
Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000

Cooking with QCAD:
Salt, Pepper, and Plans

Erik Nielsen

Sandia National Laboratories

Albany Users Meeting, Jan 2017

SAND2017-0531C

Overview of this talk

 QCAD is an “old” Albany application, not currently under
much active development.

 But it continues to be well utilitzed:
 Many (~30) Theorists and Experimentalists here at Sandia

 Deployed on a server at Princeton University

 Other users we don’t know about?

 3 dedicated machines running QCAD.

 My goals in this talk:
 Review briefly describe what QCAD is and does.

 Look in more detail at some of the aspects of QCAD that have made is
successfully accessible to so many people (and prolong it’s use) – the
“salt & pepper”.

 Pontificate on future directions: things I’d like to add to QCAD and for
which I’m not sure how difficult this would be.

2

What exactly is QCAD?
 QCAD = “Quantum Computer Aided Design”

 Primary Goals:

 Integration (components work together seamlessly)

 Flexibility (different problems; different devices & materials)

 High Throughput (can explore parameter space quickly)

 A tool which solves simple physics on complex geometries:

 Poisson’s equation (like heat diffusion)

 Single and many-electron Schrodinger equations

 Solve discretized equations on a finite element mesh:

 Ideally, experimentalists measuring these devices would be able to run the code.

3

  ()
Hi  Eii

Electron Density (red = higher)

“QCAD simulation and optimization of semiconductor quantum dots,” JAP 114, 164302 (2013)

Primary application:
Devices used for quantum computing

• Quantum dot: a potential energy “pit” that
confines electrons to a point in space

• Double quantum dot: two of them

• Useful for quantum computing if we have just a
few electrons in each dot and can move them
back & forth.

• # of e depends on “depth” and “size” of dots

V (x)

x

V (x)

x

vs.

Quantum bits & computing
 Quantum computing promises algorithmic speedups.

 In one (popular) model of quantum computing, the quantum
computer is composed of ”quantum bits”, or “qubits” which are
manipulated by logic gates.

 By definition, a qubit is a 2-level quantum system that can be
initialized, read out, and manipulated.

 In actuality, you never have just 2 quantum levels, so consider a low-
energy or isolated 2-dimensional subspace.

5

0

1

0

1

bit probabilistic bit, “pbit” qubit

QCAD Implementation Structure

 Different types of problems (Poisson-only vs Schrodinger-Poisson vs
Shrodinger-Poisson-CI) require more or less interaction among multiple
Albany Application objects.

 For example:

Pre & Post Processors (iQCAD)

Optimization driver (Dakota)

QCAD Core (Albany)

Non-linear
Poisson
Solver

Schrodinger
Solvers

(eff-mass & tight binding)

Configuration
Interaction (CI)

Solver

Example: Coupled Nonlinear Poisson &

Configuration Interaction

7

QCAD Core

Non-linear
Poisson
Solver

Schrodinger
Solvers

(eff-mass & tight binding)

Configuration
Interaction (CI)

Solver

  (, Ei, i)

HMB i  Tk Vk () 
k

  Vkl ()
kl










i  Ei i

NL Poisson CI

potential V(r)

Wave-fns + energies to compute the
electron density in quantum region

Boundary
conditions

 Potential
 electron density,
 many-electron wavefunctions

(coherence measures)

Schrod.Ei, i

A key to QCAD’s success: interfaces

 We’d like to think of QCAD as a successful ”product” because
people use it.

 A lot of work has gone into creating easily usable interfaces
for running QCAD – “make it more like COMSOL”
 Single XML file & format control all types of QCAD solutions.

 “iQCAD” web interface essentially adds a GUI to QCAD.

9

Web interface ties together:
• Device design (EaselJS)
• Meshing (Cubit)
• Execution (Albany)
• Imaging (Paraview)

iQCAD object basics
 Each object has a globally unique ID

 Each object has an owner.

 Objects reference one another. For example, each Run object is
associated with a Model object.

 An exemplary diagram:

Model 1 Model 2

Run 2

Model 7

Run 1

Run 10

Run 6

Run 3

Run 8

Run 4

Run 9

Erik’s Runs Rick’s Runs Mike’s Runs

The iQCAD Home page
Your user nameGet back to this page

Heading indicates this section is for “run”-type objectsCreate a run

A list/table of all your
runs. Click on one to
go to that run’s page.

Operations on checked runs

Run
Objects

Model
Objects

A list/table of all
your models. Click
on one to go to that
model’s page.

Create a model

Geometry Building: Levels & Shapes

Level 4

Level 3

Level 2

Level 1
Level 1 shape (bottom)

Level 2 shapes (bottom)

Level 4

Level 3

Level 2

If Level 1 were an overlay layer:

Level 1 shape
(bottom)Level 2 shapes

(bottom)

With no “overlay” layers

• Most geometries of interest have a layered structure, which lends
itself to being designed in 2D.

• iQCAD contains a “layered 2D” javascript-powered geometry builder.
• An example geometry:

Device Builder GUI – making models with ease…

List of device levels (top of list =
top of device). Note these can be
dragged & dropped to reorder.

List of shapes contained within
the currently selected level

This white area shows the
limits of the device in the x
and y directions.

“Mode” selection:
Setup Mode is to map pixels -> real dimensions
Build Mode is for creating & modifying levels, shapes, and mesh

Help button is your friend…

List of meshes. You
need at least one of
these to use a model.

List of regions
(optional)

Shapes in the current level can
be dragged around; points can be
dragged; new points created;
points removed, etc., etc.

Meshing output

Next, click “Save and create
model”, which submits a mesh-
creation job into the run queue of
the machine running iQCAD. The
model page lets you monitor the
progress of this job, and after it
finishes you should see summary
information and images pertaining
to the created mesh. If all looks
good, you’re ready to create a run!

The “size” of the mesh – i.e. how many nodes
(points) are used in the discretization. This is
roughly proportional to the run time required.

Exodus files can be viewed
using Paraview
(www.paraview.org)

Click this dark gray bar to see images

What you might
want to do next...

Builder-generated geometries can be automatically meshed using Cubit.

A example of the 3D geometry of device with
“overlay” levels

The Run Page

In
p

u
t
S

e
c
ti
o

n
O

u
tp

u
t
S

e
c
ti
o

n

Each run page is divided into
two main sections: Output
and Input.

The Output section will not
be present for Runs that have
not been executed since they
were last saved, i.e. for runs
that don’t have any up-to-date
output to show you.

Run Page: Input Section

1

2
3

4

Fill out in order 1, 2, 3 then 4

General
Information about
the run

What outputs you
want computed
(Model Responses)

Voltages and charges set
on gate, contacts, etc.
(Model parameters)

More technical solver options
Post processing commands (what images to create)

Action buttons

Run Page: Output Section

– Note that “dot electrons” response must be checked to compute capacitances

– correspond to which
responses were selected

– output.exo = “raw output”; visualize w/Paraview

Look here to see if run executed
normally

Table of images given by post-processing commands (see input section)

Future work / capabilities
 Disorder Modeling

 Gaussian “cloud” charge (recently implemented!)

 Optimization of an unknown charge or potential profile (initial inquiry
underway using Greg Von Winckel’s Rapid Optimization Library) – requires
distributed parameters & responses.

 More (new) Physics:

 Magnetic field in Schrodinger solutions - requires complex potentials
(perhaps possible w/TPetra now?)

 Valley physics: required to obtain more accurate solutions for semiconductor
materials with multiple valleys (like Silicon). I think Albany/Trilinos has
everything needed for this – we just need time & money.

 Usability enhancements:

 Output quad-point quantities on nodal mesh (for interpolation)

 Cleaner interoperation between different Albany Application or model
evaluator objects (like multiphysics, but same mesh)

 Docs for folks new to Albany 19

Valley Physics in Albany
 Basic idea:

 The wave function solution to the Schrodinger equation (just an eigenvalue
equation) can be decomposed into a slowly-spatially-varying envelope
multiplied by a fast-oscillatory term.

 We want to solve for the envelope on a (coarse) finite element mesh, and
handle the fast oscillatory pieces by coupling multiple equations of motion
(one per valley).

20

 0

 1

 2

 3

 4

 5

 6

 7

-2 -1 0 1 2

x

 0

 1

 2

 3

 4

 5

 6

 7

-2 -1 0 1 2

x

Ground state s(x)cos(kx)

Excited state p(x)cos(kx)

If first excitation = orbital-like If first excitation = valley-like

Ground state s(x)cos(kx)

Excited state s(x)sin(kx)

Toy Example: lowest two states in a parabolic external potential w/2 valleys

Summary

 QCAD is an example of a finite-element application which
solves fairly simple equations related to understanding
quantum devices.

 We attribute much of QCAD’s success at maintaining a broad
user base to:
 Albany & Trilinos themselves being good at what they do (I didn’t

stress this enough!)

 A relatively sophisticated (graphical) user interface that has been
bolted on top of the core scientific software.

 Trilinos and Albany already contain some enabling features
for potential future directions for QCAD; I’d love to see more!

 Thank you!! (for everyone’s work contributing to Albany)

21

Example geometries:

Ottawa Thin B 270nm

Ottawa Fanned Mod

Ottawa Thin B
DotCS 270nm

Ottawa Thin B Open
DotCS 270nm

Radial 1CS Gated Wire 60nm

Ottawa Thin 270nm Radial 2CS

Summary of Device Modeling

 Physical device modeling involves lots of numerical studies

 Semi-classical (3D) models of devices go a long way to
predicting behavior.
 We believe discrepancies are caused more by disorder than quantum-

ness not captured by the semi-classical equations.

 Capacitance modeling has proven very useful in many cases
of initial device design & tune-up, and is much less
computationally demanding than a nonlinear Poisson
calculation.

 Other techniques not mentioned that we use frequently:
 Valley-aware effective mass theory

 Tight-binding (NEMO)

23

