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Outline

= Material assurance
= qualification today

= AM defects
= quantifying material distributions
= defect signatures
= process development

= (Qualification tomorrow




. Material formation concurrent w/geometry
= howto ID a bad part?
= must quantify critical defects & useful “signatures”
= processes are currently open loop
= complexity isn’t “free”
= requires significant design margins and/or
rigorous post-process inspection / validation

development build plate

porosity via CT

* Point qualification today

* development 250
* same phase gate process, still test parts & materials
* develop & eyaluate new. mfa\ter.lals sool plate #1
* must establish property distributions
w/probabilities & worst case, not just mean .
© L
*  production g 100
* product acceptance is greatest challenge 2 |
) . 2100 plate #6
» destructive sampling (random part per plate) o
* test artifacts (tensile, Charpy, density,

50

composition, powder, ???)
* inspection (CT, dimensional, powder)
* DA & PA working closely together on requirements, 0
specifications & methods Strain (%)
HTT curves for development build plates #1 & #6




Process Development

HTT array
design w/120
tensile bars
for 304L
process
sensitivity
study
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304L performance over 13 different process settings,

Jeff Rodelas, David Bonner




stress contours for a z-direction high-frequency
flight shock excitation
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Al10SiMg development build large HTT stress-strain curves axial impact test

Clint Holtey, Lisa Deibler, Jay Carroll, Bradley Jared Jeff Rodelas, David Bonner




Characterize, predict & control for laser
PBF
= exploring precipitation hardened SS as
alternate to 304L

= higher strength w/multiple ;
strengthening mechanisms L 100 um
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17-4PH dogbone fracture surface

= Understand mechanistic impacts on

. 17-4PH dogbone porosity
properties 1200

= build process-structure-property Y
. 0 5 5 1000
relationships to predict margins &
reliability 800 -
: : 5
= characterize stochastics s
w 600r
= design for uncertainties 8
[72]
= provide scientific basis for qualification 4001
200
0 1 1 1 | | 1
Bradley Jared, Brad Boyce, Jeff Rodelas, Jon Madison, Brad Salzbrenner, 0 2 4 6 8 10 12
Strain (%)

Laura Swiler, Jacob Ostien, Olivia Underwood, Chris Stork :
17-4PH dogbone stress strain response



High Throughput Tensile Testing

= Characterizing material distributions
& process-performance relationships

= requires rapid performance
guantification

custom dogbone per ASTM

digital image correlation (DIC)

exploring heat treatment, feature high throughput test sample w/120 dogbones, 1x1mm gage X-section
size, build orientation, HIP & process
parameters

H 20e125

ns625

SSEBTANS
391 @SZ ALIOVdY)
@SZ-WS 13000

H30NASNVH1 30504

20187

Salzbrenner, B., Journal of Materials Processing Technology, 2017 tensile test w/DIC strain field overlay




= Quantifying mean, outliers & probabilities

= Defect dominated failure

Stress (MPa)

®» |imited area reduction

= observe ductile dimples & shear rupture planes

Stochastic Stress-Strain Response

= voids & lack-of-fusion boundaries are likely crack nucleation sites

= similar to castings & ceramics
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110 stress-strain curves for 17-4 PH after SHT+H900 for correlation study

= lack of fusion

voids

" fracture
Y% across print
layers

- saeh

failure at 2% elongation, SHT+H900




Material Performance Fit to 3-Parameter Weibull

where
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Exploring Defect Signatures

=  Examining multiple techniques

= destructive

high throughput testing (HTT), fractography,
metallography, serial sectioning

" non-destructive

computed tomography (CT), density,
resonant ultrasound spectroscopy (RUS)

= what can we ID accurately & efficiently?

= Correlation study
= data sets for 110 17-4PH samples
= parts from a single baseplate

CT model of 1x1 mm test sample

nominally constant process parameters



Metallurgical Interrogations

Vendor 1, run 2
Element (wt%)
Cr 16.64
. Mo 0.045
=  Microstructure
. . \ 0
= optical, SEM, EBSD, WDS micro- w 0
Ti 0
probe = 0
= Composition =
. C 0.012
= LECO combustion, ICP mass-spec, CN
0
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Computed Tomography

=  Dogbones
= gage sections imaged w/resolution of 7 or 10 um voxel edge length

= Quantifying defect distributions
= what can we see? does it inform material behavior predictions?

is CT justifiable for qualification and/or production?

= comparing w/serial sectioning, density (via Archimedes)

# of pores =632
mean ESD = 31.82 ym L :
max ESD = 139.03 um . ) o ; max ESD = 155.52 pm
modulus = 189 GPa |, % s 1 W% modulus = 183 GPa
yield = 660 MPa : ; DA , yield = 593 MPa
UTS = 1059 MPa 3 B 3 i ] UTS = 1054 MPa

ductility = 8.2 % o BN % ductility =8.0 %

X [ mm ]

dogbone B,16 CT surface image (left), porosity map (right) dogbone C,16 CT surface image (left), porosity map (right)
_
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Tools

= scatter plots, cluster analysis, PCA, spatial
correlations, area fractions, FEA

Metrics
= defect size, number, volume, density, void fractions

Current effort exploring fractography, CT &
FEA relationships

fracture surface w/highlighted void fractions

12007

1.0e-07

80008

6.0e-08

4.0e-08

20008

scatter-plot analysis summary

kernel density estimation slice representation

discretization & mesh of defect structure
in dogbone A,16 gage section
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Laser powder bed fusion Uttt
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= Open Protocol

Gen 2 samples w/varying laser
power

* in-situ signatures
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HTT 316L SS data, 50 1x1mm dogbone samples




Qualification Tomorrow

=  “Changing the Engineering Design & Qualification Paradigm”
= |everage AM, in-process metrology & HPC to revolutionize product realization
= starts w/foundational materials science

Quantify & Densified
Optimize Structure §

Measure

Perforr—nance In-Situ
Predictions Measurements

Exemplar . T Alinstante
Performance T Properties

print layers
v

failure at 2% elongation, Vendor 1 H300

v' Regression Exemplar

Classification
v’ Density Estimation Models

Property Aware

Complex Data:
/ Processing

v Statistical " :
Estimation Process Materials
v Dim reduction Models Models

Allen Roach, et al



Born Qualified

Qualification
specs

Y

Design Integrated AM -
optimization experiments > Characterization

{ )

Optimal experimental | Quantification of
design uncertainties

<€—— New design concept

Macro modeling

Micro-meso material
modeling

Risk averse
optimization

AM modeling

optimization driven performance




Multiscale Material Modeling

Time = 0.001000 Time = 0.002003

Type 1 residual stress field 3D Power Bed
50 micron 304L stainless
Laser: CW Gaussian
20 W; 200 micron diam
1 cm/s scan rate

Time = 0.003000

Type 2 residual stress field

(304L tube loaded in tension through plastic deformation and then unloaded)

residual stress models

SLM simulation of 3D powder bed, illustrating impact
Build direction of capillary forces on melt dynamics powder and of
> line-of-sight shading (LOSS)

Hollow .
Cylinder %

Model of a Powder-Bed AM
Process to use in mechanical
modeling to understand effect of
AM processing history on material
and structural performance.

(http://spparks.sand|a.gov) Joe Bishop, Mario Martinez, Theron Rodgers, Jon Madison




Calibration Testbed for IR Sensors

Parabolic

Mirror
Galvo
Mirrors
I Pressure Relief
= Using microwave radiometers to i - fused Qe N P——
measure emissivity & temperature = Cooling
. .. Controller Thermocouple el
=  measures %R of 137 GHz radiation -_ - Argon
from surface Power Thermocouple bAQ/
Controller Diagnostic  computer
= 20-1500°C, 2 Torr in Ar chamber I = ° Thermocouple
. ® o
= expected uncertainty ~10°C o °
6kW DC e
i ower Sy Alumina €——___  Insulated
=  MIT collaboration Power Supply | . . _ Mosi, coil module
Insulation

metrology testbed layout

vacuum chamber 1500 °C furnace in operation







QUESTIONS?

Bradley Jared, PhD
bhjared@sandia.gov
505-284-5890
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AM vs. Wrought 17-4PH
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Cumulative Probability, %

Cumulative Probability, %

316L Property Distributions

Probability Plot of yld from unload mod (MPa)

Probability Plot of unloadingmodulus(GPa)

3-Parameter Weibull - 95% CI
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Vibirsal

Swept sine wave input from 2-point
transducer

= 74.2 kHz to 1.6 MHz input spectrum
= 28 sub-bands record 19 resonances

= |dentify resonance peaks

= Z-score compares peak frequency w/average
& std. dev.

= jdentify outliers, variations, process limits,

defects 18
A-2 M1
Lo L VT | B2 1.4

A-3 1 1.2 . -

|
S SR S

| |
\%_ .{ 1 LA A5 ° gore P

[ L'
AT GRS 2% 4 .

/-score StDev

41 m
M1 ¥ TR — o 0.4 E-16
S
S| R N I

/-scare Average

resonance response spectra A oB «C »D oE oF eSetup
dogbone Z-score data spread



= 304L process map 300
for single bead 250
experiment =200
2
= l|ines represent &+
100
constant cross-
section in P-V space ”
| FEA analysis fit to ’ 0 500 1000 1500 2000 2500 3000 3500
. Velcoity (mm/s)
data by Va rylng coo-®--- A=0.013 mmn2 A=0.013 mm~2 FEA
effective «o@--+ A=0.0065 mmA~2 A=0.0065 mm~2 FEA
b 5 o «-@-++ A=0.0032 mm~2 A=0.0032 mm~2 FEA
absorptivity (a) o A 0.0016 M2 A=0.0016 mma2 FEA
<@+« A=0.0008 mm~2 A=0.0008 mm~2 FEA

O Nominal Parameters



Melt pool width, depth, and area
measured from each deposit

Width and depth were compared
to identify points which were
susceptible to keyholing (red)

Points with depth <30um would be
very prone to undermelting
porosity

Only 3 of the 28 points are
considered high quality (nominal
being one of them)

Defocus of beam provides higher
quality melt pools

* follow-on testing will explore operation
at defocus

300 ® ® ® o ()

550 ® Keyholing
B 200 ® ® @ ® High Quality
o Depth < Layer Thickness
S 150 ep ye ickne
o

ONominal Parameters

500

1000 1500 2000 2500 3000

Velocity (mm/s)

defocus
results

Power=300 W
Velocity= 500 mm/s




