
332 are coupled to the ground. The reasonably good cycle-for-cycle amplitude match deteriorates a
333 few cycles after an arrival, which is attributed to coda associated with near-surface scattering that
334 dominates the noise.

335

336

337 **DAS as Strain Meter and Virtual Geophone**

338 The concept of DAS as virtual geophones is based on the proportionality between strain and
339 particle velocity for a plane wave, where slowness is the constant of proportionality (Benioff,
340 1935). Benioff (1935) and Mikumo and Aki (1963) used it to obtain phase velocity of surface
341 waves from teleseismic earthquakes using data from a station with a co-located strain meter and
342 seismometer. Benioff's "linear strain seismograph" was a 20-meter rod that measured the
343 relative displacement of two piers using an electromagnetic transducer. Its base line length is
344 similar conceptually to gauge length in the DAS array, although its two-point coupling to the
345 earth is different than the continuous coupling of DAS cable buried in a shallow trench.

346

347 Relationship between Strain and Particle Velocity

348 The strain-particle velocity relationship was presented in the context of DAS by Daley et al.
349 (2015) and Bakku (2015). For a plane wave propagating in the x-direction, $u(x, t) =$
350 $A(x)e^{i(kx-\omega t)}$. Assuming $A(x)$ is constant,

351

$$352 \epsilon = \frac{\partial u}{\partial x} = \pm \frac{1}{c} \frac{\partial u}{\partial t} = \pm \frac{1}{c} \dot{u}, \quad (6)$$

353

354 where $1/c = k/\omega$ is the apparent slowness in the cable direction (also assumed to be constant), $\dot{u} =$
355 $\partial u / \partial t$ is particle velocity as measured by a conventional seismometer, and the sign is positive
356 when the cable channel number increases in the direction of wave propagation. Eqn. (6) will
357 serve as the initial basis for comparing a DAS channel with a co-located geophone. The
358 proportionality constant $1/c$ can be obtained using a phase velocity obtained from moveout in the
359 time domain from traces recorded in a DAS cable segment. Alternatively, it can be obtained as
360 the ratio k/ω in the frequency-wavenumber ($f-k$) domain. The time domain approach will be used

361 to convert a Nodal geophone trace to strain and the f - k domain approach will be used to convert a
362 DAS channel trace to particle velocity. The comparisons will be limited by how the physical
363 coupling of each sensor to the subsurface affects its recording of ground motion.

364

365 Converting Particle Velocity to Strain using Time-Domain Moveout

366 The apparent slowness is obtained in the time domain by tracking arrivals of a coherent
367 phase of the P-wave arrival from the Hawthorne earthquake along a DAS cable segment. The
368 locations of three geophones co-located with a DAS cable segment were chosen for the test are
369 shown in Fig. 13. The cable segments ranged between about 50 and 200 meters in length. The
370 apparent P-wave phase velocities ranged between 1124 and 1450 m/s from the best-fitting slopes
371 obtained from the moveouts shown in Fig. 14. The apparent P-wave phase velocity is mainly
372 controlled by two factors: P-wave velocity and incident direction. The V_p in the top 50 meters
373 obtained from tomography is about 1300 m/s (Thurber et al., 2017), but strong heterogeneity is
374 also present. The lower frequency of an earthquake arrival might also introduce uncertainty into
375 picking the arrival. As was done in the previous section, the co-located DAS channel and
376 geophone traces on a cable segment were bandpass filtered between 1 and 5 Hz after conversion
377 from raw data to physical units. The time-domain moveout velocities were used to scale the
378 Nodal traces (compensated for instrument response) and convert them to equivalent strain via
379 Eqn. (6). The resulting comparisons between the three co-located DAS channels and geophones
380 are shown in terms of strain for the P-wave arrival in Fig. 15 and for the S-wave arrival in Fig.
381 16. Although two of the three examples for each phase show comparable waveforms, the results
382 are poorer visually and have lower cross-correlation coefficients than examples of the finite
383 difference comparisons based on Eqn. (5) (Figs. 11 and 12). Given the small number of
384 examples, no correlation could be made between the fit and the spatial location (highway side or
385 hill side) of the cable segment.

386 We suspect that variable coupling along the cable segment adjacent to the co-located
387 geophone may be responsible for the poorer match, although variable coupling should also play a
388 role in the DAS-geophone comparison based on Eqn. (5). Controlled tests in uniform medium
389 with uniform coupling are needed to investigate Eqns. (5) and (6) rigorously.

390

391 Converting Strain Rate to Particle Velocity in f - k Domain

392 DAS strain-rate data can also be converted to particle velocity by processing a cable
393 segment in the f - k domain. As in the previous section, the raw DAS data were first converted to
394 strain by integrating with respect to time. The strain waveforms were then Fourier-transformed in
395 two dimensions from the time-space domain to the f - k domain. The transform coefficients $A(k, \omega)$
396 were scaled by k/ω because multiplication by k is equivalent to integration with respect to the
397 spatial variable x and division by ω is equivalent to differentiation with respect to the time
398 variable t . Thus, integrating strain with respect to x converts it to displacement and
399 differentiating the result with respect to time converts it to particle velocity (Eqn. (2)). Therefore,
400 we obtain particle velocity for each channel when $(k/\omega) \cdot A(k, \omega)$ is inversely transformed back to
401 the time-space domain. Note that the procedure scales the Fourier coefficients $A(k, \omega)$ by the
402 slowness k/ω , which is summarized below as MATLAB pseudo-script.

403

404 $\dot{u} = \text{ifft2}((k / \omega)A(k, \omega))$. (7a)

405 where $A(k, \omega) = \text{fft2}(\varepsilon(x, t))$. (7b)

406 The particle-velocity waveforms calculated by Eqn. (7) from a DAS cable segment can then
407 be used to compare co-located DAS channels and geophones (compensated for instrument
408 response and rotated into the cable direction) directly. Eqn. (7) converts a DAS channel into a
409 “virtual geophone.”

410 Out of 54 co-located pairs of DAS and geophones, we chose 6 to compare particle velocities
411 calculated from Eqn. (7) with those obtained from geophones (Fig. 17). The comparisons span
412 the whole array. Because the noise level is much lower below 5 Hz, all waveforms were band-
413 pass filtered between 1 and 5 Hz. Two series of examples are shown: three pairs on the hill side
414 (Fig. 18), and three pairs on the highway side (Fig. 19). The DAS waveform has been
415 transformed to a particle velocity using the f - k transform described by Eqn. (7) and the geophone
416 waveform is scaled by dividing by the ratio of the root-mean-square amplitude of the geophone
417 trace to that of the DAS trace (G/D in the left panel). As with the comparisons of DAS and
418 geophones in the previous section, time-shifted cross-correlation was used to optimize the fit.
419 The DAS virtual geophone and geophone waveforms fit each other well for the first couple of
420 cycles in both the P and S windows. As with the DAS and geophone comparison of Eqn. (5),
421 converted phases and locally scattered signals due to small-scale heterogeneity near the surface

422 might lead to differences in the P-wave coda recorded by DAS with its 10-meter spatial
423 averaging and geophones with their point coupling. Generally speaking, f - k scaling did not
424 improve the waveform fit over the direct comparison of DAS strain versus a co-located
425 geophone's particle velocity. Sometimes f - k scaling introduced a phase shift (e.g., N060), which
426 might be due to changes in coupling along a cable segment.

427 In summary, a DAS cable segment can be used to convert its strain waveform into a particle-
428 velocity waveform. Eqn. (7) was tested for the Brady array in two ways. In the time domain,
429 apparent velocities, and hence, its reciprocal, slowness, were obtained by tracking the phase of
430 an arrival along a cable segment. In the f - k domain, slowness was obtained using a cable segment
431 for the 2-D Fourier transforms of Eqn. (7). The velocity or slowness was then used to scale the
432 DAS strain rate for comparison with geophone particle-velocity waveforms (Figs. 15-16 and
433 Figs. 18-19, respectively). The comparisons using calibrated values produced results
434 significantly worse than tests of the finite difference Eqn. (5), as measured by cross correlation
435 coefficients, although reasonably good matches were obtained for a couple of cycles after an
436 arrival. One possible reason is that the coda can contain several superposed signals with different
437 signs. The coda waves are associated with geologic heterogeneity, such as small scatterers (e.g.
438 Poletto et al., 2016), which could affect the DAS waveform differently than a geophone's,
439 because DAS spatially averages over 10 meters whereas the geophone is a point sensor.

440

441

442 **Synthetic Strain Seismograms**

443 Several synthetic strain seismograms were computed for the Hawthorne event to guide
444 interpretation of the empirical observations. The University of Nevada, Reno (UNR) generates a
445 list of moment tensor solutions using the using the inversion code of Ichinose et al. (2014). The
446 code creates Green's functions for the available moment tensor solution
447 (<http://www.seismo.unr.edu/Earthquake> accessed on 12/3/17) to compute displacement
448 seismograms for any point in the region. The forward calculation used the 1-D Western US
449 velocity model of Ritsema and Lay (1995). The displacement seismograms can then be rotated
450 into the radial direction towards the earthquake epicenter and pairs of seismograms half a gauge
451 length on either side of a DAS channel location can be differenced in space to yield strain du/dx .

452 Comparisons of DAS and geophone waveforms were made with synthetic strain
453 seismograms for a segment of fiber that is approximately aligned with the back azimuth to the
454 earthquake (Fig 20). Waveforms from four DAS channels were selected and integrated to yield
455 strain. Also, waveforms from two geophones that are approximately co-located at the ends of the
456 cable segment were rotated and integrated with respect to time to obtain displacement and
457 differenced with respect to space to provide an alternate strain estimate. These are plotted
458 together with the synthetic strain seismogram at the midpoint of the cable segment. As the
459 synthetics are limited to a maximum frequency of about 0.5 Hz, due to the relatively simple
460 model, and the geophone's corner frequency is 5 Hz, the strain waveforms derived from them
461 were band passed from 0.25 to 0.5 Hz. Figure 20 shows the filtered results, which are trace-
462 normalized and aligned by origin time.

463 The synthetic strain seismogram matches the geophone's well, except for the P wave, which
464 is poorly recorded at these frequencies by the geophone, although evident at higher frequencies.
465 The synthetics show a clear Rayleigh wave train about 60 seconds after the P, which is likely
466 pronounced due to the simple velocity model, as more complex (and realistic) models tend to
467 decrease the Rayleigh amplitude. The DAS signals resemble the synthetics for the channels at
468 the ends of the cable segment; the P wave, in particular, is well matched. The slight difference in
469 azimuth (< 20°) between the synthetics and the DAS does not have a significant effect on the
470 seismograms.

471
472

473 Discussion

474 Both DAS and geophone arrays at Brady Hot Springs clearly recorded the regional $M_L = 4.3$
475 Hawthorne earthquake on March 21, 2016. Its epicenter was 150-kilometers SSE (159°) from the
476 Brady natural laboratory. The co-located arrays provided the opportunity to compare the signal-
477 to-noise characteristics of DAS and geophone data and to examine how their physical quantities
478 are related to each other. These results provide insights into the potential for implementing DAS
479 as a seismic array. A DAS array can contain a very large number of time-synchronous sensor
480 points at meter-scale spatial density over distances that are tens of kilometers in length. DAS,
481 however, records only a single component of strain and it is directionally sensitive.
482 Theoretically, it has zero sensitivity to broadside motion. Lindsey et al. (2017) found that DAS

483 and a broadband seismometer gave essentially identical estimates of main body wave arrival
484 times, peak ground accelerations, and coda for a M3.8 Alaska Range earthquake recorded 150-
485 km away in Fairbanks. They found as well that DAS did not record P-wave phases as well as the
486 seismometer. Phase identification can be problematic using a single-component point sensor
487 (Bormann et al., 2014), because polarization analysis, which is widely used to identify phase
488 or to suppress noise (Schimmel and Gallart, 2003), cannot be used with DAS data. Other
489 factors influence the earthquake waveforms recorded by a DAS array – optical system noise,
490 signal and noise strengths and spectra, near-surface heterogeneity, and coupling of ground
491 motion with the cable. The influence of the near-field geology of the cable array is assessed by a
492 map of time-domain SNRs (Fig. 21) in which every tenth DAS channel is represented by a dot
493 and contours are based on the SNR of the east component of geophones. The correlation between
494 the two values suggests that the SNR of DAS is controlled mostly by site effects. In general, the
495 central part of the “PoroTomo Natural Lab” is a low-velocity zone on tomography slices
496 (Thurber et al., 2017) and also shows low SNR. Another indicator of local heterogeneity was
497 observed by Miller et al. (2018) in interpreting two Vertical Seismic Profiles (VSPs) in borehole
498 56-1 located in the southwest corner of the array (Fig. 1). Distinctly different statics corrections
499 were required for two profiles in which one Vibroseis source was to the northeast by 260 m and
500 the other source was 260 m to the southwest. Strong site effects dominated directional sensitivity
501 as we found no correlation between cable direction and SNR (Fig. 22). The crosses denote the
502 measured SNR of the P-wave, which would be expected to vary only as a function of $\cos^2\alpha$, if
503 directional sensitivity were the only variable. All the P-wave SNRs should be a single value.
504 However, the plot shows that the measured SNR fluctuates widely for channels on cable
505 segments for which $\cos^2\alpha$ is constant, which could be the result of local heterogeneity or variable
506 coupling of the cable to the ground. A best-fit linear regression of SNR versus $\cos^2\alpha$ (red line)
507 shows that the deviations do not show any trend with broadside angle. Variable near-surface
508 geology, variable coupling or the changing direction of cable segments reduce wavefield
509 coherency across the array, but it appears that the first two possibilities dominate at the Brady
510 site.
511
512
513

514 **Conclusions**

515 The performance of overlapping arrays of 8.7 km of DAS cable and 238 geophones was
516 studied using P- and S-wave arrivals from a $M_L = 4.3$ earthquake whose epicenter was 150 km
517 away. Both arrays showed highly similar waveform traces in recording P- and S-wave ground
518 motion from the earthquake. The signal-to-noise ratio of DAS cumulative strain is improved over
519 raw strain rate. The signal-to-noise ratio of a single DAS channel was generally lower by a factor
520 of two when compared to geophones at earthquake body-wave frequencies of a few Hertz, but
521 increases at lower frequencies. The signal-to-noise ratios of both DAS and geophones varied
522 with local geological heterogeneity. The SNRs measured for the Hawthorne earthquake at Brady
523 were better than observed for active sources.

524 A comparison of DAS strain waveform as a finite difference of two geophone waveforms
525 worked well in several test cases. Also, the strain waveforms measured by DAS correlated well
526 with particle-velocity waveforms measured by geophones for the first couple of cycles after an
527 arrival. Apparent velocities were obtained both by analyzing DAS data in the time domain and in
528 the f - k domain. The amplitudes of the strain waveforms computed from geophone waveforms
529 were comparable to those of DAS waveforms, although the waveforms themselves showed
530 variable cross-correlation values. Synthetic strain seismograms can be a useful tool to
531 provide a controlled baseline for first-order comparisons. In general, the physics of ground
532 motion measured by DAS and geophones were confirmed. DAS has significant potential for
533 contributing to seismic array analysis of regional earthquakes.

534

535

536 **Acknowledgments**

537 We are extremely grateful to Fan-Chi Lin (University of Utah), Amanda Thomas
538 (University of Oregon), and Marianne Karplus (University of Texas-El Paso) for contributing
539 their Fairfield Nodal Zland 3-component sensors to our project. We thank Michelle Robertson
540 (LBNL) and the T-REX crew; Joe Greer, Thomas Coleman and the Silixa team; John Akerley,
541 Paul Spielman, Janice Lopeman and Ormat Technologies; Neal Lord; and the PoroTomo field
542 deployment personnel.

543 The paper was greatly strengthened by thorough and thoughtful reviews by editor Martin
544 Schimmel and reviewer Pavel Golikov.

545 The work presented herein was funded in part by the Office of Energy Efficiency and
546 Renewable Energy (EERE), U.S. Department of Energy, under Award Number DE-EE0006760.
547 X. Zeng was also partially supported by the Hundred Talents Program of the Chinese Academy
548 of Sciences. R. Mellors' contribution was prepared by LLNL under contract DE-AC52-
549 07NA27344R.
550
551

552

553 **References**

554 Ali, S. T., Akerley, J., Baluyut, E. C., Cardiff, M., Davatzes, N. C., Feigl, K. L., Foxall, W.,
555 Fratta, D., Mellors, R. J., Spielman, P., Wang, H. F. & Zemach, E., 2016. Time-series
556 analysis of surface deformation at Brady Hot Springs geothermal field (Nevada) using
557 interferometric synthetic aperture radar. *Geothermics*, **61**, 114-120.

558

559 Bakku S. K., 2015. Fracture Characterization from Seismic Measurements in a Borehole, PhD
560 Thesis, Massachusetts Institute of Technology, MA, USA.

561

562 Benioff, H., 1935. A linear strain seismograph, *Bull. Seismol. Soc. Am.*, **25**, 283-309.

563

564 Bormann, P., Klinge, K., & Wendt, S., 2014: Data Analysis and Seismogram Interpretation, in
565 Bormann, P. (Ed.), *New Manual of Seismological Observatory Practice 2 (NMSOP-2)*,
566 Potsdam : Deutsches GeoForschungsZentrum GFZ, pp. 1—126. DOI:
567 http://doi.org/10.2312/GFZ.NMSOP-2_ch11.

568

569 Castongia E., Wang H.F., Lord N., Fratta D., Mondanos M., & Chalari A., 2017. An
570 Experimental Investigation of Distributed Acoustic Sensing (DAS) on Lake Ice, *Journal of*
571 *Environmental and Engineering Geophysics*, **22**(2), 167-176.

572

573 Daley T. M., Freifeld B. M., Ajo-Franklin J., Dou S., Pevzner R., Shulakova V., Kashikar S.,
574 Miller D. E., Goetz J., Henninges J., & Lueth S., 2013. Field testing of fiber-optic
575 Distributed Acoustic Sensing (DAS) for subsurface seismic monitoring, *The Leading Edge*,
576 **32**(6), 699-706.

577

578 Daley T. M., Miller D. E., Dodds K., Cook P., & Freifeld B. M., 2015. Field testing of modular
579 borehole monitoring with simultaneous distributed acoustic sensing and geophone vertical
580 seismic profiles at Citronelle, Alabama, *Geophysical Prospecting*, **64**(5), 1318-1334.

581

582 Feigl, K. L., & PoroTomo Team (2017). Overview and Preliminary Results from the PoroTomo
583 Project at Brady Hot Springs, Nevada: Poroelastic Tomography by Adjoint Inverse
584 Modeling of Data from Seismology, Geodesy, and Hydrology. *Geothermal, Proceedings*,
585 42nd Stanford Geothermal Workshop, Stanford University, Stanford, CA. Stanford
586 University, Stanford, California, February 13-15, 2017, SGP-TR-212, 15 pp.

587

588 Freifeld, B. M., Pevzner, R., Don, S., Correa, J., Daley, T. M., Robertson, M., Tertyshnikov, K.,
589 Wood, T., Ajo-Franklin, J., Urosevic, & M., Gurevich, B., 2016. The CO2CRC Otway
590 Project deployment of an Areal Distributed Acoustic Sensing Network Coupled with
591 Permanent Rotary Sources, *78th EAGE Conference & Exhibition 2016*, Vienna, Austria, 30
592 May – 2 June 2016.

593

594 Ichinose, G., Roman-Nieves, J. and G. Kraft., 2014. Moment Tensor Inversion Toolkit (MTINV)
595 Documentation, Manual and Tutorial,
596 <http://crack.seismo.unr.edu/htdocs/students/Ichinose/mtinv/mtinv.pdf> (accessed
597 Dec. 12, 2018).

598

599 Johannessen K., Drakeley B., & Farhadiroushan M., 2012. Distributed Acoustic Sensing - a new
600 way of listening to your well/reservoir, *SPE Intelligent Energy International* held in Utrecht,
601 The Netherlands, 27–29 March 2012, SPE 149602, 9 pp.

602

603 Jolie, E., Moeck, I., & Faulds, J. E., 2015. Quantitative structural–geological exploration of fault-
604 controlled geothermal systems–A case study from the Basin-and-Range Province, Nevada
605 (USA), *Geothermics*, **54**, 54–67.

606

607 Lancelle C., Baldwin J. A., Lord N. E., Fratta D., Chalari A., & Wang H. F., 2017. Using
608 Distributed Acoustic Sensing (DAS) for Multichannel Analysis of Surface Waves (MASW)
609 to evaluate ground stiffness, *Near Surface Geophysics*, submitted.

610

611 Lim I., Ning C., & Sava, P., 2016. Multicomponent distributed acoustic sensing. *SEG Technical
612 Program Expanded Abstracts 2016*, pp. 5597–5602. doi: 10.1190/segam2016-13952981.1

613

614 Madsen K.N., Dümmong S., Kritski A., Pedersen Å.S., Finfer D., Gillies A., & Travis P., 2013.
615 Simultaneous Multiwell VSP in the North Sea Using Distributed Acoustic Sensing, *75th
616 EAGE Conference & Exhibition incorporating SPE EUROPEC 2013*, London, UK, 10-13
617 June 2013, 5 pp.

618

619 Mateeva A., Lopez J., Potters H., Mestayer J., Cox B., Kiyashchenko D., Wills P., Grandi S.,
620 Hornman K., Kuvshinov B., Berlang W., Yang Z., & Detomo R., 2014. Distributed acoustic
621 sensing for reservoir monitoring with vertical seismic profiling, *Geophysical Prospecting*,
622 **62**, 679–692.

623

624 Matzel, E., Zeng, X., Thurber, C., Luo, Y., & Morency, C., 2017. Seismic Interferometry Using
625 the Dense Array at the Brady Geothermal Field. *Proceedings, 42nd Stanford Geothermal
626 Workshop*, Stanford University, Stanford, California, February 13–15, 2017, SGP-TR-212, 4
627 pp.

628

629 Mellors R. J., Pitarka A., Kuhn M., Stinson B., Ford S. R., Snelson C., & Drachenberg D., 2014.
630 Fiber Optic Acoustic Sensing (FOAS) Far-Field Observations of SPE 3, *Seismological
631 Research Letters*, **85**(2), 450 (abstract).

632

633 Mikumo, T. & Aki, K., 1964. Determination of local phase velocity by intercomparison of
634 seismograms from strain and pendulum instruments, *J. Geophys. Res.*, **69**, 721–731.

635

636 Miller D., Parker T., Kashikar S., Todorov M., & Bostick T., 2012. Vertical Seismic Profiling
637 using a fibre-optic cable as a Distributed Acoustic Sensor, *74th EAGE Conference &*

638 *Exhibition incorporating SPE EUROPEC 2012, Copenhagen, Denmark, 4-7 June 2012, 5*
639 pp.
640
641 Miller D. E., Daley T. M., White D., Freifeld B. M., Robertson, M., Cocker, J., & Craven, M.,
642 2016. Simultaneous Acquisition of Distributed Acoustic Sensing VSP with Multi-mode and
643 Singlemode Fibre Optic Cables and 3C- Geophones at the Aquistore CO₂ Storage Site,
644 *CSEG Recorder*, June 2016, 28-33.
645
646 Miller, D.E, Coleman,T., Zeng, X., Patterson, J.R., Reinisch, E., Cardiff, M.A., Wang, H.F.,
647 Fratta, D., Trainor-Guitton, W., Thurber, C.H., Feigl, K., & the PoroTomo Team, DAS and
648 DTS at Brady Hot Springs: Observations about coupling and coupled interpretations,
649 *Proceedings*, 43rd Stanford Geothermal Workshop, Stanford University, Stanford, CA.
650 Stanford University, Stanford, California, February 12-14, 2018.
651
652 Parker T., Shatalin S. V., & Farhadiroshan M., 2014. Distributed Acoustic Sensing - A new tool
653 for seismic applications, *First Break*, **32**(2), 61-69.
654
655 Poletto, F., Finfer, D., Corubolo, P., & Farina, B., 2016. Dual wavefields from distributed
656 acoustic sensing measurements, *Geophysics*, **81**(6), D585-D597.
657
658 Ritsema, J. & Lay, T., 1995. Long-period regional wave moment tensor inversion for
659 earthquakes in the western United States, *J. Geophys. Res.*, **100**, 9853-9864.
660
661 Schimmel, M., & Gallart, J. (2003). The use of instantaneous polarization attributes for seismic
662 signal detection and image enhancement. *Geophysical Journal International*, **155**(2), 653-
663 668.
664
665 Siler D.L. & Faulds J.E., 2013. Three-Dimensional Geothermal Fairway Mapping: Examples
666 From the Western Great Basin, USA, *Geothermal Resources Council Transactions*, **37**, 327-
667 332.
668
669 Thurber, C., Zeng, X., Parker, L., Lord, N., Fratta, D., Wang, H., Matzel, E., Robertson, M.,
670 Feigl, K., & PoroTomo Team, 2017. Imaging seismic structure of geothermal reservoir with
671 large N array at Brady Hot Springs, Nevada, 2017 Annual meeting of Seismological Society
672 of America, Denver, CO (abstract).
673
674 University of Wisconsin. (2016a). PoroTomo Project - Subtask 6.2: Deploy and Operate DAS
675 and DTS arrays - DAS Earthquake Data [data set]. Retrieved from
676 <https://gdr.openei.org/submissions/848>. <https://dx.doi.org/10.15121/1334285>.
677
678 University of Wisconsin. (2016b). PoroTomo Subtask 6.3 Nodal Seismometer Earthquake Data
679 [data set]. Retrieved from <https://gdr.openei.org/submissions/846>.
680 <https://dx.doi.org/10.15121/1334284>.
681

682 Wang, H.F., Zeng, X., Lord, N.E., Fratta, D., Coleman, T., MacLaughlin, M., 2017. Field trial of
683 Distributed Acoustic Sensing in an active room-and-pillar mine, 2017 Fall meeting of
684 American Geophysical Union, New Orleans, LA, 11-15 Dec. (abstract S33F-03).
685

686 Welch, P. D., 1967. The use of Fast Fourier Transform for the estimation of power spectra: A
687 method based on time averaging over short, modified periodograms, *IEEE Transactions on*
688 *Audio and Electroacoustics*, AU-15 (2), 70–73.
689

690 Yavuz S., Freifeld B. M., Pevzner R., Tertyshnikov K., Dzunic A., Ziramov S., Shulakova V.,
691 Robertson M., Daley T. M., Wood T., Kepic A., & Urosevic M., 2016. Kinmetrics EPI ES-T
692 buried DAS and geophone arrays: preliminary results from CO2CRC Otway project, 78th
693 *EAGE Conference & Exhibition 2016*, Vienna, Austria, 30 May – 2 June 2016.
694

695 Zeng X., Lancelle, C. Thurber C., Fratta D., Wang H. F., Lord N., Chalari A., & Clarke A.,
696 2017a. Properties of ambient noise cross-correlation functions obtained from a Distributed
697 Acoustic Sensing array at Garner Valley, California, *Bull. Seismol. Soc. Am.*, **107**, 603-610.
698

699 Zeng, X., Thurber, C., Wang, H., Fratta, D., Matzel, E., & PoroTomo Team, 2017b. High-
700 resolution Shallow Structure Revealed with Ambient Noise Tomography on a Dense Array.
701 *Proceedings*, 42nd Stanford Geothermal Workshop, Stanford University, Stanford,
702 California, February 13-15, 2017, SGP-TR-212, 5 pp.
703

704

705

706

707

708 **Figure Captions**

709

710 Figure 1. PoroTomo natural laboratory and DAS cable layout at Brady Hot Springs. The
711 boundaries of the natural laboratory are shown as a grey rectangle. The surface DAS cable is
712 shown by the blue line and geophones are denoted with crosses. The injection, production, and
713 observation wells are indicated with red, blue, and green solid circles, respectively. A 340-m
714 long DAS cable was installed in Well 56-1. Highway I-80 and service road are denoted with
715 solid and dashed green lines, respectively.

716

717

718 Figure 2. Location of Hawthorne earthquake ($M_L = 4.3$,
719 <https://earthquake.usgs.gov/earthquakes/eventpage/nm00536374>) 150-km south-southeast of
720 Brady Hot Springs.

721

722

723 Figure 3. (a) DAS traces in (b) and (c) are for 12 cable segments shown in red on the cable map.
724 Ray direction from Hawthorne earthquake is shown as blue arrow. (b) Raw DAS recording of
725 strain rate. Time is seconds after origin time of $M_L 4.3$ Hawthorne earthquake. (c) Integration
726 with respect to time of raw DAS from strain rate to strain. Noise and P-wave signals were
727 averaged within the red boxes to obtain SNR of 4.4 for strain rate and 30 for strain.

728

729

730

731 Figure 4. Example comparison of normalized DAS strain rate (blue) and raw geophone coil-case
732 velocity (red) records for March 21, 2016 Hawthorne earthquake. Boxes show the two-second
733 time windows that were used to obtain noise and signal for P and S-wave arrivals. The geophone
734 record was scaled to match its peak amplitude to that of DAS. The inset map shows location of
735 DAS segment (red line) and geophone (green triangle).

736

737

738

739 Figure 5. Comparison of time domain SNR of P- (left) and S-wave (right) arrivals of co-located
740 raw geophone coil-case velocity and raw efDAS strain rate records. Slopes of $\frac{1}{2}$, 1, and 2 are
741 shown for reference as dashed lines.

742
743

744 Figure 6. Spectrogram (left side) and power spectral densities (PSD) for P-wave and S-wave
745 arrivals and noise for raw Geophone N131 coil-case velocity (top right) and raw DAS CH 346
746 strain rate (bottom right) records.

747
748

749 Figure 7. Comparison of frequency-domain SNR of P- (left) and S-(right) wave arrivals for raw
750 Geophone N131 coil-case velocity (red) and raw DAS CH 346 strain rate (blue) records.

751
752

753 Figure 8. Comparison of DAS CH0346 strain rate (blue) and geophone N131 case coil (red)
754 waveforms for raw and low-pass P- and S-waves cut off (lp c) at 0.5 and 1 Hz.

755
756

757 Figure 9. (Top) Illustration of Eqn. (3) for two geophones spaced 1-gauge-length L apart where a
758 DAS channel located at the midpoint is the finite difference of a pair of geophones particle-
759 velocity recordings. The triangles are geophones and the circle is a DAS channel; (Bottom)
760 Illustration of Eqn. (4) for two geophones spaced 3-gauge-lengths apart in which case the sum of
761 the three DAS channels is equal to the difference of the two geophones at the end of the segment
762 divided by L.

763
764

765 Figure 10. (Left) Map showing locations of DAS cable segments (red) and geophone pairs used
766 in Eqn. (5). The Hawthorne-to-Brady direction is shown as a black arrow. (Right) Geometry of
767 each DAS cable segment and geophone pairs. The horizontal axis is distance along cable for
768 each line segment.

769

770
771 Figure 11. Highway side test of Eqn. (5). Compensated geophone ground velocity (red) and DAS
772 strain rate waveforms (blue) were bandpass filtered between 1 and 5 Hz and aligned using the
773 best-fit, time-shifted cross correlation. Both P and S-wave arrivals are shown. On the left set of
774 panels, the DAS and geophone waveforms have been offset vertically for clarity. The geophone
775 waveform has been divided by gauge length L according to Eqn. (5) so that both plotted traces
776 are in units of nanometers/second. The cross-correlation coefficient (CC) between the two
777 waveforms and the angle between the DAS cable segment and earthquake arrival are shown. The
778 middle column expands the time scale for the P-wave arrival and the right column expands the
779 time scale for the S-wave arrival. (Top) Cable segment CH498- CH541, (Middle) Cable segment
780 CH398 – CH441. (Bottom) Cable segment CH1761-CH1815.

781
782
783 Figure 12. Hill side test of Eqn. (5). Compensated geophone ground velocity (red) and DAS
784 strain rate waveforms (blue) were bandpass filtered between 1 and 5 Hz and aligned using the
785 best-fit, time-shifted cross correlation. Both P and S-wave arrivals are shown. See caption of Fig.
786 11 for details. (Top) Cable segment CH5434-5492. (Middle) Cable segment CH5900-CH5921.
787 (Bottom) Cable segment CH7009-CH7102.

788
789
790 Figure 13. Three co-located DAS channels and geophones (red triangles) were compared using
791 Eqn. (6). DAS cable is shown in green line.

792
793
794 Figure 14. The apparent velocities of the P-wave arrival measured from raw DAS strain rate
795 traces along cable segments near the three geophones shown in Fig. 13. The gray-scale shading
796 represents amplitude while three individual traces are shown in blue. The apparent velocities are
797 obtained from the best-fit slopes shown by the red lines. (a) CH 0482 – 0688 is 1124 m/s. (b) CH
798 2068 – 2113 is 1452 m/s. (c) CH 8431 – 8643 is 1185 m/s.

799
800

801 Figure 15. Three P-arrival comparisons of co-located DAS channels (blue) and geophones (red)
802 using Eqn. (6) and apparent velocities from Fig. 14. DAS traces are strain and geophone traces
803 are ground velocity after compensating for instrument response. DAS and geophone traces were
804 bandpass filtered between 1 and 5 Hz after conversion from raw data to physical units. The
805 apparent velocities, ratios of RMS amplitudes, and cross-correlation coefficients of geophone
806 and DAS signals are shown in upper left corner of each panel.

807

808 Fig. 16. Three S-arrival comparisons of co-located DAS channels (blue) and geophones (red) for
809 P-wave arrival using Eqn. (6) and apparent velocities from moveout (not shown). DAS traces are
810 strain and geophone traces are ground velocity after compensating for instrument response. DAS
811 and geophone traces were bandpass filtered between 1 and 5 Hz after conversion from raw data
812 to physical units. The apparent velocities, ratios of RMS amplitudes, and cross-correlation
813 coefficients of geophone and DAS signals are shown in upper left corner of each panel.

814

815 Figure 17. Six co-located DAS channels and geophones (red triangles) were compared using
816 Eqn. (7). DAS cable is shown in green line. The arrow is the direction of the incident wavefield
817 from the Hawthorne earthquake.

818

819

820 Figure 18. Hill side test of Eqn. (7). Compensated geophone ground velocity (red) and DAS
821 time-integrated strain waveforms (blue) were bandpass filtered between 1 and 5 Hz and aligned
822 using the best-fit, time-shifted cross correlation. In the left column, the DAS and geophone
823 waveforms have been offset vertically for clarity in the left set of panels. The middle column
824 expands the time scale for the P-wave arrival and the right column expands the time scale for the
825 S-wave arrival. (Top row) N026 and CH 5642. (Middle row) N049 and CH 5558. (Bottom row)
826 N060 and CH 7107.

827

828

829 Figure 19. Highway side test of Eqn. (7). See caption of Fig. 18 for details. (Top row) N134 and
830 CH 874. (Middle row) Cable segment N141 and CH 2417. (Bottom row) N147 and CH 3017.

831

832 Figure 20. Comparison of synthetic strain seismogram, DAS channels, and geophone finite
833 difference.

834

835

836 Figure 21. Time-domain DAS and geophone SNR map for (a) P-wave arrival and (b) S-wave
837 arrival. Dots are the SNR of every 10th DAS channel and contours are based on the SNR of the
838 east component of geophones, which is a good approximation of site effects.

839

840

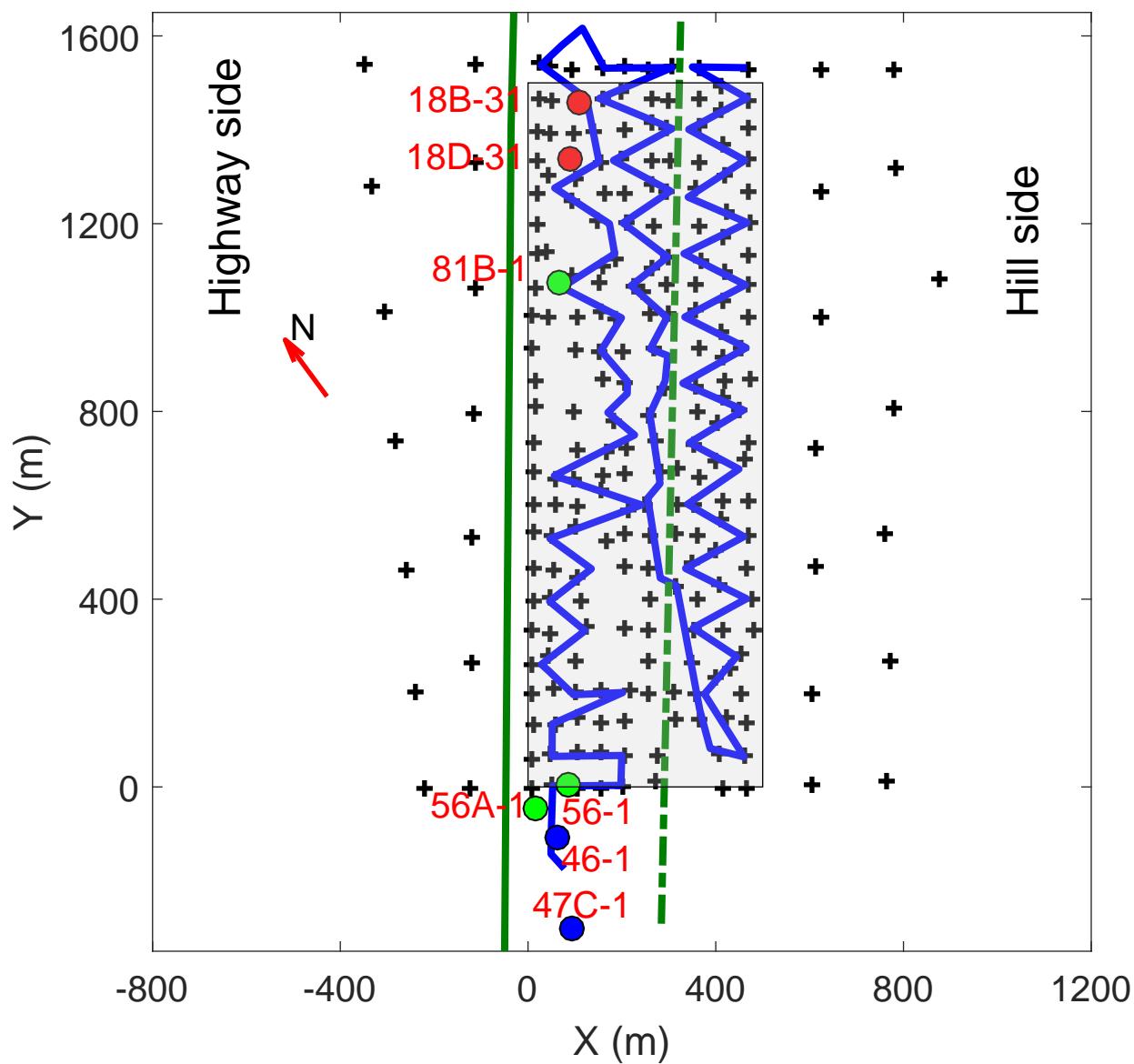
841 Figure 22. DAS P-wave SNR (crosses) versus $\cos^2\alpha$ (red line), which corrects for directional
842 sensitivity. The absence of correlation with cable orientation relative to horizontal particle
843 direction is evidence that site effects dominate the SNR.

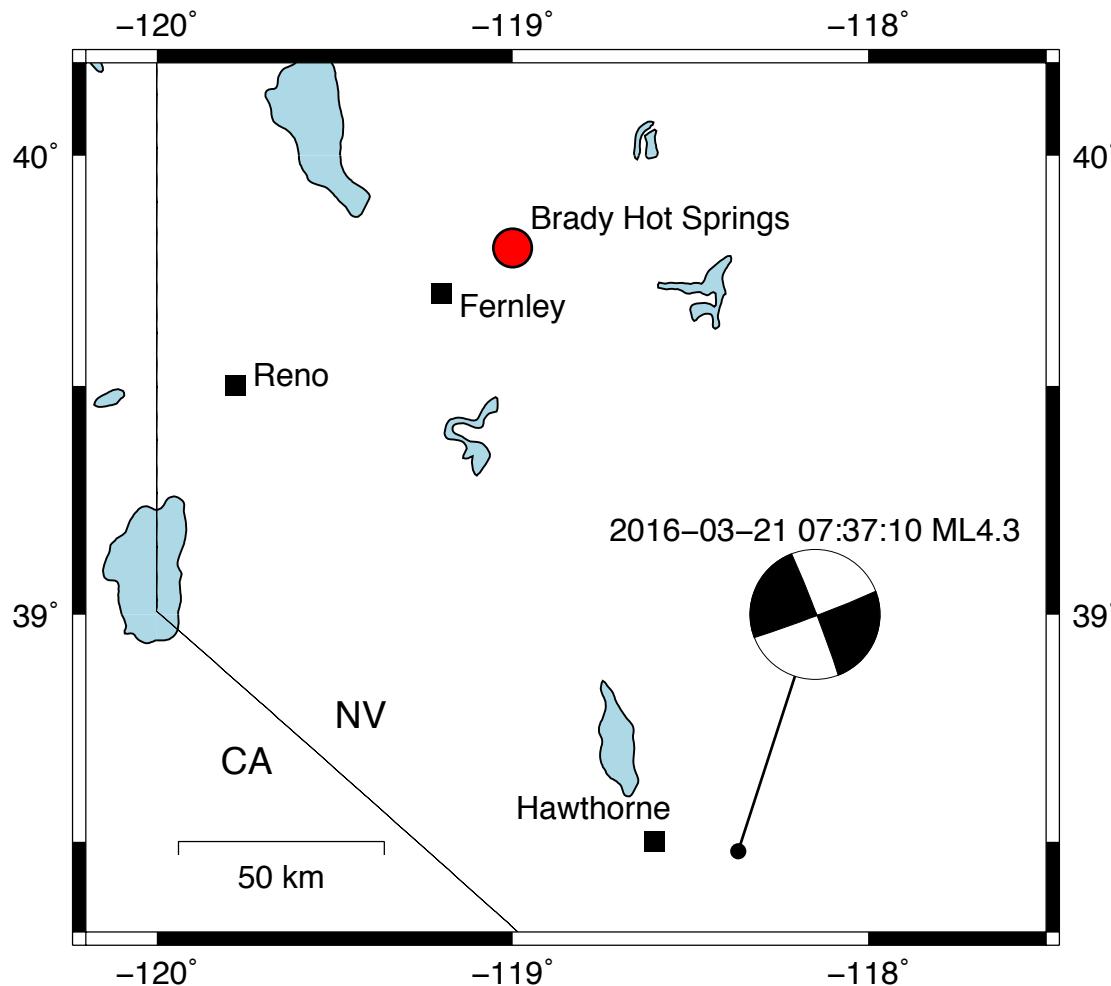
844

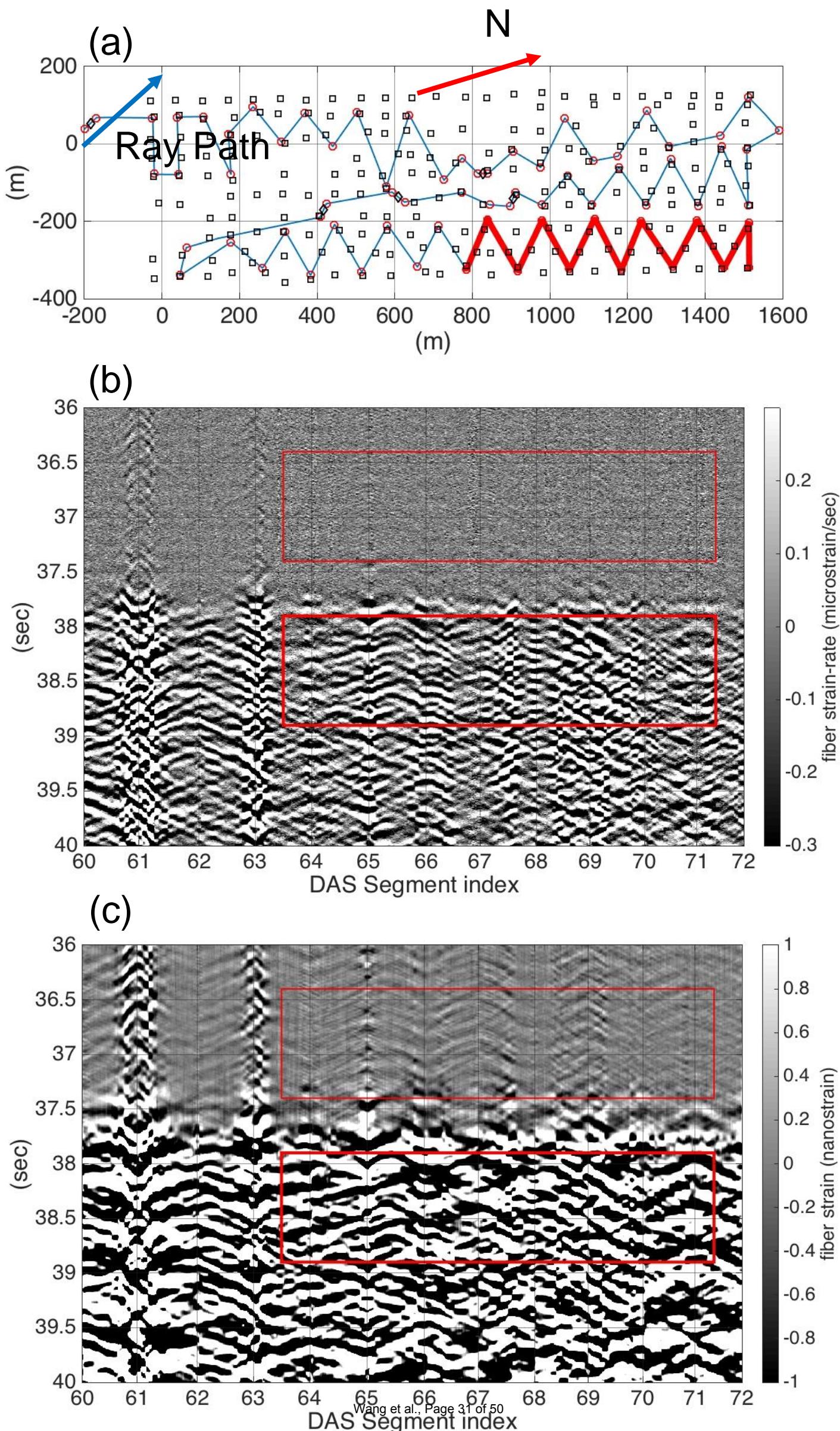
845

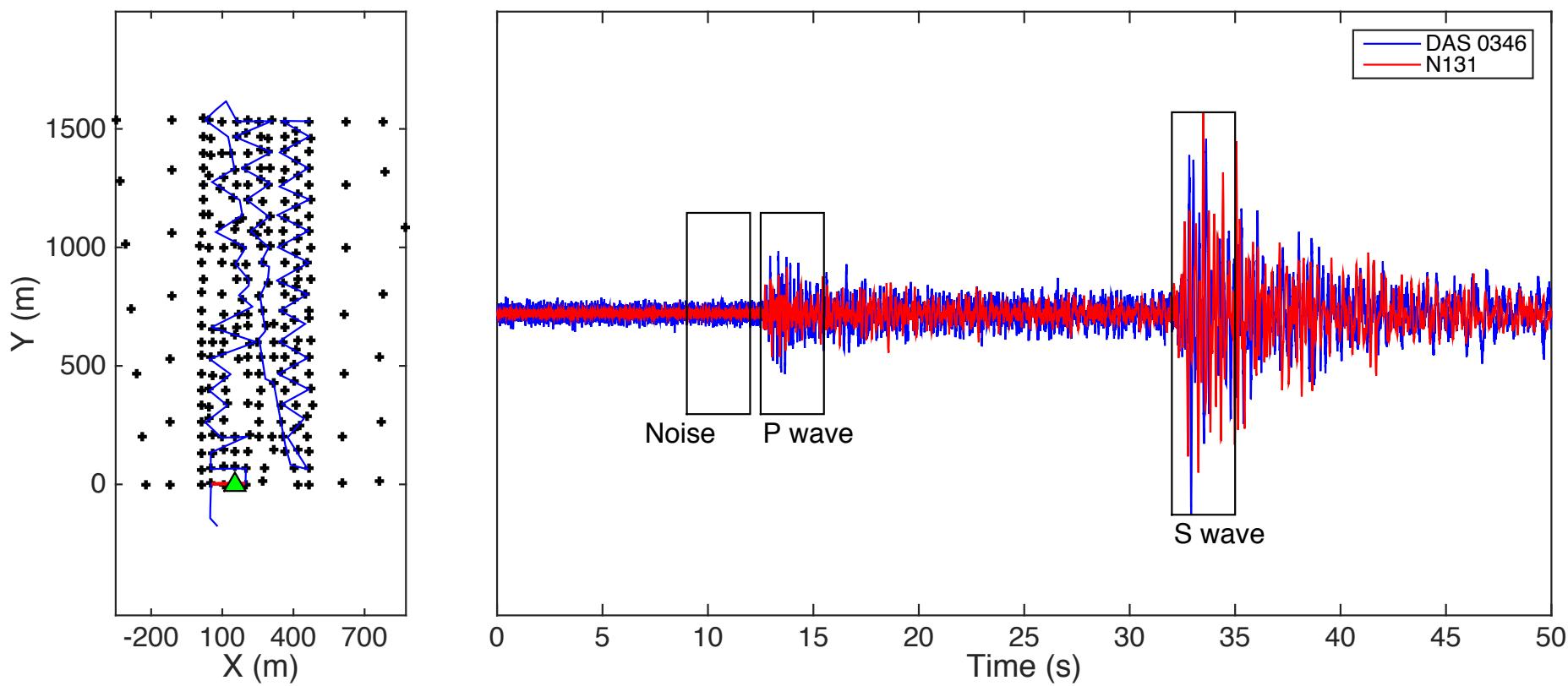
846

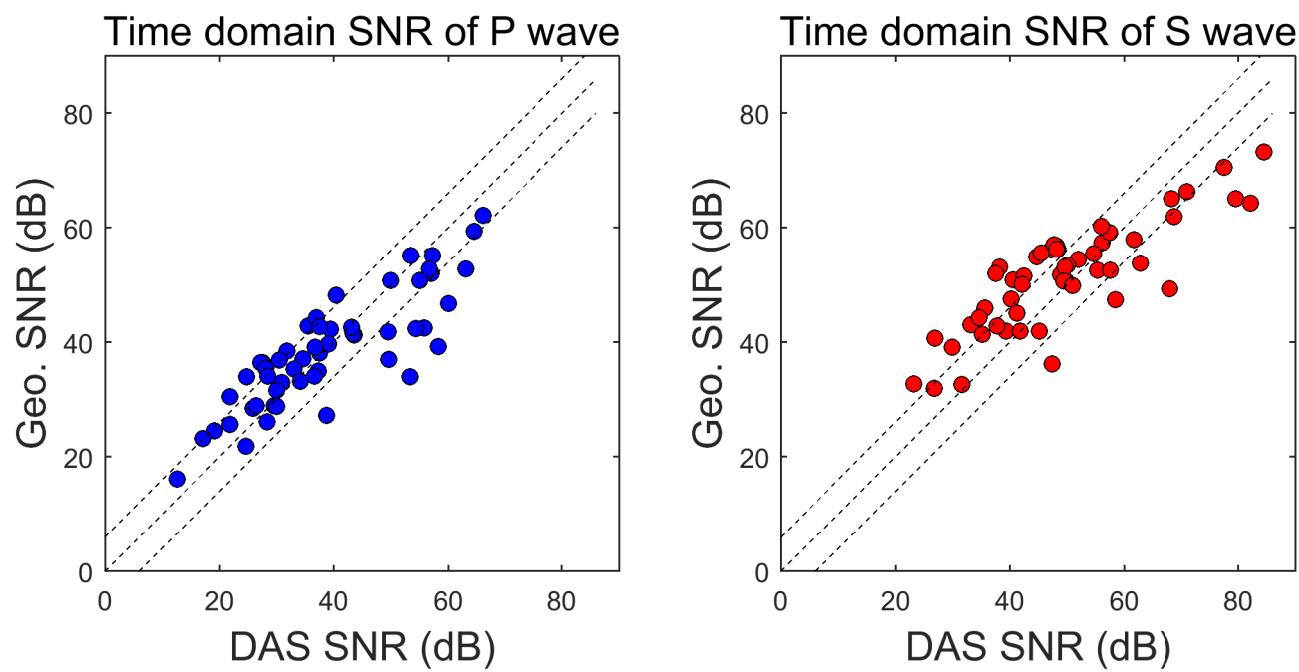
847

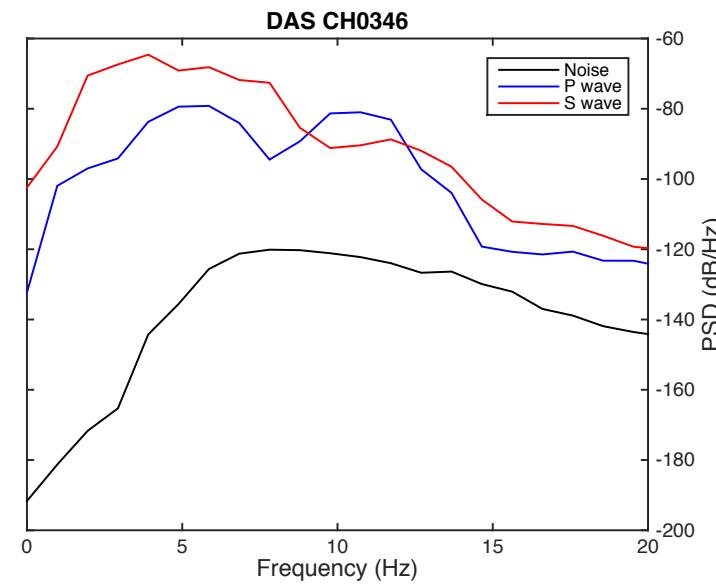
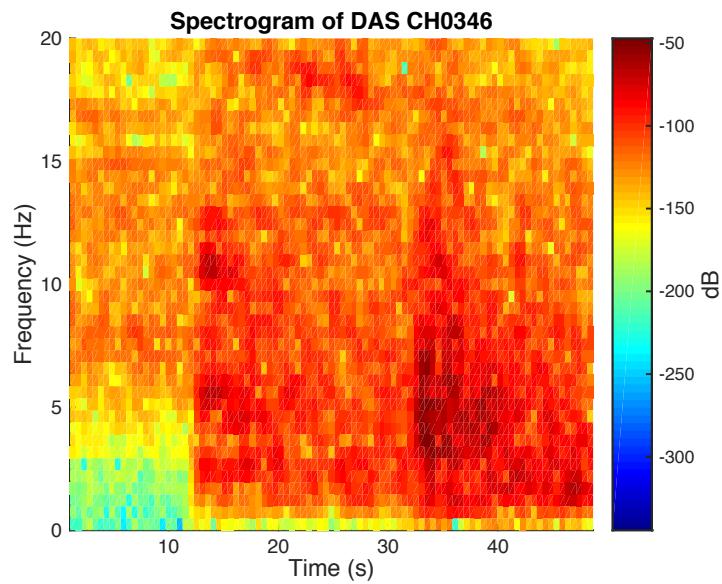
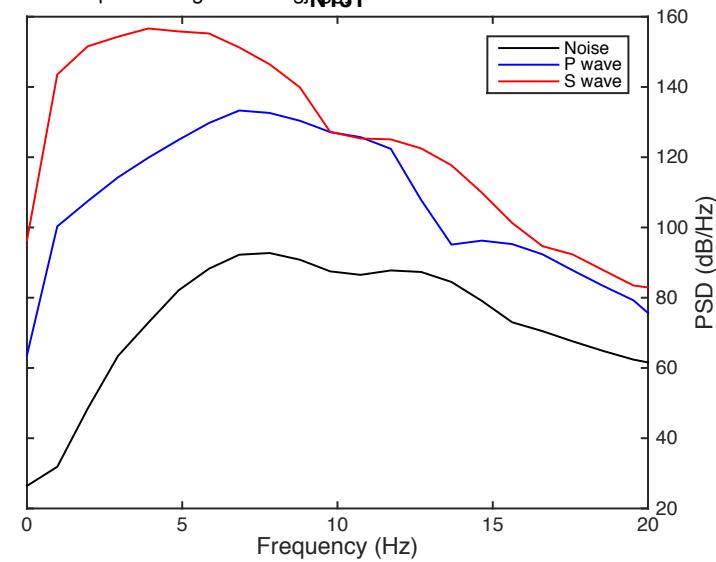
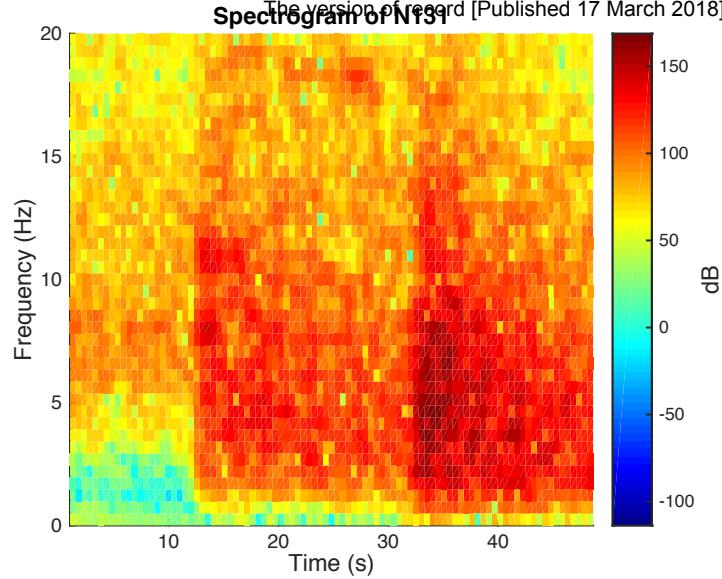

848

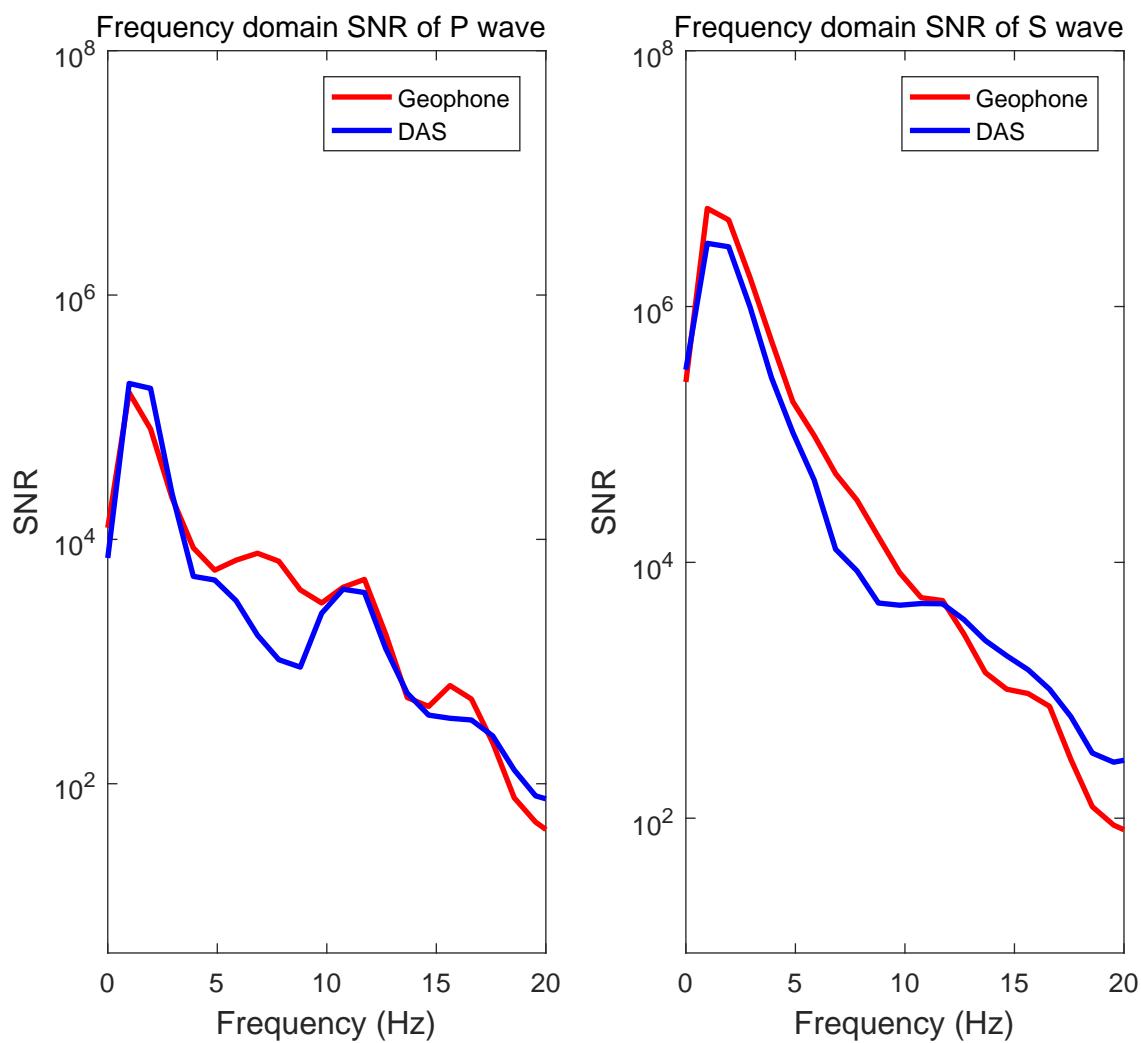

849

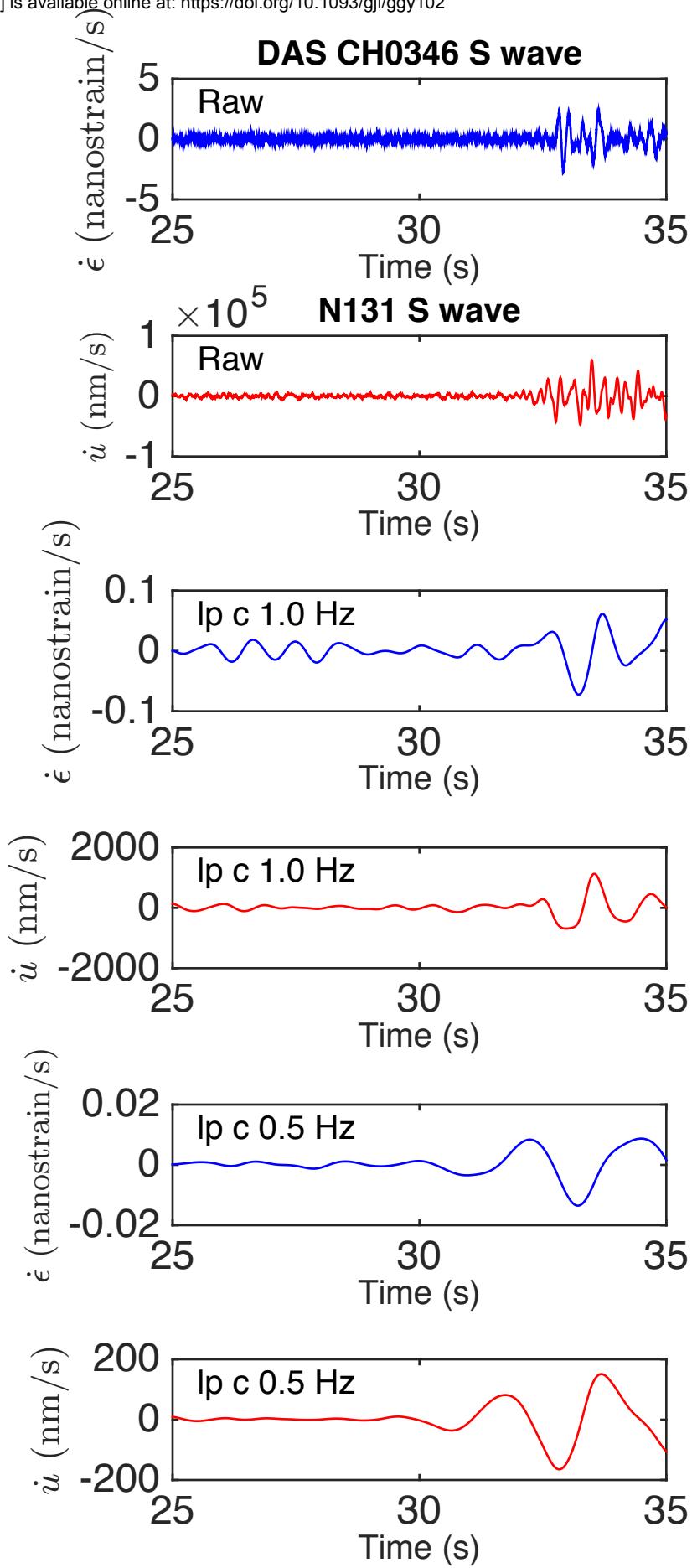
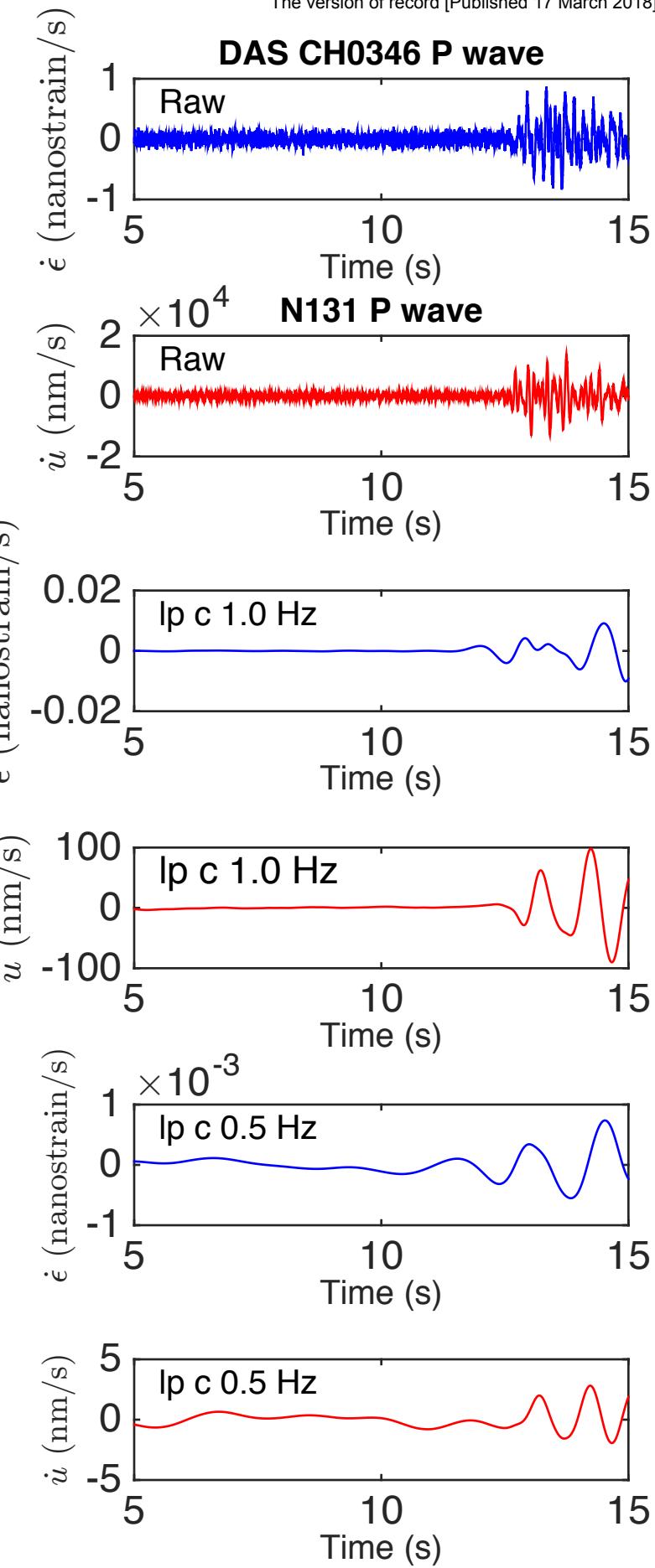

850

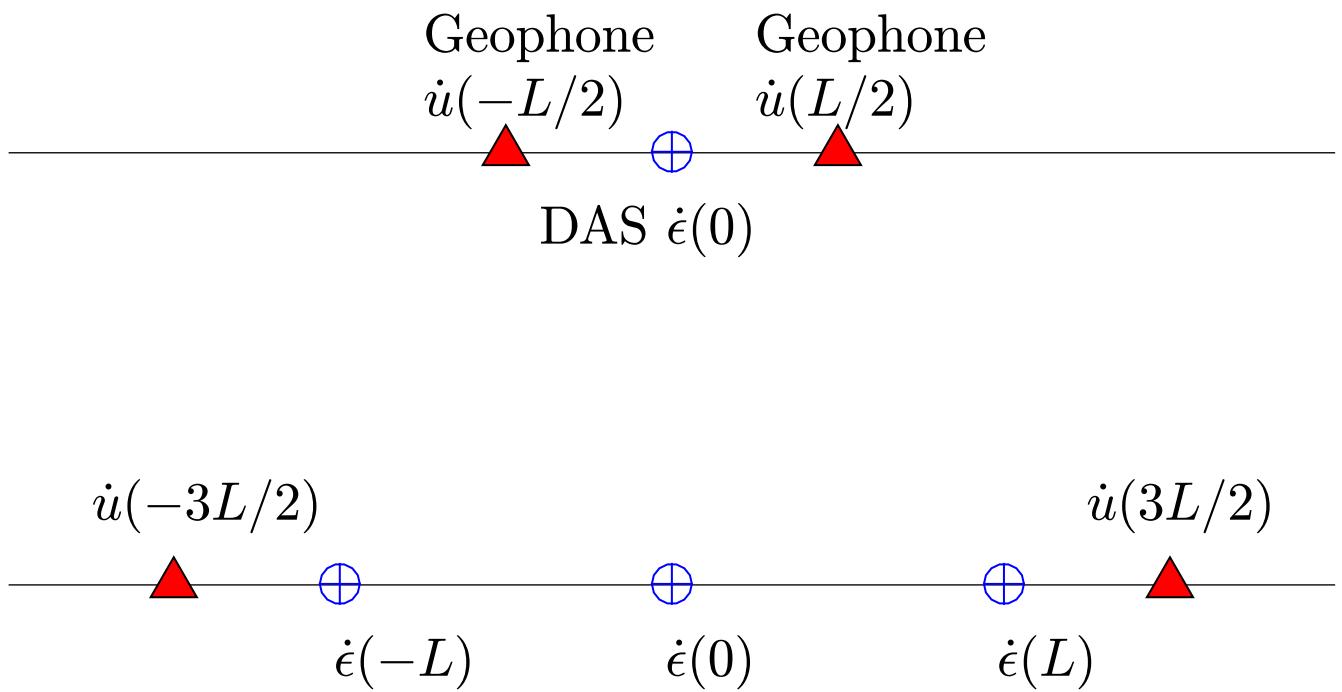

851

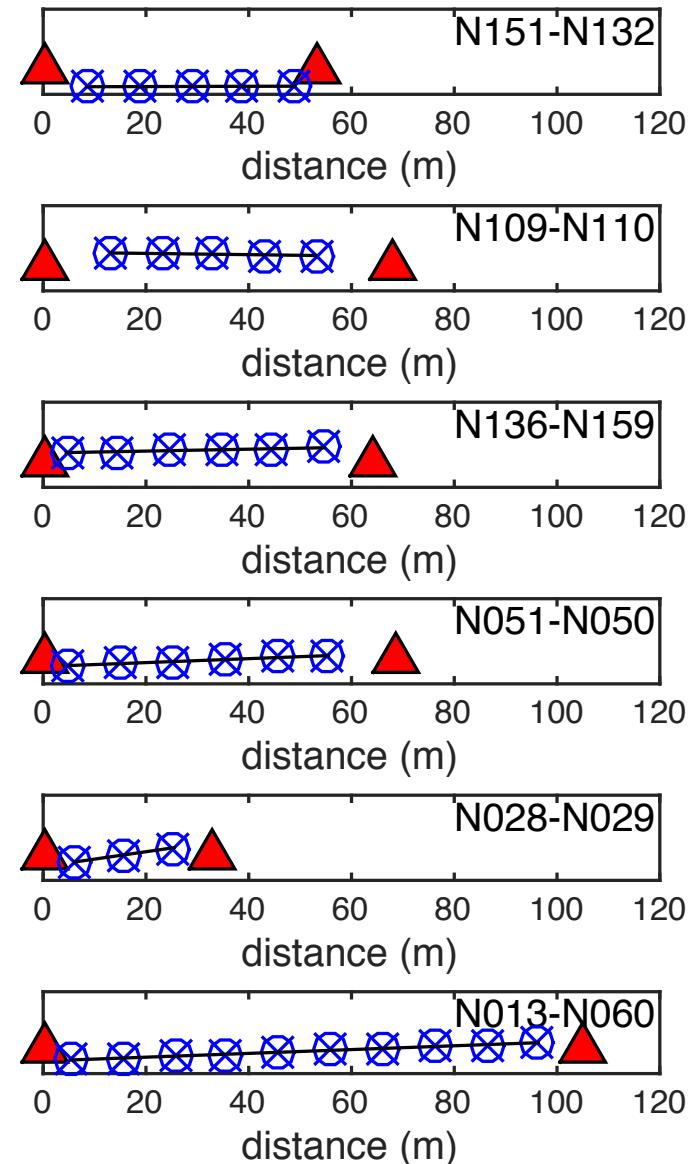
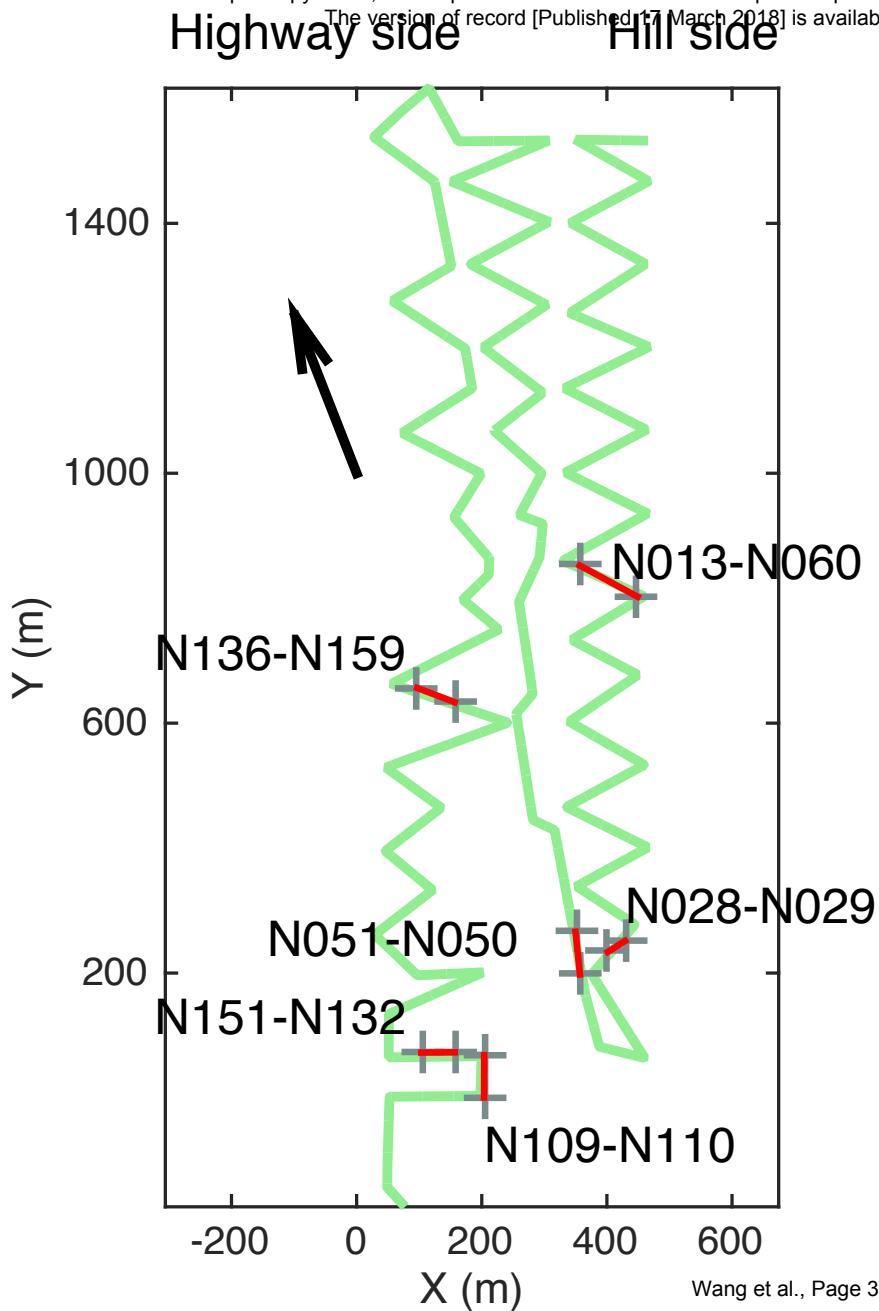

Fig. 1

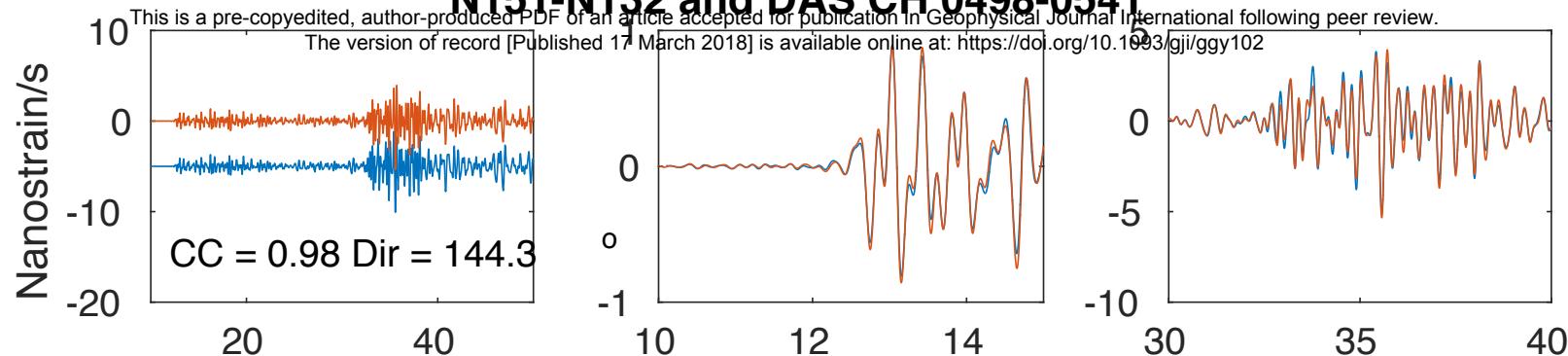
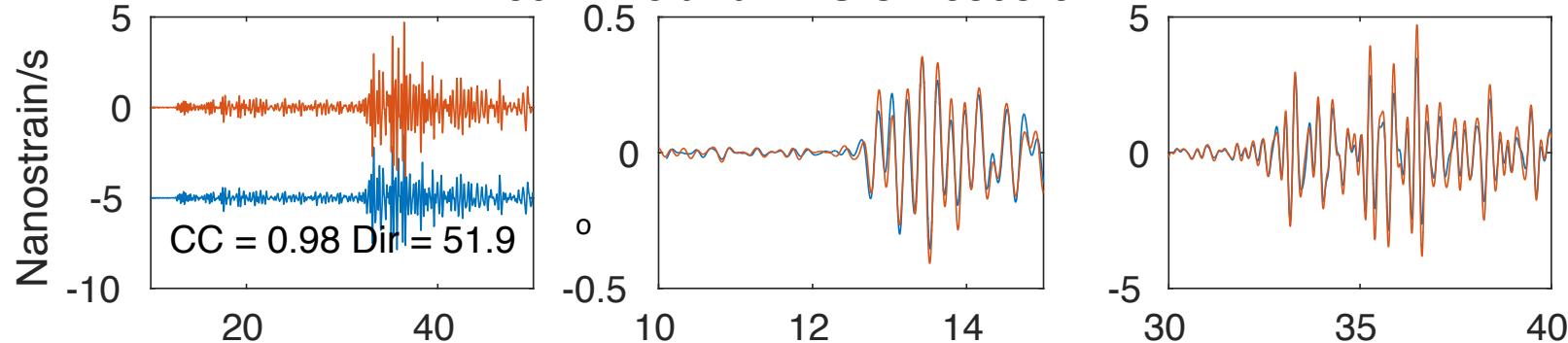
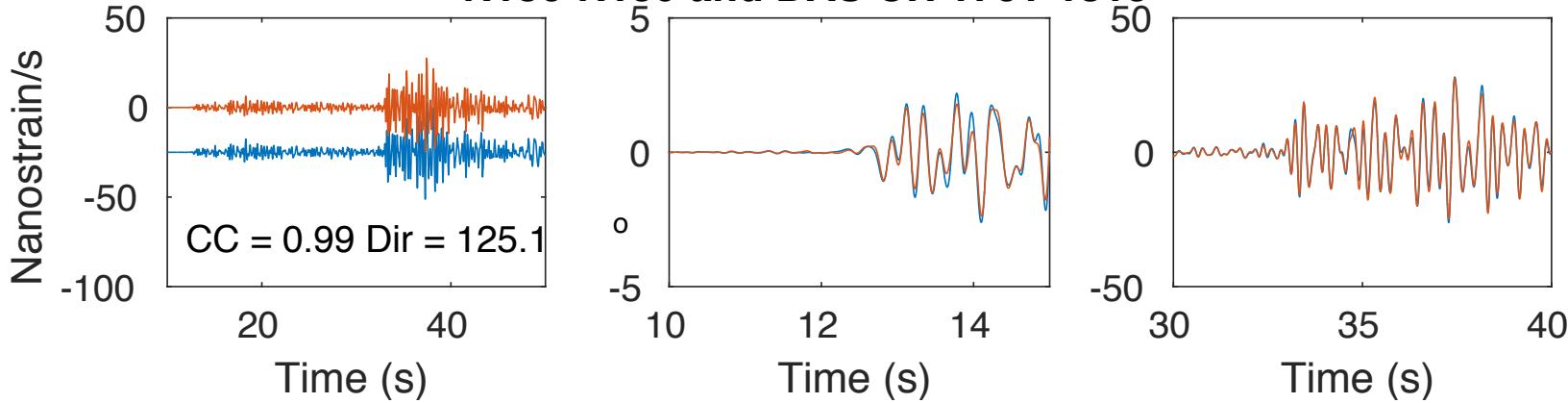





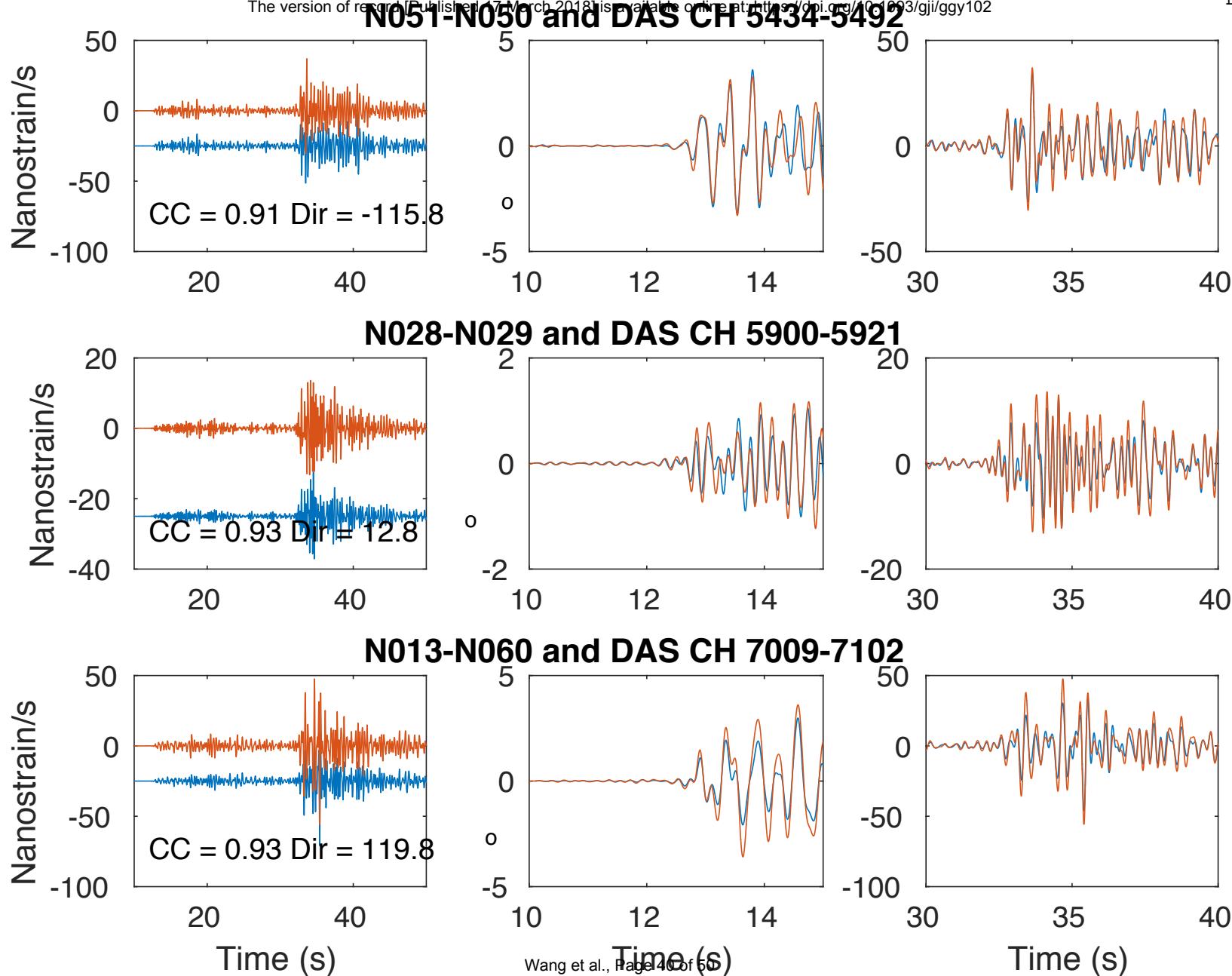


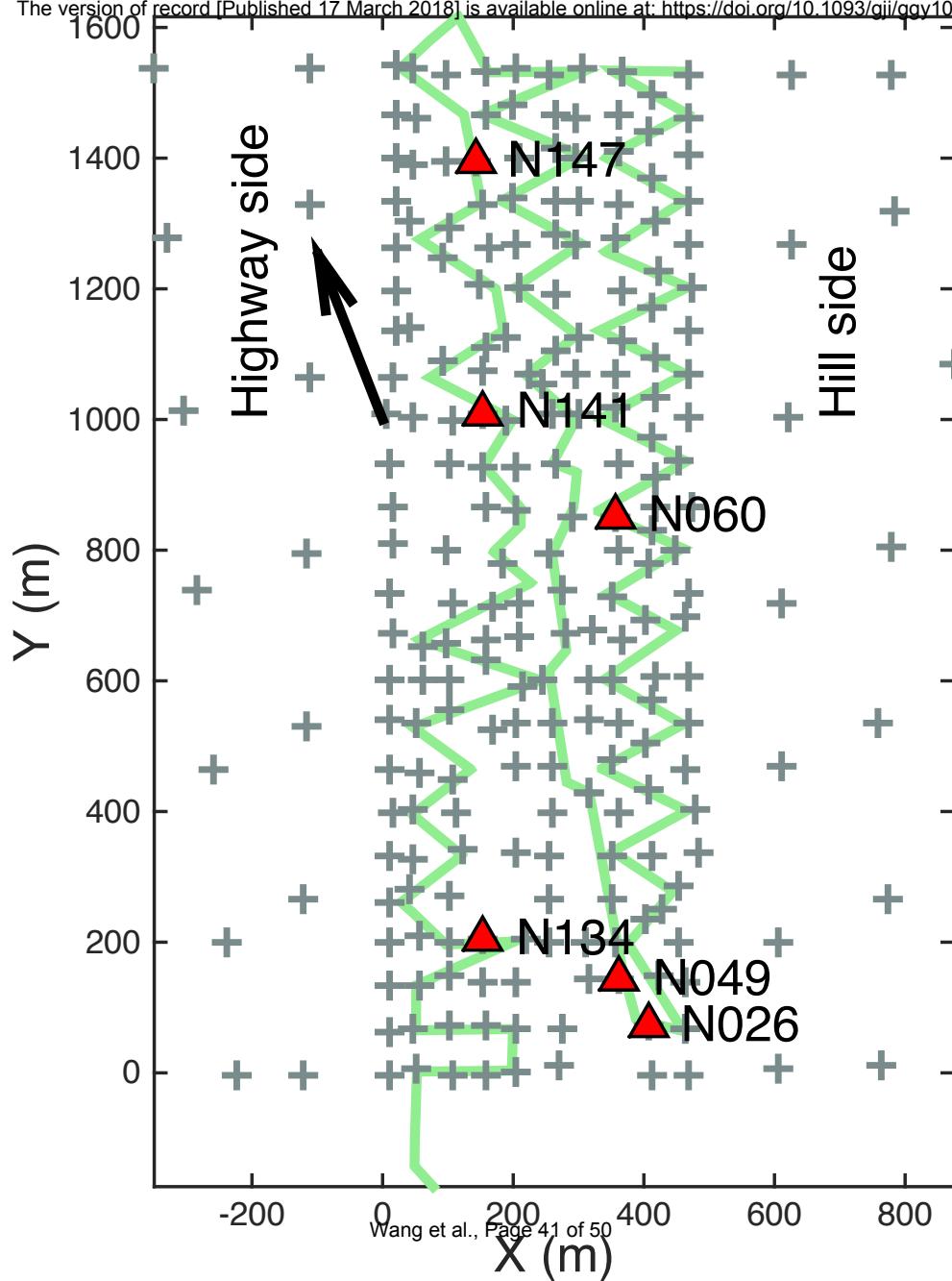



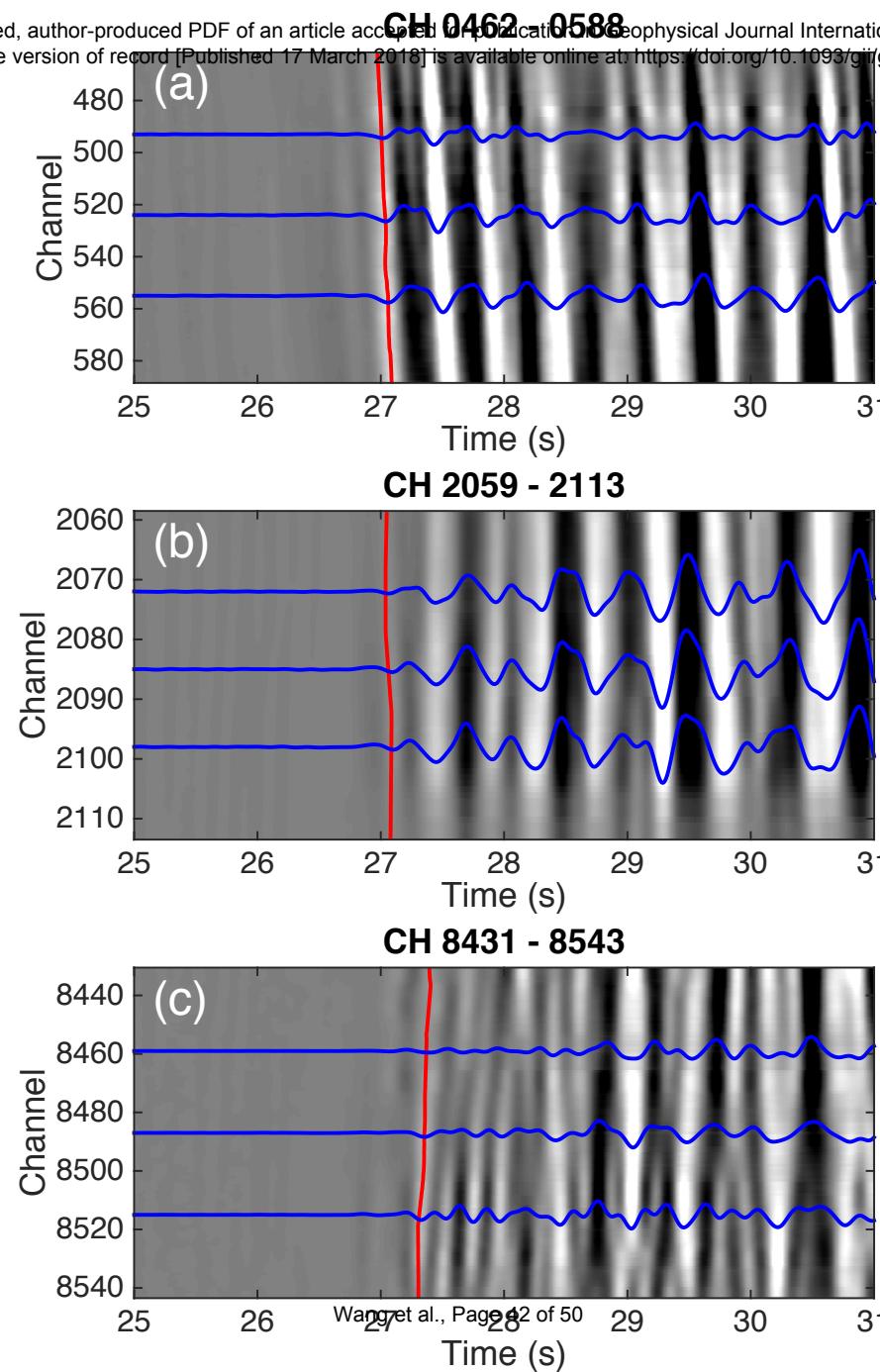


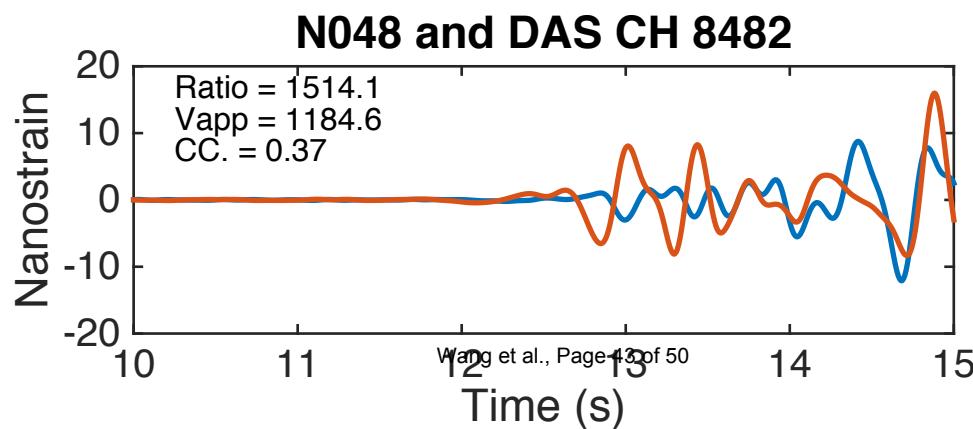
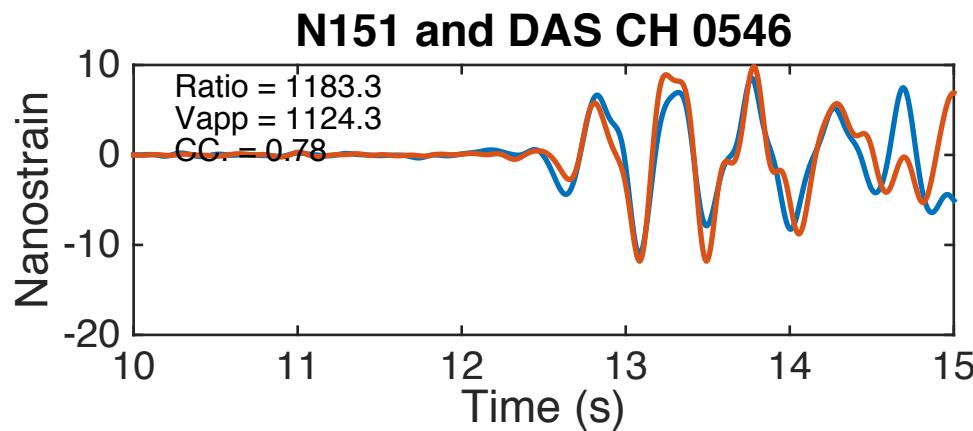
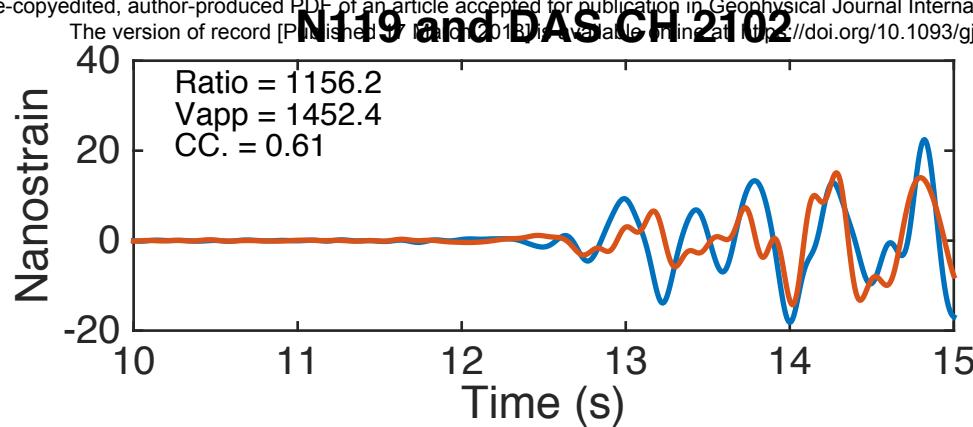



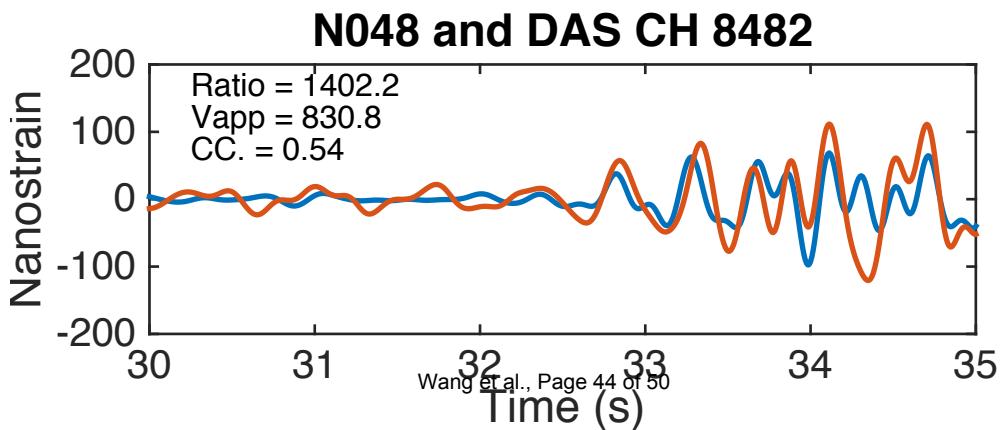
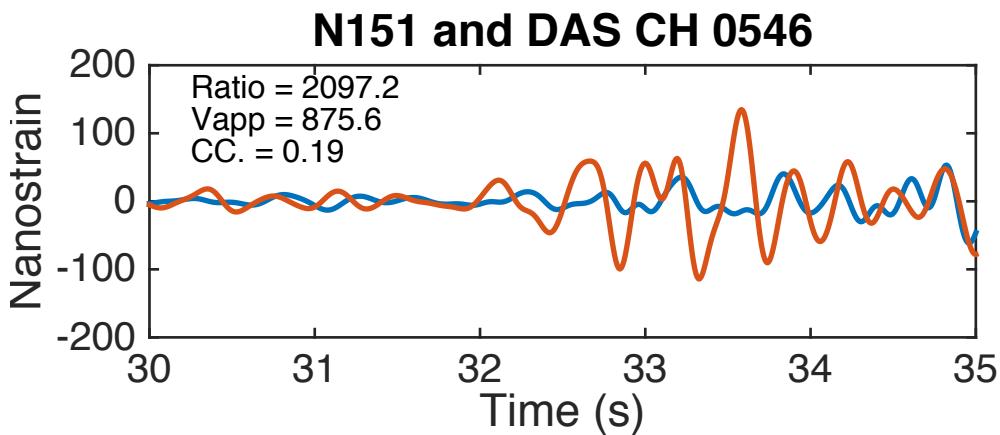
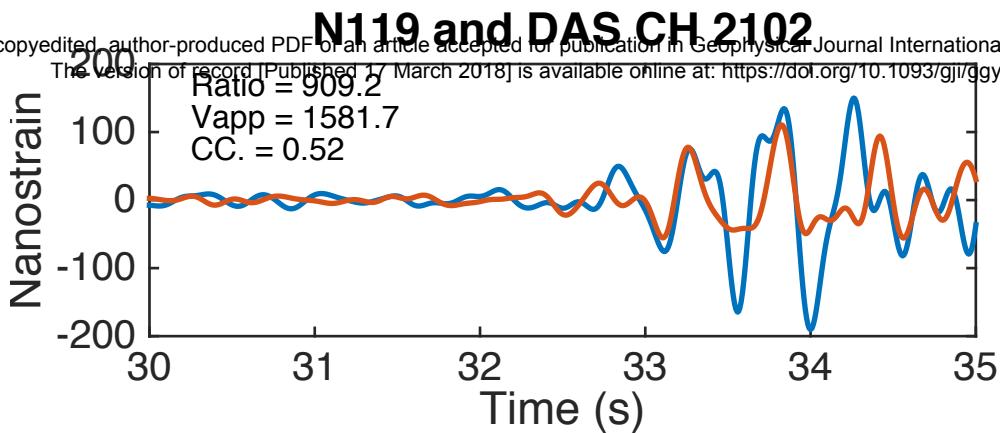




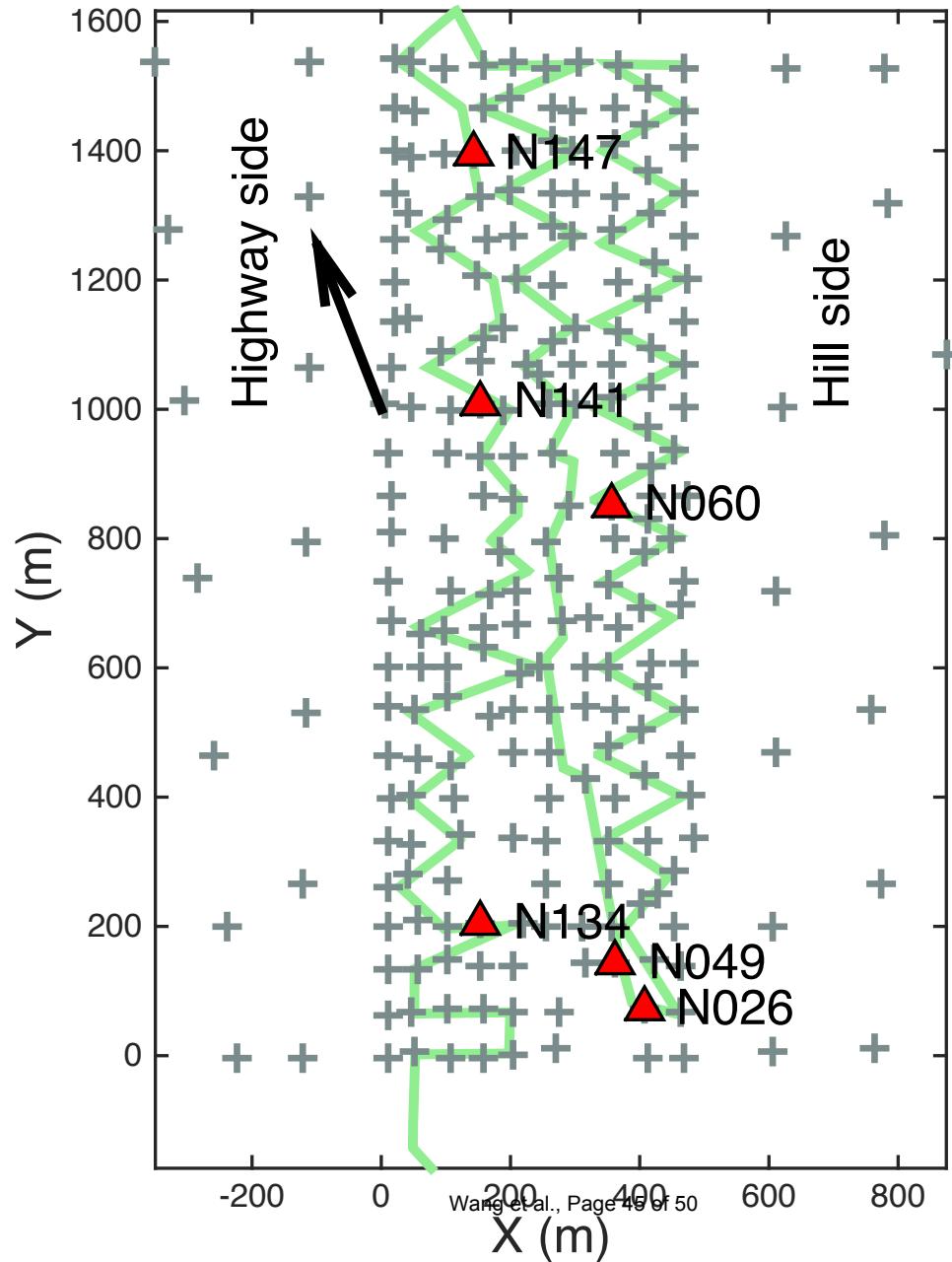


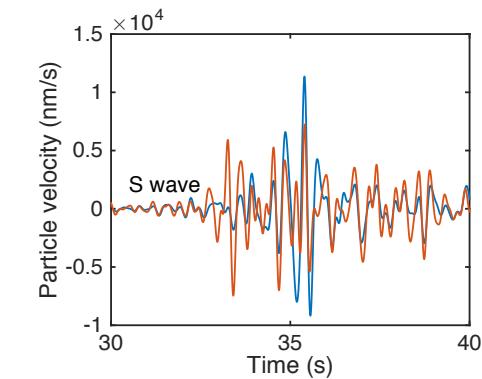
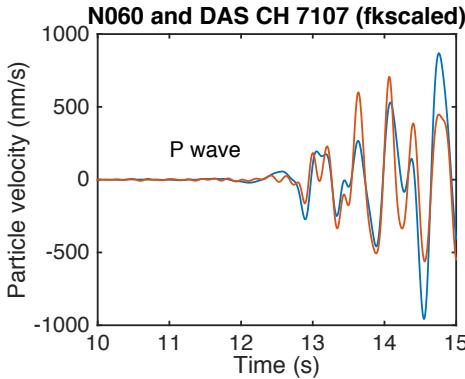
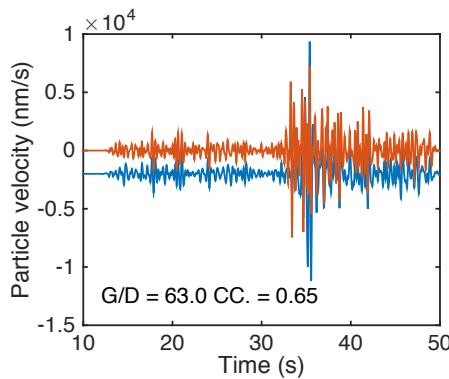
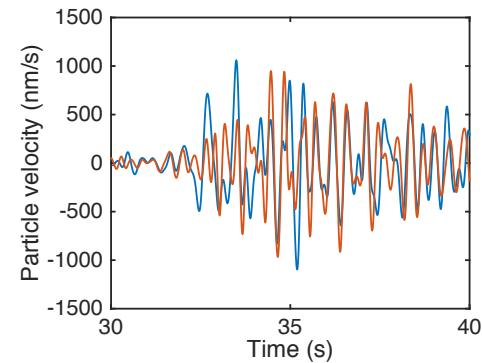
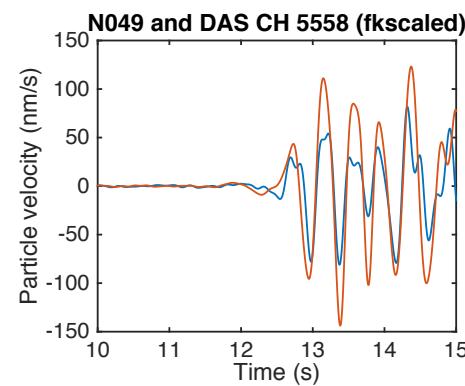
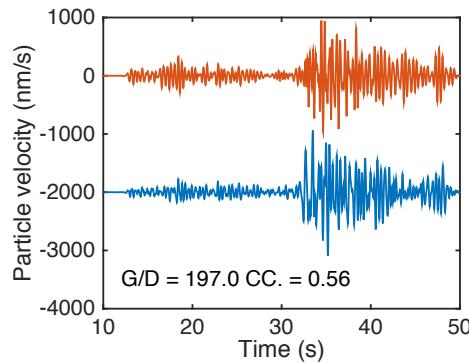
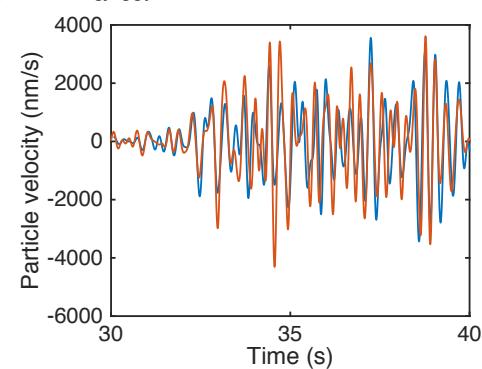
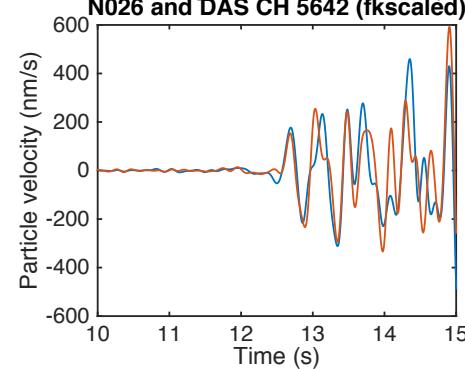
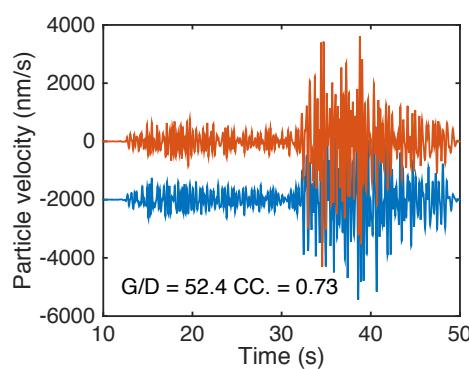


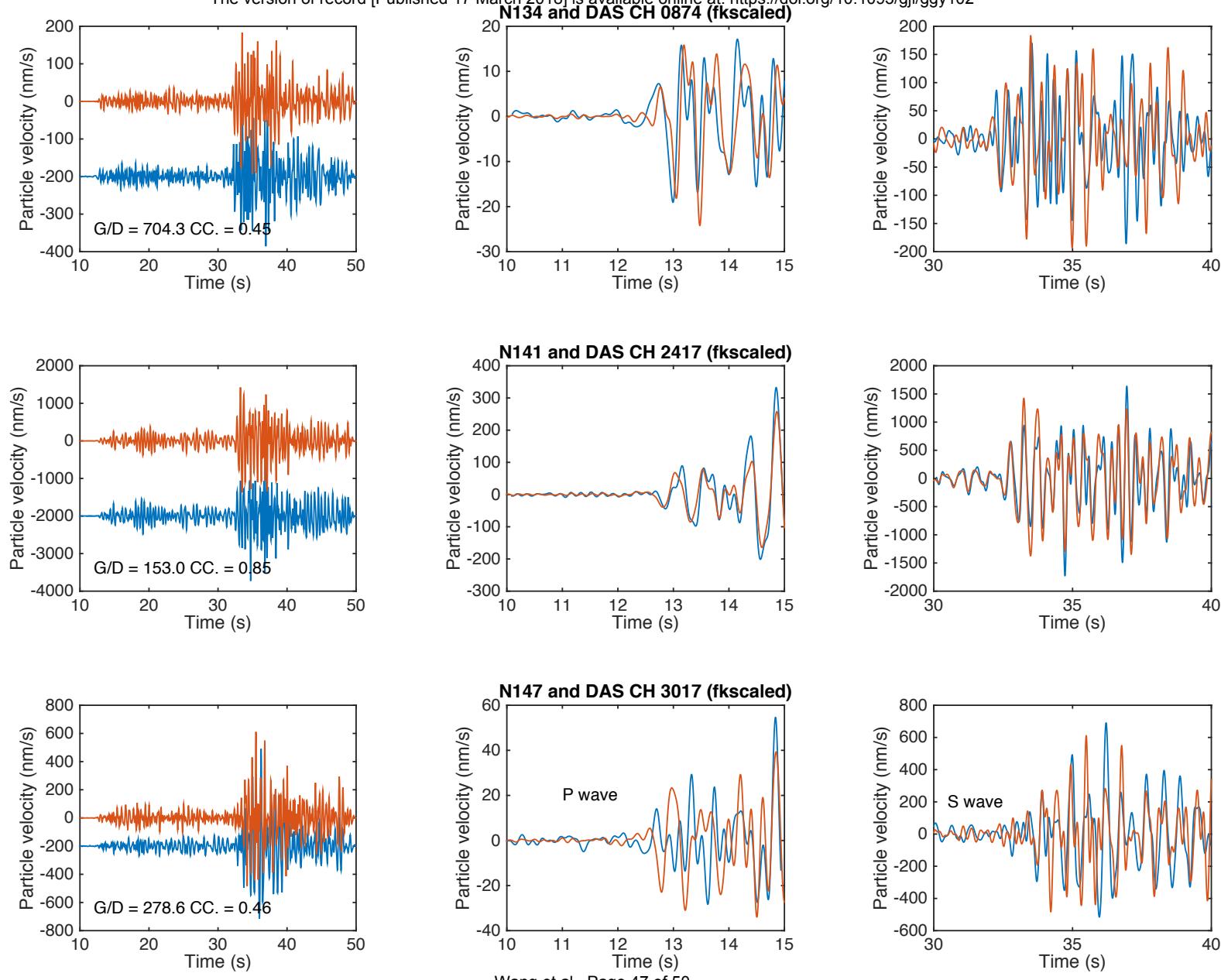


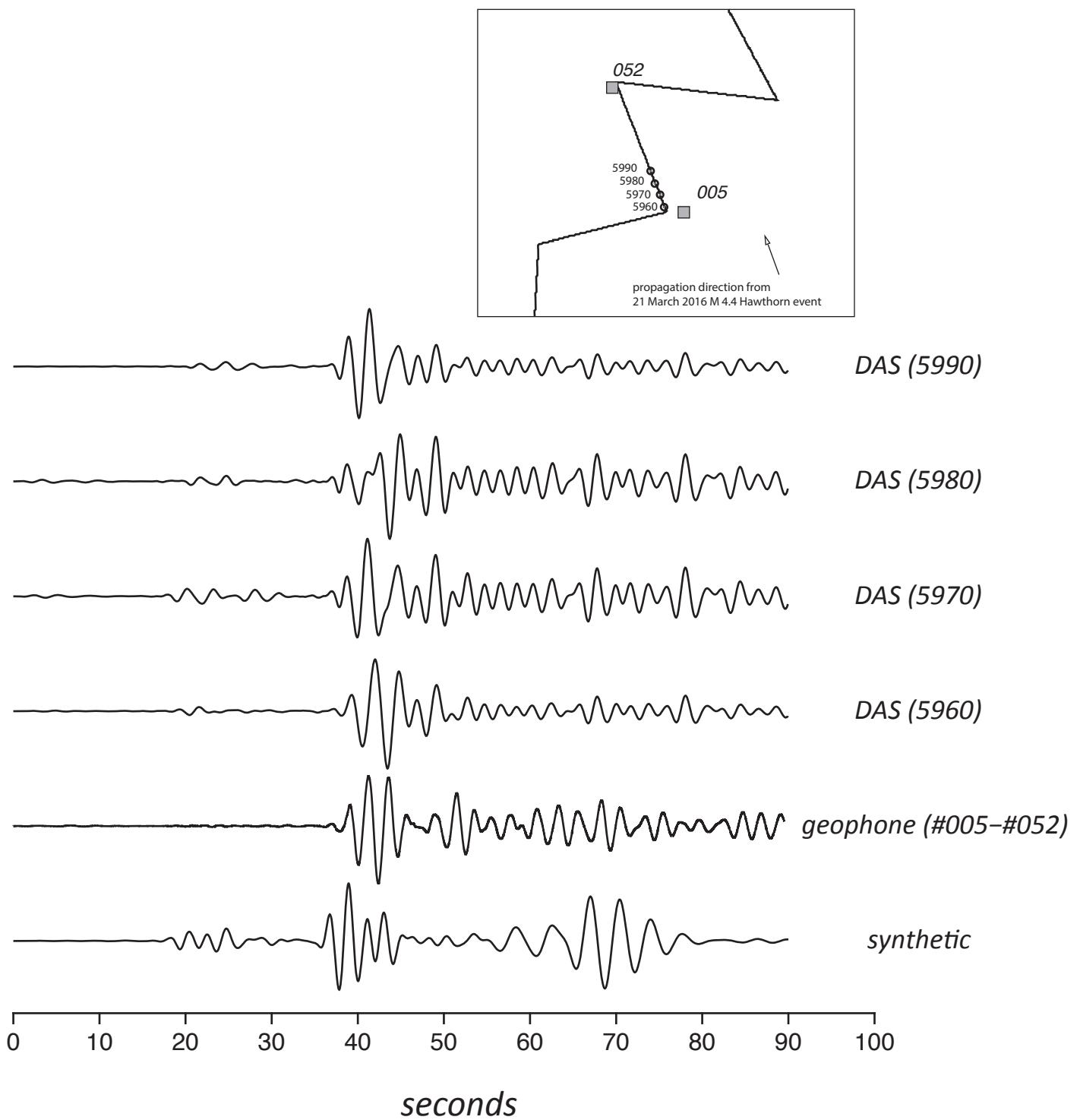




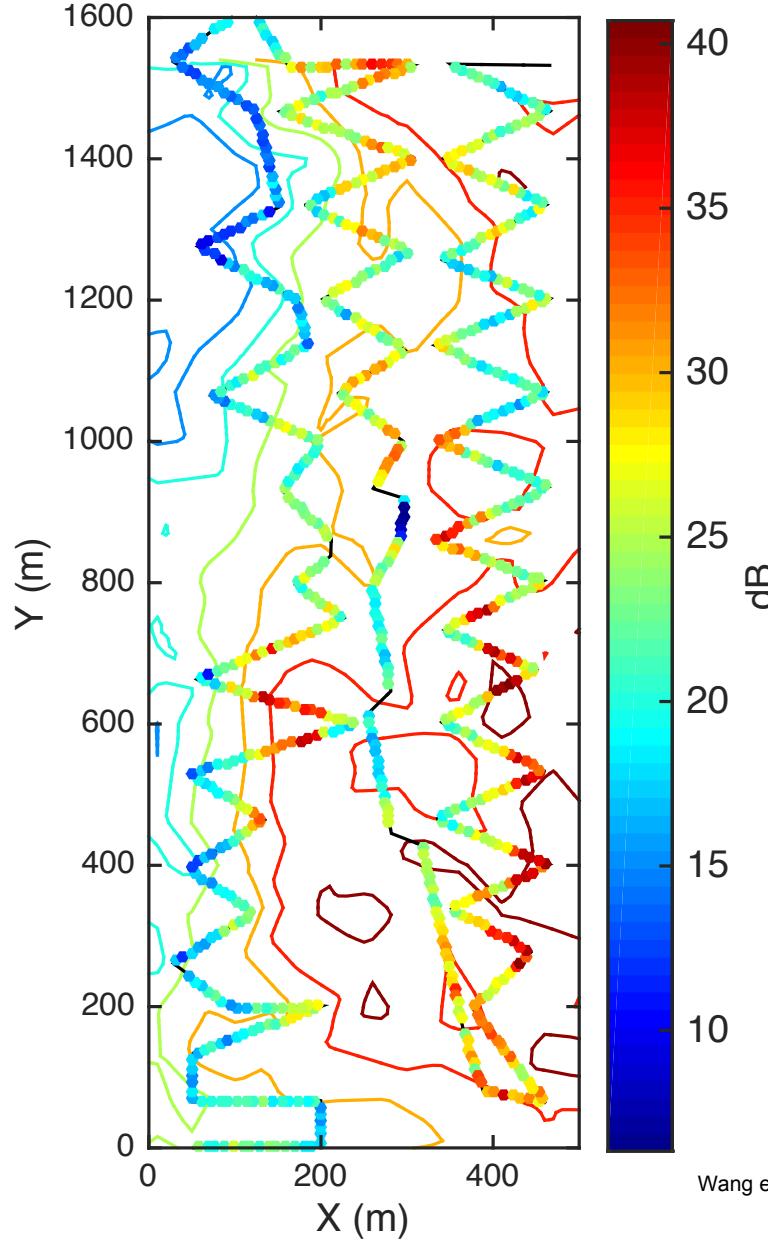



N151-N132 and DAS CH 0498-0541**N109-N110 and DAS CH 0398-0441****N136-N159 and DAS CH 1761-1815**

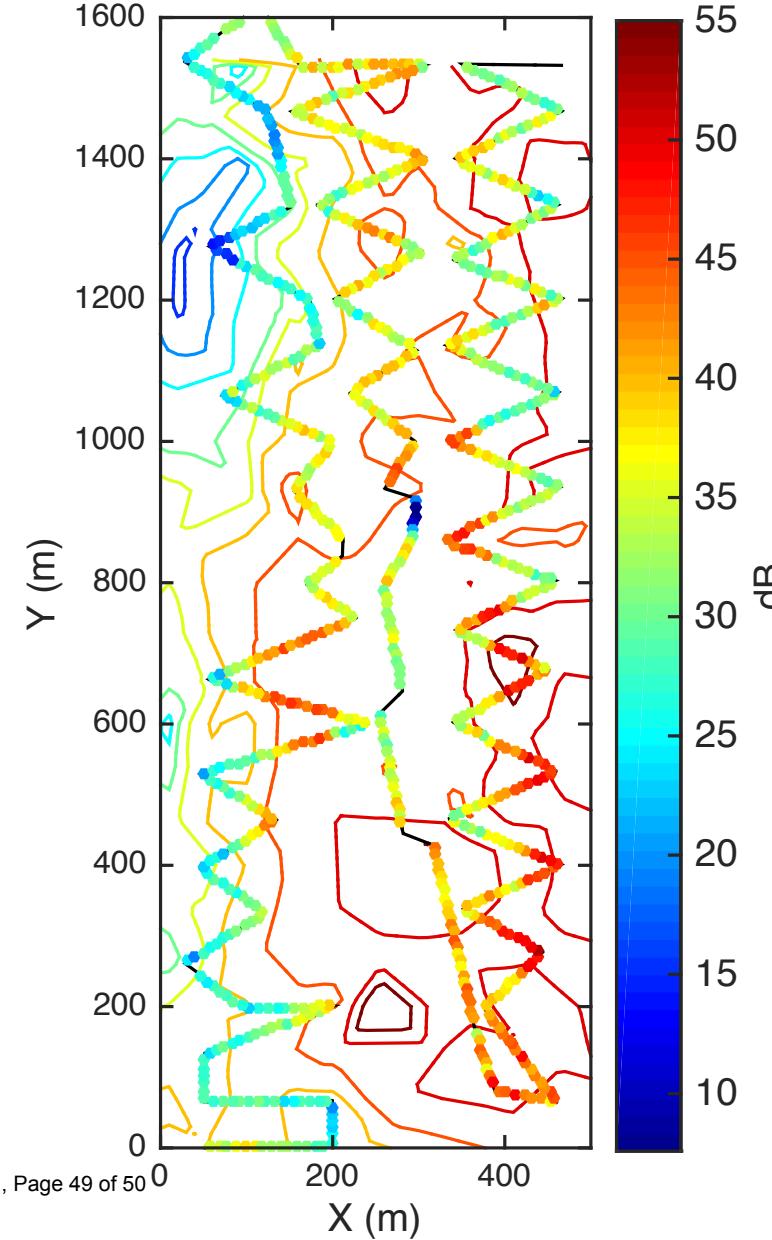


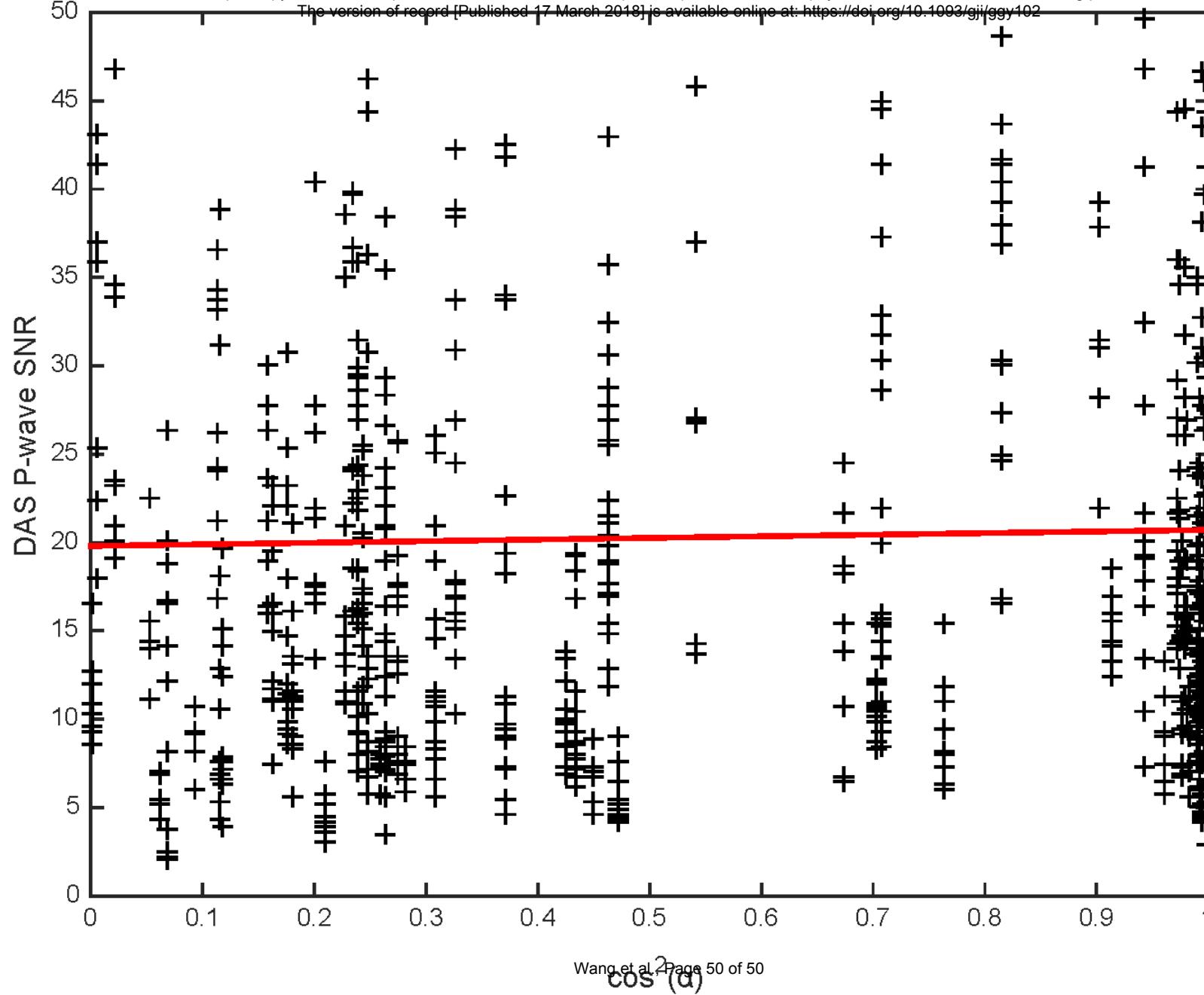




















Time domain SNR of P wave of DAS

Time domain SNR of S wave of DAS

