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Scalable Resilience for HPC applications

 Future systems are expected to be less reliable
 More components, shrinking, power etc.

 Anecdotes indicate that the majority of application failures 
happens at single node, i.e. local failures.
 Exisitng Checkpoint-Restart approach is not a proportional response 

to local failures.

 Undue cost associated with “Termiante + Restart” 
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Motivating Use Case – S3D Production 
Runs

 24-hour tests using Titan (125k cores)

 Reported MTBF of 8 hours
 9 process/node failures over 24 hours

 Failures are promoted to job failures, 
causing all 125k processes to exit

 Checkpoint (5.2 MB/core) has to be done 
to the PFS

Total cost

Checkpoint (per timestep) 55 s 1.72 %

Restarting processes 470 s 5.67 %

Loading checkpoint 44 s 1.38 %

Rollback overhead 1654 s 22.63 %

Total overhead 31.40 %



Motivating Use Case – Problem 
Summary

 Current checkpoint cost, ~1 min

 Total recovery+rollback cost, ~36 min

Traditional C/R or runtime-based offline techniques are
 not efficient in current systems
 not possible in future systems

Infeasible

Introduction



Our Solution: Online Failure Recovery
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 Software framework to augment existing apps with resilience 
capability
 The remaining processes stay alive with isolated process/node failure

 Multiple implementation options for recovery
 Roll-back, roll-forward, asynchronous, algorithm specific, etc.

 Hot Spare Process for recovery



1. Process recovery: Recover failures without promoting to job failures

2. Data recovery: Optimize checkpointing

• Store application-specific data in-memory 

• Coordinate checkpoint creation implicitly

Solution #1 :Global Online Recovery

O.S.O.S.

RuntimeRuntime

App + libsApp + libs
FenixFenix

– Fully coordinated checkpointing consistency, but barrier-like constructs

– Uncoordinated checkpointing efficient, but no consistency guarantees

Implicitly Coordinated Checkpointing

Applications know consistent points!

– Implicit coordination: create consistent checkpoints without communication

– Consistency guaranteed by checkpointing at the same “logical” time

 Framework for online, semi-transparent recovery

 Targets SPMD, message passing applications

 Tolerates hard failures (spare or spawned ranks)

• Keep process memory (may contain valuable 
data or checkpoints)



Fenix 1.0 Specification (SAND2016-9171)

 Fault Tolerant Programming Framework for
MPI Applications
 Separation between process and data recovery

 Allows third party software for data recovery

 Multiple Execution Models 

 Process recovery

 Extend MPI-ULFM (prototype of MPI Fault 
Tolerance) to shield the users from low-level MPI 
features

 Process recovery through spare process pool

 Process failure is checked at PMPI layer and recovery 
happens under the cover 

 Data recovery 

 In-memory data redundancy

 Multi-versioning (similar to GVR by U Chicago &ANL)
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S3D Modifications

Topology module

Main function

• Only 35 new, changed, or 
rearranged lines in S3D code

Original                       vs Fenix-enabled

Original                vs Fenix-enabled

Only 35 new, 
changed, or 

rearranged lines 
in S3D code



Global Online Recovery – Results

MTBF Total overhead

Production 2.6 h 31 %

Global recovery 189 s 10 %

Global recovery 94 s 15 %

Global recovery 47 s 31 %

• Uses S3D (scientific application)

• Titan Cray XK7 (#3 on top500.org)

• Injecting node failures (16-core failures)



Solution #2: Local Online Recovery

 Fenix-1.0 is a first step toward local recovery
 Avoid global termination and restart

 All processes rollback to the Fenix_Init() call

 Natural for algorithms and applications that makes collective calls 
frequently

 Some applications fit more scalable recovery model
 Stencil Computation

 Master-Worker execution model

 Solution: Local Online Recovery
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Local Recovery Methodology

1. Replace failed processes

2. Rollback to the last checkpoint (only replaced processes) 

3. Other processes continue with the simulation

 How do we guarantee consistency?
 Implicitly coordinated checkpoint

 Log messages since last checkpoint in local sender memory

 Message logging has been studied in MPI fault tolerance and Actor 
Execution Model (Charm++) 

 Performance may not be optimal for many parallel applications

 Stencil computation provides built-in message logging == Ghost 
Points

 Implemented in new framework: FenixLR



Target: Stencil-based Scientific Applications

 Application domain is 
partitioned using a block 
decomposition across 
processes

 Typically, divided into 
iterations (timesteps), 
which include:
 Computation to advance 

the local simulated data

 Communication with 
immediate neighbors

 Example: PDEs using 
finite-difference 
methods, S3D
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Simulated execution of a 1D PDE



Multiple failures,
no delay overlap

One failureNo failures

Effect of Multiple Failures with Local 
Recovery

Simulated execution of a 1D PDE
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Experimental Evaluation with S3D

 Same experiment executed injecting different number of failures

 X axis is rank number, but more complex to see than 1D, because 3D domain is mapped to 
core ranking in a linear fashion

 Note that total overhead is as if only one failure occurred (except in 4224c 8f)

Failure Masking



Experimental Evaluation
Goal

 Evaluate local recovery techniques using S3D on Titan to show

 Low overhead while recovering from node failures every 5 seconds

 Failure recovery is scalable

 Recovery overhead is not proportional to system size

Experiments

 Recovery scalability up to 262272 cores

 Total overhead of fault tolerance

Methodology

 Study the overheads related to the recovery processes

 Compare local vs global recovery

 Failure recovery cost can be decomposed into:

 Environment recovery

 Checkpoint fetching from neighbor (scalable, 130MB/core)

 Rollback cost (average of 1/2 iteration time, O(2.5 seconds), scalable)



Recovery Scalability

 Using MTBF of 10s

 Core count from 4224 to 262272 (including 128 spare cores)

 Result shows the average recovery time for all failures injected.

 Conclusion: 

 Process recovery time is independent of system size

 Good scalability

Local Recovery



Total Overhead of Fault Tolerance

 End-to-end time vs
failure-free, 
checkpoint-free time

 Overall overhead:

 Checkpointing

 Process/data 
recovery

 Rollback

• 4096 cores +    640 
spare cores

• Right-most bar, 
global recovery 
with MTBF of 47s

 Local recovery has 
scalability advantages 
over global recovery

• Conclusion:

– Local recovery is superior to global recovery in this scenario: 

• compare MTBF 45s (8%) 

• with MTBF 47/GR (31%)

Total overhead

Production (MTBF 2.6h) 31 %

Global recovery (MTBF 189s) 10 %

Global recovery (MTBF 47s) 31 %

Local recovery (MTBF 45s) 8%

Local recovery (MTBF 20s) 25%

Local Recovery



Solution #3: Toward Resilient Asynchronous 
Many Task (AMT) Parallel Execution Model
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 AMT allows
 Concurrent task execution 

 Overlap of communication and computation

 Over-decomposition of Data

 Node/Process Failure is manifested as loss of task and data
 Generic model for online local recovery

 Recovery is done through task replay



Research Challenges

 How to express the resilience to the users?

 How to maintain the persistence of task and data?
 How to maintain the persistence of task scheduler?

 Need to store all runtime information?

 Similar to system-level checkpoint (TASCEL project at PNNL)

 How to reschedule task replay?

 How to build a framework? 
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Ongoing Work: Sandia ATDM Software 
Stack
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Resource Allocation Middleware

Portable Task Programming  (PTP) Layer

NVRAM, Parallel IO

Data 
Management

Application

Sandia-ATDM Software Stack

Runtime 

Transport Layer 

Computing Systems

SLRUM/PMI-X

Application written with PTP

Kelpie Charm++/HPX/MPI

NNTI, OpBox, Converse, MPI

NVRAM/Parallel 
IO

Computing Systems

Lunasa

Data Warehouse

ATDM Software Stack

DARMA (distributed)

Kokkos (on-node) 

 ATDM Program (Advanced Technology Development and 
Mitigation) to prepare the software for future HPC systems

 Resilience AMT will serve abstraction in the frontend and backend 
to bridge between applications and runtime  

Application Level Resilience Abstraction

Runtime Level Resilience Abstraction

Portable Task Programming  (PTP) Layer



Example: Fenix(1.0)-ULFM Model
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Resource Allocation Middleware
NVRAM, Parallel IO

Data 
Management

Application

 Fault Tolerant Message Passing for SPMD 
 Assuming MPI-ULFM or its equivalent

 No task parallel programming layer

 Fenix takes major responsibility in data management.  A better model is desired.

 Solution: Resilient DARMA, Sandia’s AMT Framework

Application Level Resilience Abstraction

Runtime 

Runtime Level Resilience Abstraction

Transport Layer 

Computing Systems

MPI Program

Fenix 

Fenix MPI-ULFM

SLRUM/PMI
Parallel IO

Computing Systems

Missing!
Portable Task Programming  (PTP) Layer

MPI-ULFM

DARMA



Architecture of DARMA 
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Sandia-ATDM Software Stack

SLRUM/PMI-X

Application

Kelpie Charm++/HPX/MPI

NNTI, OpBox, Converse, MPI

NVRAM/Parallel 
IO

Computing Systems

Lunasa

Data Warehouse

DARMA 

Kokkos
Front-End API

Translation Layer

Back-end API 

Charm++/HPX/MPI

Glue Code
(runtime specific)

 Provides an abstraction in multiple levels for:
 Ease of programming

 Sequential Semantics
 Publish/Fetch semantics for data exchange between tasks

 Support of multiple runtime options
 DARMA’s data and task are translated to the runtime specific representations  



Resilient DARMA
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SLRUM/PMI-X

Application written with PTP

Kelpie Charm++/HPX/ MPI

NNTI, OpBox, Converse, MPI

NVRAM/Parallel 
IO

Computing Systems

Lunasa

Resilient Data 
Warehouse

DARMA (coarse grained)

Kokkos (fine grained) 
Front-End API Extension

Translation Layer

Back-end API Extension 

Charm++/HPX/MPI with their own resilience 
extension

Glue Code
(runtime specific)

 API extensions
 Frontend allows the users to describe application-specific based resilience
 Backend leverages resilient data warehouse for persistent storage for efficient task 

replay
 Backend leverages resilience specific to runtime

 Checkpoint capability of Charm++
 Fenix+MPI

Resilient Data 
Warehouse



Conclusion

 Scalable Application Recovery at Scale
 Extend Fault-Tolerant MPI prototype

 Hot spare procesess

 In-meory checkpoiting

 Application specific message logging to allow localized online recovery

 Future work explore resilience in AMT runtime
 Require vertical integration

 Lots of opportunities on the horizon
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