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Overview of this talk

 QCAD is an “old” Albany application, not currently under 
much active development.

 But it continues to be well utilitzed:
 Many (~30) Theorists and Experimentalists here at Sandia

 Deployed on a server at Princeton University

 Other users we don’t know about?

 3 dedicated machines running QCAD.

 My goals in this talk:
 Review briefly describe what QCAD is and does.

 Look in more detail at some of the aspects of QCAD that have made is 
successfully accessible to so many people (and prolong it’s use) – the 
“salt & pepper”.

 Pontificate on future directions: things I’d like to add to QCAD and for 
which I’m not sure how difficult this would be. 
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What exactly is QCAD?
 QCAD = “Quantum Computer Aided Design”

 Primary Goals:

 Integration (components work together seamlessly)

 Flexibility (different problems; different devices & materials)

 High Throughput (can explore parameter space quickly)

 A tool which solves simple physics on complex geometries:

 Poisson’s equation ( like heat diffusion)

 Single and many-electron Schrodinger equations

 Solve discretized equations on a finite element mesh:

 Ideally, experimentalists measuring these devices would be able to run the code.
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“QCAD simulation and optimization of semiconductor quantum dots,” JAP 114, 164302 (2013)



Primary application: 
Devices used for quantum computing

• Quantum dot: a potential energy “pit” that 
confines electrons to a point in space

• Double quantum dot:  two of them

• Useful for quantum computing if we have just a 
few electrons in each dot and can move them 
back & forth.

• # of e depends on “depth” and “size” of dots
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Quantum bits & computing
 Quantum computing promises algorithmic speedups.

 In one (popular) model of quantum computing, the quantum 
computer is composed of ”quantum bits”, or “qubits” which are 
manipulated by logic gates.

 By definition, a qubit is a 2-level quantum system that can be 
initialized, read out, and manipulated.

 In actuality, you never have just 2 quantum levels, so consider a low-
energy or isolated 2-dimensional subspace.
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QCAD  Implementation Structure

 Different types of problems (Poisson-only vs Schrodinger-Poisson vs 
Shrodinger-Poisson-CI) require more or less interaction among multiple 
Albany Application objects.

 For example:

Pre & Post Processors (iQCAD)

Optimization driver (Dakota)

QCAD Core (Albany)

Non-linear 
Poisson
Solver

Schrodinger
Solvers 

(eff-mass & tight binding)

Configuration
Interaction (CI)

Solver



Example: Coupled Nonlinear Poisson &

Configuration Interaction
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QCAD Core

Non-linear 
Poisson
Solver

Schrodinger
Solvers 

(eff-mass & tight binding)

Configuration
Interaction (CI)

Solver
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A key to QCAD’s success: interfaces

 We’d like to think of QCAD as a successful ”product” because 
people use it.

 A lot of work has gone into creating easily usable interfaces 
for running QCAD – “make it more like COMSOL”
 Single XML file & format control all types of QCAD solutions.

 “iQCAD” web interface essentially adds a GUI to QCAD. 
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Web interface ties together:
• Device design (EaselJS)
• Meshing (Cubit)
• Execution (Albany)
• Imaging (Paraview)



iQCAD object basics
 Each object has a globally unique ID

 Each object has an owner.

 Objects reference one another.  For example, each Run object is 
associated with a Model object.

 An exemplary diagram:

Model 1 Model 2

Run 2

Model 7

Run 1

Run 10

Run 6

Run 3

Run 8

Run 4

Run 9

Erik’s Runs Rick’s Runs Mike’s Runs



The iQCAD Home page
Your user nameGet back to this page

Heading indicates this section is for “run”-type objectsCreate a run

A list/table of all your
runs. Click on one to 
go to that run’s page.

Operations on checked runs

Run
Objects

Model
Objects

A list/table of all 
your models. Click 
on one to go to that 
model’s page.

Create a model



Geometry Building: Levels & Shapes

Level 4

Level 3

Level 2

Level 1
Level 1 shape (bottom)

Level 2 shapes (bottom)

Level 4

Level 3

Level 2

If Level 1 were an overlay layer:

Level 1 shape
(bottom)Level 2 shapes

(bottom)

With no “overlay” layers

• Most geometries of interest have a layered structure, which lends 
itself to being designed in 2D.

• iQCAD contains a “layered 2D” javascript-powered geometry builder.
• An example geometry:



Device Builder GUI – making models with ease…

List of device levels (top of list = 
top of device). Note these can be 
dragged & dropped to reorder.

List of shapes contained within 
the currently selected level

This white area shows the 
limits of the device in the x 
and y directions.

“Mode” selection: 
Setup Mode is to map pixels -> real dimensions
Build Mode is for creating & modifying levels, shapes, and mesh

Help button is your friend…

List of meshes. You 
need at least one of 
these to use a model.

List of regions
(optional)

Shapes in the current level can 
be dragged around; points can be 
dragged; new points created; 
points removed, etc., etc.



Meshing output

Next, click “Save and create 
model”, which submits a mesh-
creation job into the run queue of 
the machine running iQCAD.  The 
model page lets you monitor the 
progress of this job, and after it 
finishes you should see summary 
information and images pertaining 
to the created mesh. If all looks 
good, you’re ready to create a run!

The “size” of the mesh – i.e. how many nodes 
(points) are used in the discretization.  This is 
roughly proportional to the run time required.

Exodus files can be viewed 
using Paraview
(www.paraview.org)

Click this dark gray bar to see images

What you might 
want to do next...

Builder-generated geometries can be automatically meshed using Cubit.



A example of the 3D geometry of device with 
“overlay” levels



The Run Page
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Each run page is divided into 
two main sections: Output 
and Input.  

The Output section will not 
be present for Runs that have 
not been executed since they 
were last saved, i.e. for runs 
that don’t have any up-to-date 
output to show you. 



Run Page: Input Section

1

2
3

4

Fill out in order 1, 2, 3 then 4

General 
Information about 
the run

What outputs you 
want computed 
(Model Responses)

Voltages and charges set 
on gate, contacts, etc. 
(Model parameters)

More technical solver options
Post processing commands (what images to create)

Action buttons



Run Page: Output Section

– Note that “dot electrons” response must be checked to compute capacitances

– correspond to which 
responses were selected

– output.exo = “raw output”; visualize w/Paraview

Look here to see if run executed 
normally

Table of images given by post-processing commands (see input section)



Future work / capabilities
 Disorder Modeling

 Gaussian “cloud” charge (recently implemented!)

 Optimization of an unknown charge or potential profile (initial inquiry 
underway using Greg Von Winckel’s Rapid Optimization Library) – requires 
distributed parameters & responses.

 More (new) Physics:

 Magnetic field in Schrodinger solutions - requires complex potentials 
(perhaps possible w/TPetra now?)

 Valley physics: required to obtain more accurate solutions for semiconductor 
materials with multiple valleys (like Silicon).  I think Albany/Trilinos has 
everything needed for this – we just need time & money.

 Usability enhancements:

 Output quad-point quantities on nodal mesh (for interpolation)

 Cleaner interoperation between different Albany Application or model 
evaluator objects (like multiphysics, but same mesh)

 Docs for folks new to Albany 19



Valley Physics in Albany
 Basic idea:

 The wave function solution to the Schrodinger equation (just an eigenvalue 
equation) can be decomposed into a slowly-spatially-varying envelope 
multiplied by a fast-oscillatory term.

 We want to solve for the envelope on a (coarse) finite element mesh, and 
handle the fast oscillatory pieces by coupling multiple equations of motion 
(one per valley).
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Ground state s(x)cos(kx)

Excited state p(x)cos(kx)

If first excitation = orbital-like If first excitation = valley-like

Ground state s(x)cos(kx)
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Toy Example: lowest two states in a parabolic external potential w/2 valleys



Summary

 QCAD is an example of a finite-element application which 
solves fairly simple equations related to understanding 
quantum devices.

 We attribute much of QCAD’s success at maintaining a broad 
user base to:
 Albany & Trilinos themselves being good at what they do (I didn’t 

stress this enough!)

 A relatively sophisticated (graphical) user interface that has been 
bolted on top of the core scientific software.

 Trilinos and Albany already contain some enabling features 
for potential future directions for QCAD; I’d love to see more!

 Thank you!! (for everyone’s work contributing to Albany)
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Example geometries:

Ottawa Thin B 270nm

Ottawa Fanned Mod

Ottawa Thin B
DotCS 270nm

Ottawa Thin B Open
DotCS 270nm

Radial 1CS Gated Wire 60nm

Ottawa Thin 270nm Radial 2CS



Summary of Device Modeling

 Physical device modeling involves lots of numerical studies

 Semi-classical (3D) models of devices go a long way to 
predicting behavior.
 We believe discrepancies are caused more by disorder than quantum-

ness not captured by the semi-classical equations.

 Capacitance modeling has proven very useful in many cases 
of initial device design & tune-up, and is much less 
computationally demanding than a nonlinear Poisson 
calculation.

 Other techniques not mentioned that we use frequently:
 Valley-aware effective mass theory

 Tight-binding (NEMO)
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