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Abstract 24 

Most soil taxa are thought to be dormant, or inactive, yet the extent to which they 25 

synthetize new rRNA is poorly understood. We analyzed 18O-composition of RNA extracted 26 

from soil incubated with H2
18O and used quantitative stable isotope probing to characterize 27 

rRNA synthesis among microbial taxa. RNA was not fully labeled with 18O, peaking at a mean 28 

of 23.6 ± 6.8 atom percent excess (APE) 18O after 8 days of incubation, suggesting some 29 

ribonucleotides in soil were more than 8 days old. Microbial taxa varied in the degree to which 30 

they incorporated 18O into their rRNA over time. Additionally, there was no correlation between 31 

the APE 18O of bacterial rRNA and their rRNA to DNA ratios, suggesting that the ratios were not 32 

appropriate to measure ribonucleotide synthesis. Our study indicates that, on average, 94% of 33 

soil taxa produced new rRNA and therefore were metabolically active.  34 

 35 
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Most bacteria in soil are thought to be dormant (Babiuk and Paul, 1970; Mayfield, 1977; 39 

Lundgren, 1981; Alvarez et al., 1998; Sherr et al., 1999; Luna et al., 2002; Khomutova et al., 40 

2004; Wang et al., 2014), while only a small active fraction controls ecosystem processes 41 

(Mengoni et al., 2005; Aanderud et al., 2015).  Active bacterial cells have higher metabolic rates 42 

than dormant cells leading to higher protein and rRNA synthesis. Growth is not required for 43 

metabolic activity (Blazewicz et al., 2013). In contrast, during dormancy bacteria transition into 44 

a state of very low metabolic activity (Jones and Lennon, 2010; Bär et al., 2016). RNA 45 

concentrations are expected to decrease as most metabolic processes are halted, while DNA 46 

concentrations may remain relatively stable because dormant cells do not die. Accordingly, the 47 

relative abundances of ribosomal RNA (rRNA) and DNA extracted from environmental samples 48 

are commonly used as indicators of microbial metabolic activity (DeLong et al., 1989; Poulsen et 49 

al., 1993; Muttray and Mohn, 1999; Kamke et al., 2010). (Baldrian et al., 2012; Brettar et al., 50 

2012; Foesel et al., 2014). However, rRNA to DNA ratios among taxa in microbial communities 51 

vary substantially, often unrelated to metabolic activity, suggesting RNA alone may not be a 52 

reliable indicator of active populations (Blazewicz et al., 2013). 53 

Stable isotope probing (SIP) can assess microbial activity independent of rRNA to DNA 54 

ratios. SIP with 18O labeled water is especially powerful for assessing growth and activity of 55 

microbial communities because water is a universal substrate for nucleic acid synthesis 56 

(Schwartz, 2007). In this study, we incubated 2 grams of soil with 400 µl of sterile 95 atom % 57 

H2
18O or with 400 µl of sterile, natural abundance 18O-water, for 1, 4 and 8 days (N=18), and 58 

extracted total RNA following each incubation. Newly synthetized 18O-containing RNA has 59 

higher buoyant density than old RNA, and can be separated through isopycnic ultracentrifugation 60 

on a cesium trifluoroacetate (CsTFA) density gradient. We fractionated the ultracentrifuged 61 
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RNA, purified the fractions and sequenced a fragment of the 16S rRNA gene from 62 

complementary DNA (cDNA) as described in Document S1. Sequencing data were analyzed 63 

using a QIIME 1.7 based (Caporaso et al. 2010a) chained workflow (Krohn, 2016) 64 

https://github.com/alk224/akutils-v1.2. To assess rRNA synthesis of individual taxa, we 65 

measured the incorporation of 18O into rRNA by calculating the taxon specific shift in rRNA 66 

density and by converting it to atom percent excess (APE) 18O using a freely available R code 67 

https://bitbucket.org/QuantitativeSIP/qsip_repo. APE 18O indicated the excess of 18O atoms in 68 

microbial rRNA relative to natural abundance of the isotope, and was used to estimate rRNA 69 

synthesis rate. We were interested in assessing temporal patterns and variation in rRNA synthesis 70 

rates among soil microbial populations using qSIP, and in comparing our results to RNA to DNA 71 

ratios.  72 
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 All taxa contained 18O-labeled rRNA after 4 days of incubation with H2
18O. Densities of 74 

their non-labeled rRNA varied slightly around the mean (1.7808 ± 0.0011 g/ml), whereas 75 

densities of their labeled rRNA substantially differed on each day (Figure 1). This pattern likely 76 

reflects taxonomic variation in the rate of metabolic activity (Campbell and Kirchman, 2012; 77 

Männistö et al., 2016) or differential reliance among taxa on de novo ribonucleotide synthesis 78 

(Ebbole and Zalkin, 1987; Berg et al., 2002) versus ribonucleotide salvaging (Koch, 1970; 79 

Callaghan et al., 2005; Deutscher, 2006). If ribonucleotides are synthesized de novo, 18O will be 80 

assimilated throughout the ribonucleotide, in addition to its assimilation into phosphodiester 81 

bonds (Richards and Boyer, 1966; Chaney et al., 1972), which will increase 18O composition of 82 

rRNA more than recycling alone.  83 

Entirely dormant soil taxa were absent in our study, which challenges the widely 84 

accepted idea that dormancy is widespread among microbial taxa in the environment (Stevenson, 85 

1978; Cole, 1999; Luna et al., 2002; Jones and Lennon, 2010; Lennon and Jones, 2011). We 86 

would observe many populations with non-labeled rRNA (i.e. containing 18O only at the natural 87 

abundance level), if dormancy was a common survival strategy of soil bacteria. However, our 88 

observations do not preclude that members of a microbial population were not synthesizing new 89 

rRNA. Our observation of a weak correlation between rRNA to DNA ratio and APE 18O of 90 

rRNA of taxa (Spearman’s rank-order correlation, ρ(574) = - 0.082, p = 0.051, Figure 2), 91 

suggests that the ratio may be a poor proxy for metabolic activity despite its positive correlation 92 

with microbial growth rate in pure cultures (Kjeldgaard and Kurland, 1963; Rosset et al., 1966; 93 

Kerkhof and Ward, 1993; Muttray and Mohn, 1999; Muttray et al., 2001; Worden and Binder, 94 

2003). We expected that taxa with high rRNA to DNA ratios would have highly labeled rRNA 95 

(Rozsak and Colwell 1987) but this was not observed.  96 
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We observed a significant temporal increase in 18O content for total RNA (F2,4 = 15.404, 97 

p = 0.013, Figure S1 and S2) and for RNA of phyla (Figure S3) because RNA is thought to turn 98 

over rapidly (Wellington et al., 2003; Lillis et al., 2009), with rates ranging from 20% per day 99 

(Ostle et al., 2003) to 25% per hour (Yuan and Shen 1975). We expected that most RNA would 100 

be labeled with 18O shortly after H2
18O addition, but modeled rRNA turnover varied between 9 to 101 

18% per day, which was slower than previously reported. The labeled RNA had approximately 102 

23% of its oxygen atoms replaced with 18O, indicating that either some of the rRNA that was 103 

formed prior to H2
18O addition remained intact, that the rRNA was newly synthesized but partly 104 

made with ribonucleotides that were more than 8 days old, or that newly synthesized 105 

ribonucleotides obtain part of their oxygen from organic substrates. Assuming that 50% of 106 

oxygen atoms came from H2
18O and 50% come from organic substrates, (Chaney et al., 1972), 107 

the isotopic composition of rRNA would be 50% at the fast turnover rate and ~42% at the slower 108 

turnover rate and should have increased only minimally over time. The increase in 18O 109 

composition of RNA over time suggested that increasingly more ribonucleotides were 110 

synthesized and that the turnover rate of ribonucleotides in soil is on the order of ~23% per week 111 

Our knowledge of ribosome biosynthesis and degradation derives mostly from pure 112 

culture experiments but it appears that rRNA dynamics are different among bacteria in soil. 113 

H2
18O-RNA qSIP provides a different perspective of microbial activity than  rRNA to DNA 114 

ratios because qSIP characterizes and quantifies taxa that synthetize new nucleic acids and is 115 

therefore not subject to biases introduced by nucleic acids from dead or inactive populations.  116 
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Figure Legends 313 

Figure 1: Shifts in total RNA density after soils were incubated with H2
18O for 1, 4 or 8 days. 314 

Bars show means ± standard deviation. The RNA density shifts significantly increased over time 315 

as shown (p = 0.013).  316 

 317 

Figure 2: Densities of rRNA extracted from soil incubated with H2
18O (♦) or H2

16O (♦) at three 318 

time points. Panel A: rRNA densities of taxa detected on day 1, panels B and C: rRNA densities 319 

of taxa detected on day 4 and 8 respectively. Taxa are ranked by the same alphabetical order in 320 

each panel. Symbols represent means ± standard deviations. 321 

 322 

Figure 3: Atom percent excess (APE) 18O of rRNA of major soil phyla on three time points (open 323 

bars: day 1, black bars: day 4, gray bars: day 8). Significant temporal increase in APE 18O of 324 

rRNA is indicated by *. Bars show means ± standard deviation. 325 

 326 

Figure 4: Relationship between rRNA to rDNA ratios and atom percent excess (APE) 18O of 327 

rRNA among soil taxa on three time points: open symbols – day 1, black symbols – day 4 and 328 

gray symbols – day 8.  329 

 330 

Figure S1: Density curves of total RNA extracted from soil incubated with H2
18O (●) (n = 3) or 331 

H2
16O (○) (n = 3) at three time points (panel A: day 1, panel B: day 4, panel C: day 8) expressed 332 

as a percentage of the whole RNA sample. 333 

 334 


