SAND2017-2702C

Toward Resilient Task
Parallel PDE Solvers

Keita Teranishi), Marc Gamell?), Nicole
SlattengrentYand Manish Parashar(?

Sandia National Laboratories, CA, USA () iim

Rutgers University, NJ, USA @g RUTGERS

Funded by ASC CSSE Program.
\

U.S. DEPARTMENT OF VYA 1\
@EiERey NYSa 4

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Scalable Resilience for HPC applications @&z

= Future systems are expected to be less reliable
= More components, shrinking, power etc.
= Anecdotes indicate that the majority of application failures
happens at single node, i.e. local failures.

= Exisitng Checkpoint-Restart approach is not a proportional response
to local failures.

= Undue cost associated with “Termiante + Restart”

7| Netora

Motivating Use Case — S3D Production™
Runs

3901s 1617s 1612s «— Recovery+rollback overhead —— 4439s 1928s 6025s
] [[]] Ill_\] III_\] [i] [i [[] [Ill_\ [‘ i H
] []] [] [] [H] [L] |] [[l i i H
0 1 00(10 ‘ ZOOOF 31)000 40000 50000 ‘ 600’00 TOOO ‘ }BOOOO 86400
Execution wall time (s)

Total cost
= 24-hour tests using Titan (125k cores) Checkpoint (per timestep) 55 s 1.72 %
" Reported MTBF of 8 hours Restarting processes 470 s 5.67 %

= 9 process/node failures over 24 hours
F_) / o V . u Loading checkpoint 44 s 1.38 %

= Failures are promoted to job failures,
causing all 125k processes to exit Rollback overhead 1654 s 22.63 %
= Checkpoint (5.2 MB/core) has to be done Total overhead 31.40 %

to the PFS

Motivating Use Case — Problem Intragyctjon
Summary

3901s 1617s 1612s «— Recovery+rollback overhead —— 4439s 1928s 6025s

— —_— —_— — —_—— ———

]]] (]]]]]
(]]] (]]]]]

0 1000‘0‘ 2000F 31)000 40000 50000 ‘soo’oo 7’0000 ‘ koooo 86400
Execution wall time (s)

= Current checkpoint cost, ~“1 min _
Infeasible

= Total recovery+rollback cost, ~“36 min

Traditional C/R or runtime-based offline techniques are
= not efficient in current systems
= not possible in future systems

Our Solution: Online Failure Recovery

th

= Software framework to augment existing apps with resilience
capability
= The remaining processes stay alive with isolated process/node failure

= Multiple implementation options for recovery
= Roll-back, roll-forward, asynchronous, algorithm specific, etc.

= Hot Spare Process for recovery

Solution #1 :Global Online Recovery @&

1. Process recovery: Recover failures without promoting to job failures
= Framework for online, semi-transparent recovery

. " App + libs
Targets SPMD, message passing applications -« Fenix
* Tolerates hard failures (spare or spawned ranks) Runtime
e Keep process memory (may contain valuable
: 0.S.
data or checkpoints)
2. Data recovery: Optimize checkpointing
e Store application-specific data in-memory
e Coordinate checkpoint creation implicitly
— Fully coordinated checkpointing —> consistency, but barrier-like constructs
— Uncoordinated checkpointing —> efficient, but no consistency guarantees

Implicitly Coordinated Checkpointing
Applications know consistent points!

— Implicit coordination: create consistent checkpoints without communication
— Consistency guaranteed by checkpointing at the same “logical” time

Fenix 1.0 Specification (SAND2016-9171 |1l &=.

= Fault Tolerant Programming Framework for
MPI Applications

= Separation between process and data recovery 7

= Allows third party software for data recovery

Unlimited Release

= Multi P le Execution Models Specification of Fenix MPI Fault Tolerance

library
version 1.0

= Process recove ry

= Extend MPI-ULFM (prototype of MPI Fault
Tolerance) to shield the users from low-level MPI
features

" Process recovery through spare process pool

" Process failure is checked at PMPI layer and recovery
happens under the cover () sonda Mol Lbortores

= Data recovery
" In-memory data redundancy
* Multi-versioning (similar to GVR by U Chicago &ANL)

Original

REAL :: stime

REAL, ALLOCATABLE, DIMENSION(:,:,:, :) :: yspc

! other initializations

! Setup MPI, Cartesian MPI grid, etc.
call initialize_topology(6, nx, ny, nz, &
npx, npy, npz, &
iorder, iforder)

! Setup grid - scale arrays for stretched grid
! used in derivatives, coordinates useful for
! generating test data
call initialize grid(6)

! Allocate derivative arrays
call initialize derivative(6)

allocate(T(nx,ny,nz))
allocate(P(nx,ny,nz))
allocate(deriv_result(nx,ny,nz,nslvs,3))
allocate(deriv_sum(nx,ny,nz,nslvs}))
allocate(yspc(nx,ny,nz, nslvs))
allocate(wdot(nx,ny,nz, nslvs))
allocate(rho(nx.nv.nz)) THK

! Setup test data

xshift = (xmax - xmin)*@.1

yshift = (ymax - ymin)*0.1

zshift = (zmax - zmin)*@.1

do k =1, nz
do j
do i
'HK in Kelvin
T(i,j.k) = 1000.0%(sin(x(i)-xshift)*sin(y(j)-yshift)=sin(z(k)-
zshift)) + 1500.0

non
Zoo
-

1.8 - sum(yspc(i,j,k, 1:nslvs-1))

P(i,j.k) = 12.0*pres_atm !HK.
enddo

enddo

enddo

12 atm expressed in SI units

TIMESTEPHlldo itime = 1, ntsteps
! ITERATE AND UPDATE YSPC

enddo TIMESTEP

VS

Fenix-enabled

€ #include "fenix f.h"

4= REAL, TARGET :: stime
REAL, ALLOCATABLE, DIMENSION(:,
-> INTEGER ckpt_itime, ckpt_yspc;
INTEGER, TARGET :: world;

t,), TARGET :: yspc

€itime = 1
! other initializations

€ allocate(T(nx,ny,nz))

-> allocate(P(nx,ny,nz))
allocate(deriv_result(nx,ny,nz,nslvs,3))
allocate(deriv_sum(nx,ny,nz,nslvs))
allocate(yspc(nx,ny,nz, nslvs))
allocate(wdot(nx,ny,nz, nslvs))
allocate(rho(nx,ny,nz)) THK

S3D Modifications

* Only 35 new, changed, or
rearranged lines in S3D code

onm_s1ze! , Npes, lerr

call MPI_Comm dup(MPI_COMM WORLD, gcomm, ierr)

used in the Boundary conditions

call MPI_Comm split(gcomm, xid, myid, yz comm,
call MPI_Comm split(gcomm, yid, myid, xz comm,
call MPI_Comm split(gcomm, zid, myid, xy comm,

ol o oo
: On |y 35 new
’ (::: I l iEEl I I‘!Egi ‘EEE ‘::I ‘:::’ I’.
) (::i I .
. !EE;':EE;’ |[:::’ (::I
z = call
=» € if(process status.eq.FENIX PROC_NEW) then
yspe(i,j,k,:) = 6.01
.1
7
= 0.05
i,j.k,4) =0.085
yspc(i,j,k,nslvs) = 1.6 - sum(yspc(i,j,k, 1:nslvs-1))
= € endif
P(i,j,k) = 12.@*pres_atm !HK. 12 atm expressed in SI units
enddo
enddo
enddo
> €d
if(mod(itime-1,CHECKPOINT PERIOD).eq.0) then
call FT_Checkpoint(ckpt_yspc);
- call FT_Checkpoint(ckpt_itime);

endif
! ITERATE AND UPDATE YSPC
€ itime = itime + 1

if(itime .gt. ntsteps) exit
enddo

! Create MPI Comminicators for boundary planes.

I Create communicator duplicate for global calls

! Create communicators for the x, y, and z directions

call MPI_Comm_split(gcomm, mypy+1886*mypz, myid, xcomm,ierr)
call MPI_Comm_split(gcomm, mypx+168@*mypz, myid, ycomm,ierr)
call MPI Comm split(gcomm, mypx+168@*mypy, myid, zcomm,ierr)

nction

y module

VS Fenix-enabled

= < call MPI_Comm_rank(world, myid, ierr)

call MPI Comm size(world, npes, ierr)

I Create communicator duplicate for global calls
= € gcomm = world

! Create communicators for the x, y, and z directions

call MPI_Comm_split(gcomm, mypy+1886*mypz, myid, xcomm,ierr)

call MPI_Comm split(gcomm, mypx+1888*mypz, myid, ycomm,ierr)

call MPI Comm split(gcomm, mypx+1888*mypy, myid, zcomm,ierr)
4 call FT_Comm_add(xcomm);

This is call FT_Comm_add(ycomm);
call FT Comm_add({zcomm);
ierr)
ierr) ! Create MPI Comminicators for boundary planes. This is
ierr) ~ used in the Boundary conditions

call MPI_Comm split(gcomm, xid, myid, yz comm, ierr)
call MPI_Comm_split(gcomm, yid, myid, xz_comm, ierr)
call MPI Comm split(gcomm, zid, myid, xy comm, ierr)
€ call FT_Comm add(yz comm);
call FT_Comm_add(xz_comm
call FT_Comm add(xy_comm

b

86400
I
i
600

€ sz = =

6025s
|
i
|
i
|
i

|
i
I
i
500

1928s
70000
|
I
|
]
|
]

60000
I
i
I
i
1
Hi

——> 4439s
]
I
]
]
400

Injecting node failures (16-core failures)

Uses S3D (scientific application)
Titan Cray XK7 (#3 on top500.0rg)

==

50000
I
i
1
i
1

|
I
1
1
]
|
Execution wall time (s)

Recovery+rollback overhead
40000
| |
1 I
| |
| I
11
1] I
300

31%
10 %
15 %
31%

== - ——

30000
I
i
|
i
I
i

161258 «——
|
|
T
i
I
i
200

94 s
a7 s

1617s

20000
MTBF
2.6 h
189 s

kpoint:
I
I
Proc. recovery |
Data recovery
100

I—— Failures —~

3901s
hec
1]
IH

10000
I
I

Global Online Recovery — Results
Total overhead

Global recovery
Global recovery
Global recovery

Production

o2 < ~
uni ® o <

-~

uonoNpoid () 491N weisAs paroalu)

Solution #2: Local Online Recovery @

= Fenix-1.0is a first step toward local recovery
= Avoid global termination and restart
= All processes rollback to the Fenix_Init() call
= Natural for algorithms and applications that makes collective calls
frequently
= Some applications fit more scalable recovery model
= Stencil Computation
= Master-Worker execution model

= Solution: Local Online Recovery

Local Recovery Methodology

1. Replace failed processes
2. Rollback to the last checkpoint (only replaced processes)
3. Other processes continue with the simulation

= How do we guarantee consistency?
= |Implicitly coordinated checkpoint
= |Log messages since last checkpoint in local sender memory

= Message logging has been studied in MPI fault tolerance and Actor
Execution Model (Charm++)

= Performance may not be optimal for many parallel applications

= Stencil computation provides built-in message logging == Ghost
Points

= |mplemented in new framework: FenixLR

Target: Stencil-based Scientific Application& .

Rank r4

Rank 75

Rank r;

Rank r3

Rank 79

Ghost from 7
Ghost from 79
Ghost from r3
Ghost from 71

i Data transfer

Application domain is
partitioned using a block
decomposition across
processes

Typically, divided into
iterations (timesteps),
which include:

= Computation to advance
the local simulated data

= Communication with
immediate neighbors

Example: PDEs using
finite-difference
methods, S3D

Performance Model of Local RecovefyE.

Simulated execution of a 1D PDE

Wall time

Rank

One failure

Rank

No failures

Effect of Multiple Failures with LocaI@ s,
Recovery

Simulated execution of a 1D PDE

==
J——t
——————————————————————ay———— _ ——————————————————
A

Wall time

Rank

One failure

Rank

No failures

Failur%ﬁag%ng

Experimental Evaluation with S3D * <&

= Same experiment executed injecting different number of failures

= X axis is rank number, but more complex to see than 1D, because 3D domain is mapped to
core ranking in a linear fashion

= Note that total overhead is as if only one failure occurred (except in 4224c 8f)

vt e L NN s, XWWINANAANNA A AN
-w" L'/)L"L*’I \/"""\"""”— -- e .M-” Lé\(,./\.;’ L \,),(A] A*,,,A,,,AA?(*,‘ __,'-ﬂr‘;\(*l lr"lr’] \ﬂ'\r""\r“_r"“\r‘"‘\ VaaVan Van f“%“-\ r—

(a) 4224c 1f (b) 4224c 2f (c) 4224c 4f (d) 4224c 8f

MMM AR AR VMMM AR AARAAAARAAR

AL MR IR AN Ao AL, m
IRy

L

LA | o | N S
'M‘ VA A~ 1a > 1 ey X)MWWWW\
2. SV - S ’ X AP VYA s
T v v v 1 1 YWY W M A A A AN A
AN AN AR v I M WA A A AN AR AR AN | ~ VMY YWY M YV VNSt mm o
ARV AN AN AN AMANANAAANANANAMAA A MAWMMAMAMAIAAN e s e MANNWANY NN A
AP AN AN ANAAANN A NNAANAANAANNAANIA JAMAMAMMAMMBAMARANAAAANASANMNARNNANNE Ly AN U NN P WA I A AN AN

e B I S S e

—
(q) 64128c 1f (r) 64128c 2f (s) 64128c 3f (t) 64128c 5f -

Experimental Evaluation UL

Goal

= Evaluate local recovery techniques using S3D on Titan to show
= Low overhead while recovering from node failures every 5 seconds
= Failure recovery is scalable
= Recovery overhead is not proportional to system size

Experiments
= Recovery scalability up to 262272 cores
= Total overhead of fault tolerance

Methodology

= Study the overheads related to the recovery processes
= Compare local vs global recovery

= Failure recovery cost can be decomposed into:

= Environment recovery
= Checkpoint fetching from neighbor (scalable, 130MB/core)
= Rollback cost (average of 1/2 iteration time, O(2.5 seconds), scalable)

Recovery Scalability Sl

= Using MTBF of 10s
= Core count from 4224 to 262272 (including 128 spare cores)
= Result shows the average recovery time for all failures injected.

0 0.05
()
E 0.04
S 0.03]
>
3
5 0.02]
@ 0.0H
S
& 0-
4224 8128 13952 32896 64128 140736262272
= Conch Core count (including 128 spare cores)

" Process recovery time is independent of system size
" Good scalability

Total Overhead of Fault Tolerance T

= End-to-end time vs 1.6-
failure-free, = 508 recovery (process+data+rollback) total time
checkpoint-free time g 15 checkpoint total time s
= Qverall overhead: Q . 240
. © 180
= Checkpoint
Total overhead
= Process/da 48
recovery Production (MTBF 2.6h) 31%]
= Rollback Global recovery (MTBF 189s) 10 %
e 4096 cores + Global recovery (MTBF 47s) 31% 48 | 48
sSpare cores Local recovery (MTBF 45s) 8% . .
e Right-most bar Local recovery (MTBF 20s) 25% | | |
global recover 40 45||47/G R
with MTBF ofl‘b]

= Local recovery has

scalability advantages
over global recovery * compare MTBF 45s (8%)

e with MTBF 47/GR (31%)

— Local recovery is superior to global recovery in this scenario:

Solution #3: Toward Resilient Asynchronous) s
Many Task (AMT) Parallel Execution Model
— i
= Qverlap of communication and computation
= QOver-decomposition of Data

= Node/Process Failure is manifested as loss of task and data
= Generic model for online local recovery
= Recovery is done through task replay

e Ji R J 0one [l Reoi

= AMT allows
= Concurrent task execution

19
-

Research Challenges

= How to express the resilience to the users?

= How to maintain the persistence of task and data?
= How to maintain the persistence of task scheduler?

= Need to store all runtime information?
= Similar to system-level checkpoint (TASCEL project at PNNL)

= How to reschedule task replay?

= How to build a framework?

Ongoing Work: Sandia ATDM Software e

- Application Level Resilience Abstraction

Portable Task Programmmg (PTP) Layer

B T S~ ey oy g =~y —-

Runtime Level Resilience Abstraction

Data ;
Runtime
Management

Transport Layer

Resource Allocation Middleware

- NVRAM, ParaIIeI 10
Computing Systems Computing Systems

Sandia-ATDM Software Stack ATDM Software Stack

= ATDM Program (Advanced Technology Development and
Mitigation) to prepare the software for future HPC systems

= Resilience AMT will serve abstraction in the frontend and backend
to bridge between applications and runtime

Example: Fenix(1.0)-ULFM Model @&

Application

Application Level Resilience Abstraction

Portable Task Programming (PTP) Layer
Runtime Level Resilience Abstraction

Data :
Runtime
Management

Transport Layer

Resource Allocation Middleware
NVRAM, Parallel 10

Computing Systems Computing Systems

= Fault Tolerant Message Passing for SPMD
= Assuming MPI-ULFM or its equivalent
= No task parallel programming layer
= Fenix takes major responsibility in data management. A better model is desired.

= Solution: Resilient DARMA, Sandia’s AMT Framework

22

Sandia

Architecture of DARMA =

Computing Systems

Sandia-ATDM Software Stack

= Provides an abstraction in multiple levels for:
= Ease of programming
= Sequential Semantics
= Publish/Fetch semantics for data exchange between tasks
= Support of multiple runtime options

= DARMA'’s data and task are translated to the runtime specific representations 23
- " " " " " " " "

Sandia

Resilient DARMA B

Computing Systems

= APl extensions
®= Frontend allows the users to describe application-specific based resilience
= Backend leverages resilient data warehouse for persistent storage for efficient task
replay
= Backend leverages resilience specific to runtime

= Checkpoint capability of Charm++

= Fenix+MPI 24

Conclusion) 2=,

= Scalable Application Recovery at Scale

= Extend Fault-Tolerant MPI prototype
= Hot spare procesess
" |In-meory checkpoiting

= Application specific message logging to allow localized online recovery

= Future work explore resilience in AMT runtime

= Require vertical integration

= Lots of opportunities on the horizon

Acknowledgement) 5,

= Janine Bennet, Robert Clay, Michael Heroux and Jeremiah
Wilke (Sandia National Labs)

= Sanjay Chatterjee and Vivek Sarkar (Rice U)
= George Bosilca, Aurélien Bouteiller and Thomas Herault

