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#CCR  Cognitive robotics and spiking neural @

networks
Embodied Cognition Theory: What are SNNs?
You can learn more about * Neural networks that model neuronal/synaptic temporal
cognition if you study the whole dynamics
brain-body system + Spike only when the membrane voltage exceeds a
threshold

Why use SNNs?

« Spike events are rare: average brain activity 1-10 Hz

« Event-driven nature of SNNs fits well with neuromorphic
hardware

* Use “Address Event Representation” (AER) to minimize
communication.

* SNNs provide temporal coding but can still use rate coding

« SNNs support biologically plausible learning rules

Carl from Jeff Krichmar’s Lab at UC Irvine

BrainScaleS Chip from Neuromorphic Chip from INI in TrueNorth chip from IBM DVS camera from iniLabs in Zurich
Heidelberg University Zurich
-
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« Massive parallelism (101! neurons)
« Massive connectivity (101> synapses)

« Excellent power-efficiency
e ~ 20W for 101 flops

« Probabilistic responses and fault-tolerant
« Autonomous, on-line learning

« Low-performance components (~100 Hz)
« Low-speed comm. (~meters/sec)

» Low-precision synaptic connections
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Neuromorphic computing at SNL
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Computational neuroscience research

spans several domains

Computational models

Theory
. Ovrly diflamstinting " Adaprons rroltion " ' ua‘c‘ . '::;.
Neuroscience %" st las J.‘l iTe
%: .ﬁ Q.}’:.... !.}%( .'. [:;;ﬂn:] HIPP HICAP
“)‘n‘-}i U Flerem iz ol “IL:ZE_}M Dlhmfm - ' a‘—
largs p ) u

Tools

Simulation tools

Novel Metrics
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=S8R Desirable properties of an adaptive @i,

Power-efficient

Highly adaptive

Built on solid
CS/Neuro theoretical
foundations

Handles streams of
information in real-time

Utilizes a
prototyping
framework for
testing &
development

Verified &
validated using
proven engineering
principles

Built on existing
ML/DNN
techniques

Pushbot from iniLabs in Zurich with
neuromorphic chip from INI in Zurich

neuromorphic autonomous system

Extremely low power camera/chip
device only uses power when
something happens

Pattern recognition capabilities
enable actions to be taken when
specific event occurs

DVS camera can operate at us
resolution

Plasticity enables online learning
of new patterns or habituation of
irrelevant input
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#.CCR Theoretical computing advantages for ()i
neural computation

= Synaptic memories are independently accessed
and integrated = Local Analog Computation J\
=  Example: O(N3) -> O(N?) advantage in energy of
sparse coding due to analog processing at memory

Agarwal et al., Frontiers in Neuromorphic Computing, 2016 __,r\

= Integrated inputs are transformed into “spike”

trains = Information communicated in temporal
domain (binary in voltage, analog in time)

= Example: O(log N) -> O(1) advantage in energy
due to temporal coding of communication M
Verzi et al., in preparation
= Synapse memory, neuron dynamics, and even
whole neurons change over time during learning
—> Continuously adaptive algorithms
=  Example: O(N%)->O(N?) advantage in amortized ‘ ‘ ‘ ‘
cost of training and running “deep learning” neural
algorithms in changing world Draelos et al., submitted




#.CCR ReRAM crossbar research from device
to system
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Run any neural algorithm on the same
hardware
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HAANA spiking architecture enables
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neural-inspired pattern recognition
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#CCR N2A —Compiler of neuroscience information ) =,
into compute-friendly representations
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Neuroscience data is vast and exists ... but many neuroscience concepts can be
reduced to dynamical physics-based models
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N2A compositionally represents neural dynamics and compiles to conventional or neuromorphic systems

Passive
Membrane

C++

class Model : public_Compartment
{
public:

class HHmod : public _Compartment
Potassium {

Channel

public:

Hodgkin-Huxley
Connection

Hodgkin-Huxley
Compartment

lon Channel

virtual void update {float _24t, float & _24dt)
{

float Na_2ealpha_5fh;
Na_2ealpha_5fh = 0.07f * exp(-v / 20.0f);
float Na_2ealpha_5fm;
Ma_2ealpha_Sfm = (25.0f - V) / (10.0f* 25.0 - V) /10.0f) - 1.0f);
Sodium Channel a_2ealpha_Sfm - { i fexplf /LG 22001

HH Connection

— w " = . float K_2ealpha_Sfn;
A = Sconnect (“HH Comr:artmentul parent = $inherit (“Ion Channel”) N K_2ealpha_Sfn = (10.0f- V) / (100.0f * (exp({10.0f - V) / 10.0f) - 1.0f));
B = Sconnect (“HH Compartment”) I = G*m3 *h* (E-V) N float Na_2ebeta_5th;
A.V' =+ (B.V - A.V) /R m' = alpham* (1 - m - betam *m Na_2ebeta_Sfh = 1.0f / (exp((30.0f - V) / 10.0f) + 1.0f);
B.V' =+ (A.V - B.V) / R h* = alpha h * (L - h) - beta h * h float Na_2ebeta_Sfm;
R = 10 alpha_m =: (25 - V) / (10 * (exp ((25 - V) / 10) - 1)) e M= P LS D
betam =: 4 * exp (- V / 18) float k_2ebeta_sfn;
HH Compartment 1oha h - 0.07 * 20 K_2ebeta_Sfn = 0.125f* exp{-v / 80.0f);
parent = Sinherit (“Passive Membrane”) Glien 0 = s exp (- V / 20) _nexty_27 += (0.31* (10.613f- V) + |_Sfinj) / 1.0+ K_2el / 1.0f + Na_2el / 1.0f;
X = $include (“Potassium Channel) bPetah =: 1/ (exp ((30 - V) /10) + 1) Na_2eh_27 = Na_2ealpha_Sfh * {1.0f - Na_deh) - Na_2ebeta_Sfh * Na_2eh;
Na = $include (“Sodium Channel”) = 120 Na_2el = 120.0f * pow (Na_2em, 3.0f) * Na_2eh * (115.0f- V);
= 115 K_2el = 36.0f * pow (K_2en, 4.0f) * (-12.0-V);
1& - Na_2em_27 = Na_2ealpha_5fm * (1.0f - Na_2em) - Na_2ebeta_5fm * Na_2em;
able Mode q K_2en_27 = K_2ealpha_5fn * (1.0f - K_2en) - K_2ebeta_Sfn *K_2en;
HH = $include (“HH Compartment”) w - if {_24index == 0.0f)
HH.5n = 3 : - [()GS (V_rest - V) + I_inj) / C \_Sfinj = 10.0f;
& = $include (“HH C tion” _ }
¢, - $include ( onnection”) V_rest = 10.613
c.B = HH c =1 %
C.$p = C.A.$index == C.B.§index - 1

Rothganger et al., Frontiers in Neuroscience 2014
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UQ / SA of computational
neuroscience models and algorithms
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Carlson et al., in preparation
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.CCR “Neurogenesis deep learning” enables ()i
adaptation to changing threats
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+.CCR Additional SNL capabilities ) e,

We are working on reconfigurable hardware solutions that leverage the
theoretical benefits of spiking and analog processing w/ Matt Marinella
and Sapan Argawal in department 1768
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We also have an Intelligent System Controls Department (6533) that has capabilities in:
« Advanced mobility
» Cybernetics
« Advanced Controls
« Small smart machines
* Augmented reality




#CccR Data analytics of experimental neural e,
data refines neural frameworks
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Laboratories

Multimodal Information Multiplexing in the Hippocampus
How is multi-modal information represented and
processed in the brain?

sensory
Prediction: Sensory and memory information are —HH | ._—A\
multiplexed in the spiking outputs of CA1 expectation A
pyramidal neuron.

— @ —

Validation: comparison of model spike patterns
with hippocampal CA1 place cells (in vivo
recordings from awake and behaving animals)

L 25 45

Courtesy Frances Chance; experimental neuroscience
collaborators: Carol Barnes (U. Arizona), Sara Burke (U.
Florida), Andrew Maurer (U. Florida




:E:"f CCR National

Sandia
~-ees  Large scale neural simulations are required ) fas,
to observe of realistic neural functions
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.CCR “Neurogenesis deep learning” enables ()i
adaptation to changing threats
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Draelos et al, submitted 2016
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formalize neural computation

Overly diffrcetinting Adaptive reolution
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[ Small Large File I
I Images | Images | Types i
Read Noise o (% Range) 3% 5% 9%

I [ Write Noise 0 (% Range) | 03% | 04% | 04% |l
I | Asymmetric Nonlinearity (v) 0.1 0.1 0.1 |
I Symmetric Nonlinearity (v) >20 5 5 I

Maximum Current 160 nA 13 nA 40 nA I

Solution: Devices, Circuits, and Algorithms

Algorithms: Simulated annealing, HTM, LCO algorithm,
HAANA Algorithm

Circuit: Multi-ReRAM circuit; parasitic compensation
Devices: Nonfilamentary, seeded/controlled filament

Weight (Conductance)

Weight (Conductance)

Modeling Algorithms on Neural ReRAM
Architectures Defines Device Requirements
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=25 R  Neural information content metrics make Ve,
guantifying neural computing concrete

Path 1

Neural Ensemble
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. Use complexity as a measure of compressibility in order to
estimate entropy to quantitatively assess the information
content of a signal

n
Ca (xn) pr— % * logan NEuracl‘:r:‘ftr::‘Ta:ion PlaciCeI;:\:dths

3 0.0367
=4 005
=5 0.0633
=6 0.7067
“7 009

“r 01033
° 01167
“10 013
9
7
48
o+
L] More young neurons
D " (i.e. Increased
‘ neurogenesis)
Q
&

Moreyo ng neurons !
(i.e. Increased
| |1 Q 1 1 Q 1 ‘!I I neurogenesis)
|

Vineyard, Craig M., et al. "Adult Neurogenesis: Implications on Human And Computational Decision Making." Foundations of Augmented Cognition. Springer
Berlin Heidelberg, 2013. 531-540.

Vineyard, Craig M., et al. “Quantifying Neural Information Content: A Case Study of the Impact of Hippocampal Adult Neurogenesis” (Accepted to IICNN 2016)
- - -
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Processing Element (PE)
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Architecture inspired by brain trauma
emulation

Exploits many features from observed neural
processing

Demonstrated 100X speedup for cyber
complex pattern recognition (PCRE rule
search) application

HAANA streaming architecture provides
neural-inspired cyber analytics
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Pushbot from iniLabs in Zurich with
neuromorphic chip from INI in Zurich




