Quantum Information Science and

Technology at Sandia
Clark Highstrete

Manager, Advanced Solid State Microsystems

S 74
EN ERGY Y/ | "4 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
ational Nuclear Security Administrat Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND No. 2012-5130P




QIS has national importance
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“Quantum information science .... creates a
new conceptual platform for a family of
potentially disruptive technologies, adding a
new stage to the already staggering impact
of conventional information technology.”

“The ability to solve some of the
“impossible” problems would enhance
discovery and economic strength.”

“The United States’ large stake in all these
potential applications warrants a cohesive
national effort to achieve and maintain
leadership in the rapidly emerging field of
guantum information science.”




Promising applications of QIS

Simulation

Secure Communication

ngg, Q000

N= 2" dimension

n = “size” (~ no. of bits)

Computation/Algorithms

Unordered search:
Grover’s Algorithm
Classical: O(N)

Quantum: O(N/2)

2799783391 1221327870 8294676387
2260162107 0446786955 4285375600
0992932612 8400107609 3456710529
5536085606 1822351910 9513657886
3710595448 2006576775 0985805576
1357909873 4950144178 8631789462
9518723786 9221823983 =

3532461934 4027701212 7260497819
8464368671 1974001976 2502364930
3468776121 2536794232 0005854795
6528088349

X

7925869954 4783330333 4708584148
0059687737 9758573642 1996073433
0341455767 8728181521 3538140930
4740185467

Schor’s Algorithm
Classical: O( N log(N) ) = n 2"
Quantum: O(log? (N)) = n?
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Precision sensing

Reconstruct the E-field inside the box
based on the external measurements

Atomic E-field sensor

Probe
lasers
sensor,

Use an atomic E-field sensor to measure the 00 om
electric field outside the hidden electronics

Atomic
E-field

Precision time/frequency
measurement
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Sandia’s history

Exceptz'onal service in the national interest
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Sandia leverages a unigue set of capabilities to advance our understanding
of Quantum Information Science and Technology
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Quantum Information S&T at Sandia ) trs_

QIS&T at Sandia: multidisciplinary, cross-Labs activity
= Fundamentals: atomic and condensed matter physics, noise
models, photonics, optics, QIS theory
= Fabrication: device design/modeling, microelectronics fab,

atomic-precision fab, integration, nanotechnology, photonics " sngle g roratons
= Quantum devices: theory, quantum/classical architectures, ;o ﬁ f\x &
error correction, controls, mod/sim, testing 3 S S R
= Quantum systems: algorithms, applications, technology i f W, *\ f :
assessments Sl VoY
Expertise in key technologies Sandia is engaged in QIS research in support of its missions. This
= Physical qubits: Si quantum dots/donors, trapped ions, research is motivated by advanced computing architectures and
neutral atoms the fact that future engineered systems will require increased

understanding of quantum effects.

= Logical qubits: design
= Architectures: circuit, adiabatic
= Algorithms/apps: demonstrations, analysis, development

Unique, enabling facilities
= Microelectronics fabrication, atomic-scale fabrication, HPC

Systems engineering heritage

The technical challenges are vast—
solving them is our focus.
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From bits to qubits s

Logical basis: (0,1) integers

bit
insulato

State: x=0 or x=1 - """"""" -

Measurement: x=0 or x=1 MOSFET

Logical basis: orthogonal vectors |0),[1) qubit
» ‘1> D5/2
State: superposition |) = C,|0) + ¢,|1)
> E=hv
Measurement: |¥)=[0) or =) p =& 0) — S

2
2 c,|

* Energy levels of an ion

* Photon paths or polarizations in an interferometer
y » Spin directions of an electron

* Charge states in a quantum dot

* Mesoscopic currents in a superconductor

11}
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Transformation on qubits orores

) :cosg\O>+e‘¢ sin%\l}

NOT JNOT H
0) >[I} [|0)—> (0Y—41)/~2 | ||0)— (|0)+]|1))/~2

1) =10} ||1) > (D—i0))/~2 1) > (1)—=10)) /2
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Logical basis: |00),01),/10),/11) 2 qubits
State: superposition  |¥) = 8|00) +&,|01) + ag\10> +a,[11)
Measurement: |00%|01),/10),or |11) B = Zai ‘2 (can measure individual qubit)
a.
i1
g. Bell State: [} 120 *[1)
e.g. Bell State: |y) -

Measure qubit 1 — know qubit 2. Qubit states are correlated (“entangled”)

Logical basis: ~ |000),/001),/010),/011),[100),1101),/110),/111) 3 qubits

ﬂ'!_l

Logical basis: 2n vectors General state: |y} = Y |x) N qultS

x=0

The vector space grows exponentially — ¥)#)ei)eis)
and ... outcomes can interfere!




Quantum algorithms
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Map input-output

|W0ut> = (’]I WU’Z>

w.,) = 8,/000) + 8,|001) + &,|010) + &,/ 011) + a,|100) + a5|101) + a,|110) + a,|111)

|Wou) = 15/000) + b 001) + b,| 010) + b,| 011) + b,|100) + b|101) + b, |110) + b, |111)

“Quantum parallelism” + space exponential growth + interference =

Quantum speedup
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Simple quantum information processing elements ™ &zt

= Two state system (energy eigenstate basis)

= Coherent control - state preparation

= |solated from environment (avoid decoherence)
= Transport and interaction

= 2+ qubit conditional logic operation(s)

= Readout

11
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Sandia qubits

MOS-QD/Donor Platform Cryogenic Electronics

‘ T=4K ;

HEMT/HBT Amplifiers

Triplet Probability

Model

| Construction Zone
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Individual Donor Incorporation Coupled MOS/Donor Qubits

Initialize Adiabatic Evolution State Readout

single atom microwave radiation
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Atom 2 path

Rydberg
&
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L 174

Parity: O(¢)

N/
N

Atom 1 path
® [0)= (0011 x 2 =081 £0.02

10

Measure 2

0 1 2 3
Relative phase offset () of ~/2 pulse (rad)

o R
Rydberg dressing State detection

State preparation

‘Quantum Dot
Measure

Trap site

EON Trap Josephson Junction
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Trapped ion quantum information processor conce@mnmawﬂes

Memory region Electrode segments
& A f # =
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P2 _ y :
: &2, A : Z Sandia focus: critical bus elements / operations
‘% with microfabricated surface ion traps
: 2R
Interaction region Why use ions for qubits?

= Well isolated — single ions are physically

Schematic of proposed ion trap array separated from surrounding material.

for quantum information processing _ . o
= Qubit stored in internal structure of ion is

not perturbed by electric fields.
Kielpinsky, Monroe and Wineland, Nature 417, 709 (2002) )
* Good “handle” — charge of ion allows

= Positional control of ion.
» [nteraction with neighbor.

13 = Up to 8 qubits have been demonstrated

with gate fidelities exceeding 99%.
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Trapped ion qubits

Petential o uhe len Trap

=

R S Planar 3-D Trap Surtace 2-D Trap

FIG. 8. Mcchanival enalogue model for the on rap with steel-
baflas “particle.

s Mod. Paps., vol. B2, No 3, July ‘9906

[ ]
YD+ ion

M4 Ground DC RF Hwave Hwave RF DC M4 Ground
SiO,
M3 M3
Tungsten
M2 Via M2
M1 Ground M1 Ground

$3400 10.0kV 30.1mm x19 SE 3/30/2015
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Yb* trapping

Lasers

Conventional Trap

100um

Surface 2-D Trap

Planar 3-D Trap
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171¥p* hyperfine qubit

T4+ [1T)
V2
=g Y i
S, , 12.643 GHz
F=0 i
T
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171y¥p* Cooling
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Cooling / Detection
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171yp* State Preparation

2|
P1.f2
F=1
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Cooling / Detection
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171¥h* Qubit Rotations

= Direct microwave illumination
= Raman lasers

Sy,

12.643 GHz

F=0 —
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171¥p* State Readout
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Coherent control: Rabi oscillations

Laser cooling
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Entangling Gate ) .

Basic idea: Use common motion of the ions
to mediate entanglement

 Raman beams create spin-

1D
dependent force
* Force drives the ions away from
\TT) and then back to their starting
U\\/ X position

Ay

« Spin dependent phase remains

[1] K. Mglmer, A. Sgrensen, PRL 82, 1835 (1999)
[2] A. Sgrensen, K. Mgimer, PRL 82, 1971 (1999)
[3] A. Sgrensen, K. Mgimer, PRA 62, 022311 (2000)




National

Two-qubit gate implementation ) s,

Interactions between ion qubits are realized
via their Coulomb interaction in the trap 11)

n+1

01)

Transverse \,
: 100) n
center of mass Transverse Tilt n-1
Te @ e @
|00) — |00) + [11)
~ 60 qua,nta/s < 8 quanta/s

Heating rates
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Two-qubit gate implementation ) e,

* Implemented using Walsh compensation pulses

. .- n+1
» Optical phase sensitive 11
06 :
s Zero bright —&— -
Onebright —6 Data from October 10, 2015
05 $ Twlo brightl —A—
o4t 412 |/ N/ 1 e/ N
= I n+1
z 0° 01) n
o3r {1~ | [/ \ /| mA\nl N n-1
— >
=5 ot
02t 15
01 r 7] E 05 ¢ ’00> ‘ / n
_+_
O M g n_l
=\ S A |00) — |00) + [11)
0 50 100 150 200 250 300 350 400

Analyzing Phase [degrees]

1 1
F = §(P(|00)) + P(]11))) + 16= 0.977  Data from February 12, 2015

1 1
F = §(P(|OO)) + P(|11))) + i 0.995  Data from October 10, 2015




Donor atoms and quantum dots in silicon ) feere,

|14 P |15 ‘s,
Si P
Phosphorus

Nej3s™3p” | [Nel3s’3p’
81517 10 4887
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Exchange btwn QDs Transport along ODs Dipoles with ODs
" I I eo:” I : ? = e 7 - -~
S e 3 ;’é A é 5 5{ s /é{ A 5{ jé/
g 0" 3 | \ |
g : I —
u?.}- 10" J>0: _ — “"1
S E aca S caeN 2ifinss i i S
£ E Skinner & Kane (2003) P — T Fr—
O T T e e Also: Hollenberg (2007), Morton Tosi (2015)
Donor Separation (A) (2009), W|tze| (2015), P|Ca (2015)

Kane (1998)

o Many appeals of donor qubits (e.g., potential for high fidelity, naturally
same, compact, nuclear spin, built-in E-field selectivity, ...)

o Quantum dots are a common element of many donor architectures
o Exception — STM based concepts (e.g., Hill 2015)
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Single Qubit Device Design ) fio

Implant/_l

« 28Gj epilayer with 500 ppm 2°Sj window
« CMOS processing approach

« Poly-Si gated nanostructures

« Use Poly-Si for self-alignment of donors

« 45 kev P Donor implants: 4el11 cm

« Donor qubit readout through quantum dot

polysilicon

SiO,
SET island

Si substrat donor

Ohmics

Donor
Quantum
Dot

Al
stripline

HV WD mag det mode‘ tilt ‘
10.00 kV| 5.0 mm [150000x | TLD| SE |0°]|
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MOS quantum dots

Depletion Accumulation \ertical Confinement
| Gates Gate Ener
Accumulation " « gy
(2DEG) Oxide
Sio,
S g
\E/ \Y4 \:/ \Y4 -
1 AE = hz*k2
3 2m
E e Erermi
1] c — _ 27
W k iWWeII " Y
Length ]

Lateral Confinement
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Coulomb blockade

Quantum dot operation

Current through Ly (A)

tilt |

0

det | mode

mag
50mm|150000x | TLD | SE

‘ WD

HV
10.00 kV

DOT DRAIN

SOURCE

LCP (V)
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Donor ion gating effect ) s

Current through LA (4) -0
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Spin readout and initialization ) e,

Current through LA (4) -0

2048
2046 ¢

2.044 u \_/ \ p

< A

A T
oy’

204z

o ——

2.04

LAG (V)

20328

2038

2034

HV WD mag det | mode | tilt |
10.00 kV|5.0 mm | 150000 x | TLD| SE |0
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Single Qubit Coherent Control
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28Sj epitaxial layer

« 2.5 um thick
« 500 ppm 2°Si (ToF SIMS)

coherent manipulation (Rabi oscillations)
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28Gi Qubit
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Rabi Oscillations
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Optimized Readout: 96% visibility
Bandwidth: 100 kHz
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New scheme: use donor contact hyperfine 7 ==,
interaction to rotate the spin

Laboratories

@1 = S-T Hamiltonian
= Hybrid singlet-triplet qubit Het = J(€)6, + ABz(€)6,
charge sensor (SET)

P o @
>edad

For electron on donor:
H = (gus/n)S - Bext + AS - 1

= Advantages

= Compact design: No need for

nuclear field bath, spin-orbit int.
quantum "\ donor or micromagnet.
dot (31P) = Fast rotation speed: Contact
. hyperfine interaction A/2 ~ 58
MHz gives 9 ns it rotation.
Double QD-like system! U

Get a nuclear spin for free.




Approach: Couple a N=1 MOS-QD to a Buried Donor (i) i

Laboratories

2-spin singlet-triplet qubit charge sensor (SET)

D>Ood
¥t e dl

D QD quantum "\ donor
CP Ecl CS. dot (31P)
GEREORIdE .
K
L
P
0.51 . - ; ;
—o— data f=56.9 +0.4 MHz
_ , 0.5 F — fit Bulk value: 58.5 MH
o We are able to electrically induce % | Hie vatie ‘ ﬁ
coherent behavior in the 2 electron g 0.49 |
system 8 0.48
[
2047}
o Reasonably good coherent behavior = 046 |
=1
~ 0.45F -
o SNL first to demonstrate coherent 0.44 . , . . .

coupling of a buried donor electron to 0 =20 100 150 200 250 300
a QD at the MOS interface Manipulation time (ns)




Possible future lay-out for two-qubit coupling i

Exchange gate mediated by DOD
Small t Enormous t J-Gate
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... and other approaches (J or shuttle)

A-Gate A-Gate

| | B+l |

o Capacitance coupling by proximity for two qubit gate

o Approach uses energy selection of one of many donors in an ensemble & poly self-alignment
o Concept might be generalized to more (in a 1D line)




Entangling neutral atom qubits with a strong () i
Rydberg-dressed interaction

Entanglement sequence—dynamic atom positioning Entanglement verification—parity measurement

1.0

Atom 2 path = [¥)=0,1|p/1,0) x2=0.81+0.01

08—"—v—% A » =+ We generate two
0.6 l Bell states:

0.4- (10,1) +1,0))/v2
Ioo)// (‘070>+|171>)/\/§

c
o
=
v
o
a

0.2+

= "oy - l01)
- o0 -
S 0.0 100 ey 1 + Varying the phase
5 ]
recapture ~(‘=’.‘_’ 024 of a global /2
% 54 pulse reveals =
06 81% fidelity for
Atom 1 path 08 ] both states.

404 © [@)=K00/p/1,1) x2=0.81+0.02
) T e T

y T
0 1 2 3

State preparation Rydberg dressing State detection
Relative phase offset (¢) of n/2 pulse (rad)

Conceptual Applications include:
drawing of large » Clocks
* Inertial sensing
scale « Quantum
entanglement computation

* Quantum simulation

In collaboration with:

a\UNM

Y.-Y. Jau, A. Hankin, T. Keating, I. Deutsch, and G. Biedermann, manuscript submitted (2014)
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Dynamic atom spacing

A
319 nm
&
3.3 um atom 2 Raman
=
o
::.-_n‘
o
Q.
-3.3 um atom 1
time o

I—/—l " _V_'
state preparation Rydberg dressing state detection




Rydberg-dressed ground state interaction @ N

A
64P3/2 =5 ey \
_ = J1 3
m.;_—z |OO) (‘%
P+
319 nm é
A
/
01) + [10) ) -
. mp_—l S
|F = 4) melo T_
mect ) ) g
N =
S X
681/2 }-1- /
?TT.FZ—J ; |11>
I mF_=0 SJ A
=3 ) =
single-atom basis two-qubit basis



Entangled atom experiment—recent progress (i)
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Nature Physics, 2015

L |‘P):>|(()l|p{l())\x2 ()81+()()l
| n X
08+ — »

0.2

Parity: Q(4)
5 o
o

1 81% +/- 2%

1 o @)= [00/a1,1)x2=081 +0.02

1.0
o 1 2 3
Relative phase offset ( ¢) of n/2 pulse (rad)
Shielding body
Rabi oscillations to L N
Rydberg: 7x ext u
improvement * 4-atom entanglement |
2 * New Rydberg state longevity

Furthermore: has allowed demonstration
Virtually eliminated ! / of mapping to Jaynes-
Rydberg state loss e | | atcay e = 016 Cummings model for cavity

channel QED




Sandia QIS Modeling

QCAD: Quantum device modeling for

semiconductors. Thomas-Fermi, Schrodinger

Poisson, Configuration Interaction

Circuit Simulators: Use vector states, density matrices,
or Monte Carlo methods to compute outcomes and

thresholds of quantum circuits

H

|g0)

mh

TRAPSIM: electrostatic modeling intended for RF
trapped ion device design
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Effective Mass Theory: “Valley-aware” with exceptional
computational efficiency.

Valley splitting (meV)
o o
N w

o
o
T

\

T T T T T T
— Theory Vp=0.0V
.31~ | @ Experiment / b

Vo=-20V

Valley splitting (meV)
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Sandia QIS Modeling W=

[DCM g %_{ m——— J 1'0\ . C(t) '=9 eXP(—|?|/10)
] iR T © |H(t) =0, + Q(t)Uzl MC
' d fsso.s- — P=1]|
) G ) - F=5
; A;i: e o= + B |r= 9
i EOM Q“\p(‘_.jcMKp [} 0.6 1
e :
Pumpitc)x‘ & DC 7 8 o4
. F’ZT 5‘
<:j W g oM f% 0.2}
R . m— | ‘ |
= 7 %90 0.2 0.4 0.6 0.8 1c
t
Qubit coupled to fluctuating dephasing process
Modeling of complex quantum networks Simulation of stochastic quantum systems
= SLH formalism capable of modeling network of = Hierarchical equations of motion
components connected by quantum fields in a
modular manner = Polynomial chaos expansions

= Modeling of quantum optical networks for
generating squeezed light



Gate set tomography
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Tomography

e Standard state / process tomography
uses precalibrated reference frames.

e Most QIP technologies don’t provide
native X, Y, Z states/measurements.

State
Tomographic
Experiments
Process
pr ai Tomographic
Experiments

The Problem With

7 O\
0) €} )
OHX—&H—)
Oy—{H—{E—{SHU
0—{HH S HEHH—U

ONXHHHSHEHHH ST

Gate-Set Tomography

Assume norhing about preps, operations, or measurements.

Everything (prep. operation,
measurement) is a gate.

Do lots of different
sequences of gates.

Estimate the entire
gate ser al once.

“Self-consistent”™ (Toronto),
“Overldll” (IBM). other groups...

This subsumes state process tomography

= Robustly diagnoses faulty operations without precalibrated gates

47
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Gate Set Tomography rh)

We developed GST to fill two needs: debgugging and certifying as-built qubits

Capabilities No Detailed Efficiently Detects
Vs Calibration Certifies Non-Markovian

Protocols |0 TTE Sl ¢-norm noise

Randomized “ V
Benchmarking

Process “ x
Tomography

Gate Set “ V “ V
Tomography

GST characterizes all the logic gates at once (like RB)...
...but reports full process matrices for them (like process tomography).

GST uses data from gate sequences (like RB), but these sequences are
structured and periodic. Small errors get amplified and are measured precisely.

[ B

Prepare germ germ germ germ Measure
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Gate Set Tomography

G
Gxx =Gx @ Gx H+1
n-1

Gyy = Gy ® Gy

Gus

|00)
00) — [00) +[11)

Process fidelity of two-qubit Mglmer-Sgrensen gate > 99.5%

GST; poor gate performance GST; good gate performance

0.8

=3

o
o
o

probability

0.4

probability

0.2

o
)

- " : = : - 800 1000 1200 1400 1600 1800
0 200 400 600 800 1000 1200 1400 1600 1800
Sequence Index

Sequence Index

The best characterized two qubit gate in a
microfabricated surface trap.




Quantum Sensing

Atomic Clocks

Maximized Precision and Stability
Minimized Volume and Power

1E-10

1E-11 "

1E-12

Allan Deviation

1E-13
0.01 0.1 1 10 100 1000

Integration time, t (S)

10000

Atom Interferometry

'I ﬁ\> " | :

VRN

50 100 150 200 250 300 350
Data Rate (Hz)

Imaging

o.(pg/VHz)

Traopina Coils

Sensitivity (fT/Hz'/2)

Atomic E-field sensor
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National
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Atomic Magnetometry for
Magnetoencephalography

Magnetometer

Gradiometer

Photon Shot Noise

1 ' .XQ
Frequency (Hz)

Multhayer
Magnetic Shield

Field Sensing

Rydberg atom based electric field sensing

Reconstruct the E-field inside the box
based on the external measurements

!
Probe
lasers

1 Atomic
& o E-field
detection

Use an atomic E-field sensor to measure the
electric field outside the hidden electronics

002
' "
F)
0
'

Passive magnetic
field sensing

Fescenko, |., Weis, A. “Imaging magnetic scalar potentials by
laser-induced fluorescence from bright and dark atoms,” Journal of
Physics D, 47, 235001, (2014).
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Wirebonded QKD

* World’s first on-chip CV and DV QKD transceivers chi

* Free space and dark fiber QComms test beds

* World’'s most sensitive on-chip (CMOS
compatible) detectors (1550 nm)

« Patented Self-Referencing (NOLO) protocol
achieves increased security




Sandia’s Quantum Information program is i) e,
rooted in collaborations
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Introduction to QIS

“Information is physical”

- Rolf Landauer

™
[2555*3*17

Any computation is
constrained by the.
physical laws governing

the “machine” that carries
out the operations.
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National
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The quantum problem ) fes

Microprocessor Transistor Counts 1971-2011 & Moore's Law

16-Core SPARC T3
Six-Core Core i7-
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Landauer (1961)
Bennett (1982)

Benioff (1985)

Thermodynamics/reversible computing

Universal quantum

Quantum Simulations circuit model

Deutsch
(1985)
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Pulsed laser Raman transitions
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() . Sideband cooling

« Ground state cooling evident when red sideband cannot be driven
« Data shows ground state cooling of two ion radial tilt mode, n < 1

20 I I I I
red Doppler cooled ©
o 18 blue Doppler cooled ©
2 16t red Sdeband cooled *
o blue Sdeband cooled °
=
= 14 r
S
2 12t
: AN
S 10
o |
S \
g 67 \ /
s 4t \ /
o]
o 2 <. . ) .
0t -...l. e u |.!|'..-..l. 'l.T Spg"s T !.I. "ug,m I..-lI o pEm UE_mm -
0 20 40 60 80 100

Pulse duration (us)
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View on GitHub @

0@@ pyGSTi

A python implementation of Gate Set Tomography

Getting Started

pyGSTi is a software package to perform gate set tomography (GST). GST is a kind of quantum

Send inquiries to pygsti@sandia.gov

Import pyGSTi today!
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Measurand Current SOA Potential Approach

Electric Field 4 mV/mVHz 1 nV/m\Hz
(FET based) (Rydberg atoms)
: 100 nrad/sVHz
Rotation (FOG) 1 nrad/sVHz
Magnetic Field 2fTNHz 160aT/\VHz
’ (SQUID) (OPM)
le-11/x le-12/\t
Portable Time w/ 30 kg and w/ 300 g and 100

30,000 cc cC
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The components developed in the SECANT Grand Challenge LDRD enable on-chip implementation of
the following :

Quantum Photonics Primitives
Sources, detectors, nonlinearities, memories, etc.

Quantum Photonic Measurement
Quantum radar, green machine, state discrimination, imaging, quantum metrology

Logic Operations / Computing Primitives
Logic gates, coherent quantum feedback

Quantum Photonic Simulations
Quantum walks, boson sampling, chemistry, condensed matter, Anderson localization, relativistic particle physics

Foundations/Tests of Quantum Mechanics
Uncertainty relations, entanglement bounds, loophole free tests, etc.

Communications Primitives
Entanglement distribution, teleportation, QRNG’s, synchronization etc.

Other Communications tasks
Digital signatures, bit commitment, distributed measurement, auctions, etc.
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