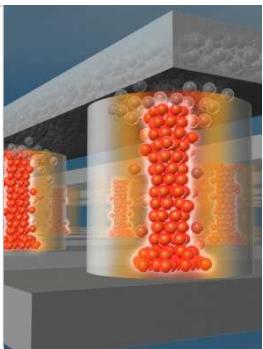
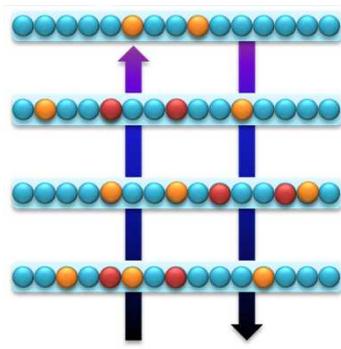
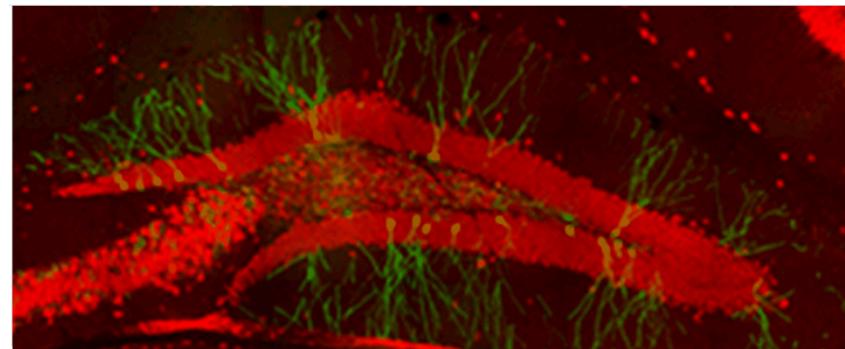


Exceptional service in the national interest



Sandia Neural Computing Overview

2016 AFOSR Digital Electronics Working Group

Arlington, VA

Kris Carlson, Ph.D.
Sandia National Laboratories

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Cognitive robotics and spiking neural networks

Embodied Cognition Theory:

You can learn more about cognition if you study the whole brain-body system

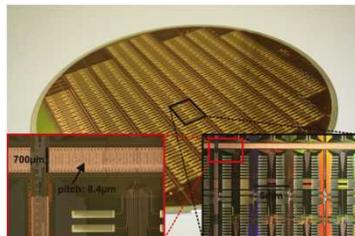
Carl from Jeff Krichmar's Lab at UC Irvine

What are SNNs?

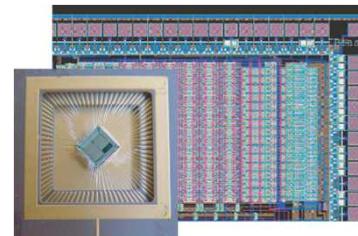
- Neural networks that model neuronal/synaptic temporal dynamics
- Spike only when the membrane voltage exceeds a threshold

Why use SNNs?

- Spike events are rare: average brain activity 1-10 Hz
- Event-driven nature of SNNs fits well with neuromorphic hardware
- Use **“Address Event Representation” (AER)** to minimize communication.
- SNNs provide temporal coding but can still use rate coding
- SNNs support biologically plausible learning rules



BrainScaleS Chip from Heidelberg University



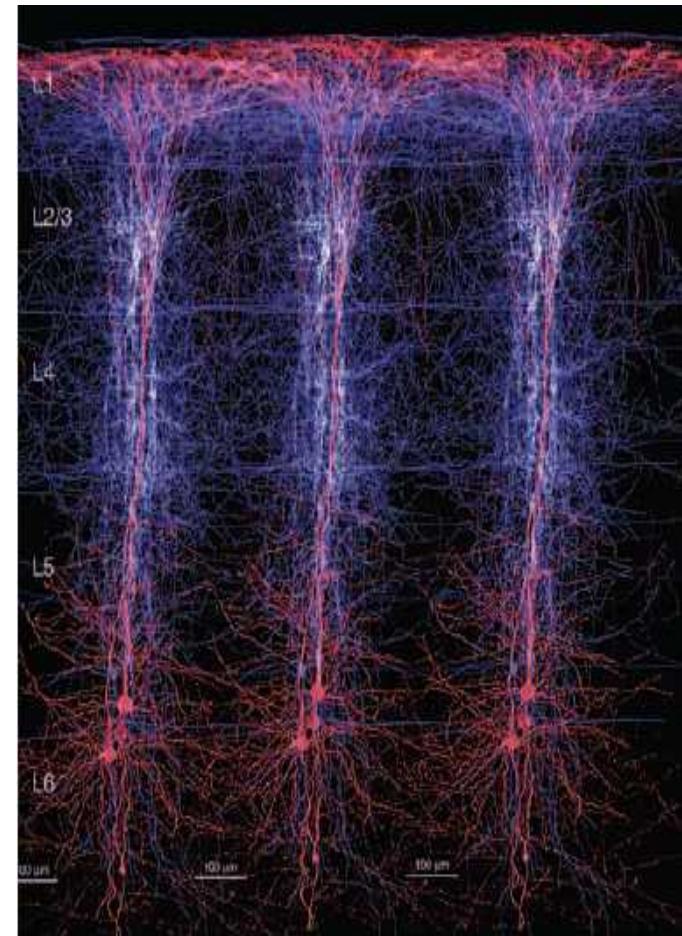
Neuromorphic Chip from INI in Zurich

TrueNorth chip from IBM

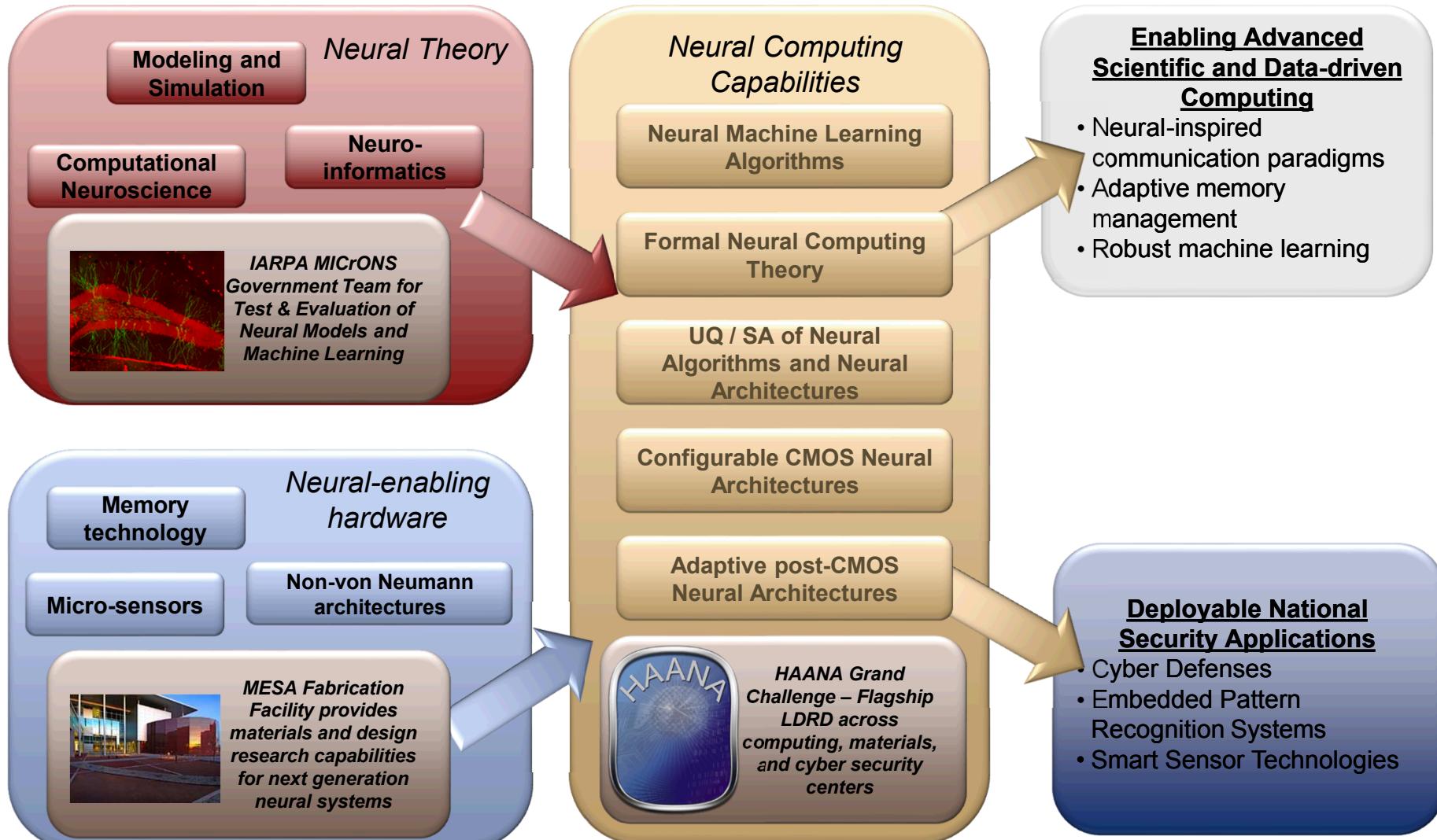
DVS camera from inilabs in Zurich

Properties of neural systems

- Massive parallelism (10^{11} neurons)
- Massive connectivity (10^{15} synapses)
- Excellent power-efficiency
 - $\sim 20\text{W}$ for 10^{16} flops
- Probabilistic responses and fault-tolerant
- Autonomous, on-line learning
- Low-performance components (~ 100 Hz)
- Low-speed comm. (\sim meters/sec)
- Low-precision synaptic connections

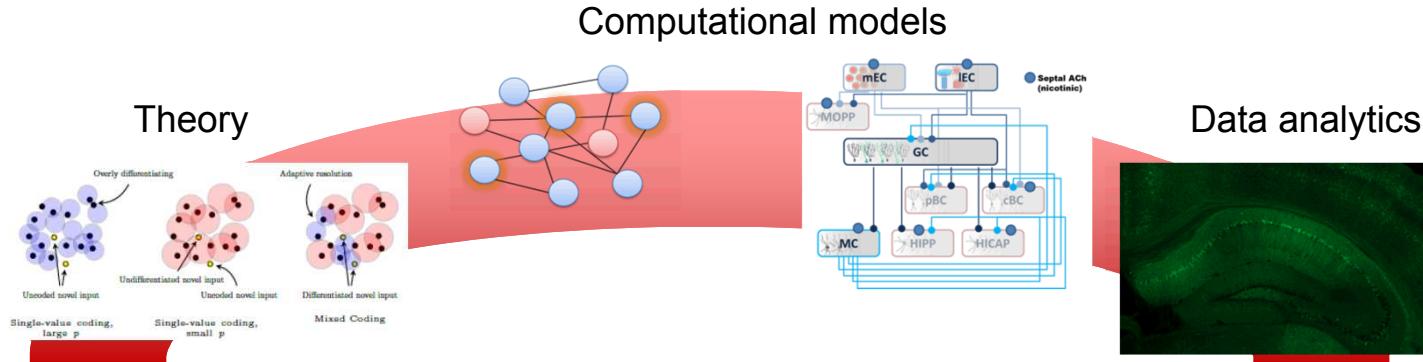


Neuromorphic computing at SNL leverages a broad research foundation

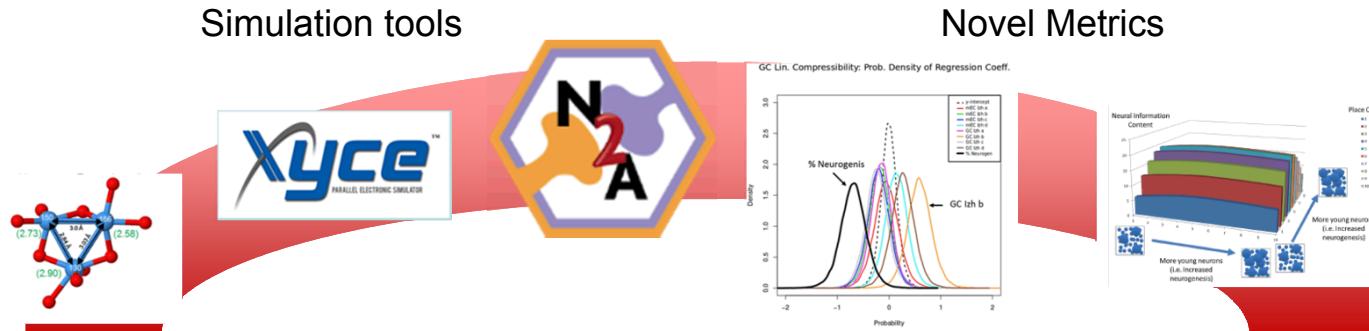


Computational neuroscience research spans several domains

Neuroscience



Tools



Desirable properties of an adaptive neuromorphic autonomous system

Power-efficient

Highly adaptive

Built on solid
CS/Neuro theoretical
foundations

Handles streams of
information in real-time

Utilizes a
prototyping
framework for
testing &
development

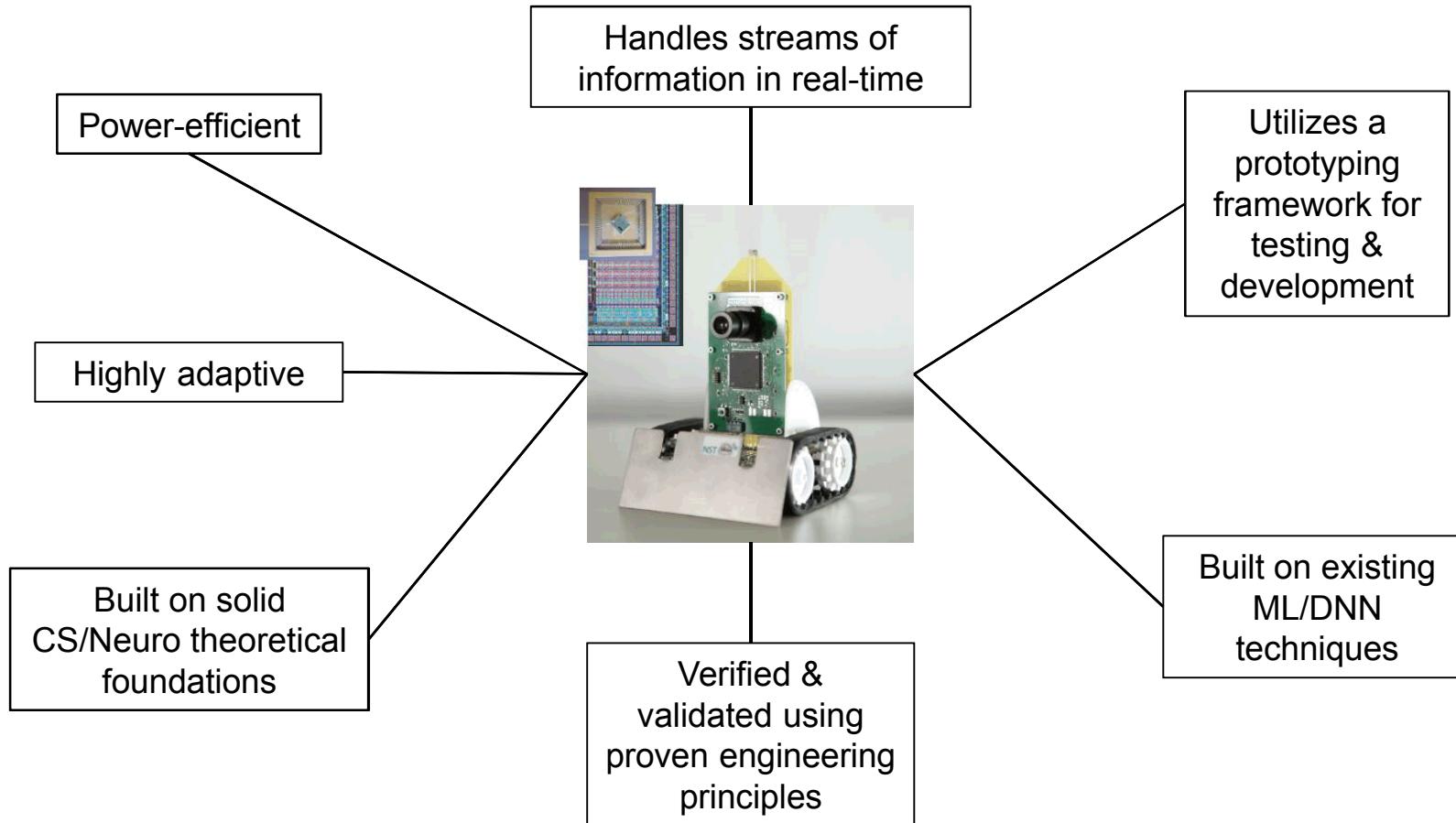
Verified &
validated using
proven engineering
principles

Built on existing
ML/DNN
techniques

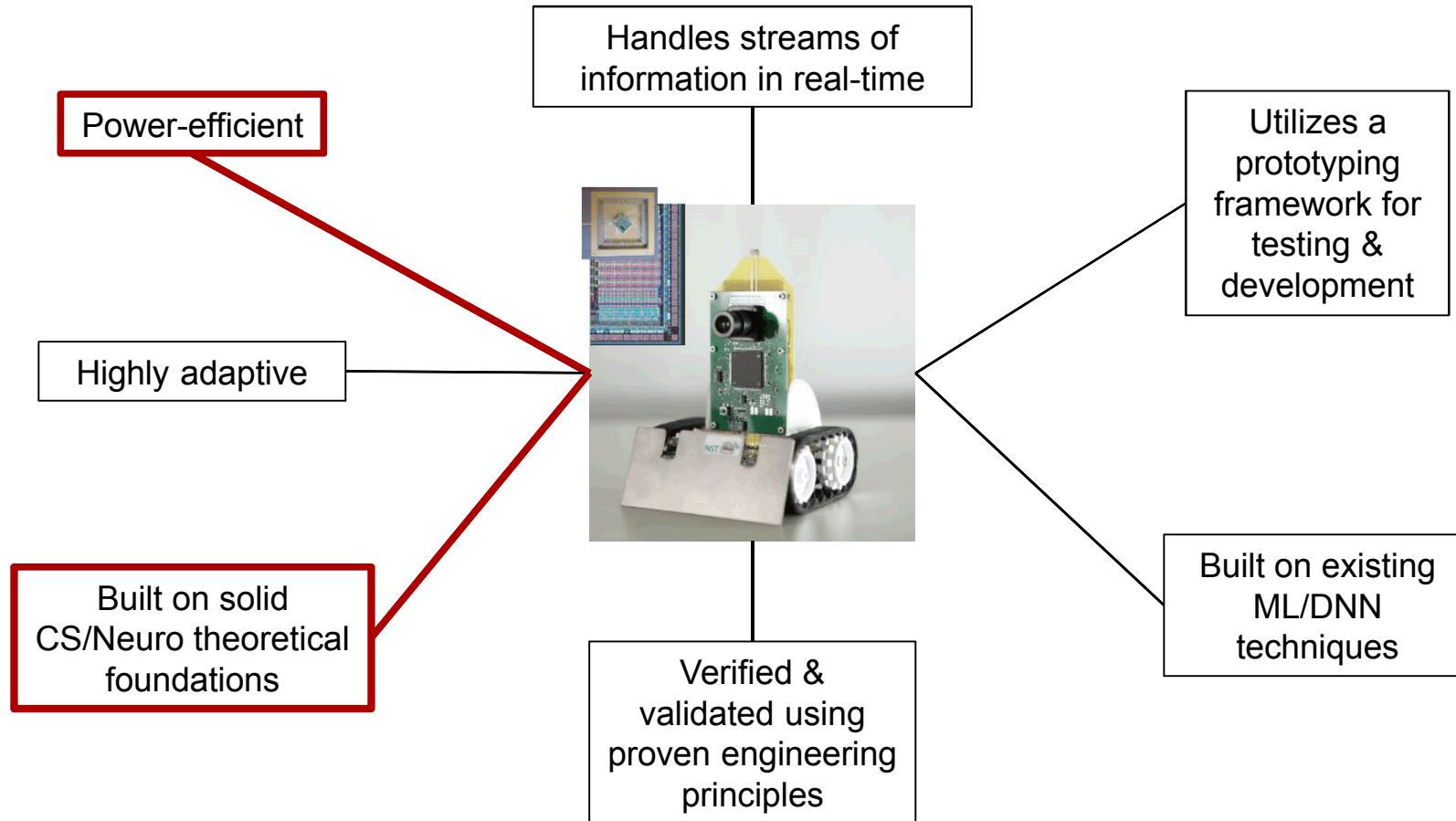
Pushbot from iniLabs in Zurich with neuromorphic chip from INI in Zurich

- Extremely low power camera/chip device only uses power when something happens
- Pattern recognition capabilities enable actions to be taken when specific event occurs
- DVS camera can operate at μs resolution
- Plasticity enables online learning of new patterns or habituation of irrelevant input

Desirable properties of an adaptive neuromorphic autonomous system



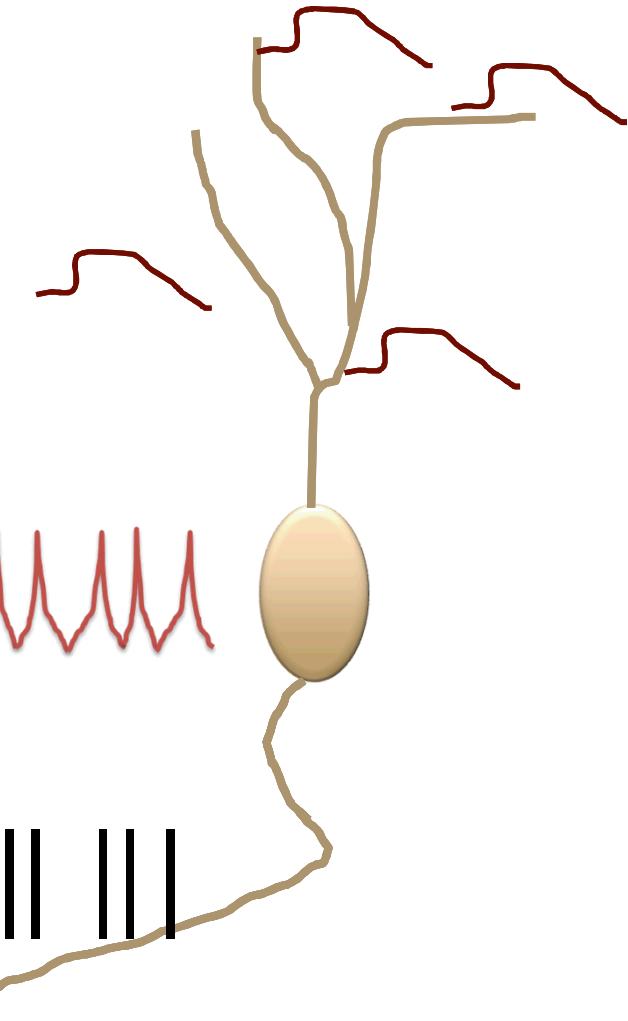
Desirable properties of an adaptive neuromorphic autonomous system



Theoretical computing advantages for neural computation

- Synaptic memories are independently accessed and integrated → Local Analog Computation
 - **Example: $O(N^3) \rightarrow O(N^2)$ advantage** in energy of sparse coding due to analog processing at memory

Agarwal et al., Frontiers in Neuromorphic Computing, 2016



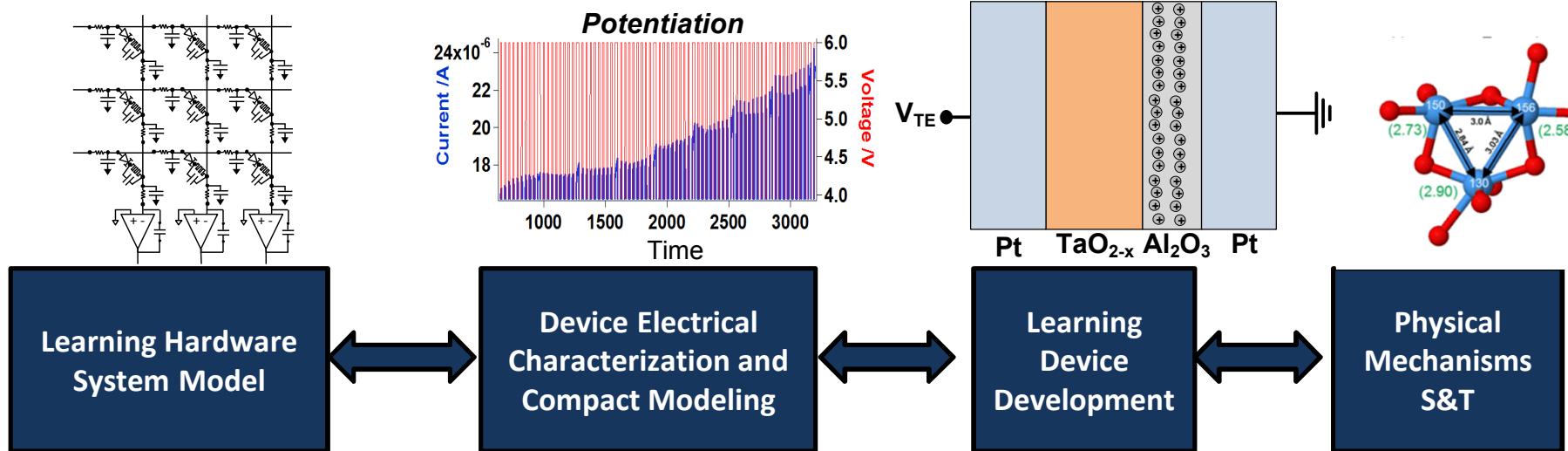
- Integrated inputs are transformed into “spike” trains → Information communicated in temporal domain (binary in voltage, analog in time)
 - **Example: $O(\log N) \rightarrow O(1)$ advantage** in energy due to temporal coding of communication

Verzi et al., in preparation

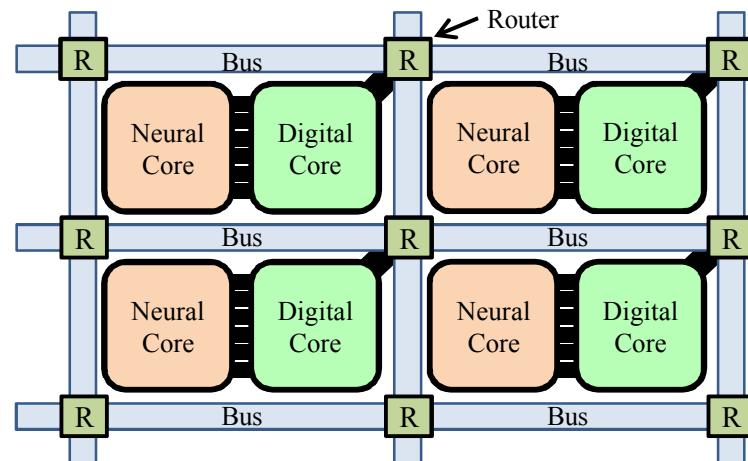
- Synapse memory, neuron dynamics, and even whole neurons change over time during learning → Continuously adaptive algorithms
 - **Example: $O(N^4) \rightarrow O(N^2)$ advantage** in amortized cost of training and running “deep learning” neural algorithms in changing world

Draelos et al., submitted

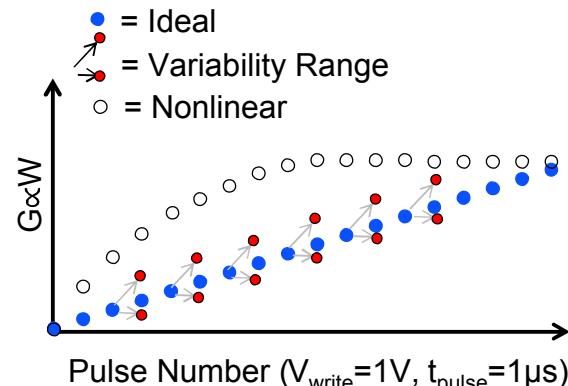
ReRAM crossbar research from device to system



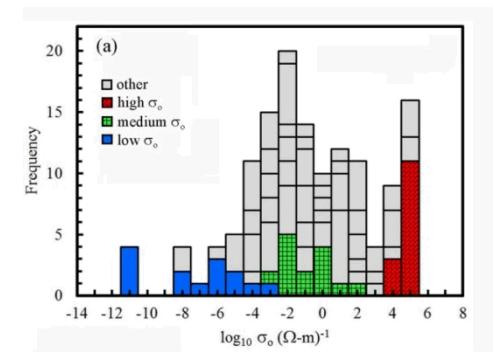
Run any neural algorithm on the same hardware



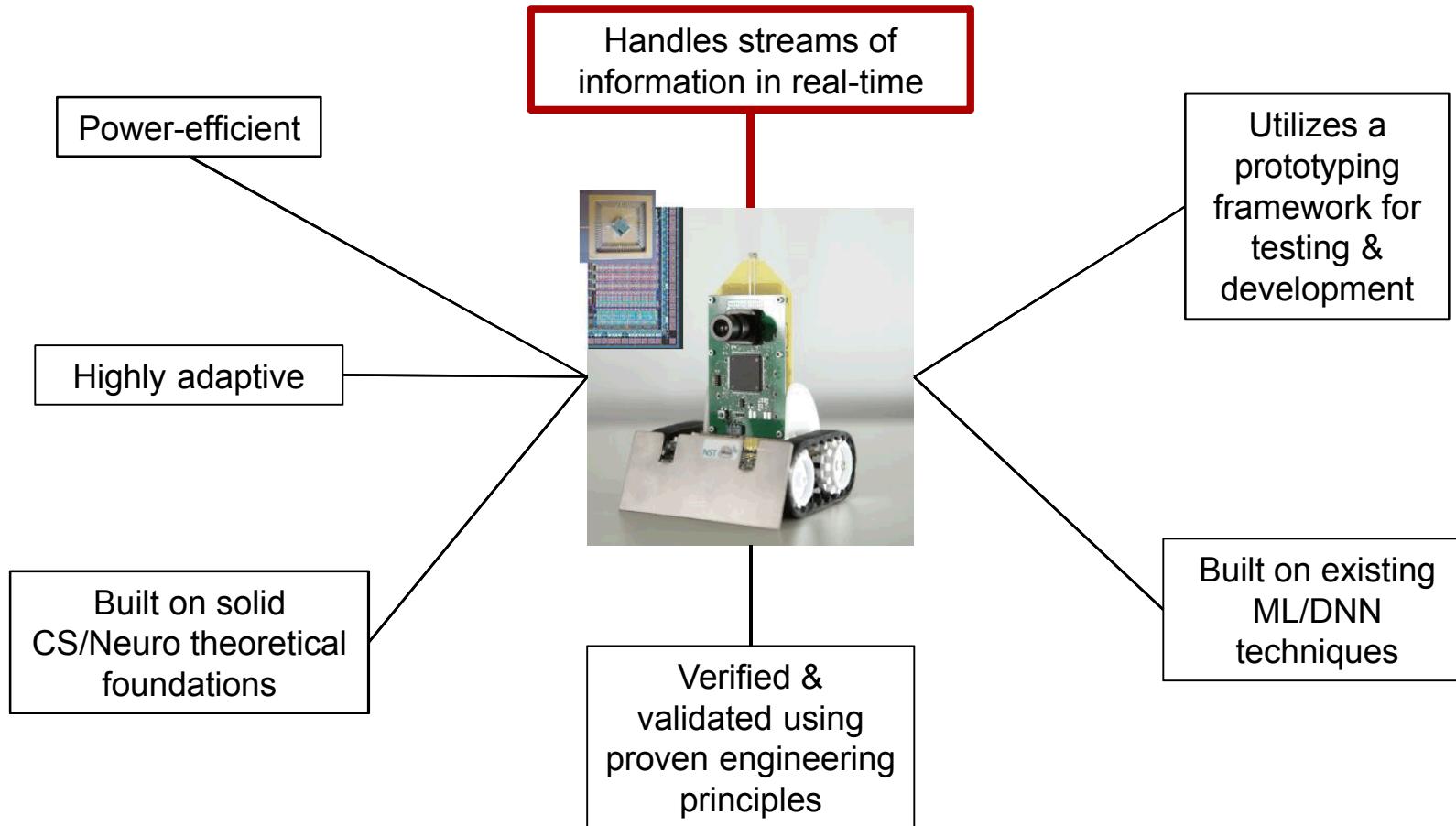
Variability and Nonlinearity



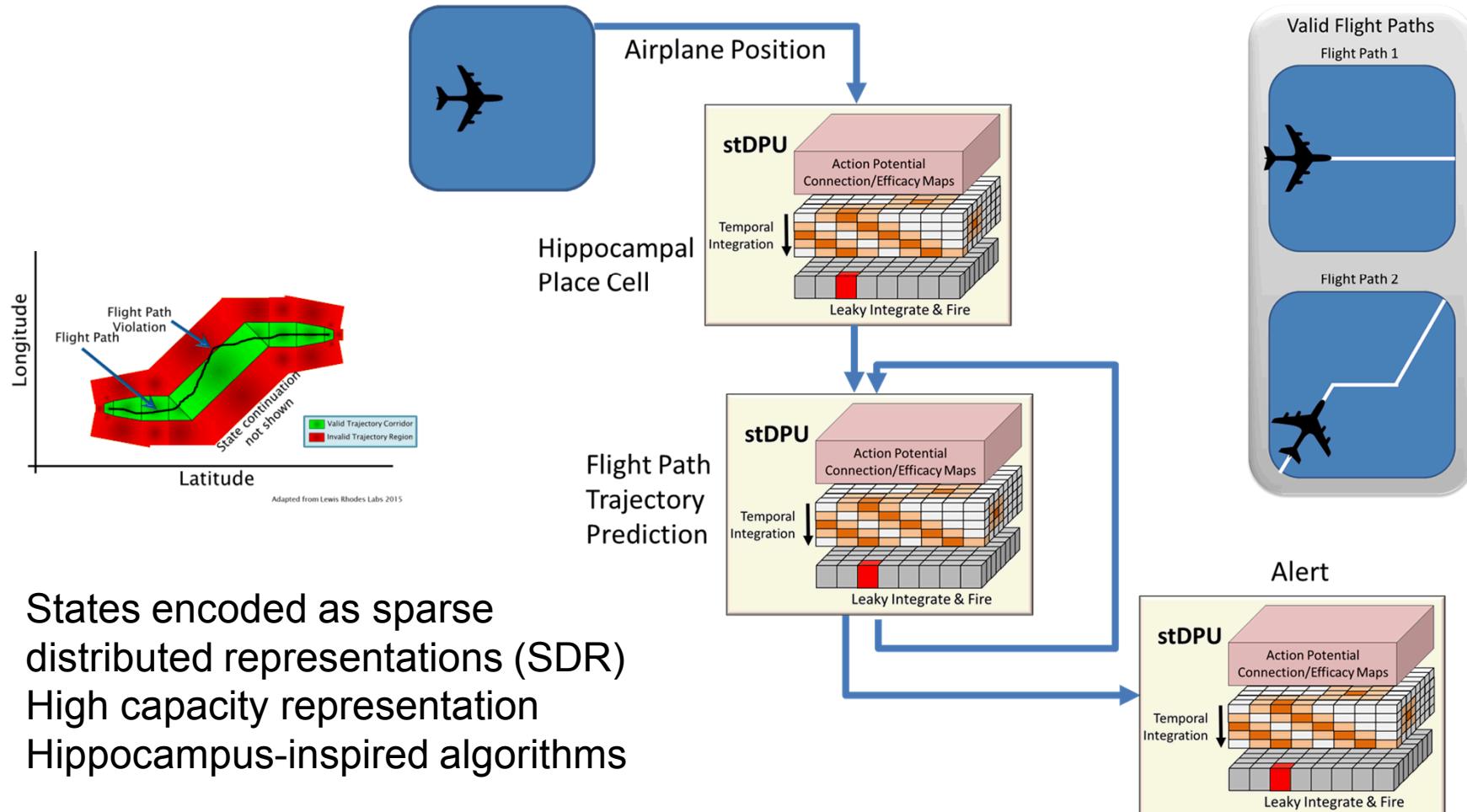
Conductance distribution for different atomic structures



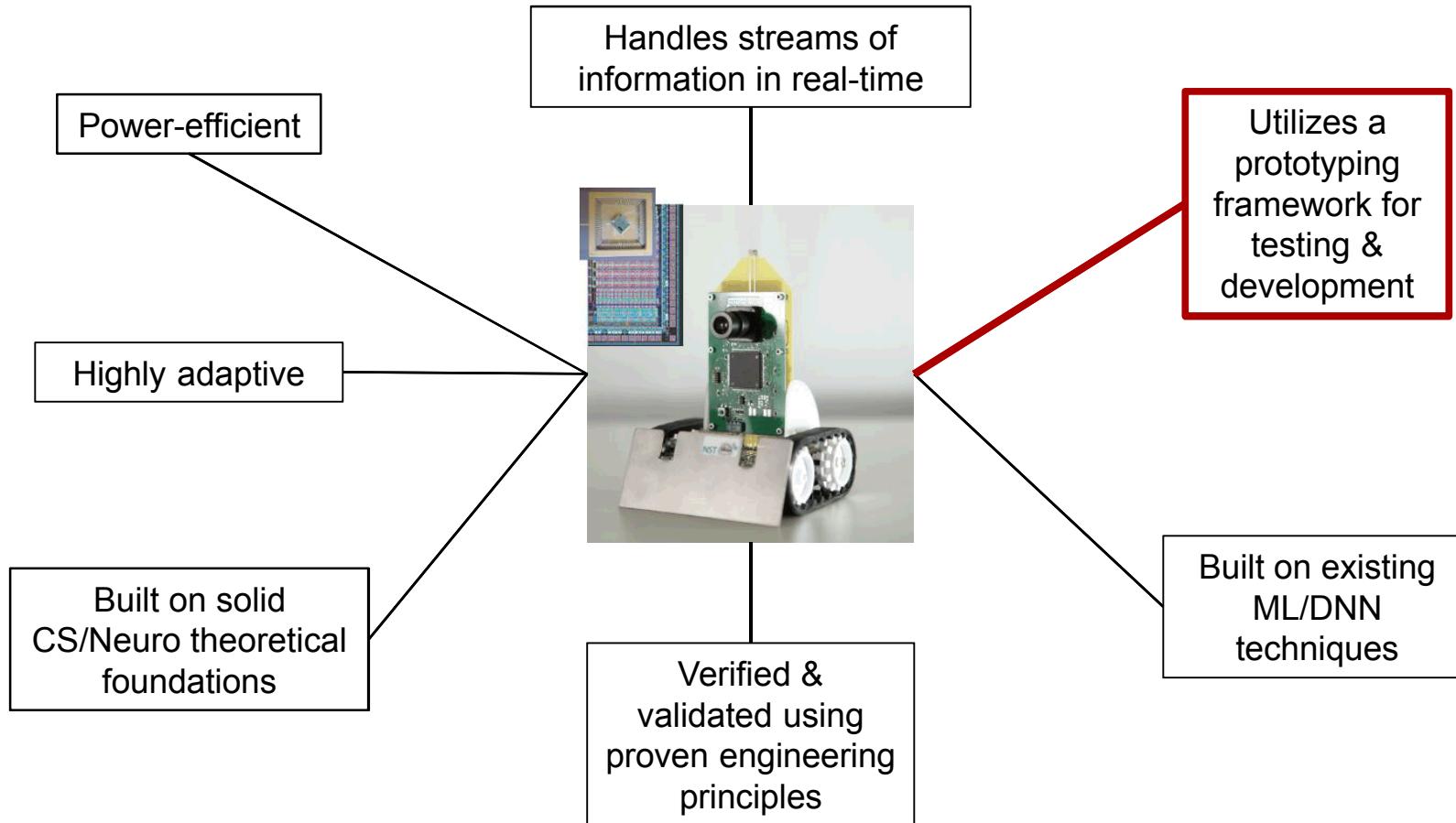
Desirable properties of an adaptive neuromorphic autonomous system



HAANA spiking architecture enables neural-inspired pattern recognition



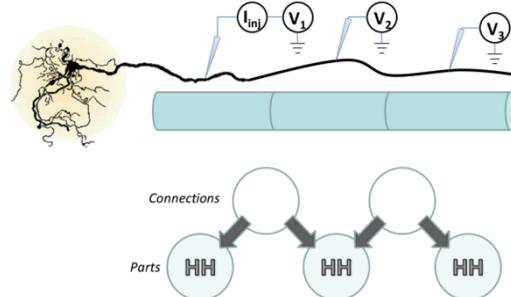
Desirable properties of an adaptive neuromorphic autonomous system



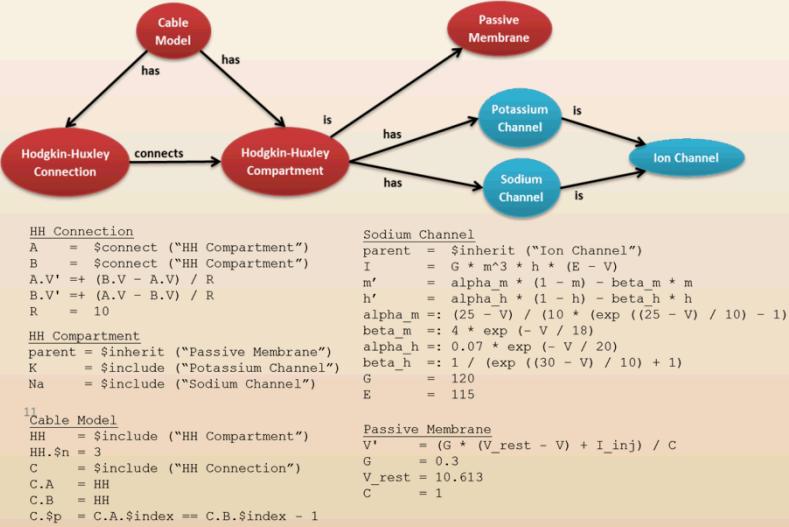
N2A –Compiler of neuroscience information into compute-friendly representations

Neuroscience data is vast and exists at many scales...

... but many neuroscience concepts can be reduced to dynamical physics-based models



N2A compositionally represents neural dynamics and compiles to conventional or neuromorphic systems

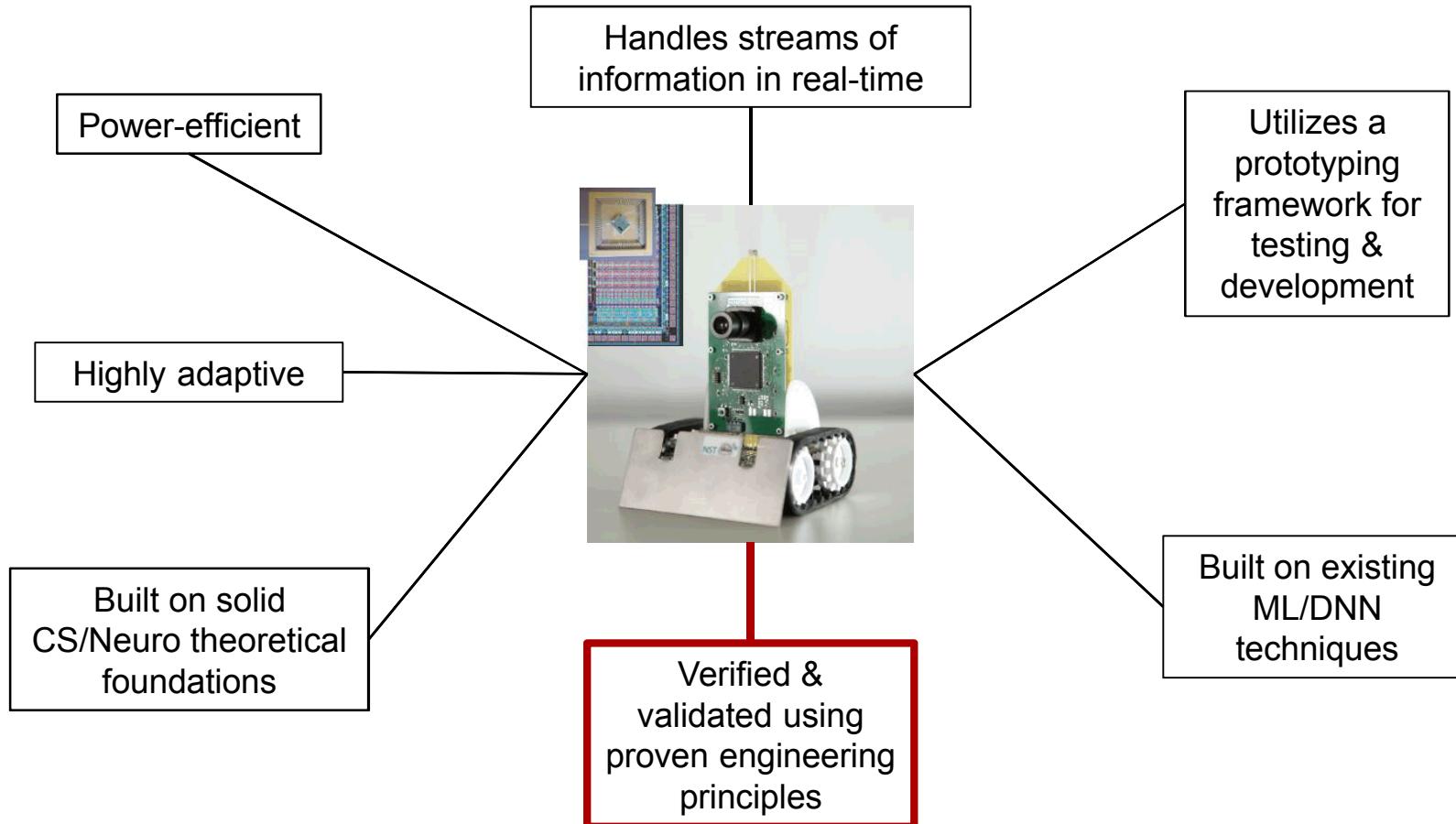


```

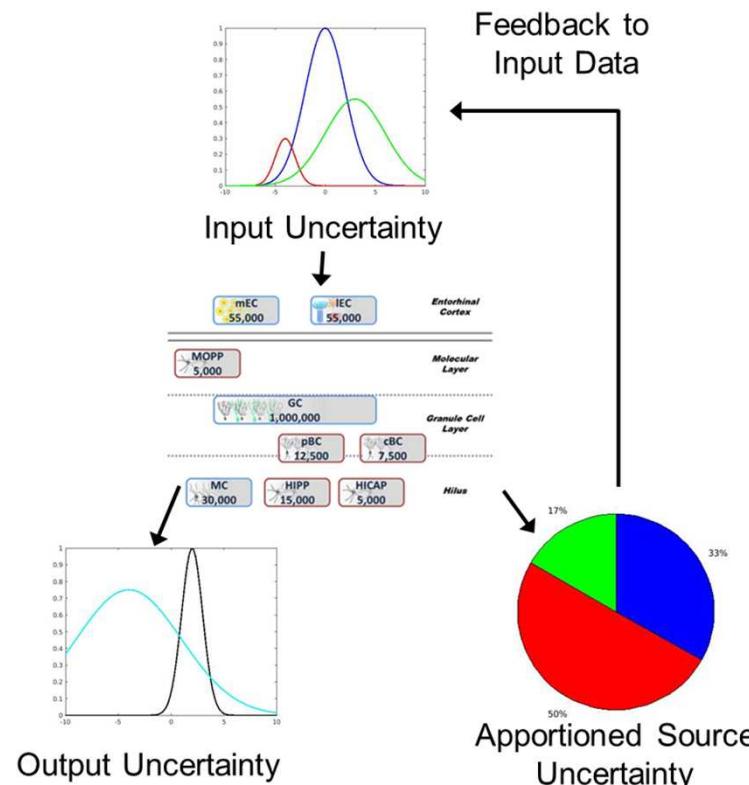
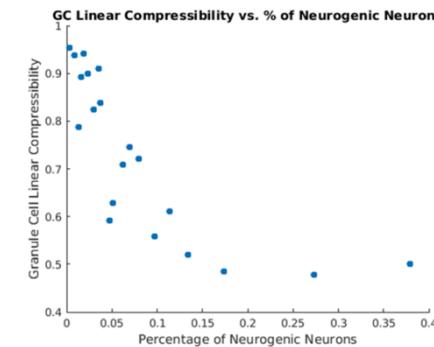
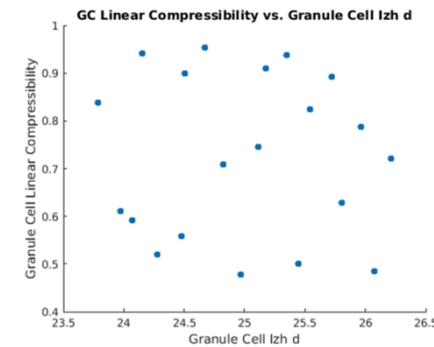
class Model : public _Compartment
{
public:
  class HHMod : public _Compartment
  {
public:
    ...
    virtual void update (float _24t, float & _24d)
    {
      float Na_2alpha_5fh;
      Na_2alpha_5fh = 0.07f * exp(-V / 20.0f);
      float Na_2alpha_5fm;
      Na_2alpha_5fm = (25.0f - V) / (10.0f * (exp((25.0f - V) / 10.0f) - 1.0f));
      float K_2alpha_5fh;
      K_2alpha_5fh = (10.0f - V) / (100.0f * (exp((10.0f - V) / 10.0f) - 1.0f));
      float Na_2beta_5fh;
      Na_2beta_5fh = 1.0f / (exp((30.0f - V) / 10.0f) + 1.0f);
      float Na_2beta_5fm;
      Na_2beta_5fm = 4.0f * exp(-V / 18.0f);
      float K_2beta_5fh;
      K_2beta_5fh = 0.125f * exp(-V / 80.0f);
      _nextV_27 += (0.3f * (10.613f - V) + 1.5f * K_2el / 1.0f + Na_2el / 1.0f;
      Na_2eh_27 = Na_2alpha_5fh * (1.0f - Na_2eh) - Na_2beta_5fh * Na_2eh;
      Na_2el = 120.0f * pow(Na_2em, 3.0f) * Na_2eh * (115.0f - V);
      K_2el = 36.0f * pow(K_2en, 4.0f) * (-12.0f - V);
      Na_2em_27 = Na_2alpha_5fm * (1.0f - Na_2em) - Na_2beta_5fm * Na_2em;
      K_2en_27 = K_2alpha_5fm * (1.0f - K_2en) - K_2beta_5fm * K_2en;
      if (K_24ind == 0.0f)
        I_5finj = 10.0f;
      ...
    };
  };
};
  
```

Rothganger et al., Frontiers in Neuroscience 2014

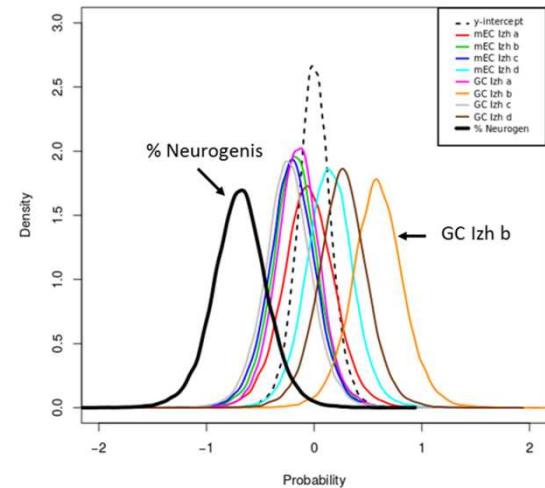
Desirable properties of an adaptive neuromorphic autonomous system



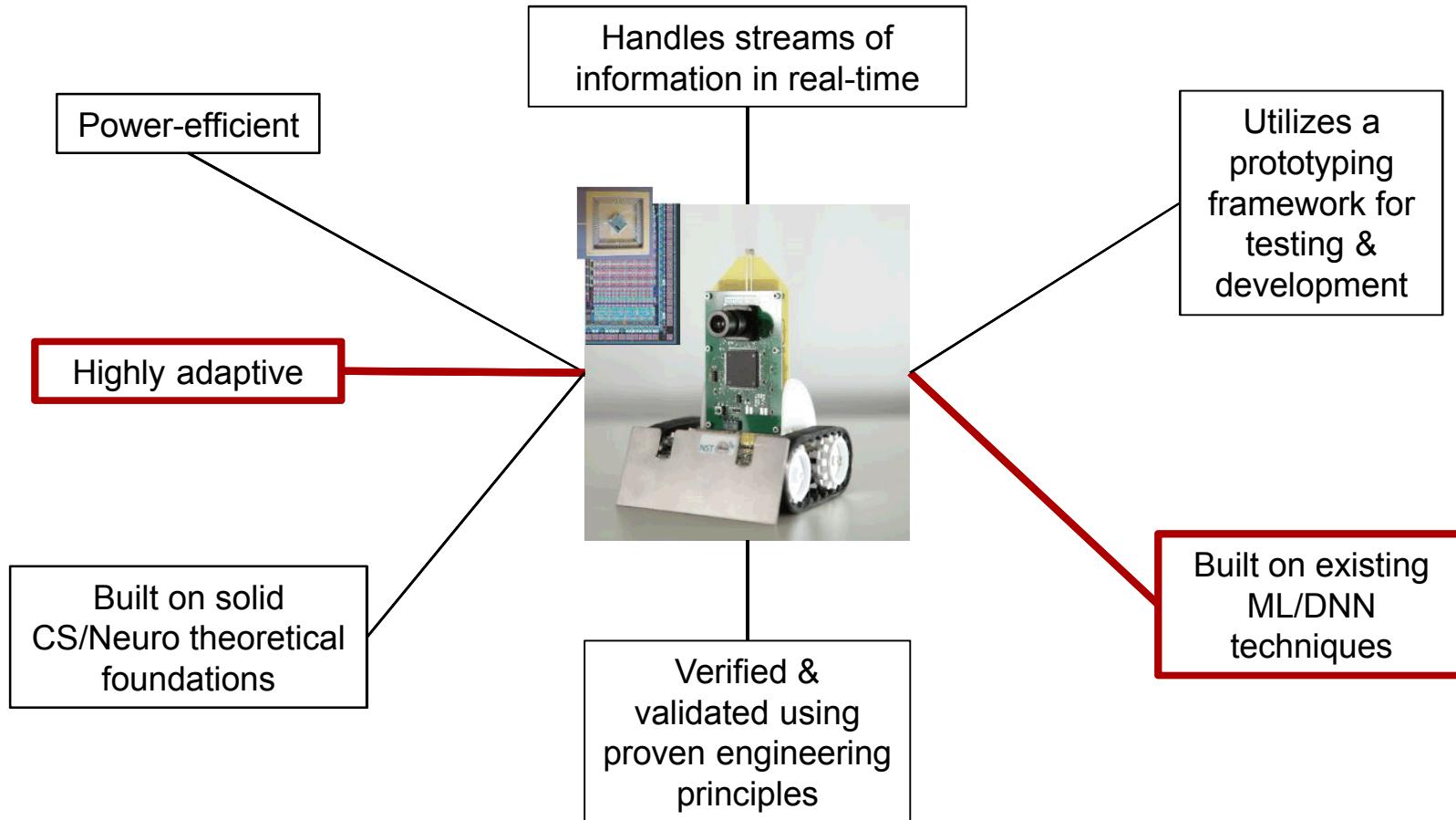
UQ / SA of computational neuroscience models and algorithms



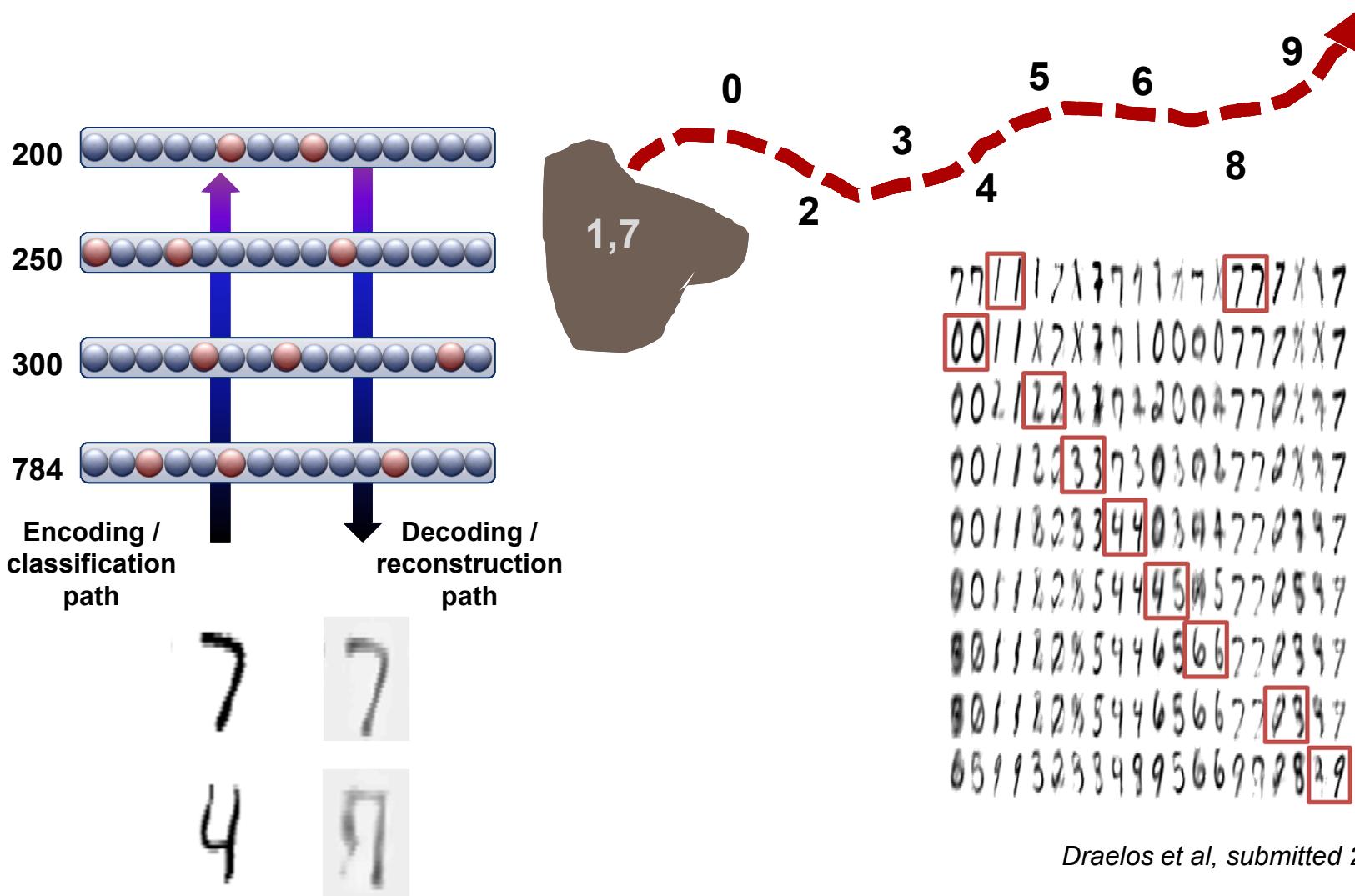
GC Lin. Compressibility: Prob. Density of Regression Coeff.



Desirable properties of an adaptive neuromorphic autonomous system

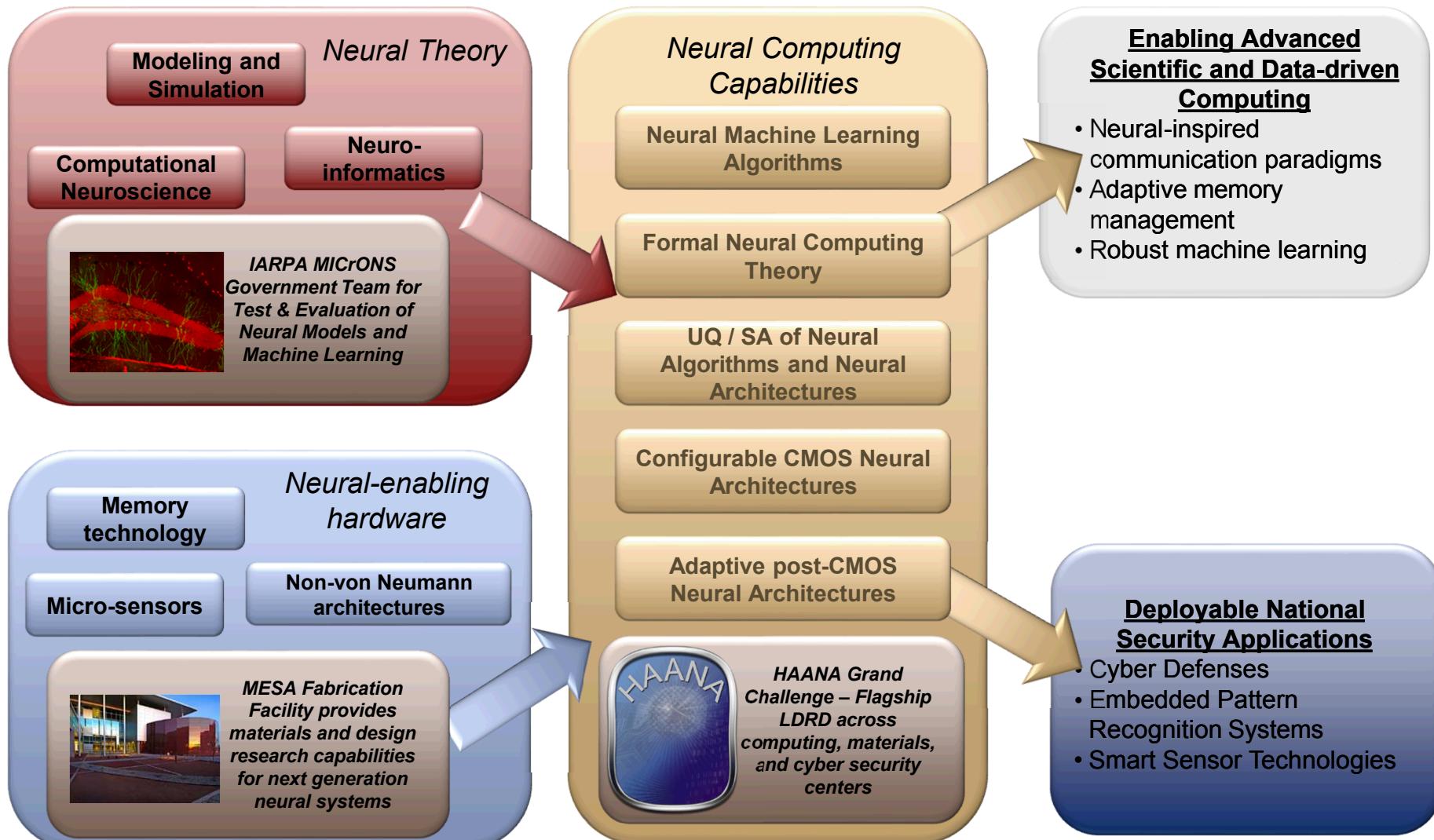


“Neurogenesis deep learning” enables adaptation to changing threats



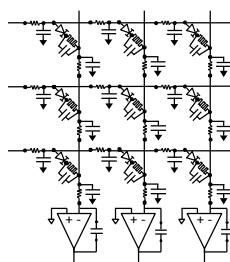
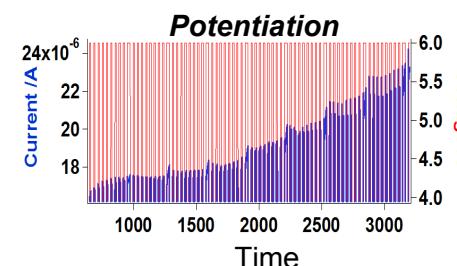
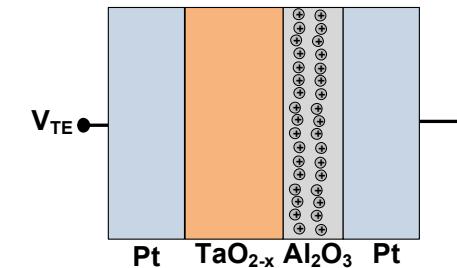
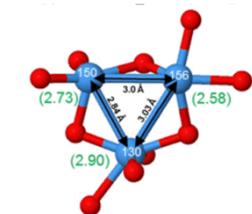
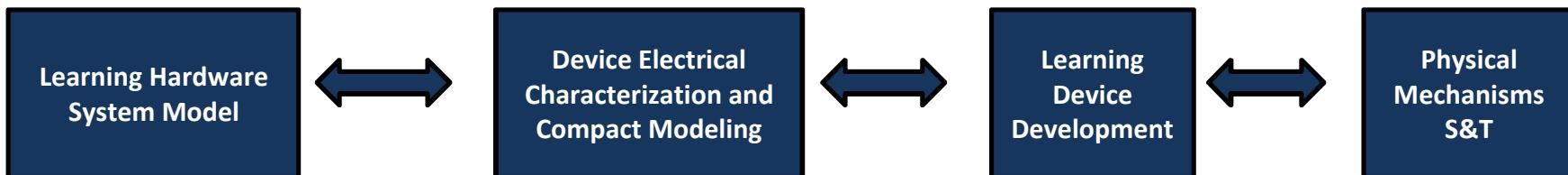
Draelos et al, submitted 2016

Neuromorphic computing at SNL leverages a broad research foundation



Additional SNL capabilities

We are working on reconfigurable hardware solutions that leverage the theoretical benefits of spiking and analog processing w/ Matt Marinella and Sapan Argawal in department 1768



We also have an Intelligent System Controls Department (6533) that has capabilities in:

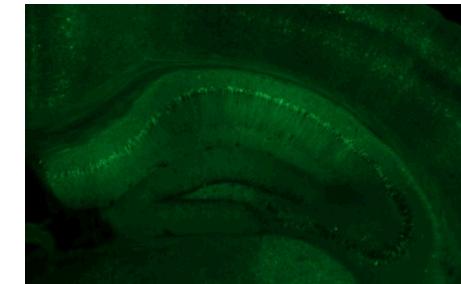
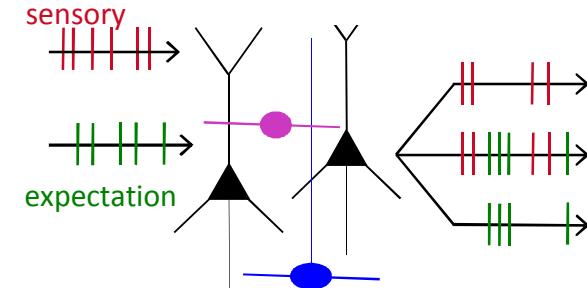
- Advanced mobility
- Cybernetics
- Advanced Controls
- Small smart machines
- Augmented reality

Data analytics of experimental neural data refines neural frameworks

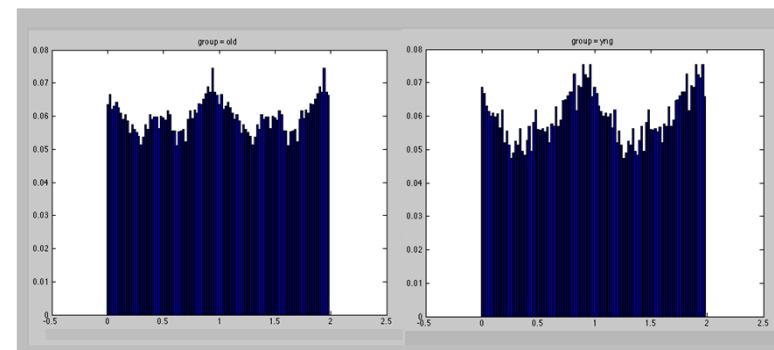
Multimodal Information Multiplexing in the Hippocampus

How is multi-modal information represented and processed in the brain?

Prediction: Sensory and memory information are multiplexed in the spiking outputs of CA1 pyramidal neuron.



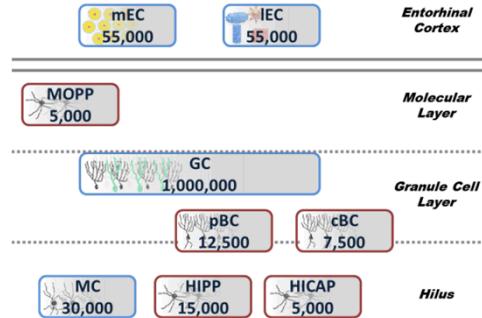
Validation: comparison of model spike patterns with hippocampal CA1 place cells (in vivo recordings from awake and behaving animals)



Courtesy Frances Chance; experimental neuroscience collaborators: Carol Barnes (U. Arizona), Sara Burke (U. Florida), Andrew Maurer (U. Florida)

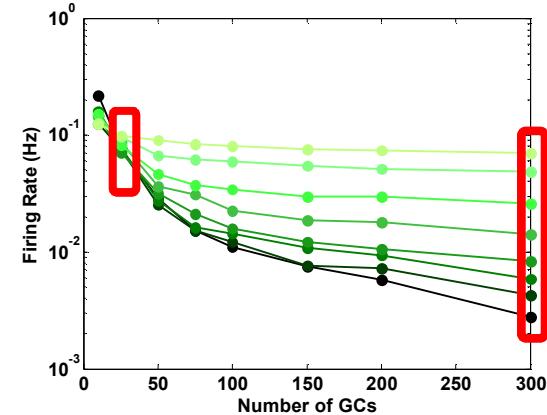
Large scale neural simulations are required to observe realistic neural functions

- Neural systems are highly non-linear and can involve complex feedback
- Scaling down neural simulations can have unintended implications
 - Example: Sharp increase in activity of reduced models shown here obfuscates experimental difference
- Models scale at number of interactions (roughly $O(N^2)$) and require substantial node-node communication

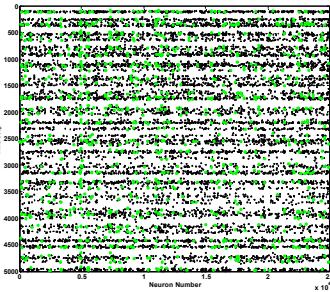


1/10th scale

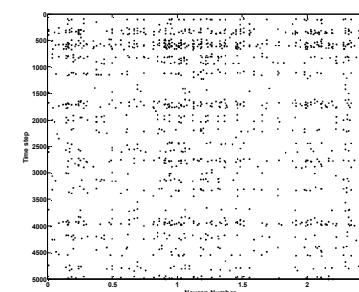
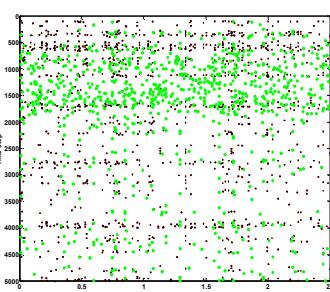
Full mouse-brain scale



No difference

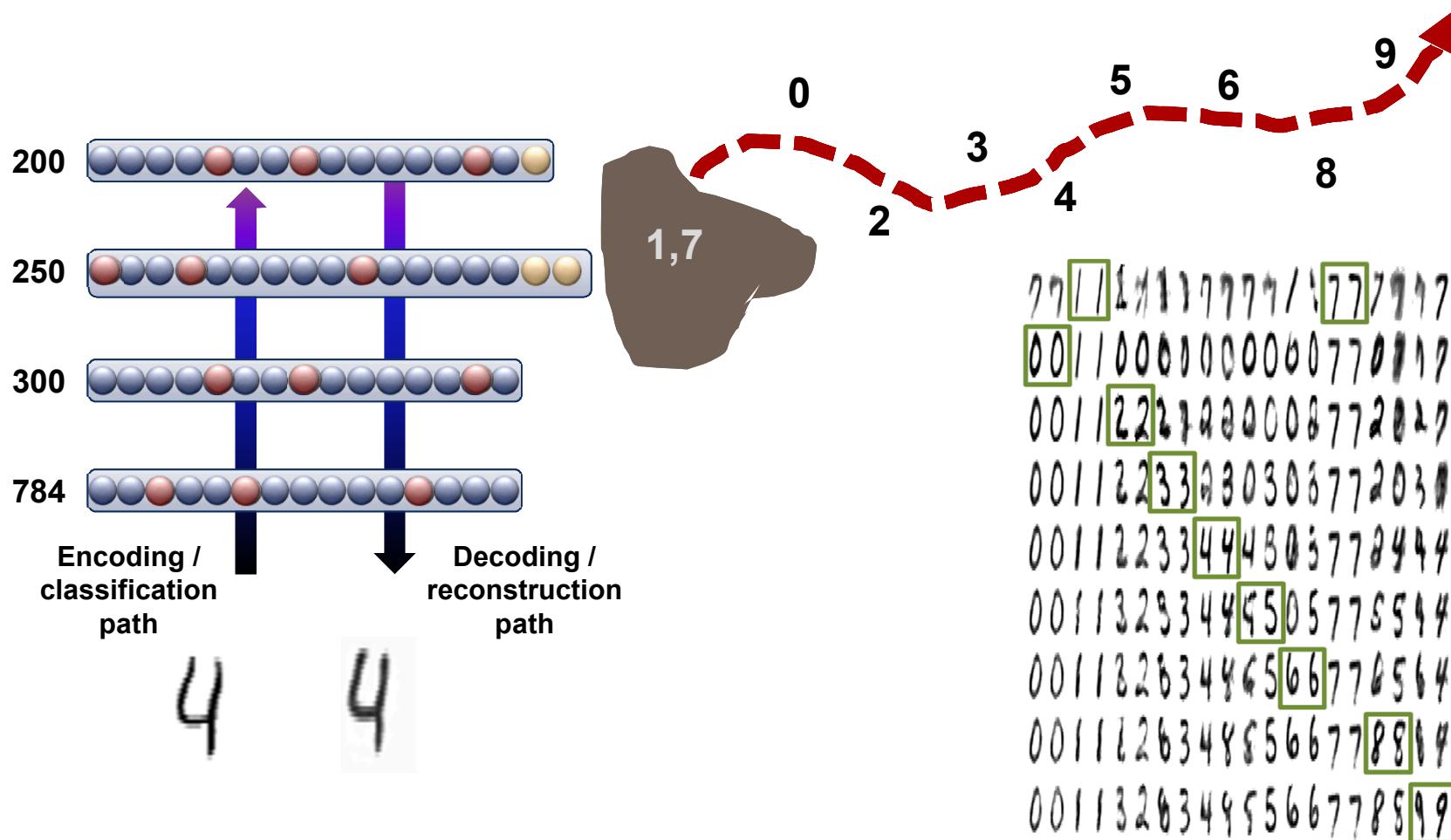


Significant difference



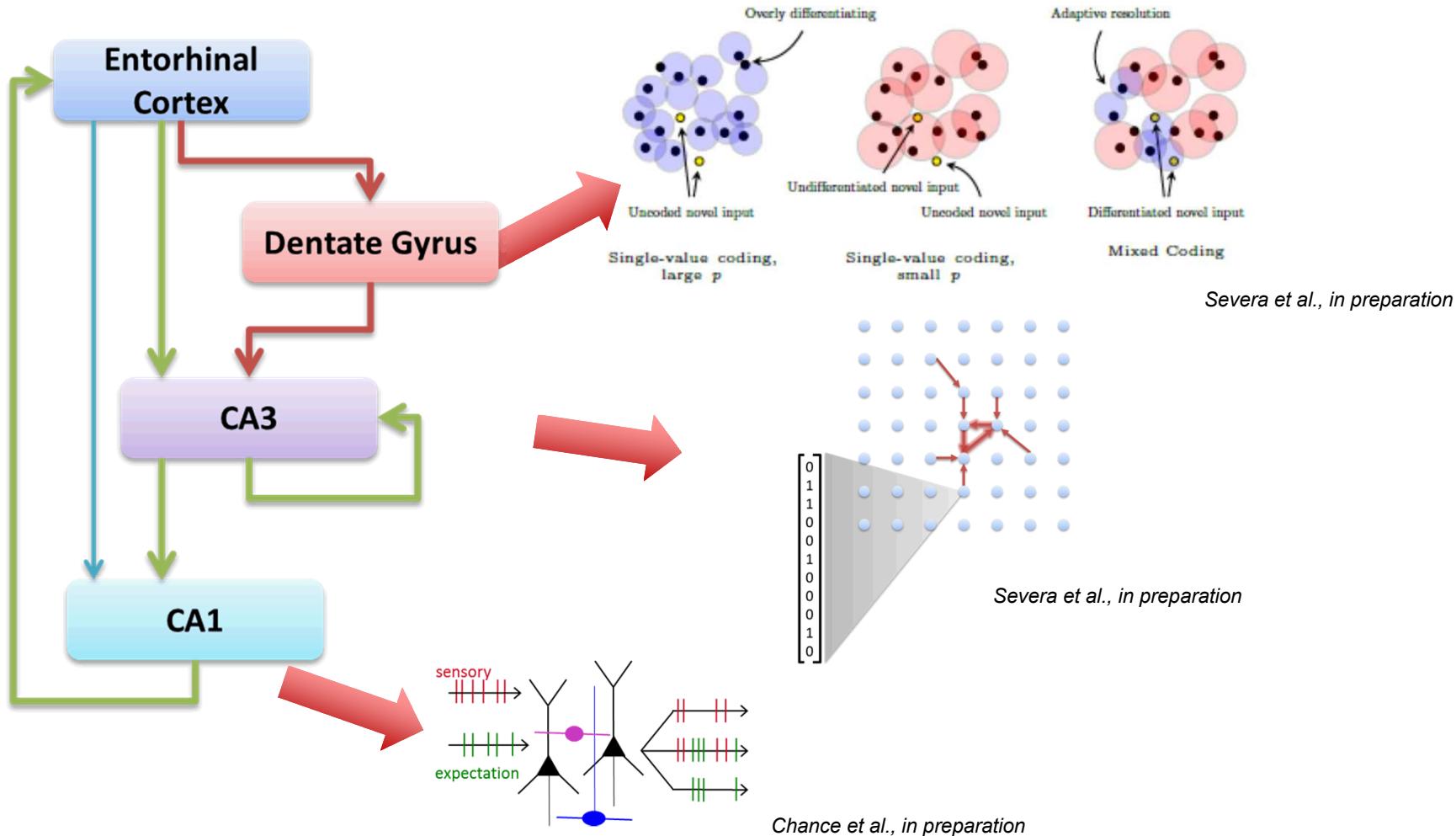
Carlson, Aimone et al., in preparation

“Neurogenesis deep learning” enables adaptation to changing threats

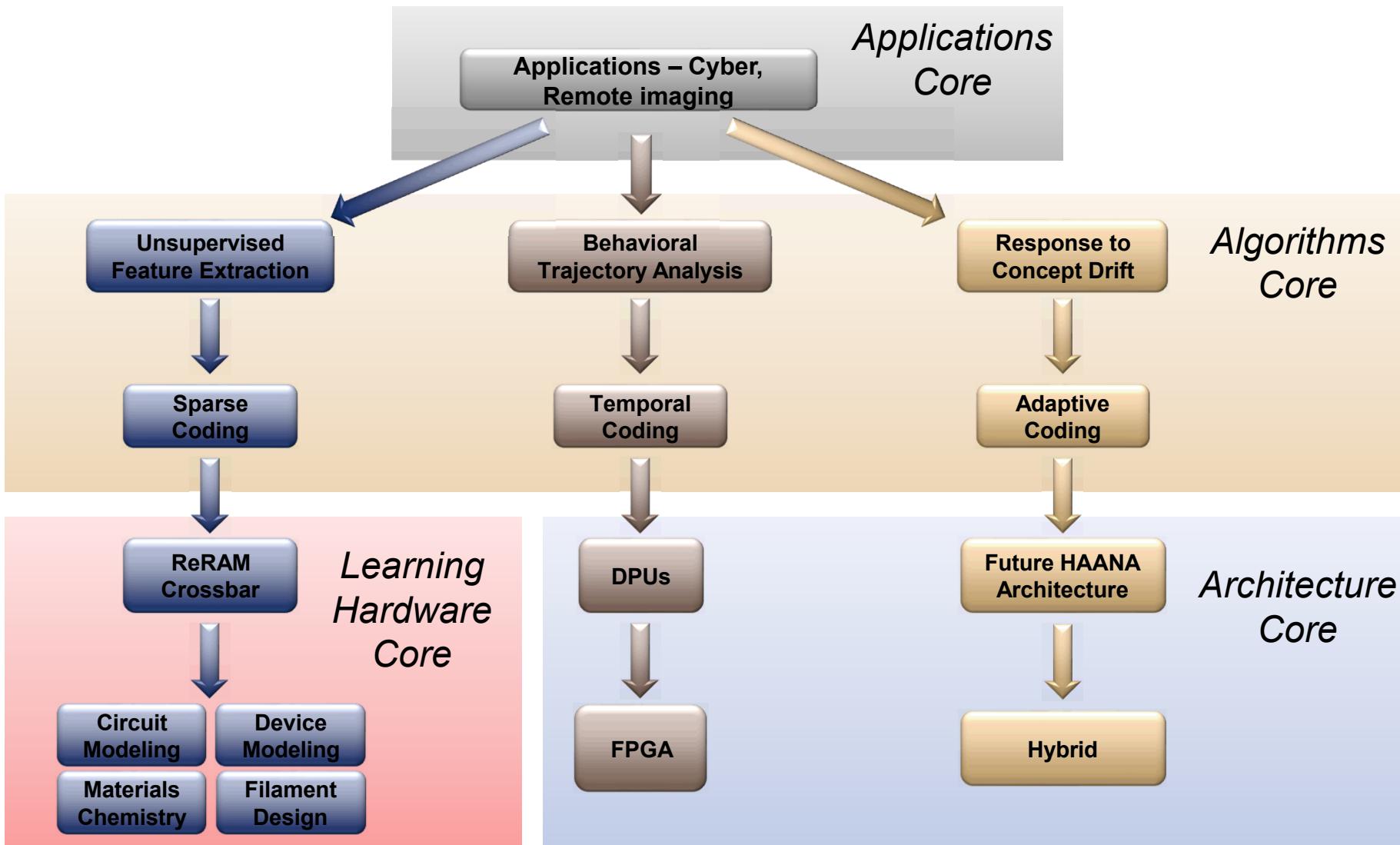


Draelos et al, submitted 2016

Theoretical efforts are seeking to formalize neural computation



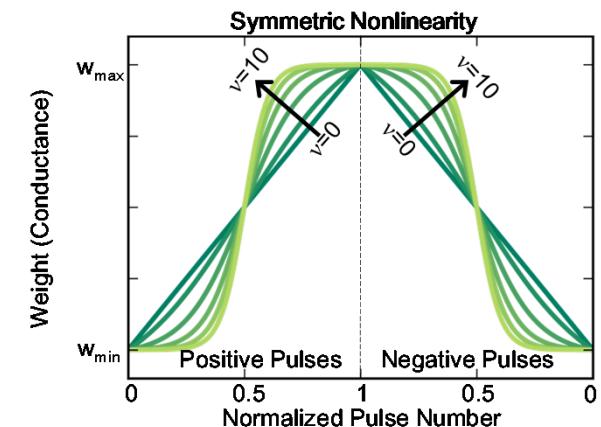
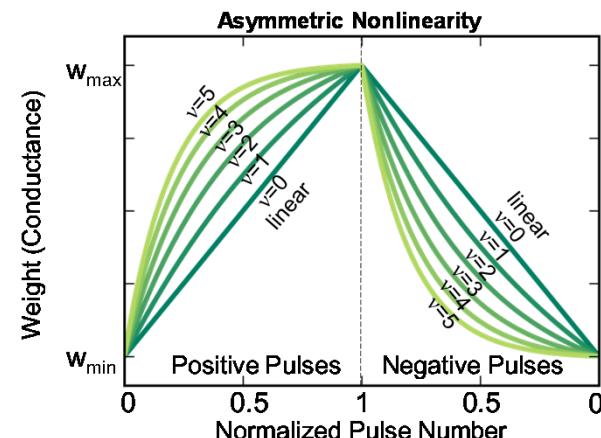
HAANA Grand Challenge integrates research from across Sandia



Modeling Algorithms on Neural ReRAM

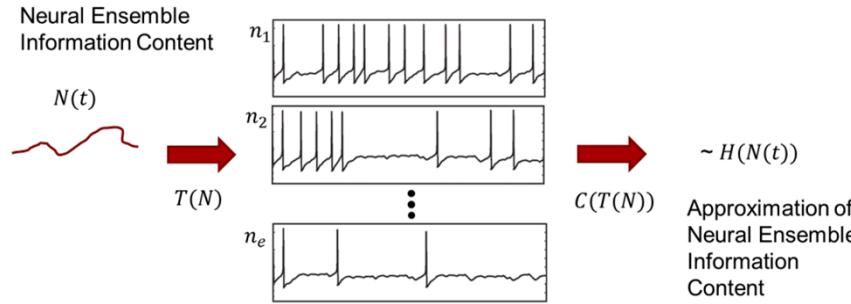
Architectures Defines Device Requirements

	Small Images	Large Images	File Types
Read Noise σ (% Range)	3%	5%	9%
Write Noise σ (% Range)	0.3%	0.4%	0.4%
Asymmetric Nonlinearity (v)	0.1	0.1	0.1
Symmetric Nonlinearity (v)	>20	5	5
Maximum Current	160 nA	13 nA	40 nA



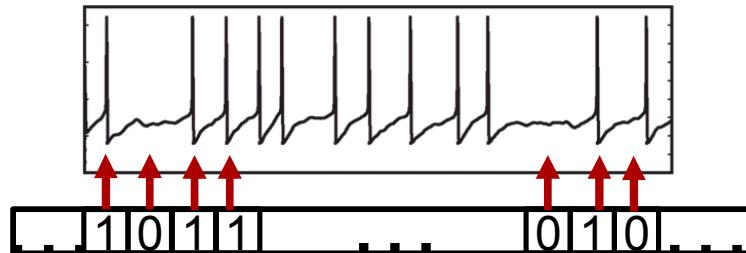
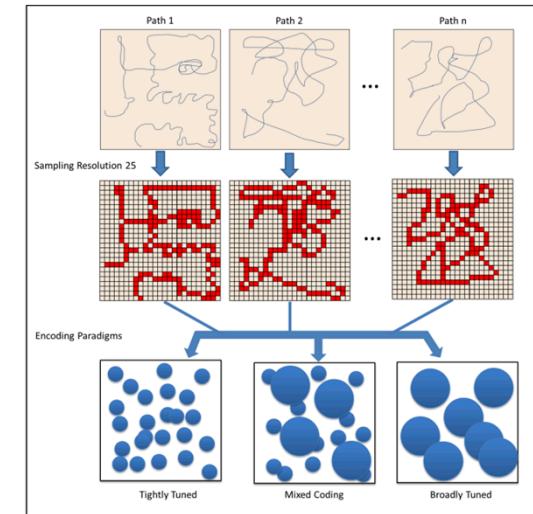
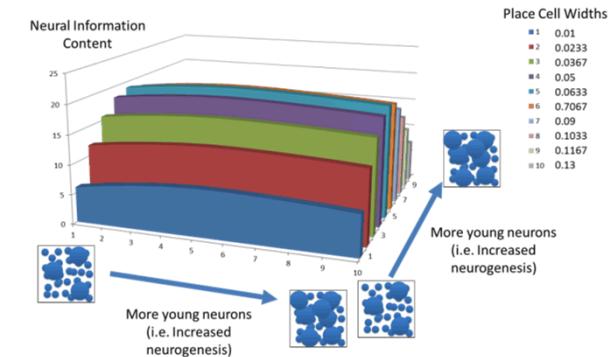
- **Solution: Devices, Circuits, and Algorithms**
- 1. **Algorithms:** Simulated annealing, HTM, LCO algorithm, HAANA Algorithm
- 2. **Circuit:** Multi-ReRAM circuit; parasitic compensation
- 3. **Devices:** Nonfilamentary, seeded/controlled filament

Neural information content metrics make quantifying neural computing concrete



- Use complexity as a measure of compressibility in order to estimate entropy to quantitatively assess the information content of a signal

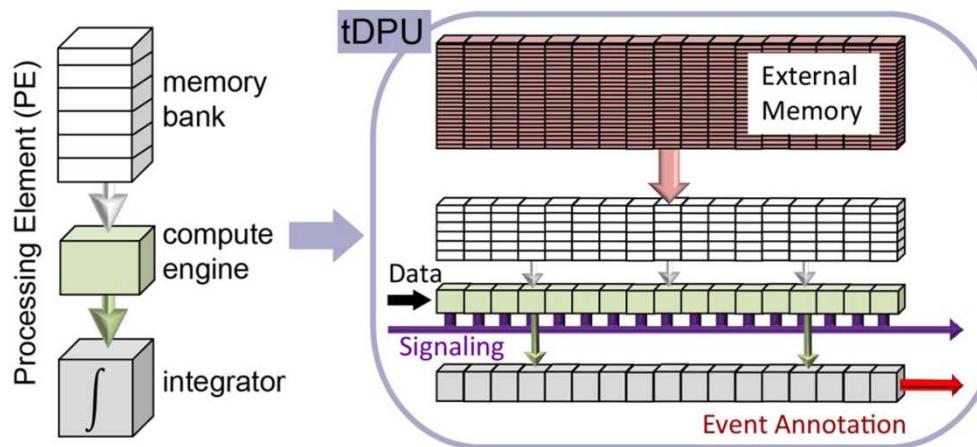
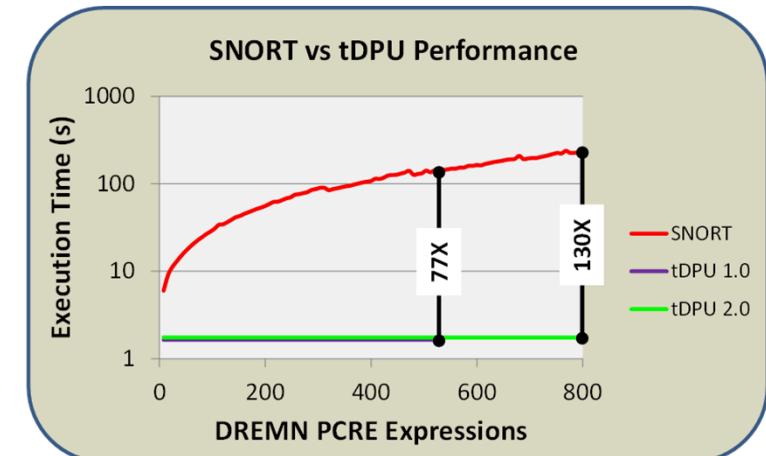
$$c_\alpha(x^n) = \frac{c_\alpha(x^n)}{n} * \log_\alpha n$$



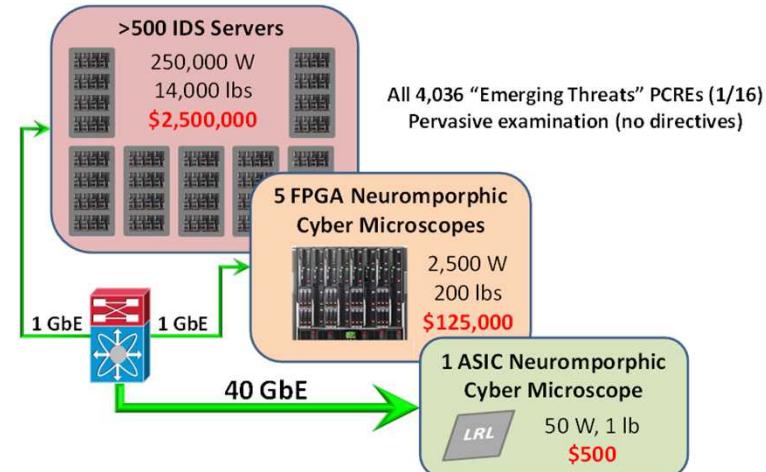
Vineyard, Craig M., et al. "Adult Neurogenesis: Implications on Human And Computational Decision Making." *Foundations of Augmented Cognition*. Springer Berlin Heidelberg, 2013. 531-540.

Vineyard, Craig M., et al. "Quantifying Neural Information Content: A Case Study of the Impact of Hippocampal Adult Neurogenesis" (Accepted to IJCNN 2016)

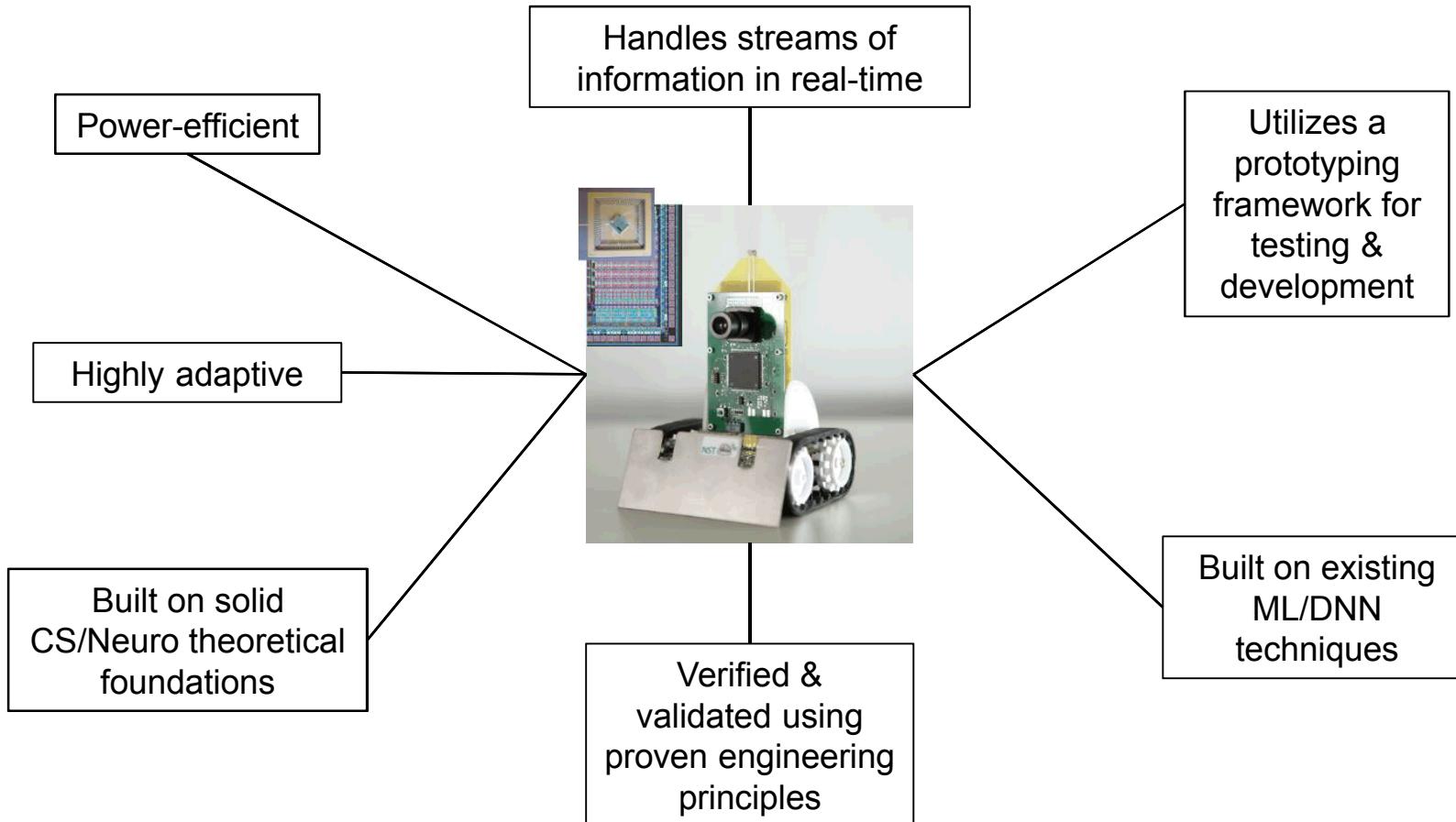
HAANA streaming architecture provides neural-inspired cyber analytics



- Architecture inspired by brain trauma emulation
- Exploits many features from observed neural processing
- Demonstrated 100X speedup for cyber complex pattern recognition (PCRE rule search) application



Desirable Properties of an Adaptive Neuromorphic Autonomous System



Pushbot from iniLabs in Zurich with neuromorphic chip from INI in Zurich