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Abstract

Most soil taxa are thought to be dormant, or inactive, yet the extent to which they
synthetize new TRNA is poorly understood. We analyzed '*O-composition of RNA extracted
from soil incubated with H2'30 and used quantitative stable isotope probing to characterize
rRNA synthesis among microbial taxa. RNA was not fully labeled with 80, peaking at a mean
of 23.6 + 6.8 atom percent excess (4PE) '#0 after 8 days of incubation, suggesting some
ribonucleotides in soil were more than 8 days old. Microbial taxa varied in the degree to which
they incorporated '*O into their rRNA over time. Additionally, there was no correlation between
the APE 'O of bacterial rRNA and their rRNA to DNA ratios, suggesting that the ratios were not
appropriate to measure ribonucleotide synthesis. Our study indicates that, on average, 94% of

soil taxa produced new rRNA and therefore were metabolically active.

Keywords: RNA-quantitative Stable Isotope Probing, APE ®0 of rRNA, rRNA density shift,

rRNA: DNA ratio, microbial activity, soil prokaryotes/microbes
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Most bacteria in soil are thought to be dormant (Babiuk and Paul, 1970; Mayfield, 1977,
Lundgren, 1981; Alvarez et al., 1998; Sherr et al., 1999; Luna et al., 2002; Khomutova et al.,
2004; Wang et al., 2014), while only a small active fraction controls ecosystem processes
(Mengoni et al., 2005; Aanderud ef al., 2015). Active bacterial cells have higher metabolic rates
than dormant cells leading to higher protein and rRNA synthesis. Growth is not required for
metabolic activity (Blazewicz et al., 2013). In contrast, during dormancy bacteria transition into
a state of very low metabolic activity (Jones and Lennon, 2010; Bér ef al., 2016). RNA
concentrations are expected to decrease as most metabolic processes are halted, while DNA
concentrations may remain relatively stable because dormant cells do not die. Accordingly, the
relative abundances of ribosomal RNA (rRNA) and DNA extracted from environmental samples
are commonly used as indicators of microbial metabolic activity (DeLong et al., 1989; Poulsen et
al., 1993; Muttray and Mohn, 1999; Kamke et al., 2010). (Baldrian et al., 2012; Brettar et al.,
2012; Foesel et al., 2014). However, rRNA to DNA ratios among taxa in microbial communities
vary substantially, often unrelated to metabolic activity, suggesting RNA alone may not be a
reliable indicator of active populations (Blazewicz ef al., 2013).

Stable isotope probing (SIP) can assess microbial activity independent of rRNA to DNA
ratios. SIP with '0 labeled water is especially powerful for assessing growth and activity of
microbial communities because water is a universal substrate for nucleic acid synthesis
(Schwartz, 2007). In this study, we incubated 2 grams of soil with 400 pl of sterile 95 atom %
H>'30 or with 400 pl of sterile, natural abundance '8O-water, for 1, 4 and 8 days (N=18), and
extracted total RNA following each incubation. Newly synthetized '*O-containing RNA has
higher buoyant density than old RNA, and can be separated through isopycnic ultracentrifugation

on a cesium trifluoroacetate (CsTFA) density gradient. We fractionated the ultracentrifuged
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RNA, purified the fractions and sequenced a fragment of the 16S rRNA gene from
complementary DNA (cDNA) as described in Document S1. Sequencing data were analyzed
using a QIIME 1.7 based (Caporaso ef al. 2010a) chained workflow (Krohn, 2016)

https://github.com/alk224/akutils-v1.2. To assess TRNA synthesis of individual taxa, we

measured the incorporation of '*0 into rRNA by calculating the taxon specific shift in rRNA
density and by converting it to atom percent excess (APE) 80 using a freely available R code

https://bitbucket.org/QuantitativeSIP/gsip_repo. APE 80 indicated the excess of %0 atoms in

microbial rRNA relative to natural abundance of the isotope, and was used to estimate rRNA
synthesis rate. We were interested in assessing temporal patterns and variation in rRNA synthesis
rates among soil microbial populations using qSIP, and in comparing our results to RNA to DNA

ratios.
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All taxa contained '*0-labeled rRNA after 4 days of incubation with H2!0. Densities of
their non-labeled rRNA varied slightly around the mean (1.7808 = 0.0011 g/ml), whereas
densities of their labeled rRNA substantially differed on each day (Figure 1). This pattern likely
reflects taxonomic variation in the rate of metabolic activity (Campbell and Kirchman, 2012;
Mainnisto ef al., 2016) or differential reliance among taxa on de novo ribonucleotide synthesis
(Ebbole and Zalkin, 1987; Berg et al., 2002) versus ribonucleotide salvaging (Koch, 1970;
Callaghan et al., 2005; Deutscher, 2006). If ribonucleotides are synthesized de novo, '*O will be
assimilated throughout the ribonucleotide, in addition to its assimilation into phosphodiester
bonds (Richards and Boyer, 1966; Chaney et al., 1972), which will increase '*O composition of
rRNA more than recycling alone.

Entirely dormant soil taxa were absent in our study, which challenges the widely
accepted idea that dormancy is widespread among microbial taxa in the environment (Stevenson,
1978; Cole, 1999; Luna et al., 2002; Jones and Lennon, 2010; Lennon and Jones, 2011). We
would observe many populations with non-labeled rRNA (i.e. containing '*O only at the natural
abundance level), if dormancy was a common survival strategy of soil bacteria. However, our
observations do not preclude that members of a microbial population were not synthesizing new
rRNA. Our observation of a weak correlation between rRNA to DNA ratio and APE 80 of
rRNA of taxa (Spearman’s rank-order correlation, p(574) = - 0.082, p = 0.051, Figure 2),
suggests that the ratio may be a poor proxy for metabolic activity despite its positive correlation
with microbial growth rate in pure cultures (Kjeldgaard and Kurland, 1963; Rosset et al., 1966;
Kerkhof and Ward, 1993; Muttray and Mohn, 1999; Muttray et al., 2001; Worden and Binder,
2003). We expected that taxa with high rRNA to DNA ratios would have highly labeled rRNA

(Rozsak and Colwell 1987) but this was not observed.
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We observed a significant temporal increase in 30 content for total RNA (F2.4 = 15.404,
p =0.013, Figure S1 and S2) and for RNA of phyla (Figure S3) because RNA is thought to turn
over rapidly (Wellington ef al., 2003; Lillis et al., 2009), with rates ranging from 20% per day
(Ostle et al., 2003) to 25% per hour (Yuan and Shen 1975). We expected that most RNA would
be labeled with 'O shortly after H2'30 addition, but modeled rRNA turnover varied between 9 to
18% per day, which was slower than previously reported. The labeled RNA had approximately
23% of its oxygen atoms replaced with 80, indicating that either some of the rRNA that was
formed prior to H2'*0 addition remained intact, that the rRNA was newly synthesized but partly
made with ribonucleotides that were more than 8 days old, or that newly synthesized
ribonucleotides obtain part of their oxygen from organic substrates. Assuming that 50% of
oxygen atoms came from H2'®0 and 50% come from organic substrates, (Chaney et al., 1972),
the isotopic composition of rRNA would be 50% at the fast turnover rate and ~42% at the slower
turnover rate and should have increased only minimally over time. The increase in 30
composition of RNA over time suggested that increasingly more ribonucleotides were
synthesized and that the turnover rate of ribonucleotides in soil is on the order of ~23% per week

Our knowledge of ribosome biosynthesis and degradation derives mostly from pure
culture experiments but it appears that rRNA dynamics are different among bacteria in soil.
H>'30-RNA qSIP provides a different perspective of microbial activity than rRNA to DNA
ratios because qSIP characterizes and quantifies taxa that synthetize new nucleic acids and is
therefore not subject to biases introduced by nucleic acids from dead or inactive populations.
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Figure Legends
Figure 1: Shifts in total RNA density after soils were incubated with H2'%0 for 1, 4 or 8 days.
Bars show means + standard deviation. The RNA density shifts significantly increased over time

as shown (p = 0.013).

Figure 2: Densities of rRNA extracted from soil incubated with H2'30 (#) or H2'%0 (¢) at three
time points. Panel A: rRNA densities of taxa detected on day 1, panels B and C: rRNA densities
of taxa detected on day 4 and 8 respectively. Taxa are ranked by the same alphabetical order in

each panel. Symbols represent means + standard deviations.

Figure 3: Atom percent excess (APE) '®0 of rRNA of major soil phyla on three time points (open
bars: day 1, black bars: day 4, gray bars: day 8). Significant temporal increase in APE '*0 of

rRNA is indicated by *. Bars show means + standard deviation.

Figure 4: Relationship between rRNA to rDNA ratios and atom percent excess (APE) 30 of
rRNA among soil taxa on three time points: open symbols — day 1, black symbols — day 4 and

gray symbols — day 8.

Figure S1: Density curves of total RNA extracted from soil incubated with H2'%0 (e) (n = 3) or

H>'%0 (o) (n = 3) at three time points (panel A: day 1, panel B: day 4, panel C: day 8) expressed

as a percentage of the whole RNA sample.
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