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Highlights:

e A single sensor was fabricated to measure both relative humidity (RH) and pressure
e The sensor has < 4% RH resolution from 0-100% RH, even after H,O saturation
o Artificial neural network performance is highly dependent on the training set used

Abstract

A room temperature multimodal sensor composed of poly(3,4-ethylenedioxythiophene):polystyrene sulfonate
(PEDOT:PSS) deposited on an AT-cut quartz crystal microbalance (QCM) crystal was fabricated. The sensor’s
nonlinear motional resistance and frequency responses are deconvoluted using a feedforward backpropagation
neural network (FBN), which allows a single sensor to function simultaneously as a relative humidity (RH) sensor
and a pressure sensor using only two electrodes. We demonstrate that the predictive ability of the sensor is highly
influenced by the data used to train the FBN. When training sets are tailored to resemble the operating conditions of
the sensor, the sensor achieves an average resolution of <4% RH from 0-100% RH, even after H,O saturation occurs
on the surface. Our results indicate that FBNs show strong promise for improving the resolution of low cost gas
sensors and for expanding the range of environmental conditions in which a given sensor can operate.
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1. Introduction

Growing interest in personal wearable sensors drives research activity toward the development of
versatile, multifunctional polymer sensors for environmental and bionic sensing’?. An ideal
sensor material has high sensing selectivity for a particular environmental parameter like
humidity, temperature or pressure. Alternatively, other environmental parameters are measured
by auxiliary sensors and the response of the main sensor is corrected. Commercial relative
humidity (RH) sensors based on polymer films are sensitive to pressure and temperature,
requiring correction procedures*®. Several optical sensors capable of simultaneous measurement
of ambient pressure and RH have been demonstrated, but with limited application for high
humidity environments (RH>70%)"®. The quartz crystal microbalance (QCM) is a commonly
used sensor platform for vacuum deposition systems and gas sensing”*? but its use is limited
when pressure and analyte concentration are changing simultaneously, and most experiments
report results at isobaric and iso-humid conditions to avoid complicated correction
procedures*34,

Recent efforts in environmental sensing have shown that application of a feedforward
backpropagation neural network (FBN), a machine-learning technique optimized for pattern
recognition and classification problems™®, enables deconvolution of sensor response in
challenging gas environments'”?°. The benefit of FBNs is accentuated for systems in which a
limited number of sensors can measure a broad range of environmental parameters.

Here, we demonstrate a single multimodal pressure and RH sensor based on the polymer mixture
poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) deposited on a QCM
crystal. PEDOT:PSS has been widely-studied for environmental sensing applications because of
its low-cost synthesis and processing®??and its efficient response to humidity>>**, pressure®,
temperature®®, and light?’.

Traditional PEDOT:PSS RH sensor response is based on electronic conductivity of the film. As
depicted in Figure 1, diffusion of H,O into PEDOT:PSS films causes film swelling due to
protonation of SOsH" groups at the PEDOT-PSS interface, resulting in the formation of

Hs;0" PSS(SOs)". Swelling of the film increases the distance between adjacent PEDOT domains,
leading to a decrease in charge carrier mobility**?**. Hydrogen bonding between adsorbed H,O
and vapor-phase H,O accelerates H,O sorption and leads to further film swelling. The electrical
resistivity of PEDOT:PSS increases linearly as RH increases (RH<60%)%. At higher values of
RH (>60%), a water meniscus is formed on the PEDOT:PSS surface resulting in highly non-
linear sensor response over a broad range of humidities*°. Analysis of the nonlinear QCM
sensor response is achieved here by application of an FBN, which does not rely on the electronic
response of PEDOT:PSS.

For a QCM coated with a thin rigid film that undergoes uniform mass loading, the change in
oscillation frequency of the crystal (Af) is described by the Sauerbrey equation
_ 21
Af = —WAm , (1)
where Am is the mass change of the film/crystal, fy is the resonant frequency of the crystal, and
A, pq, and uq are the area, mass density, and shear modulus of the crystal®’. However, validity of
the Sauerbrey relation is limited for PEDOT:PSS films under dynamic RH and pressure



conditions because viscoelastic properties of the film change as a result of sorption-induced
polymer swelling and pressure-induced film compression®. Understanding shifts in the resonant
frequency of an oscillating crystal in contact with viscoelastic polymer film requires detailed
models that include effects of viscosity, shear modulus of the polymer, and other phenomena
such as hydrodynamic screening and slip at different interfaces. Complimentary information
about the viscoelastic properties of the film can be obtained by analysis of an equivalent circuit
model for the QCM coated with the film. One such model is the Butterworth-van Dyke (BvD)
equivalent circuit, which consists of a static capacitive branch representing the QCM crystal in
parallel with an acoustic branch that contains motional inductive, capacitive, and resistive
components®. Muramatsu et al. have shown how to relate different elements of the equivalent
circuit model to mechanical motion, leading to correspondence between inductance and mass,
capacita?gce and compliance, and resistance and friction via the electromechanical coupling
factor k™.

Hydrogenbonding  Hydrogen bonding
HSO;-H,0 Between HSO; groups

JSS- enriched shell

Figure 1. Schematic of hydrogen bonding between PSS and water and PSS-PSS molecules
within the PEDOT:PSS film. Diffusion of H,O into the film causes swelling due to protonation
of SO3H" groups at the PEDOT-PSS interface, resulting in formation of Hz0" PSS(SOs)".
Polymer swelling and hydrogen bonding between H,O adsorbates and vapor result in
modification of the viscoelastic properties of the film.

The motional resistance (Ry) is related to energy damping of the resonator and contains
contributions from internal frictions in the crystal, mechanical losses in the mounting system,
and the viscosity of the film deposited on the crystal**. For a two fluid model of a crystal
oscillator in contact with a liquid, one can derive the contribution to Ry, that occurs as a result of
the film/liquid interaction (see the Supporting Information for the details). Since internal friction
in the crystal and mechanical losses in the mounting system are independent of RH, we can



assume that all environment-induced changes in Ry, occur as a result of changes in the
viscoelastic properties of the film. Thus, by continuous monitoring of Ry, along with Af, it is
possible to observe viscoelastic changes in the PEDOT:PSS film as a function of vapor pressure
of H,0. By measuring both R, and Af changes in PEDOT:PSS on a QCM, we demonstrate that
utilization of a pattern recognition tool such as the FBN allows for deconvolution of the pressure
and RH response, enabling the single sensor to perform continuous measurements of both RH
and pressure.

2. Experiment

For fabrication of the sensor, a PEDOT:PSS (ratio of 1:6) solution (Aldrich) was spin coated at
2000 rpm for 90 seconds to achieve a 50 nm thick film on a gold-plated, AT-cut 5 MHz QCM
crystal. Prior to testing, the sensor was placed in 10 Torr vacuum for 4 hours. A LabVIEW
program was used to control pressure and RH inside the vacuum chamber by adjusting Argon
and H,O vapor pressure with two mass flow controllers. The QCM frequency and motional
resistance were measured using an SRS QCM 200 and recorded with a LabVIEW program. All
measurements were performed at room temperature.

For configuration of the FBN, a feed-forward network was trained using the Neural Net Fitting
application in MATLAB. QCM frequency change and motional resistance were used as the two
FBN inputs (I;) fed into 1 hidden layer with 5 neurons, where RH and pressure are used as
outputs, as shown in Figure 2a. The standard sigmoid logistic function T(S;) was used as a
transfer function. To investigate the effect of training sets on the predictive ability of the
PEDOT:PSS sensor we constructed two training sets: (1) Ry, and frequency response to pulsed
Ar and H,O pressures (Figure 2b top) and (2) Ry, and frequency response to continuously varying
Ar and H,O pressures (Figure 2b bottom). The predictive ability of the sensor was then tested in
both continuously varying and pulsed pressure and RH conditions using both types of training
sets. About 13,000 sets of training data and 1,000 iterations of the weights (W;) were used for
FBN training, which required about 3 minutes. 70% of the data was used for training, 15% for
testing, and 15% for validation of the network. FBN performance changed by less than 0.5%
when the network was re-trained using the same training configuration and data, so a bootstrap
statistical approach was not used. To optimize the number of neurons in the hidden layer,
identical experiments were repeated for networks with 2, 3, 4, 5, 6, 8, 10, 12, and 15 hidden
neurons. Since the network with 5 hidden neurons achieved the lowest testing/training errors, we
report only results from that network.

The sensor response used for FBN training in continuously varying conditions is shown in Figure
2c. The sensor Ry, and frequency changes are measured at continuously changing pressures of
both Ar gas and H,O vapor. While the QCM frequency (see inset in Figure 2c) is independent of
Ar pressure which indicates that no Ar adsorption takes place on the film, it decreases
exponentially with increasing H,O pressure. The exponential behavior of the frequency change is
related to mass loading by the Sauerbrey equation and resembles the type 111 BET isotherm,
which is characteristic of adsorption by a species which bonds more readily to other adsorbate
molecules than to the adsorbent material®®. This suggests that after the initial adsorption of H,0
on the PEDOT:PSS surface, hydrogen bonding between adsorbed H,O and gas phase H,O
dominates the adsorption process. This effect presents a significant problem for traditional



PEDOT:PSS-based resistive sensors because it allows for heterogeneous adsorption in which
multiple layers of H,O form puddles on the film surface even before complete monolayer

formation has occurred. Our sensor avoids this problem because it does not rely on the electronic
response of PEDOT:PSS.

The FBN was trained using gas pulses with discrete pressure and RH values for construction of a
matrix of over 100,000 data points. A sample representation of this training set is shown in
Figure 2d. Ry, exhibits a local maximum near 60% RH, which is consistent with the data shown
in Figure 2c. It is important to note that the contour profiles of the two figures are qualitatively
different, which indicates some orthogonality between the two sensor inputs. Since the sensor is

limited to two inputs, this orthogonality is required for enabling the measurement of two distinct
environmental conditions.
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Figure 2. a. The FBN uses QCM frequency change and motional resistance as inputs I;, the
logistic function T(S;) as an activation function, and RH and ambient pressure as outputs. b.
Examples of training data sets in which RH and pressure conditions are changed by discrete
values using pulses (top) and continuously varied (bottom). c. An example of FBN training data
generated by continuously varying Ar pressure and RH. d. An example of FBN training data
generated by a matrix of pulses with discrete Ar and H,O ratios.



3. Results and Discussion

The motional resistance shown in Figure 2c is a consequence of resonator damping by the
viscoelastic PEDOT:PSS film. A clear distinction in response to pressure is seen while
comparing cases of Ar and H,O. When the sensor is exposed to Ar, Ry, exhibits a monotonic
increase with increases in pressure. This is expected for a mechanical resonator subject to
increasing pressure of an inert gas since the gas exerts a drag-like damping force on the
oscillator. In contrast, Ry, exhibits non-monotonic response with increases in H,O pressure. In
order to understand the origin of the non-monotonic response, we have used a viscoelastic
description based on the assumption that a hydroscopic polymer film undergoing H,O sorption
can be described by a two-fluid model in which the viscoelastic properties of the film change as
a result of the interaction between the polymer and H,O0%*. Using the two fluid model in the thin
film limit (see Supporting Information for details), the Af and Ry, responses are modeled in
Figure 3a and 3b. In particular, we have modeled the responses by varying the film thickness (d)
and viscosity of water (1) as a function of H,O vapor pressure (p). Dependence of the film
thickness on the pressure is derived (Eq. S-9 in the Supporting Information) by assuming that
water molecules adsorb on the film and the adsorption strength is characterized via the Hamaker
constant (A). Empirical relation for n was used so that 1 = 1o exp(m1p + n2), where 1 is the
viscosity of water; 1; and 1, are parameters. The colored segments in Figures 3a and 3b
correspond to different values of A, n1 and n,. Physically, the changes in A and n; represent step-
changes in the film thickness and viscosity of the water, respectively. These changes in film
thickness (d-d, so that d, is the initial film thickness) and viscosity (1)) are shown in Figure 3¢
and 3d, respectively, with the same color scheme. From Figures 3c and 3d, we find that both the
film thickness and the viscosity increase with an increase in the pressure, and estimates for the
increase in their values based on the modeling of Af and R, data are in agreement with each
other. The increase in the film thickness is expected due to the adsorption of water molecules on
the film and it is also reasonable to assume that the adsorption energy characterized by A may
vary due to viscoelastic changes in the film. Similarly, an increase in the viscosity of water with
an increase in pressure is also expected due to slowing down of the dynamics of water
molecules. However, the non-monotonic behavior of Ry, hints at step decrease in film thickness
and the viscosity as shown in Figure 3c and 3d, respectively. Origin of these nanoscopic changes
is beyond the scope of this work and we speculate this may arise due to diffusion of water inside
the film. Furthermore, the decrease in Ry, with an increase in p highlights the breakdown of
proportionality between Ry, and Af, strictly valid in the limit of very small Af.

The complex behavior of traditional resistive PEDOT:PSS-based RH sensors at relative humidity
above 60% typically restricts RH sensor operation to either low, mid-range, or high RH
regimes®*?®=°. The unique feature of the RH sensor reported here is that it relies on two inputs.
While the Ry, response of the sensor exhibits complex behavior, the frequency response remains
monotonic, which allows for greater predictability over a wide range of conditions. This permits
the sensor to measure humidity from dry vacuum environments (RH ~0%, pressure ~10°° Torr)
to those with RH ~100%. Due to their nonlinearity, deconvolution of the pressure and RH
response over the entire 0-100% RH range is not possible without the use of a powerful tool like
the FBN.
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Figure 3. Modeling of (a) Af and (b) Ry, responses in the presence of H,O using the thin film
limit of a two fluid model. Experimental data is shown in black along with predictions of the
model (colored segments) corresponding to different values of the Hamaker constant and
viscosity (n)-pressure relations used to fit the data. Corresponding changes in film thickness (c)
and viscosity (d) are determined based on the modeling of Af and Ry,. The color scheme is kept
the same in each figure for clarity.
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Figure 4. a. At low RH, the Ry, response to changing humidity levels exhibits stability, short
response time, and reversibility. b. The sensor exhibits behavior which can be represented by
four distinct processes. For clarity, they are labeled adsorption, response, desorption, and
recovery. Response at 40% RH is shown here. c. The rapid (t ~1 min) adsorption and desorption
processes exhibit similar time constants, and d. the longer (t ~25 min) response and recovery
processes exhibit similar time constants. This suggests that the sensing behavior is fully
reversible.

In order to characterize the sensor stability, response time, and reversibility, the Ry, response to a
sequence of RH steps is shown in Figure 4a. The response exhibits less than 4% drift over the 60
minute long RH steps, which is regarded as very stable for a RH sensor”*”. The sensor requires
about 40 seconds to achieve full response to a change from 0% RH to 40% RH. This is on the
same order of magnitude as the response time of a leading manufacturer of RH sensors, which
reports 10 seconds to achieve 90% of full response to an increase of 11% to 93% RH®.

Changes in QCM motional resistance during the H,O adsorption-desorption process are shown in
Figure 4b. The kinetics of reversible water adsorption resemble exponential behavior of the form
Rm = Rmo exp(-t/ 1), where each process can be characterized by its time constant (t). For clarity,



the four distinct processes have been labeled adsorption, response, desorption, and recovery in
Figure 4b. The rapid increase in Ry, during the adsorption regime is a consequence of H,O
surface layer formation and polymer swelling near the film surface, while the rapid decrease in
Rm during the desorption regime corresponds to the removal of surface H,O and shrinkage of the
film as revealed in the modeling of the Ry, response in Figure 3. The time constant T of each
process is extracted as a function of RH and shown in Figure 4c for adsorption and desorption
and Figure 4d for response and recovery. As seen in Figure 4c, T ~1 min for the adsorption and
desorption processes, which suggests that adsorption and desorption represent the forward and
reverse kinetics of the same rapid process. Similarly, T ~25 min for the response and recovery
processes (Figure 4d), which suggests that response and recovery represent the forward and
reverse kinetics of the same relatively slow process. The similarity in time constants suggests
that the H,O sorption-desorption process is reversible on the sensor. The mechanisms behind the
kinetics for each process will be investigated in future studies.
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Figure 5. FBN-assisted sensor error in measuring RH (left) and pressure (right) when the sensor
is tested in conditions similar to those used during training (i.e. both training and testing are
conducted under either continuously varying or pulsed conditions).

To investigate the importance of the specific data set used for FBN training, the predictive ability
of the sensor was trained and tested under both continuously varying conditions and pulsed
conditions. The sensor exhibited average errors of 10-30% (data not presented) when trained
under conditions different than those in which it was tested. This is a consequence of over-
training, a common problem with FBNs in which the network makes predictions based on a
training data set which either exceeds the optimal training size or includes data which is
irrelevant to the desired output, such as noise or artifacts in the data. In this case, the FBN trained
with pulsed data is over-trained to recognize only specific discrete values of RH and pressure.
Similarly, networks trained under continuously varying conditions are unconditioned to provide
accurate measurements during abrupt gas pulses.



When the FBN is tested under conditions similar to those in which it was trained, the accuracy of
the sensor increases by an order of magnitude or more, as shown in Figure 5 for RH sensing
(left) and pressure sensing (right). Appropriate training enables the sensor to achieve an error of
less than 4% RH from 0-100% RH and less than 5 Torr from 0-100 Torr. The error here is
defined as the difference between the output of the FBN-assisted sensor and measurements made
by a commercial pressure sensor. The errors for each of the 1,950 sensor testing experiments are
depicted by solid gray circles for continuous training/testing and open black circles for pulsed
training/testing. For both RH and pressure, the magnitude of the error follows a roughly
exponential trend (shown in red). Above ~40% RH a relatively constant error of around 1% is
maintained. At low RH and pressure, the sensor response to H,O and Ar is similar (as shown in
Figure 2c), which makes it difficult to distinguish between RH and pressure at low pressure (<10
Torr) conditions. This effect results in the higher errors at low RH and pressure. It should be
noted that for industrial applications, accurate pressure measurement over a wide range of
pressures often requires the use of multiple sensors which operate in different pressure regimes.
While the sensor reported here is optimized for mid-range conditions (20-100 Torr), it is possible
to utilize multiple training sets tailored toward different environmental regimes, which would
allow the sensor to choose the appropriate training set when ambient conditions change. This
effort will be pursued in future work.

It is important to discuss the behavior of the continuous testing errors in the right side of Figure
5. The errors at pressures <20 Torr exhibit oscillatory behavior around 0 as the FBN predictions
approach convergence near 30 Torr. At this pressure, a new trend appears near 1% error. This set
of points can be explained by the configuration of the continuously varying training conditions
shown in the bottom of Figure 2b. Since the Ar pressure ramp increases up to ~100 Torr and then
falls back toward O Torr, the sensor is trained and tested twice at each pressure: once while the
pressure is gradually increasing, and once while it abruptly decreases. This causes the
appearance of two distinct error sets in the right side of Figure 5 after 30 Torr. The set of higher
errors corresponds to evacuation of the chamber and the abrupt drop in pressure, while the lower
error values correspond to the continuously increasing Ar pressure. The continuously varying
data used to train the sensor diverges at H,O pressures > 23 Torr (as shown in Figure 2c), which
adds nonlinearity to the training data, resulting in lower accuracy for predictions of high
pressures. Since this effect is a consequence of over-training at high RH, it would not be present
for a single sensor which was trained solely for the purpose of predicting pressure. This suggests
that the sensor accuracy is necessarily limited by its multi-modal capability, indicating that a
balance between functionality and accuracy must be chosen for the specific application in which
the sensor is deployed.

The significant result reported in Figure 5 is that the RH sensor trained by the appropriate data
exhibits a resolution of less than 4% from 0-100% RH. For comparison, Sreenivasan et al. report
10% error from a wide-range optical RH sensor which is operational in 20%-70% RH
conditions®. Furthermore, Kus and Okur report that at RH>80%, PEDOT:PSS ceases to function
as a RH sensor because of the formation of a H,O meniscus on the film surface®. Our sensor is
not limited RH<85% because the frequency response remains monotonic even after formation of
H,O layers on the surface. This demonstrates that one of the most significant advantages of the
FBN is its ability to extract information from the sensor response even in post-



saturation/nonlinear regimes which typically result in sensor failure, such as those near 100%
RH. Since our sensor relies on both Af and Ry, the FBN can interpret data even after one of the
inputs diverges due to high RH conditions, which enables measurement of RH in the entire range
from 0-100% RH.

Training with data sets which are similar in nature (i.e., ramped instead of pulsed) to the actual
conditions in which the sensor is deployed allow for significant improvements in FBN accuracy.
By training the FBN to recognize different pressure/RH regimes, the sensor can be effectively
tuned to operate accurately under a specific set of conditions. This provides a flexible platform
for multimodal sensors that can be trained for operation under arbitrary humidity conditions.
Future optimization of the FBN will include testing its predictive ability when gases of mixed
composition are exposed to the sensor. Although the present experiment was performed at room
temperature, it is important to evaluate the sensor performance under conditions with
temperature variability as well. Subsequent investigations will study the importance of
temperature on the response and predictive ability of the sensor. It is expected that if temperature
is incorporated into the training set of the FBN as a third input, it will be possible for sensor
measurements to accommodate thermal drift issues.

4. Conclusion

We have demonstrated the possibility of using an FBN-assisted PEDOT:PSS/QCM-based sensor
to make simultaneous measurements of both ambient pressure and RH. The multi-input
configuration of the sensor allows for accurate (< 4% error) RH sensing over a wide range of RH
conditions (0-100%), even after H,O meniscus formation occurs on the film surface. We have
shown that the predictive ability of the sensor is highly influenced by the quality of the training
data set. It is expected that with further optimization of the FBN training set, the addition of
temperature dependence studies, and utilization of a more powerful computational tool such as
the feedforward deep network or generalized regression network, future investigations can
achieve higher prediction accuracies under a wider range of environmental conditions.
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