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Deep Borehole Disposal Concept

<17” hole to 5 km

Straightforward
Construction

Robust Isolation
from Biosphere

Conditions at Depth
= Low permeability

= Stable fluid density
gradient

= Reducing fluid
chemistry

= Old groundwater
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Radioactive Waste

= Waste Properties
= Thermal output
= Physical size
= Waste total volume

®" Primary Waste Forms

= DOE-managed high-level waste

= Liquid reprocessing wastes:
— Borosilicate glass logs
— Cs-137/Sr-90 capsules

— Calcine powder

e — . b ' 5 B-203, B-204 ,‘ ol
ST, - i 7
D

Hanford tank farm 2,000 Cs/Sr Capsules [=3” diam.]
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Radioactive Waste Volumes

Commercial and DOE-Managed DOE-Managed
HLW and SNF HLW and SNF

DOE-Managed HLW

Treated sodium-bonded
fuel wastes

132
<1% WVDP HLW glass

245
1%

Germany HLW glass
3
<1%

Sodium-bearing
waste

721
3%

DOE HLW
26,260
Existing SRS
HLW glass

12%
Treated
Calcine waste 2,969
11%

Commercial SNF
183,896 : ‘ et
0, '’
85% 14%

Projected SRS
HLW glass
3,988
15%

DOE SNF
(includes naval SNF)
7,165
3%

Projected Hanford
HLW glass
14,089
54%

Projected volumes given in m?

~ 30% total curies of radioactivity at Hanford

HLW = High-Level Waste
SNF = Spent Nuclear Fuel




Recent Events i) porat

Jan. 2012: Blue Ribbon Commission Report
Oct. 2014: DOE Disposal Options

Assessment of Disposal Options for DOE-Managed High-Level Radioactive Waste and Spent Nuclear Fuel
1. Dispose all HLW & SNF in common repository
2. Dispose some DOE-managed HLW and SNF in separate mined repository

3. Dispose of smaller waste forms in deep boreholes

March 24, 2015: Obama Memo

“In accordance with the [Nuclear Waste Policy] Act, | find the development of a repository for the disposal
of high-level radioactive waste resulting from atomic energy defense activities only is required”

Jan 2016: Request for Proposals (RFP) - DOE selects 1 team
= Battelle, Schlumberger, SolExperts in North Dakota

Jan 2017: Second RFP, DOE - select up to 5 teams
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Deep Crystalline Drilling

. Dep_th s Total Depth
Location Years Crystalline [km] [km] 0 s0 W 150
0

Diameter (mm)
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Deep Borehole Disposal

= Hess et al. (1957) NAS Publication 519

The Disposal of Radioactive Waste on Land.
Appendix C: Committee on Deep Disposal

= Obrien et al. (1979) LBL-7089

The Very Deep Hole Concept: Evaluation of an

Alternative for Nuclear Waste disposal

=  Woodward-Clyde (1983) ONWI-226

Very Deep Hole Systems Engineering Studies

= Juhlin & Sandstedt (1989) SKB 89-39

Storage of Nuclear Waste in Very Deep Boreholes

= Ferguson (1994) SRNL WSRC-TR-94-0266

Excess Plutonium Disposition: The Deep Borehole

Option

Heiken et al. (1996) LANL LA-13168-MS

Disposition of Excess Weapon Plutonium in Deep

Borehole: Site Selection Handbook

= Harrison (2000) SKB-R-00-35

Very Deep Borehole — Deutag’s Opinion on Boring,
Canister Emplacement and Retreivability

= Nirex (2004) N/108

A Review of the Deep Borehole Disposal Concept

Beswick (2008)
Status of Technology for Deep Borehole Disposal
Brady et al. (2009) SNL SAND2009-4401

Deep Borehole Disposal of High-Level Radioactive
Waste

DBFT

1950s

1960s

2010s

1970s ‘

‘ 1980s ‘

‘ 2|003 II
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Deep Borehole Field Test
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Deep Borehole Concept vs. Field Test (@&

= Deep Borehole Disposal (DBD)

= Boreholes in crystalline rock to 5 km TD J L
= 3 km basement / 2 km overburden

= 1 km basement seal

= 2 km disposal zone

= Single borehole or grid Seal

Interval
1 km

. Bedrock
= Deep Borehole Field Test (DBFT) 3 km
= Department of Energy — Office of Nuclear Disposal
Energy (DOE-NE) nerval
= FY 2017-2021 project v
Y

= Two boreholes to 5 km TD
= Science and engineering demonstration




Siting: Depth to Basement + Hazards

|:| Basement depth < 2000 m

- Granitic rocks

Il Piio-Quaternary volcanoes
Quaternary faults

Ground motion
> 0.29 (2% in 50 years)

(Perry 2013)

& Y
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Siting: Basement Structure ) i,

Colors: Aeromagnetic data

Lines: Known basement faults

12




y | dlt e s
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(Heidbach et al. 2008)

Regional Stress State

v
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The stress maps display the maximum horizontal compressional stress SH

ESUSES

Method Quality Stress Regime
focal mechanism A —— Spiswithin £+15° (O Normal faulting
breakouts B ——  Syiswithin £20° @) Strike-slip faulting
drill. induced frac. C —  Syiswithin £25° @ Thrust faulting
. @ Unknown regime
overcoring
hydro. fractures S S Sy
o N <N\
geol. indicators [\ s \
T - e
2 . )
\ ss e\
Data depth range 4 1
0-40 km normal faulting regime  strike-slip regime ~ thrust faulting regime
Sv>SH>Sh Sy >Sy>Sh SH>Sh>Sy
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Siting: Geothermal ) i,

Geothermal Gradient

(SMU Geothermal Laboratory 2004)
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Deep Borehole PA Models ) i,

= Performance Assessment
(PA) Modeling

= Reference geology and borehole
design

= Assume single boreholes Cs/Sr
= Assess post-closure safety

= Thermal-hydrological-chemical
processes simulated via PFLOTRAN

(Freeze et al. 2016) SAND2016-10949R

3466 mbs
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-
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«— Cs waste packages

SUVUER ™ EZ annulus (Emplacement fluid)

500x horizontal exaggeration
6000 mbs




Deep Borehole PA Models Tl
Short Thermal Perturbation |
Minimal Resulting Free Convection
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Deep Borehole PA Models

Short Thermal Perturbation
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Deep Borehole PA Models ) i,

. ) ° 7 F
= No Radionuclide Release in 10’ Years :
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Deep Borehole PA Models ) i,

. . . 7 i 4
= Cs distribution at 10’ Years :
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Deep Borehole Field Test (DBFT) ) .

= Drill Two 5-km Boreholes

= Characterization Borehole (CB): 21.6cm [8.5”] @ TD
" Field Test Borehole (FTB): 43.2cm [17”"] @ TD

= Prove Ability to:
= Drill deep, wide, straight borehole safely (CB + FTB)
= Characterize basement (CB)
= Test formations in situ (CB)
= Collect geochemical profiles (CB)

= Emplace/retrieve test packages (FTB)




Characterization Borehole (CB) ) .

RS

=Water Table

74
" Conductor Borehole -
and Casing (no scale)

= Medium-Diameter Borehole

= Within current drilling experience

= Drill/Case Sedimentary Section -

= Minimal testing (not DBFT focus)

~Base of Fresh Water

Intermediate Casing

Intermediate Borehole 24.4 cm [9%"] diam.

31.1 cm [12%"] diam.

Sedimentary Overburden (€2 km)

Drill Bedrock Section

= Core (5%) and sample bedrock

- Top of Crystalline |
/\'Basement2 km |-

, g
SIBSB0IN T /1

A - \ N
ke AR P A ALAW
\ -

= Testing/Sampling After Completion

= Packer tool via work-over rig

= At limits of current technology

AANVANN I =L 07
e AN

Borehole designed to maximize
likelihood of good samples
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Crystalline Basement (=3 km)

(SNL 2016) SAND2016-9235R
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Deep Borehole Conceptual Profiles

Depth
[km]

5

Lower

r——l

—_

Permeability

Sources of Salinity

e Evaporite dissolution
* H,O-rock interactions
* Ancient seawater

* Fluid inclusions

Controls on Permeability

* Increasing confining stress

* Fracture zones

* Mineral precipitation

e Overpressure - hydrofracture

Geothermal Gradient
* Radioactive decay

* Regional heat flux
Higher

A\
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Sedimentary
Overburden
<2 km

Crystalline
Basement
>3 km




Modeled Profiles

NaCl Hydrostatic
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Fluid Viscosity

Temperature . Fluid Densit
P Distribution Pressure y
N " R S » const N\ p(PT)
-=- p(PT) : :
\
_____ b N
— 1logL N
— 50g/L I\
o — 100 g/L |- _ ....... ....... - \\\ ..... 4
— 20091 I\
~—— 300g/L S A\ N
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L ] ]
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s [CP] J

\ TI[C]
Y
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Computed

No-flow steady-state profiles
Density equation of state: Batzle and Wang (1992)

25




Observed Profiles

Salinity Increases with Depth
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Bulk Permeability Decreases with Depth

Canadian shield, deapest tas

A
_ QikhluotofL7rAr i ra s ,"'
. —Stripa— #

E
X
£
&
LI A —
Urach3
5 -
granite
o1 1 W gnelss
_ mixed
7
-10 -9 -8 g 4 %
log K {m s)

Stober and Bucher (2007)

Bulk Permeability

Increases with Scale
Clauser (1992)



Characterization Borehole (CB) h

= Borehole Geophysics

= Coring/Cuttings/Rock Flour
= Mineralogy/petrology

= Fluid samples from cores -

High-permeability
wireline packer test
and sampling

Sedimentary Overburden (22 km)

= Bulk composition (salinity; water/rock rxn)

= Sample-based Profiles

* Fluid density/temperature/major ions

[ ¥
N> —
|

—\—— Tracer tests

= Pumped samples from high-k regions 1N . .\l‘-—fi\\ 47
SNl N ) nghk permeabmty

. . -\ fmr aCKer pumpin
= Samples from cores in low-k regions e & @t—-*/‘:?\est\ and?sanﬂ’p|%g

—\/

g Hydrofracture in sntu
/| ~stress measurement’

= Testing-Based Profiles

%J via wireline
- WA EIIRN,
/7 &, 7 { IR N

=y INYSEL
/‘ //\\ \\ \c/\iuﬂ /"'\\

RN Yl il A g g 2 55 I

"“Coring '

N

\/ =

! | N P “',, " O
’ ) a \/\/ Hydrofracture in situ
el N ."‘""*‘g stress measurement

= Static formation pressure

Crystalline Basement (=23 km)

= Formation hydraulic/transport properties S oiress measurer
/T\;é;”“i/ SNAY

= |n situ stress (hydrofrac + breakouts) A\ LSS IR
7\4,\ “‘ Low- permeablhty Z)

(SNL 2016) SAND2016-9235R




Environmental Tracers
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. Ve rtical PrOfiles Cosmic Ray Bombardment

= Noble gases (He, Ne, etc.)

= Stable water isotopes e,

= Oxygen; hydrogen
= Atmospheric radioisotope

Anthropogenic Activity - ———
Atmospheric Evolution

tracers (e.g., 8'Kr, 121, 36Cl)
" 238U/234U ratios Interactions with
mantle/crustal fluids

| 87Sr/865r ratios distinct isotopic

signatures

/ radon222 o -

Exposure to
sub-surface
radio-active

uranium 234
decay :

thorium 230 ¢ »

radium 226 ¢

polonium 218 ¢ -~
lead 214 (3

= Long-Term Data

= Flow mechanisms/isolation

Addition of radiogenic isotopes -

= Water provenance e.g. 'He, 2'Ne, "Ar, %Xe

bismuth 214 3~
polonium 214

lead 210 (3
bismuth 210 3

polonium 210 ¢ /.

lead 206 .

throrium 234 3 P
protactinium 234 Jé3

‘ Atmospheric
equilibration

Decay of
Atmospheric

(83

Minerals - pores = fractures
(evaluate the “leakiness”)

(After Kuhlman, 2015)

Fluid Sample Quality + Quantity will be a Focus!
Repeatability between drill-stem testing, packer & core samples?  ,g




In Situ Testing

In situ packer testing

= New hydromechanical dipole test: k(p,, )

Hydrologic Tests

Sandia
fl'l National
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= Static formation pressure
* Permeability / compressibility / skin
= Sampling in high K intervals

Tracer Tests

Variably
= Single-well injection-withdrawal :::2&2? |
Hydraulic Fracturing Tests
= oh magnitude
. . Fixed _
= Estimate stress tensor via Packers

: existing fractures

ithdrawal

Injection
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Characterization Differences
= DBFT Likely Different From:

= Qil/gas or mineral exploration (low perm., low porosity rocks)
= Geothermal exploration (low geothermal gradient)
= Shallow drilling/testing (high p, high o, deep, breakouts)

= DBFT Characterization Approach
= Not exhaustive permeability characterization (scaling)
= Seeking geochemical evidence of system isolation

= Use “off-the-shelf” approaches when available

= DBFT Goals
= Drill straight large-diameter boreholes to 5 km depth

= Demonstrate sample collection (cores + formation fluid)

" Enough samples

SAND2010-6048

* Low enough contamination level

= Demonstrate in situ testing at depth (3 to 5 km)




DBFT: Field Test Borehole (FTB) ) .

= Large-Diameter Borehole J k 367 hole
" casing
= Push envelope of drilling tech 8" hol
n 0 e
= Casing Schedule 24" casing
= Continuous 13 3%” pathway to TD A
22" hol
= Slotted & permanent in disposal Seal 185/8--0c:5ing
interval Interval
1k ~—
= Removable in seal and overburden " piaife e
intervals
| I
. DemonStrate Disposal | 17" hole _
= Emplacing canisters Inztekrr\:]al | | 133" slotted casing
= Removing canisters

= Surface handling operations Y )—k

Borehole designed to maximize
emplacement safety

31




FTB: Emplacement Methods

Derrick

136 feet

Threaded
Drill Pipe

Woodward-Clyde (1983)

Drill Pipe

Rotary Tabile

Drill Floor

49 feet [l !

- Substructure

11\

V-door Slide

d

Manhole Utility Corridor

Scale: 1 inch =20 feet

Pipe Rack

Structural Cover Over Basement

Basement
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| “Coiled Tubing

N

- www.apacheoilcompany.com
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National

Summary h) e,

= Deep Borehole Disposal Concept

= Deep Borehole Field Test (FY17-21)

= Drill two 5-km large-diameter boreholes

= Demonstrate ability to

Robust isolation from biosphere

Seals only pathway for release

Simple construction (for few boreholes)
Wide site availability

Single-Phase, Diffusion Dominated

Geological Issues?

= Drill elsewhere vs. Engineer away

= Characterize bedrock system (CB) RS

= Emplace/retrieve test packages (FTB)




