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­ Why we need to couple different models

­ Brief introduction of classic Schwarz methods

­ PNP and cDFT equations for electrostatics

­ Some facts about nonlocal models 

­ Coupling PNP­cDFT with Schwarz

­ Optimization­based coupling

­ Nonlocal Poisson equation as a proxy for Peridynamics

­ Coupling of local and nonlocal Poisson equations

Hands­on sessions  (with Kyungjoo Kim):

­ Schwarz and Optimization­based couplings of  local and nonlocal Poisson equations

Outline



  

­  Problem  restricted  to  each  subdomain  is  smaller  and 
requires less resources (memory and CPU).

­  Iterative parallel  solution: problem on subdomains can 
be solved independently and then at each iteration values 
at  the  interfaces  are  “communicated”  to  neighbor 
domains.

­  Problem  can  be  solved  in  parallel  over  multiple 
processes.

­  Domain  Decomposition  methods  are  often  used  to 
create preconditioners for iterative solvers.

Typical interface conditions for Poisson­like problems:
1. Continuity of solution
2. Continuity of solution derivative normal to the surface

Why we need coupling techniques 

Example1: Domain Decomposition (same model, multiple domains)



  

Aorta, 3D model: 
Navier-Stokes 

Liver, 3D model: 
Darcy flow

1d model
Euler

0d model:
I = flux
V = pressure
Resistance = Viscosity
Capacity = Compliance How to couple NS (large vessel) 

with Darcy (porous media)?

NS: vector equation.
Darcy: scalar equation.

How to couple NS (aorta)
With 1D Euler (other vessels)?

And what about 
Fluid­Structure Interaction?

Simulations by Cristiano Malossi (CMCS), LifeV

*Quarteroni, Formaggia, Veneziani, Cardiovascular mathematics, Springer, 2009

Why we need coupling techniques 

Example2: Modeling systemic circulation (geometric multiscale*)



  

Alternating Schwarz methods



  

Alternating Schwarz Method

Toselli and Widlund, Domain Decomposition Methods – Algorithms and Theory, Springer, 2005



  

Dirichlet­Neumann methods

Robin­Robin methods

(Nonoverlapping) Coupling Methods 

­ M. Gander,  Optimized Schwarz Methods,  SIAM J. Numer. Anal., 2006



  

Poisson­Nerst­Planck and classic Density Functional Theory



  

Boundary and initial conditions:

Nernst Planck equation for each ion type

Poisson:

Nernst­Planck:

Poisson equation for electric potential

Poisson­Nernst­Planck (PNP) equations



  

Equivalently, the ion flux can be expressed in terms of the chemical potential

Add terms to the chemical potential that account for ion correlation and finite size

The excess Helmholtz free energy terms are nonlocal terms:

Classic Density Functional Theory (cDFT)

­ R Roth, R Evans, A Lang, and G Kahl. Fundamental measure theory for hard­sphere
mixtures revisited: the white bear version. J Phys­Condens Mat, 2002.



  

Facts about Nonlocal Models



  

Facts about Nonlocal Models

– Q. Du, M.D. Gunzburger, R. Lehoucq, and K. Zhou, Analysis and approximation 

of nonlocal diffusion problems with volume constraints. SIAM Review, 2012



  

Local 
operator

Nonocal 
operator

Comparison of Local and Nonlocal discretizations



  

PNP­DFT Coupling

Work by J. Cheung, A. Frishknecht, M. Perego, P. Bochev



  

(membrane 
attracts anions, 
repels cations)

Problem: Semi-permeable membrane

cDFT simulation PNP simulation

Comparing PNP and DFT models



  

PNP cDFT PNP 
unknowns

cDFT 
unknowns

Alternating Schwarz Coupling for PNP­DFT

J. Cheung, A. Frishknecht, M. Perego, P. Bochev, in prep, 2016



  

(membrane 
attracts anions, 
repels cations)

Semi-permeable membrane

Hybrid solution:

Convergence: 
­ about 4 iterations converges in “eyeball 
norm”
­ 10 iterations for increment to be less than 
1e­4 in L2 norm
­ initializing the problem with PNP solved 
everywhere increases significantly the 
convergence.

Overlap regions
cDFTPNP PNP

PNP­cDFT Coupling

L J Douglas Frink, A Thompson, and A G Salinger. Applying molecular
theory to steady­state diffusing systems. J Chem Phys, 2000



  

What if we move the overlap region close to the membrane?

­ Method is not converging.
­ DFT solution is oscillatory next to the membrane 
and the Dirichlet condition passed to PNP can vary 
significantly at each iteration

 ­This is a possible issue with Shwartz coupling. In 
the following we will present a coupling method 
that, in principle, should not suffer from this issue.
 

PNP­cDFT Coupling



  

+ -

PNP

cDFT

40

2D problem with two monovalent ions:

PNP­cDFT Coupling



  Full cDFT solution

Hybrid (PNP­cDFT) solution Hybrid vs. cDFT: 2x speedup, 0.4x memory usage

PNP­cDFT Coupling

J. Cheung, A. Frishknecht, M. Perego, P. Bochev, in prep, 2016



  

Optimization­based Coupling

Work by P. Bochev, M. D’Elia, M.Perego, D. Littlewood



  

Research approach: optimization­based coupling: 

• Traditional coupling: 

• Solve the models subject to coupling constraints

• Optimization coupling reverses the roles:

• Minimize coupling error subject to the models

Control variables

Related work: Lions (2001), Quarteroni (2000), Gunzburger (2000), Du (2001), Hughes (2009), Oden (2011),
Karniadakis (2014-Stochastic PDE), Abdulle (2014 – multiscale multiphase flow)

Optimization­based Coupling



  

Pros:

● extremely flexible
➔ Works with non­matching grids, non­coincident interfaces.
➔ Coupled models need not to share the same discretization, e.g. it can couple finite 

elements and particle discretizations.
● Functional to be minimized can be specific of applications, e.g. could be a mismatch of 

fluxes.
➔ Control variables can also be chosen in a fairly arbitrary way (e.g. we can control 

Neumann conditions)
● Basic idea applicable to diverse modeling scenarios:

Nonlocal + local electrostatic potential for proteins (CM4),  Atomistic­to­continuum 
coupling.
● Is provably stable & admits rigorous coupling and discretization error analysis.
● At each optimization iteration, models can be solved separately. Good for legacy codes.
 

Cons:

● It is often more expensive then other coupling strategies
● Requires a fast/robust optimization solver to make the coupling efficient
● Adjoints of the coupled models might be needed to improve convergence

 

Optimization­based Coupling



  

Local to Nonlocal Optimization­based coupling

– M. D'Elia, P. Bochev, Optimization­Based Coupling of Nonlocal and Local 
Diffusion Models, Materials Research Society Proceedings, 2014

– M. D'Elia, M. Perego, P. Bochev, D. Littlewood, A coupling strategy for 
local and nonlocal diffusion models with mixed volume constraints and 
boundary conditions, Computers & Mathematics with Applications, 2016

– M. D'Elia, P. Bochev, Formulation, Analysis and Computation of an 
optimization­based Local­to­Nonlocal Coupling Method, 2015



  

Model Problems

Kernel (depends on material properties) 



  

Model Problems

Nonnegative kernel
(depends on material properties) 



  

       
 

 
 
 
 
 

  
   

     
                                                                           

Local to Nonlocal Coupling



  

        
 

 
 
 
 

  
   

     
                                                                           

Local to Nonlocal Coupling



  

Local to Nonlocal Coupling

        
 

 
 
 
 

  
   

     
                                                                           



  

The Algorithm



  

Local to Nonlocal Coupling: Numerical Tests, 1d



  

Problem Setting (1D)



  

NUMERICAL TESTS

   



  

Local to Nonlocal Coupling: Numerical Experiment, 3d



  

Local to Nonlocal Coupling

         
    

 
 
 
  

   
     
                                                                                  



  

The Discretization



  

The Discretization



  

The Discretization



  

software.sandia.gov/albany/peridigm.sandia.gov

trilinos.org/packages/rol

Geometry



  

software.sandia.gov/albany/peridigm.sandia.gov

trilinos.org/packages/rol

Geometry



  

Geometry



  

The Patch Test



  

Solution with a Crack



  

Solution with a Crack



  

Solution with a Crack



  

Solution with a Crack



  

Solution with a Crack



  

Solution with a Crack



  

­ Presented two nonlocal problems:  cDFT and nonlocal Poisson

­ Couplings needed to
  1. save computational time,
  2. make feasible (given limited resources) problems too complex to be solved
  3. use legacy codes, e.g. particle methods for nonlocal Poisson and FE for local 
one.

­ Schwarz is in general rather robust but can fail when coupled models behave 
significantly differently on overlap region.

­ Optimization­based coupling is a very general/flexible framework, although it 
can be expensive.

­ Alternative methods not discussed here include the Blending method and the 
Arlequin method.

Conclusions

Thank you!
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