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Outline

= Sandia’s interest in AM
= AM processes

" metal

= direct write
= Analysis driven design

= topology optimization

= material & process simulation
= Stockpile components

= B61-12 LEP

= W88 ALT370

= Material assurance




A National Security Science & Engineering Laboratory
= “Exceptional service in the national interest”

= Nuclear Weapons
=  Defense Systems & Assessments
=  Energy & Climate
= International, Homeland, & Nuclear Security

\\V/l{}i : A.

Yy \ :‘h\"\ (




SNL’s Additive Interest

= Reduce risk, accelerate development

= simplify assembly & processing
= prototypes, test hardware, tooling & fixturing

= Add value
= design & optimize for performance, not mfg

= complex freeforms, internal structures, integration
= engineered materials

= gradient compositions

= microstructure optimization & control

= multi-material integration

— “print everything inside the box, not just the box”
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fixture generated in 1 day

prototype AM mirror & structure




Powder Bed Fusion

= Growing activity for metal parts
= supporting wide-ranging SNL missions
= partnering w/NSC for NW

= research platforms for process &
material characterization

- ProX 200,
materials
science lab

= 3D System machines
= two ProX 300, one ProX 200
= motivations

= roller powder compression
= process flexibility
= domestic OEM

= materials
- how: 316L ProX 300, neutron
= future: Kovar, 304L, 17-4Ph, 13-8Mo generator vault

Bradley Jared, Dan Kammler, Gary Hux



Laser Engineered Net Shaping (LENS®)

additional optics port

— Historical fiber input

camera for closed

= extensive SNL development efforts & investments looB|RioeesS OBt
= licensed to Optomec

=  Custom research machine
= 2 kW laser source
= 10,000 rpm spindle for machining

IR camera port for

= custom deposition head for powder delivery & thermal imaging
process diagnostics

=  Optomec MR-7 (CA)

laser engineered net
shaping (LENS®)

1/21/2015 1154:32.170506

304L SS — Cu multi-material

thermal history during bi-directional metal deposition
thermal concentrator
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David Keicher, Gary Hux



=  Processes
= ink jet, aerosol jet, extrusion casting

aerosol jet

printing to
10 um ‘ ™.

=  Materials

= epoxies, silicones, dielectrics, ceramics,
nano-inks, energetics

. . onductive traces on polymer film
= substrates: plastics, ceramics,

polyimide, encapsulants, metals, FR4,
glass, paper

= formulation, synthesis &
characterization
= Sintering / curing
= thermal, joule heating, UV, plasma,
laser, microwave, room temperature
=  Applications

= DC & RFinterconnects, antenna,
sensor networks, structural health,
package integration

= conformal geometries
= prototype circuitry in LTCC

s _ i
ceramic-thermoplastic 3D (CT3D) printing of alumina

Adam Cook, Chris Diantonio



Plausible Topology Optimization (PLATO)

=  SIERRA implementation
= available for government use
= Current capabilities
= SAW user interface
= elasto-static & thermal solutions

lattice implementation

= |oad cases W/TO solutions

= displacement, surface or body
loads, CG, temperature, flux

= anisotropic, multi-materials

CG Offset

= Jattices

= parallel HPC processing
CG Offset

=  Future work

= stress optimization, UQ, material
distributions, more multi-physics,
increase efficiency, process
awareness, user intervention

minimum compliance w/fixed CG location

Joshua Robbins, Tom Voth, Miguel Aguilo, Brett Clark, Ted Blacker
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Von Mises stress
distributions from CP

53 grains from phase field, 1.35M element
conformal hex mesh

microstructure models bridge phase field &
crystal plasticity simulations

homogenization theory ;ME

macroscale torsion stress fields

direct numerical simulation

DIC measurements

oligocrystal tensile load experiment vs. crystal plasticity
models
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predicted (color) vs. measured (grey) response for welds

Brad Boyce, Corbett Battaile, Jay Carroll, Joe Bisho
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Extent of Processing

=  Process = Defect impact
= reduce experimentation = understand formation mechanisms
“ laser-material interaction = explore uncertainty quantifications
* discrete particle physics = predict response from stochastic
" process -> structure relationships process knowledge

= process limits
I ————————————

Tony Geller, Amy Sun, et al



Development Approach

= First opportunities

= predominantly cost or performance driven
= simple integration

= Requirements, requirements, requirements
= function in relevant environments
= materials & processes
= specifications & tolerances

= Quality
= development thru qualification
= determine process-material-performance relationships
= specify process requirements for production
= demonstrate process variation within functional margin
= production

= product acceptance of AM builds, part material & part
geometry



= Material formation concurrent w/geometry

= howto ID a bad part?
must quantify critical defects & useful “signatures”
processes are currently open loop '¥ across

1
complexity isn’t “free” | T print

. "layers
k. .

= requires significant design margins and/or
rigorous post-process inspection / validation

17-4PH dogbone porosity

= Understand mechanistic impacts on properties 1200
=  build process-structure-property relationships to Y
predict margins & reliability 10001
= characterize stochastics 800 -
= design for uncertainties 9_:1
= provide scientific basis for qualification of AM s 800"
metals for high consequence applications b w0l
200
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Strain (%)

17-4PH dogbone stress strain response
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Born Qualified Grand Challenge LDRD

=  “Changing the Engineering Design & Qualification Paradigm”
= |everage AM, in-process metrology & HPC to revolutionize product realization
= starts w/foundational materials science

Quantify & / ™.

Optimize
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QUESTIONS?

Bradley Jared, PhD
bhjared@sandia.gov

505-284-5890
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Variable Strain Rate Mechanical Response

= High power LENS (0.5-3.8 kW, Penn State) w7 V7 Y
= Exploring strain rates from 10 to 10° /sec \
= quasi-static to gas gun 04 <
= Building crystal plasticity predictive models 4
" Probing material behavior using neutron 0041
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1
: N, 2 0.0 T T T T
ot b & i X v 0 2 4 6 8 10
——— elle (%)
prediction of material anisotropy
0.38
0.32 - f 12618 S j% — 1% 6.0
0.28 Vwa /7:\ n;/ i
0.24 /fE:GEE \ V_‘I/ Y;:/
0.20 \f C\ i ;D-
g 0.16 — k / /“%/ ../(—ﬁ
% 0.12 K @E \ \;;7‘/ \/‘“:
o .
> 0.08 / b / T \\f\
DioA=— N e / - ~
~— H 3
0.00 T emmmose I MT
— Z-cut AM 304L SS |
-0.04

01 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

t -t (Microsec)

wrought 304L SS microstructure (left) & AM (right) spall strength of LENS 304L SS varies from 3.27 to 3.91
GPa & exceeds wrought material (2.63 — 2.88 GPa)

David Adams, et al



Weld Critical Powder

=  Welding studies identified cracking risk
from commercial 304L powder

= draft spec developed & powder heat lot
procured mimicking weld critical 304L VAR

chemistry
= stringent composition range to prevent reeld] el an e mae rm
solidification crack susceptible microstructure uncontrolled commercial AM powder
= Housing will have reduced weld cracking T S A OV e TS (e
susce pti b i I ity 0181 o Lpw30aLAIK18432 . l
LPW304LAJK24570 !
= housings & material samples fabricated from 1 LpwaoaLI2A3ED i
weld critical powder for testing S rimeaTen o237 :'
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Jeff Rodelas, Bradley Jared, David Bonner




Corrosion

Exploring

= performance of PBF stainless steels
relative to conventional materials

linkages to processing-microstructure

Case study: commercial PBF 17-4 PH vs.
conventional wrought

= inferior performance of AM material

= passivity compromised by porosity in
material
sets up favorable (crevice-like) conditions
for pitting corrosion

Underway

performance characterization of 304L
and 316L

impact of varied process conditions &
surface finish on passivity

polished AM 17-4PH
surface exhibiting
corrosion product build-up
over pore after 7 day
immersion in 0.6 M NaCl

bis DBy« te ot wn FlikE
conventional wrought and AM 17-4PH

coupons after B117 salt fog corrosion
test

0.6-
E,UI: micro-electrochemical
= 0.4 measurements in 0.6 M
“E NaCl reveal AM 17-4
° orosity compromises
2 0.2 p % p

0.04

stainless nature
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Current {A.fcmz)

Eric Schindelholz, Rebecca Schaller, Jeff Rodelas



Cleaning

= Concern over loose, conductive “cling-ons”

= Study initiated to examine efficacy of cleaning
= blasting & vibratory polishing housings
= cleaning wash & rinse

= Parallel effort to examine cleaning residues
potentially trapped in rough AM surfaces

loosely
adhered
powder

as-printed AM 304L surface
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EDS particle analyses to characterize composition/morphology
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increased cleaning time (light blue) reduces loose particle count to

machined housing levels (green)

of particles after cleaning

Kim Archuleta, Jeff Rodelas, Bradley Jared, David Bonner




