

1 Quantitative Stable Isotope Probing with H₂¹⁸O reveals that most bacterial taxa in soil synthesize
2 new ribosomal RNA.

3

4 Katerina Papp ^{a, b, *}, Rebecca L. Mau ^{a, b}, Michaela Hayer ^{a, b}, Benjamin J. Koch ^{a, b}, Bruce A.
5 Hungate ^{a, b} and Egbert Schwartz ^{a, b}

6

7 ^aCenter for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA

8 ^bDepartment of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA

9 Current affiliation:

10 * Department of Civil and Environmental Engineering and Construction, University of Las
11 Vegas, Las Vegas, NV, USA

12 * Division of Hydrological Sciences, Desert Research Institute, Las Vegas, NV, USA

13

14 Corresponding author:

15 Katerina Papp

16 Address: 755, E. Flamingo Road, Las Vegas, NV, 89119

17 E-mail: katerina.papp@unlv.edu; katerina.papp@dri.edu

18 Tel: 928 266 2684

19

20 Conflict of Interest: The authors declare no conflict of interest.

21 Subject Categories: Microbial population and community ecology, Microbial ecology and
22 functional diversity of natural habitats

23

24 **Abstract**

25 Most soil taxa are thought to be dormant, or inactive, yet the extent to which they
26 synthetize new rRNA is poorly understood. We analyzed ^{18}O -composition of RNA extracted
27 from soil incubated with H_2^{18}O and used quantitative stable isotope probing to characterize
28 rRNA synthesis among microbial taxa. RNA was not fully labeled with ^{18}O , peaking at a mean
29 of 23.6 ± 6.8 atom percent excess (*APE*) ^{18}O after 8 days of incubation, suggesting some
30 ribonucleotides in soil were more than 8 days old. Microbial taxa varied in the degree to which
31 they incorporated ^{18}O into their rRNA over time. Additionally, there was no correlation between
32 the *APE* ^{18}O of bacterial rRNA and their rRNA to DNA ratios, suggesting that the ratios were not
33 appropriate to measure ribonucleotide synthesis. Our study indicates that, on average, 94% of
34 soil taxa produced new rRNA and therefore were metabolically active.

35

36 Keywords: RNA-quantitative Stable Isotope Probing, *APE* ^{18}O of rRNA, rRNA density shift,
37 rRNA: DNA ratio, microbial activity, soil prokaryotes/microbes

38

39 Most bacteria in soil are thought to be dormant (Babiuk and Paul, 1970; Mayfield, 1977;
40 Lundgren, 1981; Alvarez *et al.*, 1998; Sherr *et al.*, 1999; Luna *et al.*, 2002; Khomutova *et al.*,
41 2004; Wang *et al.*, 2014), while only a small active fraction controls ecosystem processes
42 (Mengoni *et al.*, 2005; Aanderud *et al.*, 2015). Active bacterial cells have higher metabolic rates
43 than dormant cells leading to higher protein and rRNA synthesis. Growth is not required for
44 metabolic activity (Blazewicz *et al.*, 2013). In contrast, during dormancy bacteria transition into
45 a state of very low metabolic activity (Jones and Lennon, 2010; Bär *et al.*, 2016). RNA
46 concentrations are expected to decrease as most metabolic processes are halted, while DNA
47 concentrations may remain relatively stable because dormant cells do not die. Accordingly, the
48 relative abundances of ribosomal RNA (rRNA) and DNA extracted from environmental samples
49 are commonly used as indicators of microbial metabolic activity (DeLong *et al.*, 1989; Poulsen *et*
50 *al.*, 1993; Muttray and Mohn, 1999; Kamke *et al.*, 2010). (Baldrian *et al.*, 2012; Brettar *et al.*,
51 2012; Foesel *et al.*, 2014). However, rRNA to DNA ratios among taxa in microbial communities
52 vary substantially, often unrelated to metabolic activity, suggesting RNA alone may not be a
53 reliable indicator of active populations (Blazewicz *et al.*, 2013).

54 Stable isotope probing (SIP) can assess microbial activity independent of rRNA to DNA
55 ratios. SIP with ^{18}O labeled water is especially powerful for assessing growth and activity of
56 microbial communities because water is a universal substrate for nucleic acid synthesis
57 (Schwartz, 2007). In this study, we incubated 2 grams of soil with 400 μl of sterile 95 atom %
58 H_2^{18}O or with 400 μl of sterile, natural abundance ^{18}O -water, for 1, 4 and 8 days ($N=18$), and
59 extracted total RNA following each incubation. Newly synthesized ^{18}O -containing RNA has
60 higher buoyant density than old RNA, and can be separated through isopycnic ultracentrifugation
61 on a cesium trifluoroacetate (CsTFA) density gradient. We fractionated the ultracentrifuged

62 RNA, purified the fractions and sequenced a fragment of the 16S rRNA gene from
63 complementary DNA (cDNA) as described in Document S1. Sequencing data were analyzed
64 using a QIIME 1.7 based (Caporaso *et al.* 2010a) chained workflow (Krohn, 2016)
65 <https://github.com/alk224/akutils-v1.2>. To assess rRNA synthesis of individual taxa, we
66 measured the incorporation of ^{18}O into rRNA by calculating the taxon specific shift in rRNA
67 density and by converting it to atom percent excess (*APE*) ^{18}O using a freely available R code
68 https://bitbucket.org/QuantitativeSIP/qsip_repo. *APE* ^{18}O indicated the excess of ^{18}O atoms in
69 microbial rRNA relative to natural abundance of the isotope, and was used to estimate rRNA
70 synthesis rate. We were interested in assessing temporal patterns and variation in rRNA synthesis
71 rates among soil microbial populations using qSIP, and in comparing our results to RNA to DNA
72 ratios.

73

74 All taxa contained ^{18}O -labeled rRNA after 4 days of incubation with H_2^{18}O . Densities of
75 their non-labeled rRNA varied slightly around the mean ($1.7808 \pm 0.0011 \text{ g/ml}$), whereas
76 densities of their labeled rRNA substantially differed on each day (Figure 1). This pattern likely
77 reflects taxonomic variation in the rate of metabolic activity (Campbell and Kirchman, 2012;
78 Männistö *et al.*, 2016) or differential reliance among taxa on *de novo* ribonucleotide synthesis
79 (Ebbbole and Zalkin, 1987; Berg *et al.*, 2002) versus ribonucleotide salvaging (Koch, 1970;
80 Callaghan *et al.*, 2005; Deutscher, 2006). If ribonucleotides are synthesized *de novo*, ^{18}O will be
81 assimilated throughout the ribonucleotide, in addition to its assimilation into phosphodiester
82 bonds (Richards and Boyer, 1966; Chaney *et al.*, 1972), which will increase ^{18}O composition of
83 rRNA more than recycling alone.

84 Entirely dormant soil taxa were absent in our study, which challenges the widely
85 accepted idea that dormancy is widespread among microbial taxa in the environment (Stevenson,
86 1978; Cole, 1999; Luna *et al.*, 2002; Jones and Lennon, 2010; Lennon and Jones, 2011). We
87 would observe many populations with non-labeled rRNA (i.e. containing ^{18}O only at the natural
88 abundance level), if dormancy was a common survival strategy of soil bacteria. However, our
89 observations do not preclude that members of a microbial population were not synthesizing new
90 rRNA. Our observation of a weak correlation between rRNA to DNA ratio and *APE* ^{18}O of
91 rRNA of taxa (Spearman's rank-order correlation, $p(574) = -0.082$, $p = 0.051$, Figure 2),
92 suggests that the ratio may be a poor proxy for metabolic activity despite its positive correlation
93 with microbial growth rate in pure cultures (Kjeldgaard and Kurland, 1963; Rosset *et al.*, 1966;
94 Kerkhof and Ward, 1993; Muttray and Mohn, 1999; Muttray *et al.*, 2001; Worden and Binder,
95 2003). We expected that taxa with high rRNA to DNA ratios would have highly labeled rRNA
96 (Rozsak and Colwell 1987) but this was not observed.

97 We observed a significant temporal increase in ^{18}O content for total RNA ($F_{2,4} = 15.404$,
98 $p = 0.013$, Figure S1 and S2) and for RNA of phyla (Figure S3) because RNA is thought to turn
99 over rapidly (Wellington *et al.*, 2003; Lillis *et al.*, 2009), with rates ranging from 20% per day
100 (Ostle *et al.*, 2003) to 25% per hour (Yuan and Shen 1975). We expected that most RNA would
101 be labeled with ^{18}O shortly after H_2^{18}O addition, but modeled rRNA turnover varied between 9 to
102 18% per day, which was slower than previously reported. The labeled RNA had approximately
103 23% of its oxygen atoms replaced with ^{18}O , indicating that either some of the rRNA that was
104 formed prior to H_2^{18}O addition remained intact, that the rRNA was newly synthesized but partly
105 made with ribonucleotides that were more than 8 days old, or that newly synthesized
106 ribonucleotides obtain part of their oxygen from organic substrates. Assuming that 50% of
107 oxygen atoms came from H_2^{18}O and 50% come from organic substrates, (Chaney *et al.*, 1972),
108 the isotopic composition of rRNA would be 50% at the fast turnover rate and ~42% at the slower
109 turnover rate and should have increased only minimally over time. The increase in ^{18}O
110 composition of RNA over time suggested that increasingly more ribonucleotides were
111 synthesized and that the turnover rate of ribonucleotides in soil is on the order of ~23% per week

112 Our knowledge of ribosome biosynthesis and degradation derives mostly from pure
113 culture experiments but it appears that rRNA dynamics are different among bacteria in soil.
114 H_2^{18}O -RNA qSIP provides a different perspective of microbial activity than rRNA to DNA
115 ratios because qSIP characterizes and quantifies taxa that synthesize new nucleic acids and is
116 therefore not subject to biases introduced by nucleic acids from dead or inactive populations.

117 **Acknowledgements**

118 This research was supported by award 1142096 from the National Science Foundation,
119 division of solar programs, the Department of Energy's Biological Systems Science Division,
120 Program in Genomic Science (DE-SC0010579, and DE-SC0016207), and by the IGERT

121 Fellowship. Additionally, the authors would like to thank Dr. Paul Dijkstra, Dr. Matthew Bowker
122 and Lela Andrews from Northern Arizona University.

123 **Conflict of Interest**

124 The authors declare no conflict of interest.

125

126 **Supplemental Information**

127 Supplementary information is available at *The ISME Journal's* website.

128

129 **Accession numbers.** All sequences have been deposited in NCBI SRA (accession
130 numbers SAMN07960499 to SAMN07960874, SAMN07965143 to SAMN07965605, and
131 SAMN07968111 to SAMN07968486). Data can directly be accessed at
132 <https://www.ncbi.nlm.nih.gov/Traces/study/?acc=SRP123236>.

133

134

135 **References**

136 Aanderud ZT, Lennon JT. (2011). Validation of heavy-water stable isotope probing for the
137 characterization of rapidly responding soil bacteria. *Appl Environ Microbiol* **77**: 4589–
138 4596.

139 Aanderud ZT, Jones SE, Fierer N, Lennon JT. (2015). Resuscitation of the rare biosphere
140 contributes to pulses of ecosystem activity. *Front Microbiol* **6**: 1–11.

141 Adam G, Duncan H. (2001). Development of a sensitive and rapid method for the measurement
142 of total microbial activity using fluorescein diacetate (FDA) in a range of soils. *Soil Biol*
143 *Biochem* **33**: 943–951.

144 Alvarez CR, Alvarez R, Grigera MS, Lavado RS. (1998). Associations between organic matter
145 fractions and the active soil microbial biomass. *Soil Biol Biochem* **30**: 767–773.

146 Angel R, Conrad R. (2013). Elucidating the microbial resuscitation cascade in biological soil
147 crusts following a simulated rain event. *Environ Microbiol* **15**: 2799–2815.

148 Babiuk LA, Paul EA. (1970). The use of fluorescein isothiocyanate in the determination of the
149 bacterial biomass of grassland soil. *Can J Microbiol* **16**: 57–62.

150 Baldrian P, Kolařík M, Štursová M, Kopecký J, Valášková V, Větrovský T, *et al.* (2012). Active
151 and total microbial communities in forest soil are largely different and highly stratified
152 during decomposition. *ISME J* **6**: 248–258.

153 Berg JM., Tymoczko JL, Stryer L. (2002). Purine Bases Can Be Synthesized de Novo or
154 Recycled by Salvage Pathways. In: Biochemistry 5th edition. New York: W H Freeman
155 Section 25.

156 Blazewicz SJ, Barnard RL, Daly RA, Firestone MK. (2013). Evaluating rRNA as an indicator of
157 microbial activity in environmental communities: limitations and uses. *ISME J* **7**: 2061–

158 8.

159 Brettar I, Christen R, Höfle MG. (2012). Analysis of bacterial core communities in the central
160 Baltic by comparative RNA–DNA-based fingerprinting provides links to structure–
161 function relationships. *ISME J* **6**: 195–212.

162 Callaghan AJ, Marcaida MJ, Stead JA, Mcdowall KJ, Scott WG, Luisi BF. (2005). Structure of
163 Escherichia coli RNase E catalytic domain and implications for RNA turnover. *Nature
Letters* **437**: 1187–1191.

164

165 Campbell BJ, Kirchman DL. (2012). Bacterial diversity, community structure and potential
166 growth rates along an estuarine salinity gradient. *ISME J* **7**: 210–220.

167 Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, *et al.* (2010a)
168 QIIME allows analysis of high-throughput community sequencing data. *Nature Methods*
169 **7**: 335–36.

170 Caporaso JG, Bittinger K, Bushman FD, Desantis TZ, Andersen GL, Knight R. (2010b).
171 PyNAST: A flexible tool for aligning sequences to a template alignment. *Bioinformatics*
172 **26**: 266–267.

173 Chaney SG, Duffy JJ, Boyer PD. (1972). Patterns of oxygen interchange between water,
174 substrates, and phosphate compounds of Escherichia coli and Bacillus subtilis. *J Biol
Chem* **247**: 2145–2150.

175

176 Cole JJ. (1999). Aquatic microbiology for ecosystem scientists: New and recycled paradigms in
177 ecological microbiology. *Ecosystems* **2**: 215–225.

178 Delong EF, Wickham GS, Pace NR. (1989). Phylogenetic stains: ribosomal RNA-based probes
179 for identification of single cells. *Science* **243**: 1360–1363.

180 DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, *et al.* (2006). Greengenes,

181 a chimera-checked 16S rRNA gene database and workbench compatible with ARB. *Appl*
182 *Environ Microbiol* **72**: 5069–5072.

183 Deutscher MP. (2006). Degradation of RNA in bacteria: Comparison of mRNA and stable RNA.
184 *Nucleic Acids Res* **34**: 659–666.

185 Dortch Q, Roberts T, Clayton J, Ahmed S. (1983). RNA/DNA ratios and DNA concentrations as
186 indicators of growth rate and biomass in planktonic marine organisms. *Mar Ecol Prog Ser* **13**: 61–71.

187 Dunford EA, Neufeld JD. (2010). DNA Stable-Isotope Probing (DNA-SIP). *J Vis Exp* 1–6.

188 Ebbole DJ, Zalkin H. (1987). Cloning and characterization of a 12-gene cluster from *Bacillus*
189 *subtilis* encoding nine enzymes for de novo purine nucleotide synthesis. *J Biol Chem* **262**:
190 8274–8287.

191 Fierer N, Bradford MA, Jackson RB. (2007). Toward an ecological classification of soil bacteria.
192 *Ecology* **88**: 1354–1364.

193 Foesel BU, Nägele V, Naether A, Wüst PK, Weinert J, Bonkowski M, *et al.* (2014).
194 Determinants of Acidobacteria activity inferred from the relative abundances of 16S
195 rRNA transcripts in German grassland and forest soils. *Environ Microbiol* **16**: 658–675.

196 Friedrich MW. (2006). Stable-isotope probing of DNA: Insights into the function of uncultivated
197 microorganisms from isotopically labeled metagenomes. *Curr Opin Biotechnol* **17**: 59–
198 66.

199 Gentile G, Giuliano L, D'Auria G, Smedile F, Azzaro M, De Domenico M, *et al.* (2006). Study
200 of bacterial communities in Antarctic coastal waters by a combination of 16S rRNA and
201 16S rDNA sequencing. *Environ Microbiol* **8**: 2150–61.

202 Hungate BA, Mau RL, Schwartz E, Caporaso JG, Dijkstra P, van Gestel N, *et al.* (2015).

204 Quantitative Microbial Ecology through Stable Isotope Probing. *Appl Environ Microbiol*
205 **81**: 7570–7581.

206 Jones SE, Lennon JT. (2010). Dormancy contributes to the maintenance of microbial diversity.
207 *Proc Natl Acad Sci U S A* **107**: 5881–6.

208 Kamke J, Taylor MW, Schmitt S. (2010). Activity profiles for marine sponge-associated bacteria
209 obtained by 16S rRNA vs 16S rRNA gene comparisons. *ISME J* **4**: 498–508.

210 Kemp PF, Lee S, Laroche J. (1993). Estimating the Growth-Rate of Slowly Growing Marine-
211 Bacteria from Rna-Content. *Appl Env Microbiol* **59**: 2594–2601.

212 Kerkhof L, Ward BB. (1993). Comparison of nucleic acid hybridization and fluorometry for
213 measurement of the relationship between RNA/DNA ratio and growth rate in a marine
214 bacterium. *Appl Environ Microbiol* **59**: 1303–1309.

215 Khomutova TE, Demkina TS, Demkin VA. (2004). Estimation of the total and active microbial
216 biomasses in buried subkurgan paleosols of different age. *Microbiology* **73**: 196–201.

217 Kjeldgaard NO, Kurland CG. (1963). The Distribution of Soluble and Ribosomal RNA as a
218 Function of Growth Rate. *J Mol Biol* **6**: 341–348.

219 Koch AL. (1970). Overall controls on the biosynthesis of ribosomes in growing bacteria. *J Theor
220 Biol* **28**: 203–231.

221 Krohn A. (2016). akutils-v12: Facilitating analyses of microbial communities through QIIME.
222 Zenodo **10**: 5281.

223 Leff JW, Jones SE, Prober SM, Barberán A, Borer ET, Firn JL, *et al.* (2015). Consistent
224 responses of soil microbial communities to elevated nutrient inputs in grasslands across
225 the globe. *Proc Natl Acad Sci U S A* **112**: 10967–10972.

226 Lennon JT, Jones SE. (2011). Microbial seed banks: the ecological and evolutionary implications

227 of dormancy. *Nat Rev Microbiol* **9**: 119–130.

228 Lillis L, Doyle E, Clipson N. (2009). Comparison of DNA- and RNA-based bacterial community

229 structures in soil exposed to 2,4-dichlorophenol. *J Appl Microbiol* **107**: 1883–1893.

230 Luna GM, Manini E, Danovaro R. (2002). Large Fraction of Dead and Inactive Bacteria in

231 Coastal Marine Sediments : Comparison of Protocols for Determination and Ecological

232 Significance. *Appl Environ Microbiol* **68**: 3509–3513.

233 Lundgren B. (1981). Fluorescein Diacetate as a Stain of Metabolically Active Bacteria in Soil.

234 *Nordic Society Oikos* **36**: 17–22.

235 Mandelstam, J. (1960) The intracellular turnover of protein and nucleic acids and its role in

236 biochemical differentiation. **24**: 298–308.

237 Männistö M, Ganzert L, Tiirola M, Häggblom MM, Stark S. (2016). Do shifts in life strategies

238 explain microbial community responses to increasing nitrogen in tundra soil? *Soil Biol*

239 *Biochem* **96**: 216–228.

240 Mayfield CI. (1977). A fluorescence-staining method for microscopically counting viable

241 microorganisms in soil. *Can J Microbiol* **23**: 75–83.

242 Mengoni A, Tatti E, Decorosi F, Viti C, Bazzicalupo M, Giovannetti L. (2005). Comparison of

243 16S rRNA and 16S rDNA T-RFLP approaches to study bacterial communities in soil

244 microcosms treated with chromate as perturbing agent. *Microb Ecol* **50**: 375–384.

245 Morrissey EM, Mau RL, Schwartz E, Caporaso JG, Dijkstra P, van Gestel N, *et al.* (2016).

246 Phylogenetic organization of bacterial activity. *ISME J* 1–5.

247 Muttray AF, Mohn WW. (1999). Quantitation of the population size and metabolic activity of a

248 resin acid degrading bacterium in activated sludge using slot-blot hybridization to

249 measure the rRNA:rDNA ratio. *Microb Ecol* **38**: 348–357.

250 Muttray AF, Yu Z, Mohn WW. (2001). Population dynamics and metabolic activity of
251 Pseudomonas abietaniphila BKME-9 within pulp mill wastewater microbial communities
252 assayed by competitive PCR and RT-PCR. *FEMS Microbiol Ecol* **38**: 21–31.

253 Ostle N, Whiteley AS, Bailey MJ, Sleep D, Ineson P, Manefield M. (2003). Active microbial
254 RNA turnover in a grassland soil estimated using a $^{13}\text{CO}_2$ spike. *Soil Biol Biochem* **35**:
255 877–885.

256 Philippot L, Bru D, Saby NPA, Čuhel J, Arrouays D, Šimek M, *et al.* (2009). Spatial patterns of
257 bacterial taxa in nature reflect ecological traits of deep branches of the 16S rRNA
258 bacterial tree. *Environ Microbiol* **11**: 3096–3104.

259 Placella SA, Brodie EL, Firestone MK. (2012). Rainfall-induced carbon dioxide pulses result
260 from sequential resuscitation of phylogenetically clustered microbial groups. *Proc Natl
261 Acad Sci U S A* **109**: 10931–10936.

262 Poulsen LK., Ballard G, Stahl DA. (1993). Use of rRNA fluorescence in situ hybridization for
263 measuring the activity of single cells in young and established biofilms. *Appl Environ
264 Microbiol* **59**: 1354–1360.

265 Price MN, Dehal PS, Arkin AP. (2010). FastTree 2 – Approximately Maximum-Likelihood
266 Trees for Large Alignments. *PLoS One* **5**. e9490.

267 Radajewski S, Ineson P, Parekh NR, Murrell JC. (2000). Stable-isotope probing as a tool in
268 microbial ecology. *Nature* **403**: 646–649.

269 Ramirez KS, Lauber CL, Knight R, Bradford MA, Fierer N. (2010). Consistent effects of
270 nitrogen fertilization on soil bacterial communities in contrasting systems. *Ecology* **91**:
271 3463–3470.

272 Reid NM, Addison SL, Macdonald LJ, Lloyd-Jones G. (2011). Biodiversity of active and

273 inactive bacteria in the gut flora of wood-feeding Huhu beetle larvae (Prionoplus
274 reticularis). *Appl Environ Microbiol* **77**: 7000–7006.

275 Rettedal EA, Brözel VS. (2015). Characterizing the diversity of active bacteria in soil by
276 comprehensive stable isotope probing of DNA and RNA with H₂¹⁸O. *Microbiologyopen*
277 **4**: 208–219.

278 Richards OC, Boyer PD. (1966). ¹⁸O Labeling of deoxyribonucleic acid during synthesis and
279 stability of the label during replication. *J Mol Biol* **19**: 109–119.

280 Rodriguez GG, Phipps D, Ishiguro K. (1992). Use of a Fluorescent Redox Probe for Direct
281 Visualization of Actively Respiring Bacteria. *Appl Environ Microbiol* **58**: 1801–1808.

282 Rosset R, Julien J, Monier R. (1966). Ribonucleic acid composition of bacteria as a function of
283 growth rate. *J Mol Biol* **18**: 308–320.

284 Roszak DB, Colwell RR. (1987). Survival strategies of bacteria in the natural environment.
285 *Microbiol Rev* **51**: 365–379.

286 Schwartz E. (2007). Characterization of growing microorganisms in soil by stable isotope
287 probing with H₂¹⁸O. *Appl Environ Microbiol* **73**: 2541–2546.

288 Sherr BF, Del Giorgio P, Sherr EB. (1999). Estimating abundance and single-cell characteristics
289 of respiring bacteria via the redox dye CTC. *Aquat Microb Ecol* **18**: 117–131.

290 Stevenson LH. (1978). A case for bacterial dormancy in aquatic systems. *Microb Ecol* **4**: 127–
291 133

292 Wang G, Mayes MA, Gu L, Schadt CW. (2014). Representation of dormant and active microbial
293 dynamics for ecosystem modeling. *PLoS One* **9**. e89252.

294 Wang Q, Garrity GM, Tiedje JM, Cole JR. (2007). Naïve Bayesian classifier for rapid
295 assignment of rRNA sequences into the new bacterial taxonomy. *Appl Environ Microbiol*

296 73: 5261–5267.

297 Wellington EMH, Berry A, Krsek M. (2003). Resolving functional diversity in relation to
298 microbial community structure in soil: Exploiting genomics and stable isotope probing.

299 *Curr Opin Microbiol* **6**: 295–301.

300 Whiteley AS, Manefield M, Lueders T. (2006). Unlocking the ‘microbial black box’ using RNA-
301 based stable isotope probing technologies. *Curr Opin Biotechnol* **17**: 67–71.

302 Whiteley AS, Thomson B, Lueders T, Manefield M. (2007). RNA stable-isotope probing. *Nat
303 Protoc* **2**: 838–844.

304 Worden AZ, Binder BJ. (2003). Growth regulation of rRNA content in Prochlorococcus and
305 Synechococcus (Marine Cyanobacteria) measured by whole-cell hybridization of rRNA -
306 targeted peptide nucleic acids. *J Phycol* **39**: 527–534.

307 Yuan D, Shen V. (1975). Stability of ribosomal and transfer ribonucleic acid in Escherichia coli
308 B/r after treatment with ethylenedinitrilotetraacetic acid and rifampicin. *J Bacteriol* **122**:
309 425–32.

310 Zweifel UL, Hagström Å. (1995). Total Counts of Marine Bacteria Include a Large Fraction of
311 Non-Nucleoid-Containing Bacteria (Ghosts). *Appl Environ Microbiol* **61**: 2180–2185.

312

313 **Figure Legends**

314 Figure 1: Shifts in total RNA density after soils were incubated with H_2^{18}O for 1, 4 or 8 days.

315 Bars show means \pm standard deviation. The RNA density shifts significantly increased over time
316 as shown ($p = 0.013$).

317

318 Figure 2: Densities of rRNA extracted from soil incubated with H_2^{18}O (♦) or H_2^{16}O (◆) at three
319 time points. Panel A: rRNA densities of taxa detected on day 1, panels B and C: rRNA densities
320 of taxa detected on day 4 and 8 respectively. Taxa are ranked by the same alphabetical order in
321 each panel. Symbols represent means \pm standard deviations.

322

323 Figure 3: Atom percent excess (APE) ^{18}O of rRNA of major soil phyla on three time points (open
324 bars: day 1, black bars: day 4, gray bars: day 8). Significant temporal increase in APE ^{18}O of
325 rRNA is indicated by *. Bars show means \pm standard deviation.

326

327 Figure 4: Relationship between rRNA to rDNA ratios and atom percent excess (APE) ^{18}O of
328 rRNA among soil taxa on three time points: open symbols – day 1, black symbols – day 4 and
329 gray symbols – day 8.

330

331 Figure S1: Density curves of total RNA extracted from soil incubated with H_2^{18}O (●) ($n = 3$) or
332 H_2^{16}O (○) ($n = 3$) at three time points (panel A: day 1, panel B: day 4, panel C: day 8) expressed
333 as a percentage of the whole RNA sample.

334