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Antiferromagnetic B1 FeO

FM ordering of Fe on [111].

Strain depends on composition.
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Previous work and current research goals

Previous DFT investigated strain, but limited XC functionals†.

Previous QMC investigated EOS‡, but neglected lattice distortion.

Revisit FeO using DFT + QMC and look at equilibrium strain.

†Gramsch et al. (2003) 10.2138/am-2003-2-301
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Computational approach

Pseudopotentials Hard NCPP’s1 suitable for QMC calculations.

ESPRESSO SCF calculations for B1 AFM FeO strained primitive cells with
different XC functionals.

QMCPACK VMC optimization and FNDMC using DFT trial wave functions.

ΨQMC =

∣∣∣∣∣∣∣∣∣
φ1(r1) φ1(r2) . . . φ1(rN)
φ2(r1) φ2(r2) . . . φ2(rN)

...
...

. . .
...

φN(r1) φN(r2) . . . φN(rN)

∣∣∣∣∣∣∣∣∣ e
J({r,R})

1
Krogel et al. 2016 PRB. 10.1103/PhysRevB.93.075143
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DFT results

ε = 1 − α/60

E cut = 150 Ha and 5x5x5 k-point mesh.

Expt. data from Willis & Rooksby 1953, Fjellv̊ag et al. 1996, Battle & Cheetham 1976.
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AFM FeO nodal surface is very sensitive
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DMC and VMC yield different U’s (Benali et al. 2016 10.1039/c6cp02067d).

Equilibrium DMC strain sensitive to nodal surface.
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Equilibrium DMC strain sensitive to nodal surface.
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Preliminary FNDMC results

X Correct sign of strain for all XC’s.

DMC can do more with some XC’s.

“Best” LDA, LDA +U 6.0, PBESOL

Expt. data from Willis & Rooksby 1953, Fjellv̊ag et al. 1996, Battle & Cheetham 1976.
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Progress thus far

At the DFT level, LDA +U seems to do well on strain.

DMC favors higher U than DFT.

DMC correctly predicts the sign of the strain for all XC’s tested.

At the DMC level, LDA +U 6.0, PBE, and PBESOL lowest energy.
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Future Work

Ongoing Research Questions:

Estimate band gap under ambient conditions w/ DMC.

Investigate strain evolution at high pressure.

Look at the phase transition to iB8/B8.

Predict MIT pressure.
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Questions?

Thank you!
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An important material with interesting properties

Rich phase diagram: electronic, magnetic, structural transitions.

Prototypical Mott insulator. LDA predicts metallic state.

Natural samples are non-stoichiometric - Fe1−xO, x ≈ 0.01 − 0.1.
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Comparing equations of state
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DMC Equation of State for Several Magnetic States of FeO

Nonmagnetic DMC
Ferromagnetic DMC
Monoclinic AF DMC

Rhombohedral AF DMC

EOS Parameter Comparison*:

Study K0 K ′
0 a0

[GPa] - [Å]
Unstrained QMC 179(11) 4.8(5) 4.342(10)

Strained QMC 165(6) 4.7(3) 4.343(8)

Kolorenc QMC1 170(10) 5.3(7) 4.324(6)

Isaak LDA2 173 4.2 4.136

Fisher expt.3 149(1) 3.60(4) 4.334

McCammon expt.4 152 4.92 4.334

1.) Kolorenc & Mitas 2008 PRB
2.) Isaak et al. 1993 PRB
3.) Fisher et al. 2011 EPSL
4.) McCammon et al. 1984 PCM
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Ovsyannikov et al. 2010

EOS Parameter Comparison*:

Study K0 K ′
0 a0

[GPa] - [Å]
Unstrained QMC 179(11) 4.8(5) 4.342(10)

Strained QMC 165(6) 4.7(3) 4.343(8)

Kolorenc QMC1 170(10) 5.3(7) 4.324(6)

Isaak LDA2 173 4.2 4.136

Fisher expt.3 149(1) 3.60(4) 4.334
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1.) Kolorenc & Mitas 2008 PRB
2.) Isaak et al. 1993 PRB
3.) Fisher et al. 2011 EPSL
4.) McCammon et al. 1984 PCM

*Comparing EOS parameters is tricky! Experiments are non-stoichiometric, and everyone uses a different functional form. Additionally, there is
some evidence that wüstite becomes more nonstoichiometric under pressure!
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