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—7 Abstract Spherically imploding plasma liners, formed
() by merging hypersonic plasma jets, are a proposed stand-
I off driver to compress magnetized target plasmas to fu-
sion conditions [S. C. Hsu et al., IEEE Trans. Plasma
Sci. 40, 1287 (2012)]. In this paper, the parameter space
— ' and physics criteria are identified for a subscale, plasma-
-~ liner-formation experiment to provide data, e.g., on liner
ram-pressure scaling and uniformity, that are relevant
for addressing scientific issues of full-scale plasma lin-
ers required to achieve fusion conditions. Based on these
criteria, we quantitatively estimate the minimum liner
kinetic energy and mass needed, which informed the de-
sign of a subscale plasma liner experiment now under
development.

Keywords Plasma liners - Plasma jets - Magneto-
inertial fusion

1 Introduction

Ongoing research [I] on the Plasma Liner Experiment
(PLX) [2)3] is aiming to demonstrate the formation
and implosion of spherical plasma liners via merging
hypersonic plasma jets formed by pulsed coaxial guns
(where “hypersonic” refers to the jets being highly su-
personic and where atomic excitation, ionization, and

arXiv:1801.03041v1 [physics.p

This work was supported in part by the U.S. Department of
Energy under contract no. DE-AC52-06NA25396.

Scott C. Hsu

Los Alamos National Laboratory, Los Alamos, NM 87545
Tel.: +1-505-667-3386

E-mail: scotthsu@lanl.gov

Y. C. Francis Thio

HyperJet Fusion Corporation, Chantilly, VA 20151
Tel: +1-301-524-4698

E-mail: francis.thio@hyperjetfusion.com

radiative effects are important [4]). The guns, jets, and
imploding plasma liner constitute a driver to compress
a magnetized plasma target to fusion conditions, i.e., a
proposed embodiment of magneto-inertial fusion (MIF)
[EL6L[7] known as plasma-jet-driven magneto-inertial fu-
sion (PJMIF) [8lQ[I0|11]. PJMIF has several attributes
making it a potential candidate for an economically vi-
able, repetitively pulsed fusion reactor [I2]. An imme-
diate, near-term objective is to retire the major physics
risks associated with the plasma-liner-driver aspects of
PJMIF' at the lowest-possible cost and technical risk.

The key goal of PJMIF development during the
present three-year research phase (ending in 2019) is
to demonstrate the formation, viability, and scalability
of spherically imploding plasma liners formed by merg-
ing plasma jets. Specifically, an objective is to obtain
experimental data on two key scientific issues of the
plasma liner as an MIF compression driver: (1) scaling
of peak ram pressure (pv?) of the plasma liner versus
initial plasma jet parameters and number of jets, and
(2) evolution and control of non-uniformities seeded by
the jet-merging process, which have the potential to de-
grade the ability of a plasma liner to compress a target
plasma to fusion conditions.

Because the overall cost of a plasma-liner-formation
experiment is closely linked to the initial stored energy,
we were motivated to conduct a careful analysis of the
minimum stored energy required to address PJMIF-
relevant, plasma-liner issues in a meaningful way. The
required stored energy is determined by two indepen-
dent properties: (1) the electrical efficiency of the plasma
guns, and (2) the required minimum initial kinetic en-
ergy of the imploding plasma liner. This paper is re-
stricted to consideration of the latter. The analysis is
based on first identifying key physics criteria that must
be satisfied in order for a subscale experiment to pro-
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vide data that is relevant for a full-scale, fusion-relevant
plasma liner. Based on these criteria, we then quantita-
tively estimate the minimum initial plasma-liner kinetic
energy and mass of a subscale experiment that satisfies
the fusion-relevant plasma-liner criteria.

A full-scale PIMIF plasma liner [8/[10] would con-
sist of an array of, perhaps, hundreds of coaxial plasma
guns uniformly mounted around a spherical chamber
that is several meters in radius. It is envisioned [10]
that a small subset of the guns fires first to form a
magnetized plasma target, followed immediately by the
remainder of the guns firing to form a spherically im-
ploding plasma liner that compresses the target. The
physical processes and steps of plasma-liner formation
via merging plasma jets, the subsequent convergence
of the liner, and scalings of peak liner ram pressure
and non-uniformity evolution have been studied exten-
sively and presented elsewhere [8O1T3]T4L1510,16.2]
17 18T920,2T12223], though much more research is
needed to validate the PJMIF concept.

A key issue for PJMIF is the required/achievable
symmetry of the imploding plasma liner; this is be-
ing addressed in ongoing research [I]. Prior numerical
studies [I7,2I] employed 3D simulations to elucidate
the origin and evolution of non-uniformities seeded by
shocks that form between discrete merging jets. Results
based on 3D smooth-particle hydrodynamic (SPH) sim-
ulations by Cassibry et al. [I7] indicated that late-time
uniformity of a plasma liner formed with discrete jets
was similar to that of an initially spherically symmetric
liner, which is a favorable result. However, further sim-
ulations are needed to explore the effects of spatial res-
olution (i.e., number of particles in the simulation) and
the value of artificial viscosity on the liner symmetry
and its evolution. Kim et al. [21], using a 3D hydrody-
namics code, provided a physical picture of plasma-liner
formation via merging plasma jets and liner-uniformity
evolution. These simulations predicted that “primary”
shocks would form between adjacent merging jets, and
then the shocked plasmas associated with the “primary
shocks” would merge to form “secondary shocks.” This
physical picture has been verified in experiments [IJ.
However, in these parameter regimes, shock strength
is over-predicted in single-fluid hydrodynamics codes.
Further benchmarking studies, along with new 3D sim-
ulations of plasma-liner formation via the merging of
up to hundreds of plasma jets, will be reported else-
where. Indeed, a key objective of ongoing research [I] is
to work toward setting requirements on and identifying
limits of achievable liner uniformity.

Another key issue for PJMIF is the need to develop
compatible targets that take advantage of the high im-
plosion speed (> 50 km/s) of a spherically imploding

plasma liner. Some discussions of PJMIF-relevant tar-
get formation have appeared elsewhere [24,[101[25], but
much further research on PJMIF-compatible target de-
velopment is needed. As described by D. Ryutov [24],
an interesting target for compression is a high-3 (i.e.,
B > 1) object with a “tangled field” that, simultane-
ously, allows for reduced cross-field thermal transport
(i.e., Hall parameter wr ~ 3) and adequate parallel
electron thermal confinement time (due to the long con-
nection length of the tangled field). Because 5 ~ 10,
it is expected that the issue of magnetohydrodynamic
(MHD) instability would be sidestepped entirely be-
cause there is not enough free energy in the magnetic
field to instigate virulent global instabilities. D. Ryu-
tov [24] lays out detailed requirements for such a tar-
get to satisfy the above properties but recognizes that
creation of such a target plasma “may not be a sim-
ple task.” He also states that “an intuitively appealing
way for creating such a target would be the use of nu-
merous plasma guns generating small-scale, magnetized
plasma bunches and injection of such bunches into a
limited volume.” This is precisely the plan which we
intend to pursue in the near future. The high implosion
speed (> 50 km/s) of a spherically imploding plasma
liner, enabling the compression of a several-cm-radius
plasma target in ~ 1 us, is what enables the possibility
of near-adiabatic heating of such a novel, high- plasma
target.

The remainder of the paper is organized as follows.
Section Pl presents PJMIF reactor-relevant plasma-liner
parameters in order to identify the relevant physics
criteria for a subscale experiment. Section Bl concisely
states these criteria. Section[duses the criteria to derive
the minimum liner kinetic energy and mass for a rele-
vant subscale experiment. Finally, Sec. Bl summarizes
the main results of the paper.

2 PJMIF reactor-relevant plasma-liner
parameters

We start by considering the PJMIF reactor-relevant pa-
rameter regime. Table [[] summarizes the desired physi-
cal parameters of the target at stagnation and the im-
ploding spherical plasma liner at the time of peak pv2.
The peak target thermal pressure p at stagnation is lim-
ited by the peak liner pv2. One-dimensional radiation-
hydrodynamic simulations aimed at reaching the con-
ditions in Table [ have shown fusion energy gains up to
30 [II], where the gain is defined as the fusion energy
divided by the initial liner kinetic energy. Similar cases
were studied further using a 1D semi-analytic model of
PJMIF [23]. These promising configurations were origi-
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nally identified through hundreds of 1D simulations by
one of the authors.

The required plasma-liner conditions at the time of
peak pv? dictate the plasma-jet initial conditions as well
as the range of plasma-liner parameters over the entire
implosion from the jet-merging radius r,, down to the
stagnation radius rstag, which are connected through
the following relations,

2
TS a)
PO ™~ Pstag ( ! g> (1)

Tm

and

2F

Mliner - U—QO ~ 47TT72an0, (2)

where py = ngm and ng are the liner mass density and
ion number density at 7,,, respectively, pstag the liner
mass density just prior to reaching rstag, Miiner the total
liner mass, Fy the liner kinetic energy at r,,, v the liner
implosion speed (assumed to be constant from 7, to
just before rgag), L the liner thickness at r,, and m
the atomic mass of the liner species. Note that Eq. ()
holds strictly only for a 1D steady-state convergent flow
with constant v and constant polytropic index ~. In
a real plasma-liner system, these assumptions are not
expected to hold exactly; nevertheless, Eq. (I]) provides
an adequate method for our present need to obtain an
approximate relationship between pg and pstag-

Using pstag = 3.06 g/cm?® and rgae = 0.4 cm from
Table [l then Eq. (@) gives por2, = 0.50 g/cm. Using
the latter and setting Fy = 25 MJ, then Mjjper = 1.02 X
1072 kg and L = 1.62 cm. Equation (2)) shows that L
is fixed once psagiiag(= Por2,), Eo, and v are fixed.
Figure [ plots r,, versus ng for Xe, Kr, Ar, and Ne
(ion-to-proton mass ratios p = 131.29, 83.80, 39.95,
and 20.17, respectively), showing that we are limited
to Xe and Kr liners if we restrict ourselves to 7, <2 m
and ng < 1017 ecm™3.

We proceed with estimating the important plasma,
equation-of-state (EOS), and hydrodynamic quantities
of this reference PJMIF scenario. We focus on the use of
xenon in assessing the PJMIF reactor-relevant regime
because xenon gives the highest pg for a given ny and
the highest Mach number M = v/Cs (where Cy =
[YE(ZT. + T;)/m]'/? is the ion sound speed) for given
T and v.

2.1 Liner plasma-physics properties
2.1.1 Collisionality
The thermal ion and electron collision times, 7; and 7,

respectively, in the plasma liner, for a range of relevant
T (= T; = T. assumed) and ion density n; from rp,
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Fig. 1 Liner merging radius r,, vs. liner ion density ng at
Tm, satisfying por2, = 0.50 g/cm, for Xe, Kr, Ar, and Ne.

down to 7Tstag, are shown in Fig. [2] for xenon. The jogs
in the 7; ~ Z~%n;'T%/2 contours are due to a transi-
tion from Z =1 (1; ~ n; "T%/?) to Z =~ 0.63T"/2 (1; ~
n; 'T~1/2) when T exceeds 2.5 eV (up to a tempera-
ture at which xenon becomes fully stripped). The Z ~
T'/2 relation is a convenient way to model increasing
Z with rising T [26]. In contrast, 7. ~ Z~'n;'T3/2 ~
n; 1T exhibits a milder jog at the same transition. Fig-
ure [2] shows that the plasma liner is very collisional
from 7, down to 7Tstag, With 7; < 50 ns and 7. <
0.1 ns for the entire evolution (assuming that n; remains
above 10'6 cm™3 and T remains below 10 eV). The ion—
electron energy equilibration time is 7gie ~ (Mm;/Mme)Te.
For most of the liner evolution, Tgic < Timplosion ~
rm/v &~ 21.4 ps (for r,, = 150 cm and v = 70 km/s),
meaning that T, ~ T; is a good approximation. The
only exception is right at jet merging when the ions are
shock heated over a microsecond time scale when the
liner is at relatively low density, in which case Tg;e ~
2.4 ps for n ~ 1017 em ™ and T ~ 5-10 eV. However,
T, =~ T; should likely be restored long before stagna-
tion. The degree of separation between T; and T, due
to ion shock heating is the focus of ongoing research [1]
and will be reported further elsewhere. The key con-
clusion here is that a reactor-relevant plasma liner is
highly collisional for its entire evolution.

2.2 Liner equation-of-state and radiative properties

Non-local-thermodynamic-equilibrium (non-LTE) EOS
and opacity tables are used to infer the EOS (Figs. B
M), opacity [Fig. Bla)], and radiative-cooling [Fig. Bi(b)]
properties of a reactor-relevant xenon plasma liner for
parameters spanning 7,, to rsag. The tables were gen-
erated using PROPACEOQOS [27], an EOS and opacity
code with detailed configuration accounting. Of partic-
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Table 1 Summary of reference PJMIF target parameters at peak compression and liner parameters at the time of peak pv?
just prior to peak compression. The M estimate assumes Te =1; =2 eV, Z =1, and v =1.3.

parameter target (DT)  liner (Xe) liner (Kr) liner (Ar)
pressure (Mbar) p =150 pv? =150 pv? = 150 pv? =150
mass density p (g/cm?) 0.02 3.06 3.06 3.06
ion density n; (cm™32) 5 x 102! 1.40 x 1022 2.19 x 1022 4.59 x 1022
velocity v (km/s) 0 70 70 70
compressed target radius rgiag (cm) 0.4

Mach number M 36 29 20
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Fig. 2 Contours of thermal (a) ion 7; and (b) electron 7.
collision times (s) vs. T (= T; = T.) and n; for xenon. A
simple model for ionization, Z = 0.63T1/2, is used [26].

ular interest is the value of v in the xenon liner over the
range of plasma-liner parameters spanning ry, to rstag.
Using the non-LTE EOS table, we evaluate 7 for xenon
using the relationship [28§]

p
e (3)
where € is the total internal energy including both ther-
mal and ionization/excitation energies, and show the
results in Fig. [l Equation () shows that a larger € for

y=—+1

given p and p will bring v closer to unity (i.e., below
v =5/3 of an ideal gas); a decrease of vy below 5/3 is a
measure of the extra energy sinks due to ionization and
atomic excitation (and associated line radiation) over
that of an ideal gas. Figure [0 shows that for the entire
range of T (assuming T. = T;) and n;, and in par-
ticular for the most-relevant range of 7' ~ 0.1-10 eV
during plasma-liner convergence, v < 1.25. This is de-
sirable in order to keep the plasma liner cold and to
maintain a high M during convergence, as discussed
in Sec. Z3] The same EOS/opacity tables are also
used as input to 1D radiation-hydrodynamic simula-
tions of spherically imploding plasma liners, which are
described in Sec. Although the opacity [Fig.Bla)]
and radiative-cooling [Fig. Bl(b)] data are not used ex-
plicitly in the analyses in this paper, they are used in
the simulation of a plasma-liner implosion in Sec.
and are included here for reference.

2.3 Hydrodynamic properties
2.8.1 Mach number

Because the peak liner ram pressure is expected to scale
as M3/? [TI5[16], it is desirable to achieve high M, which
will also reduce the amount of jet spreading and density
degradation as the jets propagate from the guns to 7,
[23]. Achieving M > 10 in a subscale experiment is
a reasonable criterion to be in a physics regime that
is relevant to a reactor-relevant plasma liner. Figure [
shows M (as defined in Sec. Bl) versus liner implosion
speed for different species. For helium, v 2 100 km/s
is needed for M = 10, but for nitrogen (and heavier
elements), v 2 50 km/s (or lower for heavier elements)
is sufficient.

2.3.2 Simulation

To develop knowledge of the plasma-liner parameters
from 7y, t0 T'stag, we used HELIOS [27], a 1D radiation-
hydrodynamic code, to simulate an imploding 1.62-cm-
thick xenon plasma liner, starting at r,,, = 150 cm with
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Fig. 3 Mean-charge state Z of xenon vs. ion density for dif-
ferent temperatures (in eV), from (a) non-LTE and (b) LTE
PROPACEOS calculations. Differences between the two mod-
els are pronounced at lower densities, indicating that a non-
LTE model should be used for the early stages of liner con-
vergence.
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Fig. 4 (a) Total thermal plasma pressure and (b) inter-
nal energy (including ion and electron thermal and ioniza-
tion/excitation energies) of xenon vs. ion density for different
temperatures (in eV), from a non-LTE PROPACEOS calcu-
lation.
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Fig. 5 (a) Frequency-integrated Planck emission mean opac-
ity and (b) radiative-cooling rate of xenon vs. ion den-
sity for different temperatures (in eV), from a non-LTE
PROPACEOS calculation.
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Fig. 6 Contours of polytropic index v as a function of T'
(=Te =T;) and n;, calculated using Eq. (@) and a non-LTE
xenon EOS from PROPACEOS.

spatially uniform v = 70 km/s, ng = 1017 cm™3, and

T, = T; = 2 eV. Note that this simulation does not
include a magnetized target; it is a xenon liner implod-
ing on vacuum. The simulation uses non-LTE xenon
EOS/opacity data [Figs.Bla),[d and ] generated using
PROPACEOQOS, includes thermal and radiation trans-
port, and allows T, and T; to evolve separately. The
liner is modeled using 300 computational zones (i.e., an
average of 54 um/zone at the initial time step). Figure8
shows the temporal and spatial evolution of p and pv?,
the peak values of which are 0.72 g/cc and 26.7 Mbar,
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Fig. 7 Mach number M versus liner implosion speed for dif-
ferent liner species, assuming T, = T; = 2 eV, Z = 1, and
v =1.3.

respectively, at ¢ = 21.6 us and r = 1.16 cm. Optimiza-
tion of liner parameters and profiles, e.g., see [29], is
needed in order to achieve the desired peak ram pres-
sure of 150 Mbar at the same initial kinetic energy.

3 Physics criteria to be satisfied in a subscale
plasma liner experiment

The results in Sec. 2 guide us to the important physics
criteria that must be satisfied in a subscale plasma liner
experiment to be of relevance to the full-scale reactor-
relevant plasma liner. We state them as follows:

— M > 10 at 7y,

— plasma must be collisional for the entire duration
from 7, to rstag, i-€., T3 K Timplosion

— effective v of the liner species should be < 5/3 as is
the case for xenon.

4 Requirements for a subscale plasma liner
experiment

We use Eq. @) to estimate M and Ey of a subscale
plasma liner experiment that satisfies the physics cri-
teria stated in Sec. Bl Rather than fixing pstagiiie as
we did for the PJMIF-reactor scenario, we use the cri-
teria stated in Sec. Bl and the constraints of the PLX
vacuum chamber and near-term plasma guns to set r,,,
L, ng, v, and m, picking the lowest allowed values for
each quantity in order to minimize FEy and Mjjne of a

subscale experiment.
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Fig. 8 Contours of constant (a) log(p [g/cc]) and
(b) log(pv?[Pa]) vs. time and radius for a PJMIF reactor-
relevant, imploding xenon plasma liner, from a HELIOS sim-
ulation. Peak p = 0.72 g/cc and pv? = 26.7 Mbar are reached
at t =21.6 us and r = 1.16 cm.

First, we determine r,,, which is given by (and plot-
ted in Fig. @) [20]

_ rjo[Mi(v—1)/2+ 1] + 1
T = , (4)

1+ (2/NV2)[M;(y —1)/2+ 1]

where 79 is the initial jet radius, M; the initial jet
Mach number, r,, the chamber-wall radius (where jets
are launched), and N the number of jets. Equation ()
includes the effect of jet spreading at the maximum
rate 2Cs/(v — 1), where Cs is the sound speed, and
thus provides an upper bound on r,,. We choose r,, =
75 cm as an upper bound, corresponding to N = 60
and M = 10 (see Fig. [@). Lower N and higher M will
result in lower 7, and therefore lower Ej.

To determine L, we assume that the initial jet length
equals L at r,,. Upgrades to pulsed coaxial guns [30] for
the subscale plasma-liner-formation experiments were
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0 : : :
10 20 30 40 50

Mach number

Fig. 9 Jet-merging radius r,, vs. M for different numbers of
plasma jets, assuming r;jo = 5 cm, 7o, = 110 cm, and v = 1.3.

expected to achieve L = 10 cm (and indeed recently
have done so [31]), and thus we use L = 10 cm.

The minimum ng at 7, is determined based on satis-
fying the collisionality requirement 7; < Timplosion, i-€-,
™ (4.80 x 10~8Z44=1/2p,; log AT, */%)~1

= <1
T JV
" /2Tz‘3/2v
4.80 x 10=8Z4log Ary,
where we have used p = 14.01 (nitrogen), T = 2 eV,
v=>50km/s, Z=1,log A =7, and r,, = 75 cm. Thus,
we set ng > 104 to strongly satisfy the collisionality re-
quirement. Note that if T rises during liner convergence,
the minimum ng requirement will decrease due to the
T3%) 74 ~ T2 scaling (where, again, Z ~ T/2 is
used as a simple model for ionization).
For v, we refer to Fig. [[ to see that we must have
v = 50 km/s to have M = 10 for nitrogen, which is the
lowest-mass element being considered that will allow us
to get M = 10 while staying well below v = 100 km/s.
Finally, using Eq. @B) and a PROPACEOS non-LTE
nitrogen EOS, we verify that v < 5/3 for a nitrogen
plasma liner so as to have the desirable energy sink
from ionization and atomic excitation to keep M high,
as exhibited by xenon (Fig.[d). Figure[I0(a) shows that
a nitrogen plasma liner in a subscale experiment would
have v < 1.3 for the most-relevant range of T' ~ 1-
10 eV. Argon, which is also being used extensively in
the subscale experiment, has v < 1.4 for the same range

Timplosion

~ 2 x10'% cm™3,

[Fig. IO(b)].
With the values r,, = 75 cm, L = 10 cm, ng =
10 em=3, v = 50 km/s, and nitrogen as the liner

species, Eq. @) tells us that Ey = 2.1 kJ and Mjiper =
1.65 mg. To obtain scaling data in the subscale exper-
iment with species up to xenon would require nearly a
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Fig. 10 Contours of polytropic index v as a function of T’
(=T. = T;) and n; for (a) nitrogen and (b) argon, calculated
using Eq. () and non-LTE EOS tables from PROPACEOS.

factor of ten higher mass (15.4 mg) and energy (19.7 kJ).
To further scale up ny an order of magnitude or v up by
a factor of three (or some combination thereof) would
require another factor of ten higher in energy, result-
ing in Fy ~ 200 kJ for the ideal subscale plasma-liner-
formation experiment, capable of a decade in energy
scaling for the heaviest element xenon.

Due to budgetary constraints, the subscale plasma-
liner-formation experiment now being developed [1] is
expected to culminate with N = 36 guns and total ca-
pacitor stored energy of Fc,, = 260 kJ. For M = 10
and N = 36, Fig. @ shows that r,,, ~ 65 cm. Using v =
50 km/s and L = 10 cm, Eq. (@) gives Fy = 14.5 kJ for
xenon. If the gun electrical efficiency is n = 0.25 (as sug-
gested by the ongoing work [3TI[]), then the maximum
liner energy is nEecap = 65 kJ, meaning there is still a
reasonable factor of 4.5 headroom above Ey = 14.5 kJ
(xenon) for scaling studies. Lower-mass species would
have a higher headroom in energy for scaling studies.
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5 Summary

We laid out the key requirements of a subscale plasma-
liner-formation experiment to produce data of direct
relevance for addressing key scientific issues of a full-
scale, reactor-relevant plasma liner. The key scientific
issues of plasma-liner formation via merging hypersonic
plasma jets being addressed in the near term are: (1) de-
termining the scaling of peak liner ram pressure with
initial plasma-jet parameters, and (2) assessing liner
non-uniformity and prospects for non-uniformity con-
trol.

To ensure that a subscale plasma-liner-formation ex-
periment can address the above issues in a way that is
relevant to the full-scale plasma liner, we identified key
physics criteria that must be satisfied in the subscale ex-
periment. These criteria are: (1) the plasma liner must
be very collisional all the way from the merging radius
to stagnation, (2) the liner Mach number must be high,
i.e., M > 10, (3) the liner species must satisfy M > 10
while possessing the EOS and radiative properties, i.e.,
v < 5/3, of a high-Z species such as Xe, as desired in a
fusion-relevant liner.

A thirty-six-gun experiment with liner kinetic en-
ergy up to Fy = 65 kJ that satisfies the physics criteria
and requirements presented in this paper is now under
development [1].
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