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Cognitive robotics and spiking neural 
networks
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Embodied Cognition Theory:
You can learn more about 
cognition if you study the whole 
brain-body system 

What are SNNs?
• Neural networks that model neuronal/synaptic temporal 

dynamics
• Spike only when the membrane voltage exceeds a 

threshold

Why use SNNs?
• Spike events are rare: average brain activity 1-10 Hz
• Event-driven nature of SNNs fits well with neuromorphic 

hardware
• Use “Address Event Representation” (AER) to minimize 

communication.
• SNNs provide temporal coding but can still use rate coding
• SNNs support biologically plausible learning rules

Carl from Jeff Krichmar’s Lab at UC Irvine

BrainScaleS Chip from 
Heidelberg University

Neuromorphic Chip from INI in 
Zurich

TrueNorth chip from IBM DVS camera from iniLabs in Zurich



Properties of neural systems
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• Massive parallelism (1011 neurons)

• Massive connectivity (1015 synapses)

• Excellent power-efficiency 

• ~ 20W for 1016 flops

• Probabilistic responses and fault-tolerant 

• Autonomous, on-line learning

• Low-performance components (~100 Hz)

• Low-speed comm. (~meters/sec)

• Low-precision synaptic connections



Neuromorphic computing at SNL
leverages a broad research foundation
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Enabling Advanced 
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Computing
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communication paradigms
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Non-von Neumann 
architectures

Neural Machine Learning 
Algorithms

Formal Neural Computing 
Theory

Configurable CMOS Neural 
Architectures

Adaptive post-CMOS 
Neural Architectures

UQ / SA of Neural 
Algorithms and Neural 

Architectures

IARPA MICrONS 
Government Team for 
Test & Evaluation of 
Neural Models and 
Machine Learning

Micro-sensors

HAANA Grand 
Challenge – Flagship 

LDRD across 
computing, materials, 

and cyber security 
centers

MESA Fabrication 
Facility provides 

materials and design 
research capabilities 
for next generation 

neural systems

Neural Computing 
Capabilities
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Computational neuroscience research 
spans several domains
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Theory

Computational models

Data analytics

Simulation tools Novel Metrics

Neuroscience 

Tools



Desirable properties of an adaptive 
neuromorphic autonomous system
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Power-efficient

Highly adaptive

Verified & 
validated using 

proven engineering 
principles

Built on existing 
ML/DNN 

techniques

Utilizes a 
prototyping 

framework for 
testing & 

development

Handles streams of 
information in real-time

Built on solid 
CS/Neuro theoretical 

foundations

• Extremely low power camera/chip 
device only uses power when 
something happens

• Pattern recognition capabilities 
enable actions to be taken when 
specific event occurs

• DVS camera can operate at µs 
resolution

• Plasticity enables online learning 
of new patterns or habituation of 
irrelevant input

Pushbot from iniLabs in Zurich with 
neuromorphic chip from INI in Zurich 
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Desirable properties of an adaptive 
neuromorphic autonomous system
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Theoretical computing advantages for 
neural computation

 Synaptic memories are independently accessed 
and integrated  Local Analog Computation

 Example: O(N3) -> O(N2) advantage in energy of 
sparse coding due to analog processing at memory

 Integrated inputs are transformed into “spike” 
trains  Information communicated in temporal 
domain (binary in voltage, analog in time)

 Example: O(log N) -> O(1) advantage in energy 
due to temporal coding of communication

 Synapse memory, neuron dynamics, and even 
whole neurons change over time during learning 
 Continuously adaptive algorithms

 Example: O(N4)->O(N2) advantage in amortized 
cost of training and running “deep learning” neural 
algorithms in changing world
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Agarwal et al., Frontiers in Neuromorphic Computing, 2016

Verzi et al., in preparation

Draelos et al., submitted
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HAANA spiking architecture enables 
neural-inspired pattern recognition
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• States encoded as sparse 
distributed representations (SDR)

• High capacity representation
• Hippocampus-inspired algorithms
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N2A –Compiler of neuroscience information 
into compute-friendly representations
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Neuroscience data is vast and exists 
at many scales…

… but many neuroscience concepts can be 
reduced to dynamical physics-based models

N2A compositionally represents neural dynamics and compiles to conventional or neuromorphic systems

Rothganger et al., Frontiers in Neuroscience 2014
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UQ / SA of computational 
neuroscience models and algorithms
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Carlson et al., in preparation
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“Neurogenesis deep learning” enables 
adaptation to changing threats
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Additional SNL capabilities
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We are working on reconfigurable hardware solutions that leverage the 
theoretical benefits of spiking and analog processing w/ Matt Marinella
and Sapan Argawal in department 1768
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We also have an Intelligent System Controls Department (6533) that has capabilities in:
• Advanced mobility
• Cybernetics
• Advanced Controls
• Small smart machines
• Augmented reality



Courtesy Frances Chance; experimental neuroscience 
collaborators: Carol Barnes (U. Arizona), Sara Burke (U. 
Florida), Andrew Maurer (U. Florida)

expectation

sensory

Data analytics of experimental neural 
data refines neural frameworks

Multimodal Information Multiplexing in the Hippocampus
How is multi-modal information represented and 
processed in the brain?

Prediction: Sensory and memory information are 
multiplexed in the spiking outputs of CA1 
pyramidal neuron.

Validation: comparison of model spike patterns 
with hippocampal CA1 place cells (in vivo 
recordings from awake and behaving animals)

21



Large scale neural simulations are required 
to observe of realistic neural functions
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• Neural systems are highly non-
linear and can involve complex 
feedback

• Scaling down neural 
simulations can have 
unintended implications

• Example: Sharp increase 
in activity of reduced 
models shown here 
obfuscates experimental 
difference

• Models scale at number of 
interactions (roughly O(N2)) 
and require substantial node-
node communication
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Carlson, Aimone  et al., in preparation



“Neurogenesis deep learning” enables 
adaptation to changing threats
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Theoretical efforts are seeking to 
formalize neural computation
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Severa et al., in preparation

Severa et al., in preparation

Chance et al., in preparation
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Applications – Cyber, 
Remote imaging

Behavioral 
Trajectory Analysis

Response to 
Concept Drift

Unsupervised 
Feature Extraction

Temporal 
Coding

Sparse 
Coding

Adaptive 
Coding

DPUs
ReRAM 

Crossbar
Future HAANA 
Architecture

FPGA
Device

Modeling
Circuit

Modeling

Materials 
Chemistry

Filament 
Design

Algorithms
Core

Architecture
Core

Learning
Hardware

Core

Applications
Core

Hybrid

HAANA Grand Challenge integrates 
research from across Sandia



Modeling Algorithms on Neural ReRAM 
Architectures Defines Device Requirements

 Solution: Devices, Circuits, and Algorithms

1. Algorithms: Simulated annealing, HTM, LCO algorithm, 
HAANA Algorithm

2. Circuit: Multi-ReRAM circuit; parasitic compensation

3. Devices: Nonfilamentary, seeded/controlled filament
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Small 
Images

Large 
Images

File 
Types

Read Noise σ (% Range) 3% 5% 9%
Write Noise σ (% Range) 0.3% 0.4% 0.4%

Asymmetric Nonlinearity (ν) 0.1 0.1 0.1
Symmetric Nonlinearity (ν) >20 5 5

Maximum Current 160 nA 13 nA 40 nA



Neural information content metrics make 
quantifying neural computing concrete

2727

 Use complexity as a measure of compressibility in order to 
estimate entropy to quantitatively assess the information 
content of a signal
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Vineyard, Craig M., et al. "Adult Neurogenesis: Implications on Human And Computational Decision Making." Foundations of Augmented Cognition. Springer 
Berlin Heidelberg, 2013. 531-540.
Vineyard, Craig M., et al. “Quantifying Neural Information Content: A Case Study of the Impact of Hippocampal Adult Neurogenesis” (Accepted to IJCNN 2016)



HAANA streaming architecture provides 
neural-inspired cyber analytics

28

 Architecture inspired by brain trauma 
emulation

 Exploits many features from observed neural 
processing

 Demonstrated 100X speedup for cyber 
complex pattern recognition (PCRE rule 
search) application



Desirable Properties of an Adaptive 
Neuromorphic Autonomous System

29

Power-efficient

Highly adaptive

Verified & 
validated using 

proven engineering 
principles

Built on existing 
ML/DNN 

techniques

Utilizes a 
prototyping 

framework for 
testing & 

development

Handles streams of 
information in real-time

Built on solid 
CS/Neuro theoretical 

foundations

Pushbot from iniLabs in Zurich with 
neuromorphic chip from INI in Zurich 


