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Abstract. We describe the shape potentials used for the van der Waals interactions between soft-
ellipsoids used to coarse-grain molecular moieties in Metropolis Monte-Carlo simulation 
software. The morphologies resulting from different expressions for these van der Waals 
interaction potentials are discussed for the case of a prolate spheroid system with a strong dipole 
at the center. We also show that the calculation of ellipsoids is, at worst, only about fivefold 
more expensive computationally when compared to a simple Lennard-Jones sphere. Finally, as 
an application of the ellipsoidal shape we parametrize water from the original SPC water model 
and observe – just through the difference in shape alone – a significant improvement of the O-O 
radial distribution function when compared to experimental data. 

1.  Introduction 
In the development of coarse-grained force fields based on all atom force fields, the reduction of a set 
of charges is a reasonably well understood process. Using multipole expansions about centers (or 
clusters of centers within molecules) one knows how to express many point charges with higher order 
moments or even fewer partial charges. Additionally, with the use of methods such as CHELPG [1] or 
RESP [2,3] ab-initio quantum mechanical electrostatic potentials can be reduced to a discrete set of 
point charges (often placed on the atom centers) that well describe most molecules. However, for 
descriptions of molecular shapes, generally at the all atom level, only spheres are used to represent the 
van der Waals interactions. Typically, the Lennard-Jones (LJ) type potential is the avatar of van der 
Waals interactions. 

A widely used coarse-grained alternative to a spherical molecular shape is the Gay-Berne formulation 
of a LJ-like potential energy function implementing spheroidal [4] as well as ellipsoidal shapes [5]. The 
parameterization of this energy function has proved challenging and there has not been a systematic, 
bottom-up approach to understanding the parameters needed. We have recently published a method, 
called the Level-of-Detail method [6], to envision ellipsoids replacing specific units within a molecule, 
and even the entire molecule. In this work, we described how to calculate the ellipsoid shapes and 
associated potential parameters directly from an underlying all atom force field such as OPLSAA [7] or 
GAFF [8]. The results suggest that the ellipsoids and associated parameters that describe the Lennard-
Jones energies well reproduce the results of the underlying all atom force field. 

This proceedings paper serves as an illustration that ellipsoidal shapes allow for a nuanced 
representation of the dispersion interactions of molecules. The first part of this paper presents insights 
                                                       	
1This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the 
U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for 
publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, 
worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for 
United States Government purposes. The Department of Energy will provide public access to these results of 
federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-
public-access-plan). 

http://creativecommons.org/licenses/by/3.0


2

1234567890

Landau IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 921 (2017) 012015  doi :10.1088/1742-6596/921/1/012015

 
 
 
 
 
 

into how small tweaks to the potential energy function can lead to dramatic changes in the resulting 
morphology. Secondly, we report on an ellipsoidal water model based on the original SPC [9] model. 

2.  Gay-Berne-like Lennard Jones Potential for Ellipsoids 
 

Table 1. Model parameters used in this work 

Model 
Semi axes [Å] 

(LJ width 𝜎% [Å])* 
LJ energy 
[kcal/mol] 

Charges; (Locations) 
[e; Å] 

Dipole 
[Debye] 

Prolate Spheroid 12.15x3.14x3.14 (3.0)* 3.515 - (15,0,0) 
SPC Water [9] 1.583x1.583x1.583 0.155 -0.82; (0,0,0) 

0.41; (0.8165,0.5774,0) 
0.41; (-0.8165,0.5774,0)** 

- 

Water Ellipsoid 1.973x1.642x1.224 0.159 - 
* If “Adjusted Width” LJ potential, eq. 4, is used.    ** Charge locations are the same for both models. 
 
Ellipsoids are promising shapes to add to the simulation toolbox [6,10–12]. They enable the description 
of large, coarse-grained molecular moieties without the need to introduce further corrective terms to the 
simulation Hamiltonian to account for shape anisotropy [13–15]. Additionally, a physically intuitive 
understanding of the resulting shapes from simulation parameters is retained. The shape potential used 
is derived from a generalized Lennard-Jones (LJ) potential similar to the Gay-Berne description [4]: 

 𝑉'((𝑟'(, 𝛺'() = 4𝜖'(
𝜎%

𝑟'( − 𝛿'(

34
−

𝜎%
𝑟'( − 𝛿'(

5
 (1) 

Here, 𝑟'( is the distance vector (with 𝑟'( its magnitude), 𝛺'( is the set of relative orientations of the 
two ellipsoids, 𝜖'( is the potential well depth, 𝜎% determines the width of the potential well, and 𝛿'( 
can be used to adjust the zero-crossing of the potential. Note that this reduces to the original LJ potential 
with 𝜎% = 𝑐𝑜𝑛𝑠𝑡. and 𝛿'( = 0. The interaction between two arbitrarily oriented ellipsoids, A and B, is 
given by 𝜎'( 𝑟'(, 𝛺'( , as the distance at which the ellipsoids would touch when moved along the 
distance vector 𝑟'( from the contact function (CF), 𝐹'(, described by Perram and Wertheim [16]: 

  𝜎'( 𝑟'(, 𝛺'( = 𝑟'( ∙ 𝐹'( 𝑟'(, 𝛺'(
?34 (2) 

When this expression is used as 𝜎% in conjunction with 𝛿'( = 0 in eq. 1, one obtains a simple, LJ-
like potential, called the “Simple Touch” potential [6]: 

 𝑉'(@A 𝑟'(, 𝛺'( = 4𝜖'(
𝜎'( 𝑟'(, 𝛺'(

𝑟'(

34

−
𝜎'( 𝑟'(, 𝛺'(

𝑟'(

5

= 4𝜖'( 𝐹'(?5 − 𝐹'(?B  (3) 

Figure 1a) shows the resulting morphology of identical ellipsoids with a point dipole at their center 
in a two- and three-dimensional simulation box. The florid, micellar arrangement observed is caused by 
the wider potential well in the long direction of the ellipsoids. It is a direct consequence of the numerator, 
𝜎'( 𝑟'(, 𝛺'( , in eq. 3 affecting both the zero-crossing as well as the potential well. 

Holding the potential well width constant, 𝜎% = 𝑐𝑜𝑛𝑠𝑡., and adjusting the zero-crossing such that the 
ellipsoids cannot overlap, 𝛿'( = 𝜎'( 𝑟'(, 𝛺'( − 𝜎%, leads to the “Adjusted Width” potential: 

 𝑉'((𝑟'(, 𝛺'() = 4𝜖'(
𝜎%

𝑟'( − 𝜎'( 𝑟'(, 𝛺'( + 𝜎%

34
−

𝜎%
𝑟'( − 𝜎'( 𝑟'(, 𝛺'( + 𝜎%

5
 (4) 

The resulting morphologies are displayed in Figure 1b). This corrects the micellar behavior observed 
when using the “Simple Touch” potential in three dimensions. 

The remaining, visible ordering behavior in the two-dimensional box is caused by the strong dipole 
at the center of each ellipsoid as well as by the width of the ellipsoids (in the short direction) and the 
relative potential well depths. A liquid crystalline arrangement as seen in Figure 1c) would eventually 
be favored if the circumference of the spheroid were further reduced (increasing dipole-dipole 
interaction). In the case of Figure 1c) we used the “Interaction Area” orientation dependent potential 
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well depth, 𝜖'( 𝑟'(, 𝛺'( , described in Tillack et al. [6] to favor the side-side interaction over the end-
end interaction (by a factor of 3.87). This approach takes into account the dispersion interaction’s 
proportionality to the surface areas of the interacting ellipsoids. 

 

Figure 1. Effect of choice of Lennard-Jones Potential on resulting arrangement of ellipsoid-dipole 
system in two-dimensional (2D, top) and three-dimensional (3D, bottom; adapted with permission from 
[6]. Copyright 2016 American Chemical Society) simulation box. System consists of 432 prolate 
ellipsoids (see Table 1) in the the isothermal isobaric (NPT) ensemble under 1 atm at 400 K with 
periodic boundary conditions (PBCs). The 2D system was obtained by using a modified soft wall 
restoring potential [17]; walls separated by 𝐿 = ±2 ∙ 3.14	Å (matching the spheroid’s short axis); a 
potential well depth of 6.6 ∙ 10?B KLMN

OPN
; and PBCs in the y and z-direction. 

 
An often thought downside to using ellipsoids and particularly when using Perram and Wertheim’s 

contact function [16] is that the numerical implementation is done in an iterative fashion with no clearly 
specified end-condition, which implies an indeterminate computational cost. This naturally makes some 
feel queasy because, theoretically, this could mean one ends up with an infinite loop in certain cases. 
However, if one fixes the precision of the answer (in our case to a variance of 10?5 in the scalar 
parameter 𝜆 of the contact function [16]) not only does the calculation typically converge within 5-6 
loops, but also fewer iterations are needed the farther ellipsoids are from each other. The same lowered 
computational cost also applies for ellipsoids with smaller aspect ratios. 

 

 

Figure 2. Cost factor of ellipsoids, 
from Table 1, is the cost (i.e. time) of 
computation relative to an equally 
sized system of a Lennard-Jones 
sphere. All calculations were run in 
the canonical (NVT) ensemble with 
potential cut off lengths fixed to half 
the box length. 
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Figure 2 shows the relative cost of using the ellipsoids from Table 1 with equation 2 but no 
electrostatics. For an ellipsoid of small aspect ratio (ellipsoidal water) the cost factor for increasing 
system sizes, 𝑁, decreases towards an asymptotic value of around 1.75. For the prolate ellipsoids, this 
drop in calculation cost is still ongoing for the largest system of 6000 ellipsoids. Overall, the maximum 
cost factor is about five, consistent with previous work [6], compared to the calculation of the spherical 
Lennard-Jones potential. Because the pairwise evaluation scales with the square of the number of entities 
involved, then when three or more Lennard-Jones spheres are replaced by one ellipsoid, the ellipsoid 
will be more computationally efficient ( 5.5 < 3, where 5.5 is the maximum observed ellipsoid cost 
factor). Ellipsoidal potentials may be adapted to an MD software package, because the contact function 
is analytic and could be used to evaluate forces and torques for both equations 3 and 4 [18]. 

3.  Water: The Importance of Shape 
To illustrate the utility of using an ellipsoidal shape, let us consider a simple, ellipsoidal water model 
based on the original SPC model [9]. By using the gyration tensor approach outlined in [6] an ellipsoid 
can be obtained from the SPC water model with oxygen, O, at the center of the ellipsoid. 

With a Hamiltonian consisting of equation 3 for the LJ-like pair potential as well as a Coulomb 
interaction potential and a Barker-Watts type self-consistent reaction field [10,12,19] the resulting radial 
distribution function between oxygen centers for both the original SPC [9] and the ellipsoid water model 
in comparison to current experimental data from [20] is shown in Figure 3. It can be observed that while 
SPC generally matches the secondary peak locations well, it does overshoot the main peak by about 
12% and generally shows slightly broader peaks than seen experimentally. The ellipsoid model 
improves the radial distribution function significantly in those regards. 

Both models, using the NPT ensemble, give similar densities of (0.98	 ± 0.01)	𝑔/𝑐𝑐. Interestingly, 
while the SPC model gave an overall dielectric of 60	 ± 20 the ellipsoid model returned a dielectric of 
23	 ± 5. This dramatic change of dielectric constants between the two models can be exclusively 
attributed to the difference in shape, spherical versus ellipsoidal. The ellipsoid breaks the high symmetry 
offered by the sphere used in the SPC water model. Combined with the strong dipole component of the 
interior charge distribution this leads the SPC water model (and by extension any water models using a 
spherical shape) to reach a larger dielectric constant than would be possible with a lower symmetry 
shape. 

 

 

Figure 3. Shape effect demonstrated using 
O-O radial distribution function, g(r), of 
water with spherical SPC water model 
(dashed red line), ellipsoidal model (green 
dots) based on SPC in comparison to 
experimental data[20] (solid blue line). 
Simulations consist of 216 water molecules 
(see Table 1) in the NPT ensemble under 1 
atm at 298 K with periodic boundary 
conditions. 

Our group has previously observed similarly inflated dielectric constants for a Stockmeyer fluid 
(dipole in a sphere) when compared to an identical dipole inside of a prolate spheroid [10]. More 
importantly, prolate spheroids, with an aspect ratio larger than 1.3, agreed well with the Onsager value 
of the dielectric (quite close to the experimental dielectric for most organic solvents). Furthermore, using 
a simple dipolar expansions of charges and proper ellipsoids representing ethylene carbonate, we 
reported that analogous calculations obtained dielectric constants of 90, in agreement with experiment, 
using only a single or a two-ellipsoid coarse-grained model [6,14]. Therefore, it should be feasible to 
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obtain the experimental dielectric using the modified water shape, and position the charges to best 
describe the electrostatic potential of water, as recently suggested [21]. 

4.  Conclusions 
We have shown dramatic differences in the morphology of prolate spheroids with large dipoles, having 
a dipolar density on the order of water (5.42 for the prolate spheroid at 400 K vs 5.83 for SPC water at 
298 K). The different morphologies shown for the prolate spheroids are caused by their large aspect 
ratio. Water however, has a much smaller aspect ratio but subtleties in close interactions can manifest 
in small changes in g(r). In this case the simple substitution of an ellipsoid for the sphere in water 
definitely improved the SPC model of water with respect to the experimental g(r). No further 
modifications of the model were performed. 

The modification of the molecular shape to generate an ellipsoid for the Lennard-Jones interactions 
is based on an all atom transferable force field. Using well developed rules, one can automatically 
replace any simple set of atoms (within a molecule) with an ellipsoid. In the several cases we have tested 
[6] the agreement of the g(r) of the ellipsoidal coarse-grained representation with the underlying all atom 
g(r) has been excellent. We point out with water, that the ellipsoid we developed was consistent with 
the symmetry of the water molecule. The use of a sphere produces a system with a higher symmetry in 
its shape. The interaction of the point charges in the SPC Hamiltonian does respect the molecular 
symmetry of the molecule, but the same cannot be said for the intermolecular van der Waals energies. 
Replacing a sphere with an ellipsoid restores the underlying molecular dispersion symmetry of the water. 
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