

What randomized benchmarking actually measures

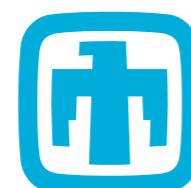
Timothy Proctor

Kenneth Rudinger

Kevin Young

Mohan Sarovar

Robin Blume-Kohout



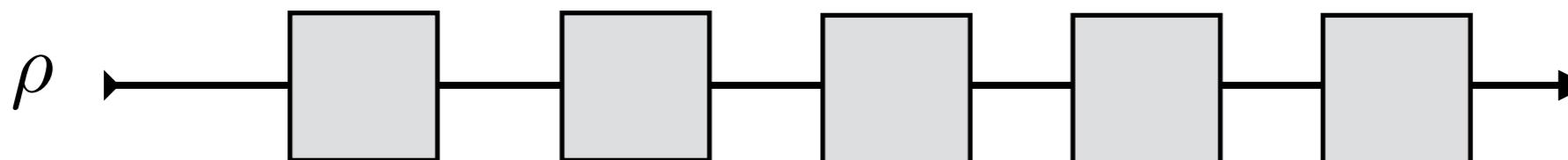
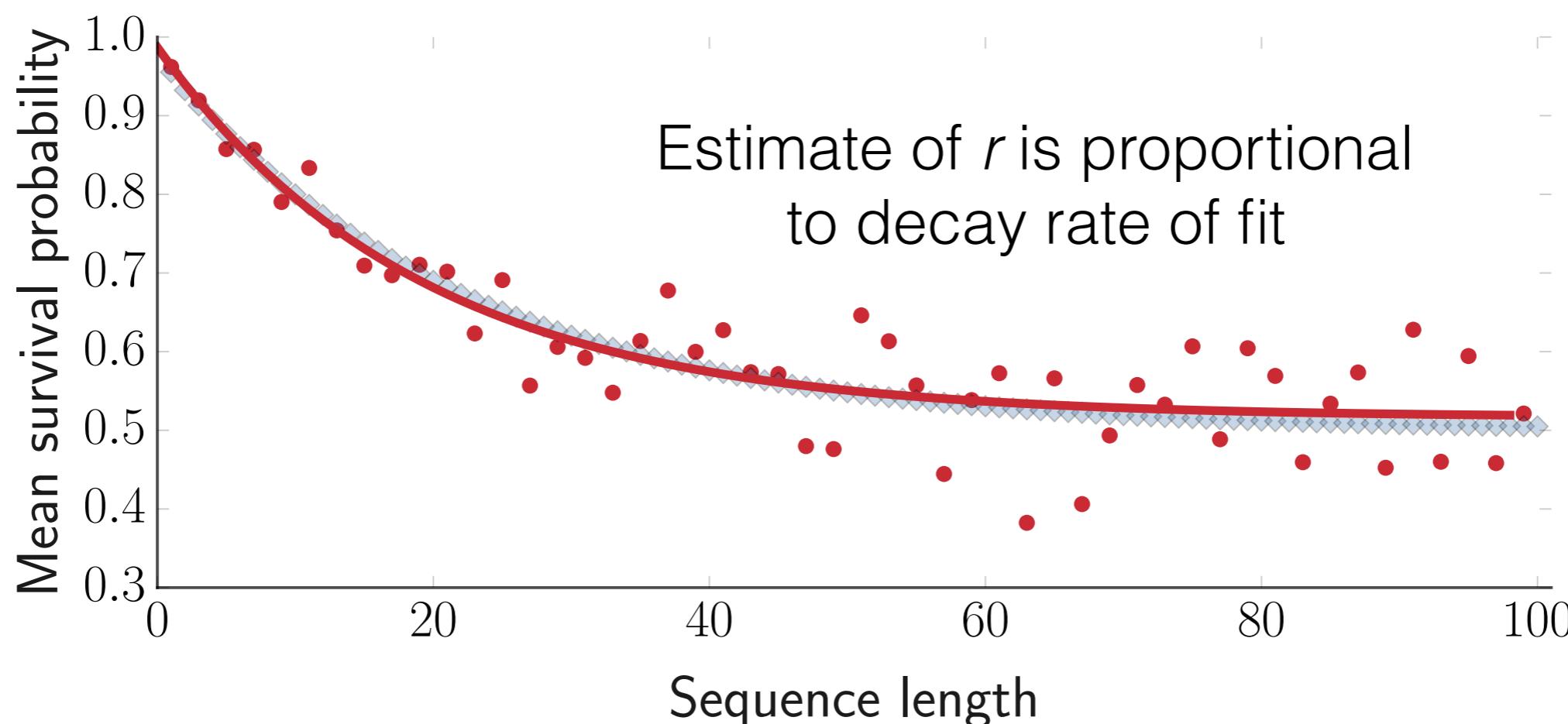
Sandia National Laboratories

Office of the Director of National Intelligence
I A R P A
BE THE FUTURE

Randomized benchmarking

Imperfect Cliffords gates: $\tilde{\mathcal{C}} = \{\tilde{C}_i\}$

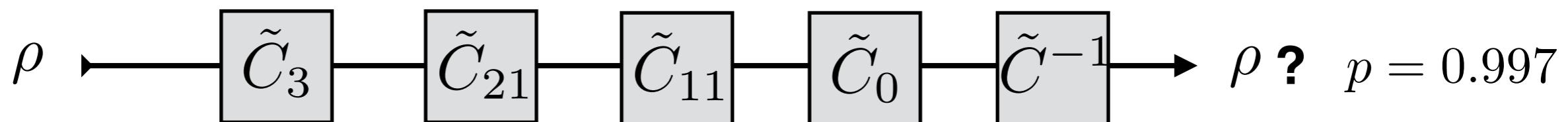
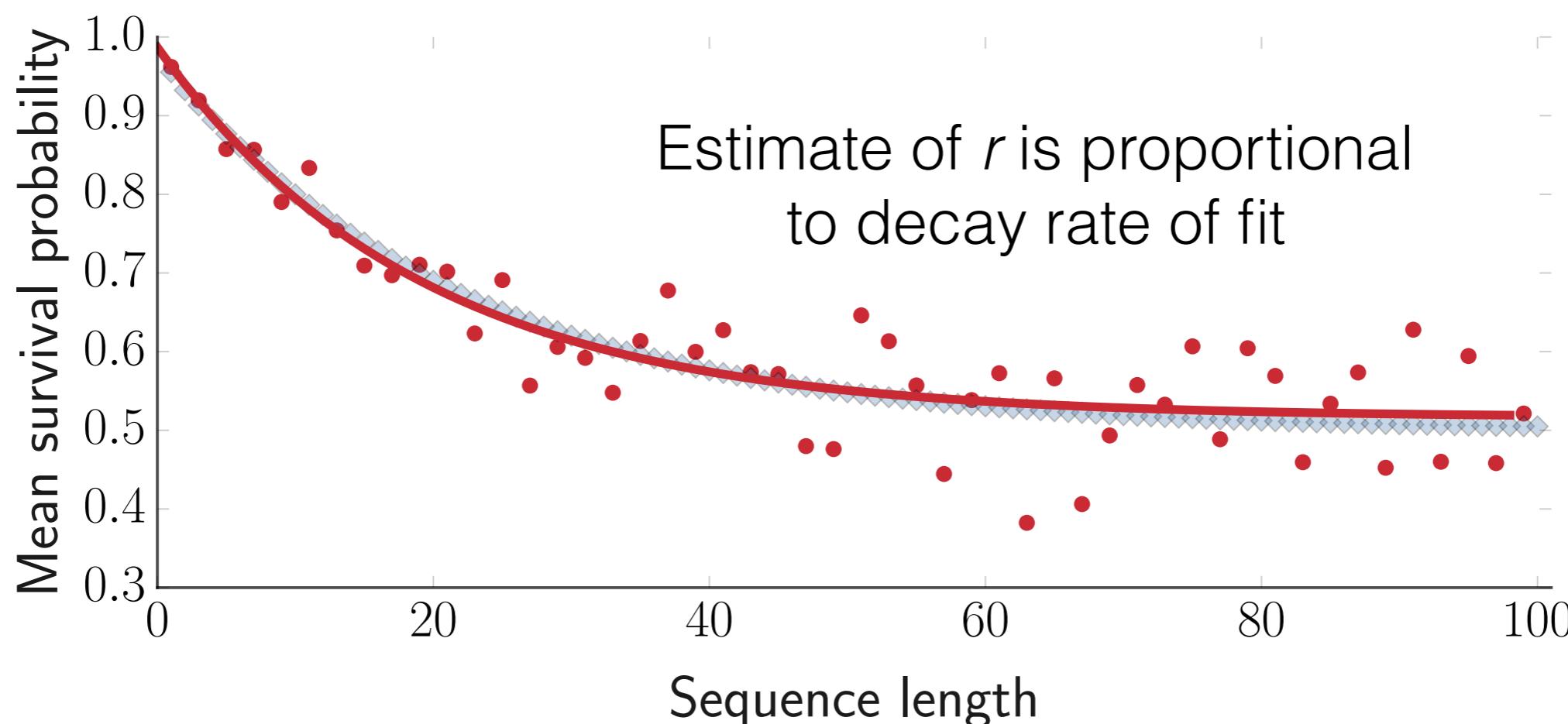
Implement **random** identity Clifford circuits of length m :



Randomized benchmarking

Imperfect Cliffords gates: $\tilde{\mathcal{C}} = \{\tilde{C}_i\}$

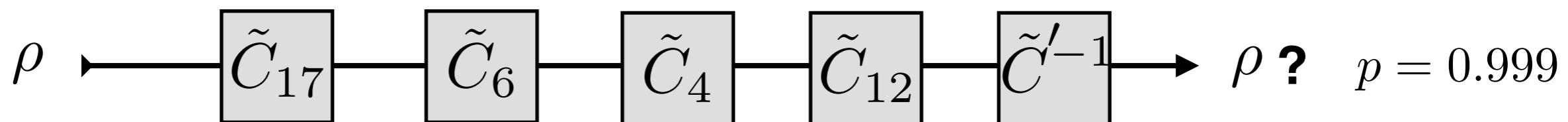
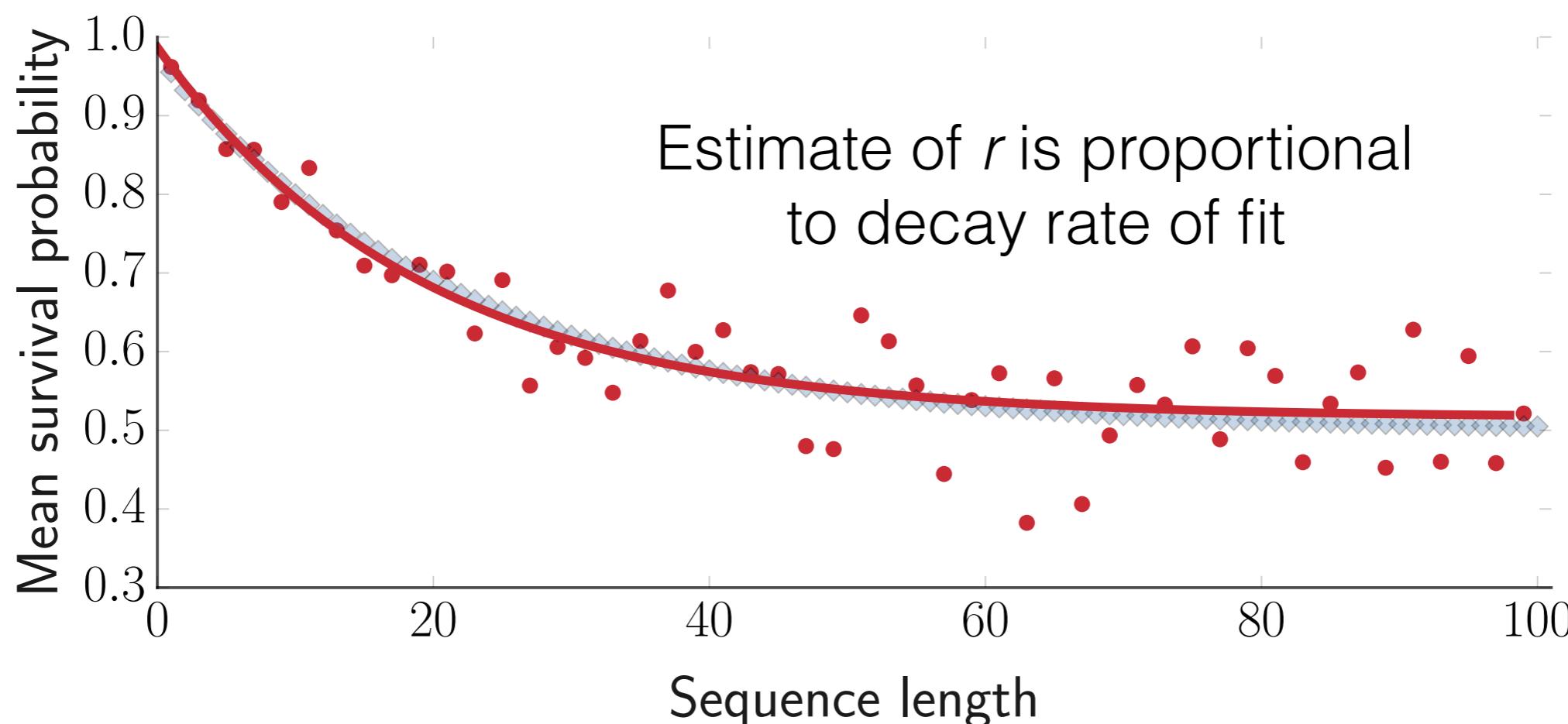
Implement **random** identity Clifford circuits of length m :



Randomized benchmarking

Imperfect Cliffords gates: $\tilde{\mathcal{C}} = \{\tilde{C}_i\}$

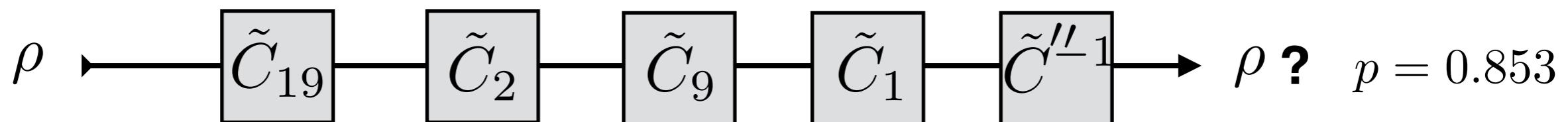
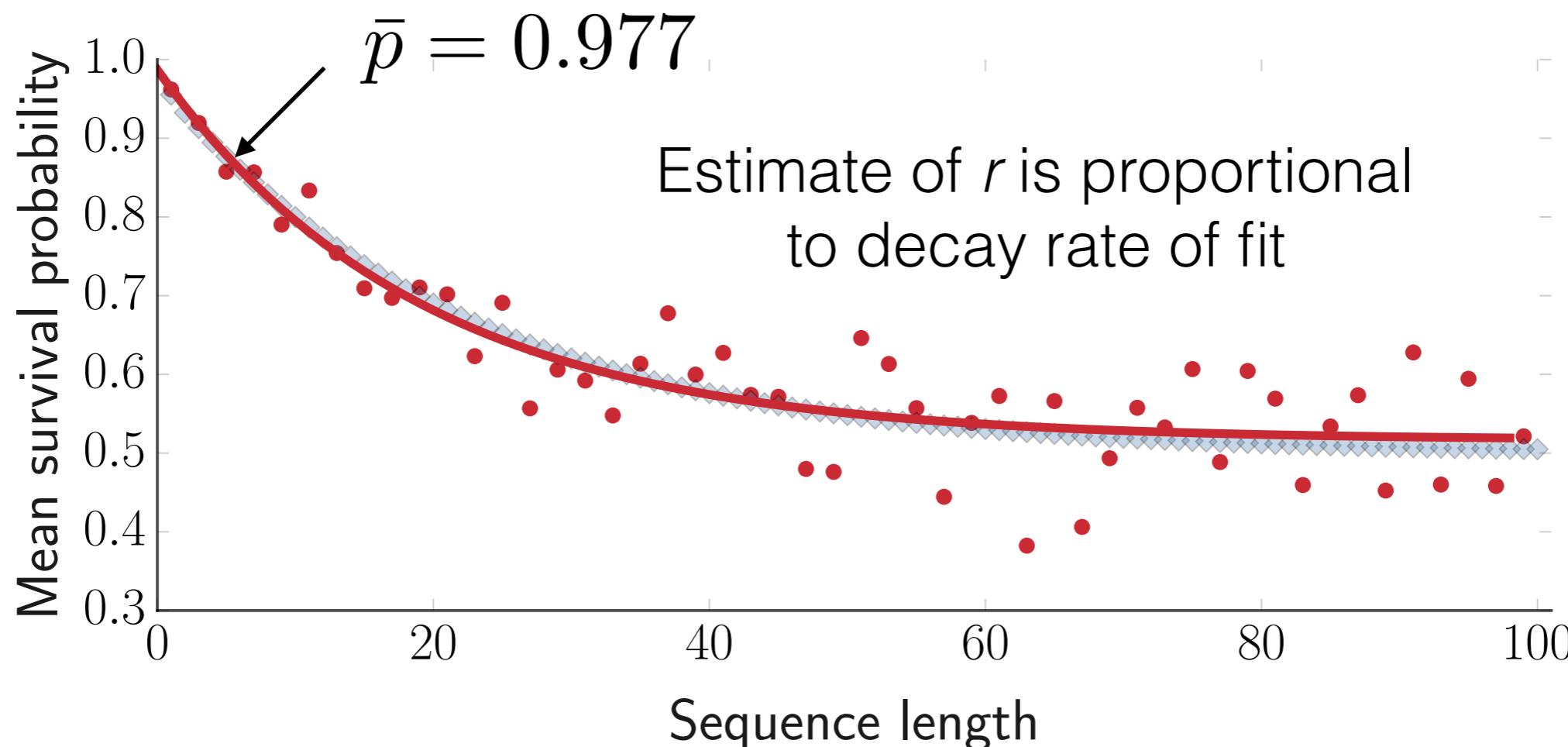
Implement **random** identity Clifford circuits of length m :



Randomized benchmarking

Imperfect Cliffords gates: $\tilde{\mathcal{C}} = \{\tilde{C}_i\}$

Implement **random** identity Clifford circuits of length m :



Randomized benchmarking

Assume \tilde{C}_i are fixed matrices.

(This assumption is often violated in real-world RB. In that case RB can fail at estimating r . We are *not* concerned with this in this talk.)

Fogarty et al, PRA 92, 022326 (2015); Epstein et al PRA A 89, 062321 (2014).

What is RB measuring?

or, equivalently

What is r ?

What is RB measuring?

Average gate infidelity: $\epsilon_i = 1 - \int d\psi \text{ Tr} \left(\tilde{C}_i[|\psi\rangle\langle\psi|] C_i[|\psi\rangle\langle\psi|] \right)$

The diagram illustrates the decomposition of an imperfect Clifford gate \tilde{C}_i into a perfect Clifford gate C_i and a unitary operator U . The imperfect Clifford gate \tilde{C}_i is shown as a box with an arrow pointing to it from the left. An arrow points from this box to a perfect Clifford gate C_i (also in a box). A third arrow points from the C_i box to a unitary operator U (in a box). The text "Imperfect Clifford" is positioned under the \tilde{C}_i box, and "Perfect Clifford" is under the C_i box. The text "Unitary" is under the U box.

This is the fidelity between perfect and imperfect output of the gate, averaged over all pure inputs.

Average gateset infidelity (AGSI): $\epsilon = \text{avg}_i[\epsilon_i]$

What is RB measuring?

Average gate infidelity: $\epsilon_i = 1 - \int d\psi \text{Tr} \left(\tilde{C}_i[|\psi\rangle\langle\psi|] C_i[|\psi\rangle\langle\psi|] \right)$

↑
↑

Imperfect Clifford Perfect Clifford

The literature claims:

γ ≈ ε

This is wrong!

Average gateset infidelity (AGSI): $\epsilon = \text{avg}_i[\epsilon_i]$

E. Magesan, *et al.* PRL. 106, 180504 (2011); E. Magesan, *et al.* PRA 85, 042311 (2012); J. J. Wallman and S. T. Flammia, NJP 16, 103032 (2014); J. M. Epstein et al. PRA 89, 062321 (2014); E. Magesan et al. PRL 109, 080505 (2012); J. Wallman et al. NJP 17, 113020 (2015); J. M. Gambetta et al. PRL 109, 240504 (2012); J. Helsen et al. arXiv:1701.04299 (2017); A. Carignan-Dugas et al. PRA 92, 060302 (2015)

What is RB measuring?

Gauge

Initial state (density matrix): ρ

Gates (superoperators): \tilde{C}_i

Measurement (POVM element): E_ρ

See e.g., Merkel *et al.* PRA 87, 062119 (2013); Blume-Kohout *et al* Nat. Comm. 8, 14485 (2017)

The literature claims: $r \approx \epsilon$. This is wrong...

What is RB measuring?

Gauge

Initial state (density matrix):

$$\rho \longrightarrow M(\rho)$$

Gates (superoperators):

$$\tilde{C}_i \longrightarrow M \circ \tilde{C}_i \circ M^{-1}$$

Measurement (POVM element):

$$E_\rho \longrightarrow M^{-1}(E_\rho)$$

All observable properties of a gateset are **invariant** under such a transformation.

See e.g., Merkel *et al.* PRA 87, 062119 (2013); Blume-Kohout *et al* Nat. Comm. 8, 14485 (2017)

The literature claims: $r \approx \epsilon$. This is wrong...

What is RB measuring?

Gauge

Initial state (ρ)

Gauge transformations act on

Gates (super)

matrices ***representing*** physical
gates

Measuremen

(ρ)

$\tilde{C}_i \circ M^{-1}$
(E_ρ)

They are ***not*** physical
transformations!

All ~~physical~~
invariant under gauge transformation.

See e.g., Merkel *et al.* PRA 87, 062119 (2013); Blume-Kohout *et al* Nat. Comm. 8, 14485 (2017)

The literature claims: $r \approx \epsilon$. This is wrong...

What is RB measuring?

Average gate infidelity: $\epsilon_i = 1 - \int d\psi \text{ Tr} \left(\tilde{C}_i [|\psi\rangle\langle\psi|] C_i [|\psi\rangle\langle\psi|] \right)$

Average gateset infidelity (AGSI): $\epsilon = \text{avg}_i[\epsilon_i]$

Gauge transformations act on these.

The literature claims: $r \approx \epsilon$. This is wrong...

What is RB measuring?

Average gate infidelity: $\epsilon_i = 1 - \int d\psi \text{ Tr} \left(\tilde{C}_i [|\psi\rangle\langle\psi|] C_i [|\psi\rangle\langle\psi|] \right)$

Average gateset infidelity (AGsl): $\epsilon = \text{avg}_i[\epsilon_i]$

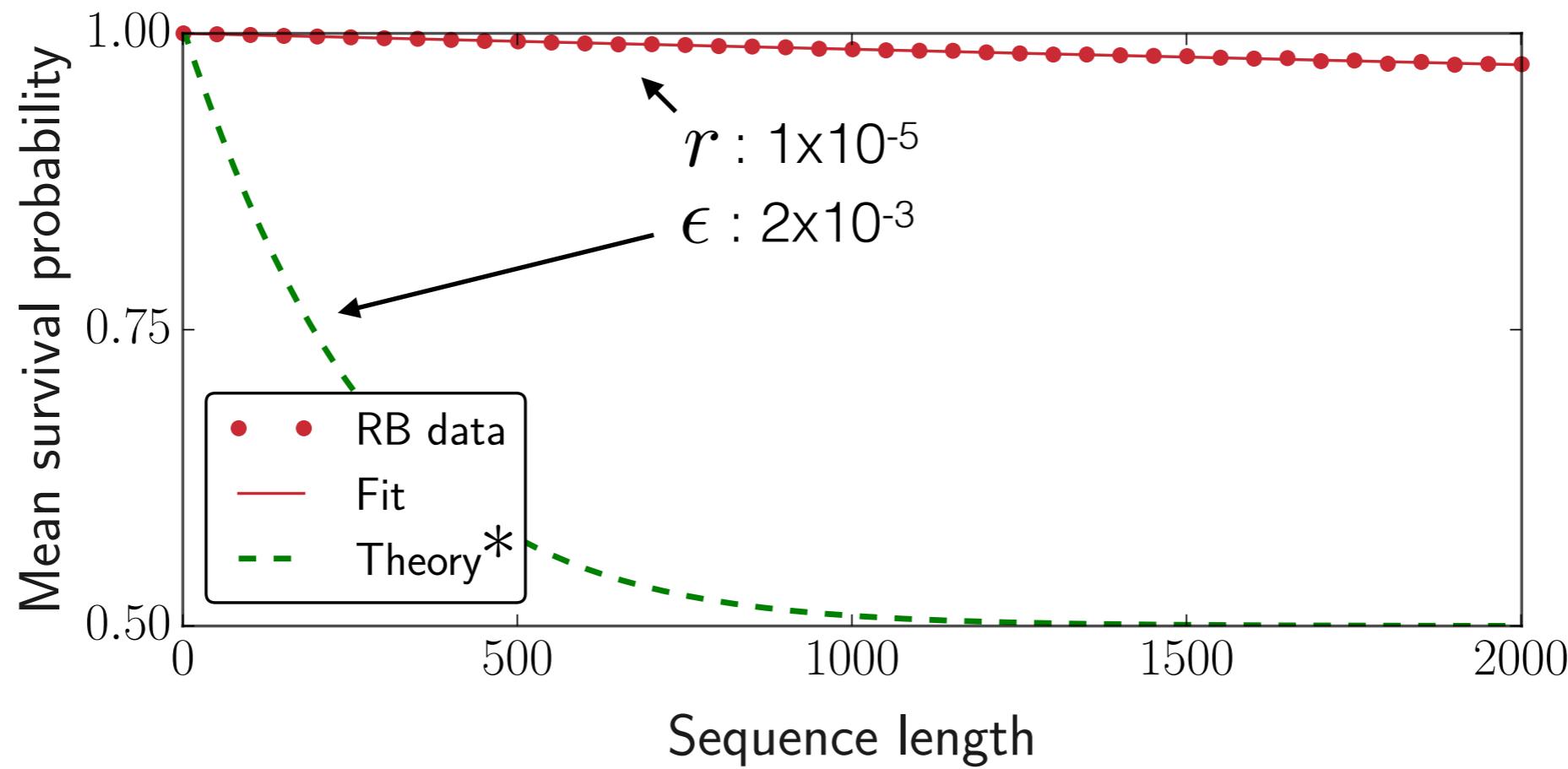
Gauge transformations act on these.

AGI and AGsl are not gauge-invariant!

RB does not measure AGsl.

The literature claims: $r \approx \epsilon$. This is wrong...

An example



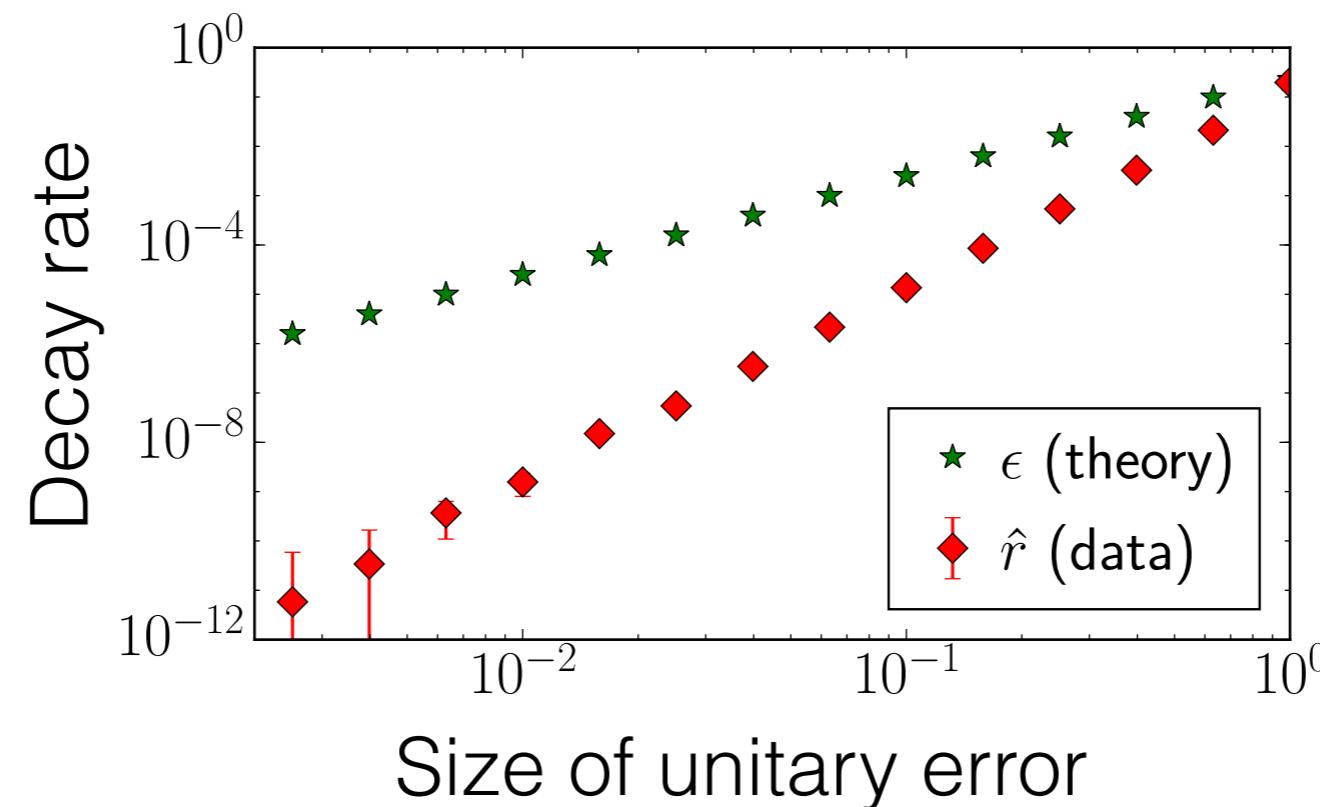
* E. Magesan, *et al.* PRL. 106, 180504 (2011); E. Magesan, *et al.* PRA 85, 042311 (2012).

The error model

single qubit Cliffords $\tilde{X}_{\frac{\pi}{2}} = e^{-i\frac{\theta}{2}Z} e^{-i\frac{\pi}{4}X}$
 compiled from $\tilde{Y}_{\frac{\pi}{2}} = e^{-i\frac{\theta}{2}Z} e^{-i\frac{\pi}{4}Y}$

The literature claims: $r \approx \epsilon$. This is wrong...

An example



E. Magesan, *et al.* PRL. 106, 180504 (2011); E. Magesan, *et al.* PRA 85, 042311 (2012).

The error model

single qubit Cliffords $\tilde{X}_{\frac{\pi}{2}} = e^{-i\frac{\theta}{2}Z} e^{-i\frac{\pi}{4}X}$
compiled from $\tilde{Y}_{\frac{\pi}{2}} = e^{-i\frac{\theta}{2}Z} e^{-i\frac{\pi}{4}Y}$

The literature claims: $r \approx \epsilon$. This is wrong...

Conclusions

RB does not measure AGsI ϵ (also called “average error rate”).

No protocol can estimate AGsI.

Why should you care?

The RB number as a metric relevant to e.g., fault tolerance, is justified by $r \approx \epsilon$ which is **not** true.

“Advanced” RB protocols have similar issues (e.g., interleaved RB, etc...)

**Interested in further details? Including a new theory for the RB decay?
see: arXiv:1702.01853**