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• LLNL, LLE, and SNL are all pursuing forward models to extract 
Tion (and other moments/parameters) from nTOF data 
• Agreement looks good (LLNL/LLE analysis comparison) 
• Must continue to pay attention to details/assumptions 
• Analysis is sensitive to instrument response function (IRF) 

 

• National interest in accurate IRF determination 
• Need to understand response of detectors to neutrons 
• Scattering in the fielding or calibration environment important 
• Utility of surrogates for neutrons (light, x-rays, gammas, cosmics) 
• Collaboration on IRF will make our analyses stronger 

Two major topics emerged from the nTOF workshop 
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We are now developing a forward model approach to infer Tion 

Currently, the bang time is a fit parameter, but if we 
know all of the delays associated with the detectors, 
we can fix this parameter using the PCD signals. 
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Initial nTOF forward analysis workflow 

Assumption:  PCD x-ray pulses reasonably 
represent neutron burn history 

Assumption:  Ballabio 
functional form represents 
the neutron spectrum 



  3/7/2016 4 

• PMT response 
• From 100-ps, 5 MeV brems at 

Idaho State accelerator 
(> 6 years ago) 

• Testing cosmic/coincidence 
technique 

• Light output 
• From modified Stanton code 

• Neutron 
attenuation/scattering 
• From “simple” MCNP model of 

LOS materials (does not yet 
capture scatter from outside LOS) 

• Note, we have lots of Pb in LOS to 
shield from brems 

The instrument response is constructed from measurements 
and calculations 

FWHM ~ 4 ns 

PMT Instrument Response  
to x rays (from Idaho State) 

Light output curve 
BC-422Q (1%) 

Assumption:  X-ray/gamma 
PMT response is 
representative of neutrons 

Assumption:  Insignificant scatter 
from environment outside LOS 
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Radial 25-m nTOF  
@ LOS 50 (presently no   
                        collimation) 

Radial nTOF’s  
@ LOS 270 

Beryllium activation 
detector (DD) 

Indium activation 
detectors (DD) 

Copper activation 
detector  (DT) 

Lead shielding 

Close-in  
collimator 

Close-in axial 
collimator 
(tungsten + 
plastic) 

7 m 
 
 
8 m 

Bottom axial  
nTOF’s  

The Z neutron diagnostic suite characterizes yield (activation) 
and spectrum (nTOF) 

 Neutron imager not shown 
 No bang time diagnostics 
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MagLIF shot 2850: 3e12 DD neutron yield, Tion ~ 3 keV 

Axial @ 7 m, 3.4 keV Axial @ 8 m, 3.1 keV 

Radial @ 9.5 m, 3.1 keV Radial @ 11.5 m, 2.4 keV Radial @ 25 m, 2.8 keV Radial @ 11.5 m, 2.4 keV Radial @ 25 m, 2.8 keV 

Tion is determined reasonably, but poor fits to some non-
Gaussian nTOF pulses suggest instrumental effects 
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Necessity of pulsed power transmission lines and blast 
shields leads to >30% scattering corrections 

• a 
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Neutron testing is needed along with understanding 
scattering environments 

End state 
IRF of nTOF systems are understood, including PMT, scintillator, shielding, 
scatter in housing; Accurate IRFs enable extracting physics from nTOF data 

Neutron exposure of nTOF of scintillator/PMT 
Tests with neutrons on Omega  Excitation directly by neutrons 

Requires deconvolution with CVD 
Not the Z scattering environment 

Tests with neutrons on Z Requires developing a source 
May require CVD deconvolution 
Brems may be too large 
Actual Z scattering environment 

Model of neutron environment at Z 
MCNP modeling of Z nTOF housings, 
collimators, shields 

Requires resources/collaboration 
Model validation 
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Large hard x-ray/brems signals on Z are a challenge for 
capturing smaller DD and very small DT signals on nTOF 

• Brems overdrives PMTs and scopes, which may not recover 
• ~100 ns brems makes it difficult to field close-in detectors 
• DT signal overlaps with scintillator recovery decay 
• Dynamic range needed to record both DT and DD peaks 
 

Brems 

DT 

DD Bang 
time 
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Use of surrogate sources provides more data, but also 
requires understanding surrogacy 
End state 
IRF of nTOF systems are understood, including PMT, scintillator, shielding, 
scatter in housing; Accurate IRFs enable extracting physics from nTOF data 

Neutron exposure of nTOF of scintillator/PMT 
Validate surrogate experiments against neutron experiment at least once 

Model of neutron environment at Z 
MCNP modeling of Z nTOF housings, 
collimators, shields 

Requires resources/collaboration 
Model validation 

Surrogate experiments 
Gammas/x-rays Idaho State LINAC, Omega-EP, 

Z-Petawatt (target chamber or in Z) 
Light NSTec impulse response of PMTs 
Cosmic rays Convenient, but accurate enough? 

Scintillator response 
Decay measurements at IBL, Transit and scatter models 
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SNL uses gamma IRF calibrations performed on the 
Idaho State University Fast Pulsed Linac 

Pulse Width 

Maximum 
Current 
(Amps) 

Charge / 
Pulse (nC) 

Peak e-Dose 
(Rads / Sec) 

Peak Gamma 
Dose on-axis 
@ 1 meter 
(rads/sec) 

50 ps 100 5 2E13 2.5E8 

20 ns 3 60 6E11 7.5E6 

100 ns 1 100 2E11 2.5E6 

4 µs 0.5 2000 1E11 1.25E6 

Note that, because of the 1300 MHz rf structure, all pulse 
widths longer than the 50 ps short pulse are composed of a 
string of 50 ps-wide pulses, each separated by 770 ps. 

Mode 

Energy 
Range or 
Dose Rate 

Pulse Width 
(ns) 

Rise Time 
(ns) 

Bunched e-beam 0.5 - 28 MeV 
(16 MeV used) 

0.050 0.005 

Short Pulsed Non-bunched 1E12 Rad 
(Si)/s 

2 - 50 0.2 

Long Pulsed Non-bunched 2E11 Rad 
(Si)/s 

100 - 2E6 Function of 
pulse width 
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Schematic of LINAC calibration configuration setup 
with and without lead filter 
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Schematic of calibration configuration in shielded room 
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The shape of the tail of the pulse is observed to vary 
with the signal amplitude and detector location 

Linac Hall: Large Signal: 0.24 volts 

Linac Hall: Small Signal: 0.02 volts 

Shielded Room:Small Signal: 0.03 volts 

The scattering environment 
apparently matters Idaho Cals July 2005 
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Cosmics provide a convenient, tabletop IRF check, but 
making them accurate enough would be a research project 

Typical nTOF time response measured at 
Idaho State Univ LINAC (25 ps photon pulse) 
and SNL’s Cosmic-ray setup 
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NSTec light pulse testing gives PMT response, useful for 
tube/delay characterization, one piece of the IRF puzzle 

Photek PMT240 and Hamamatsu R5946-05 IRF 
 403 nm 70 ps Picoquant LD 

common trigger with scope 
 

 12.5 GHz Tektronix 71254 DPO 
locked to Cs Frequency Std 
 

 DG535 locked to DPO 
triggering split to scope & LD 
w/step recovery diode 
 

 Transit Time monitor with in-
situ beam splitter to 
Hamamatsu R1328U vacuum 
photodiode or Photek PMT-210 
 

 Temporal laser alignment at 
photocathodes 
 

 Acquisitions with 100 averages 
 

 1 ps rms delay jitter measured 
on DPO 
 

Rob Buckles, Irene Garza, and Ken Moy 
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Sandia has DD and DT capability for absolute calibration of 
neutron diagnostics 
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• SNL has a need for resources/collaboration in the area of 
neutron transport modeling 
• Understand scattering surrounding nTOF detectors 
• Understand/improve behavior of collimators/shields 
• Understand scintillator response to connect neutron and surrogate expts 

 

• We should challenge ourselves nationally to develop a deep 
understanding of nTOF IRF 
• Direct neutron response experiments, e.g. Omega collaboration 
• Connection to gamma sources and other surrogates 

 

• Value in improving nTOF analysis and revisiting comparisons 
• SNL could add Be liner downscatter model 
• Keep informed of LLNL experience in pursuing higher moments 
• Be mindful of role of ion population tail, time/space gradients, etc. that 

are not captured by Ballabio/Brysk models 

Summary 
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