
Photos placed in
horizontal position
with even amount

of white space
between photos

and header

Photos placed in horizontal
position

with even amount of white
space

between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Toward Resilient Task
Parallel PDE Solvers

Keita Teranishi(1), Marc Gamell(2), Nicole
Slattengren(1)and Manish Parashar(2)

Sandia National Laboratories, CA, USA

Rutgers University, NJ, USA

Funded by ASC CSSE Program.

SAND2017-2702C

Scalable Resilience for HPC applications

 Future systems are expected to be less reliable
 More components, shrinking, power etc.

 Anecdotes indicate that the majority of application failures
happens at single node, i.e. local failures.
 Exisitng Checkpoint-Restart approach is not a proportional response

to local failures.

 Undue cost associated with “Termiante + Restart”

2

Motivating Use Case – S3D Production
Runs

 24-hour tests using Titan (125k cores)

 Reported MTBF of 8 hours
 9 process/node failures over 24 hours

 Failures are promoted to job failures,
causing all 125k processes to exit

 Checkpoint (5.2 MB/core) has to be done
to the PFS

Total cost

Checkpoint (per timestep) 55 s 1.72 %

Restarting processes 470 s 5.67 %

Loading checkpoint 44 s 1.38 %

Rollback overhead 1654 s 22.63 %

Total overhead 31.40 %

Motivating Use Case – Problem
Summary

 Current checkpoint cost, ~1 min

 Total recovery+rollback cost, ~36 min

Traditional C/R or runtime-based offline techniques are
 not efficient in current systems
 not possible in future systems

Infeasible

Introduction

Our Solution: Online Failure Recovery

5

 Software framework to augment existing apps with resilience
capability
 The remaining processes stay alive with isolated process/node failure

 Multiple implementation options for recovery
 Roll-back, roll-forward, asynchronous, algorithm specific, etc.

 Hot Spare Process for recovery

1. Process recovery: Recover failures without promoting to job failures

2. Data recovery: Optimize checkpointing

• Store application-specific data in-memory

• Coordinate checkpoint creation implicitly

Solution #1 :Global Online Recovery

O.S.O.S.

RuntimeRuntime

App + libsApp + libs
FenixFenix

– Fully coordinated checkpointing consistency, but barrier-like constructs

– Uncoordinated checkpointing efficient, but no consistency guarantees

Implicitly Coordinated Checkpointing

Applications know consistent points!

– Implicit coordination: create consistent checkpoints without communication

– Consistency guaranteed by checkpointing at the same “logical” time

 Framework for online, semi-transparent recovery

 Targets SPMD, message passing applications

 Tolerates hard failures (spare or spawned ranks)

• Keep process memory (may contain valuable
data or checkpoints)

Fenix 1.0 Specification (SAND2016-9171)

 Fault Tolerant Programming Framework for
MPI Applications
 Separation between process and data recovery

 Allows third party software for data recovery

 Multiple Execution Models

 Process recovery

 Extend MPI-ULFM (prototype of MPI Fault
Tolerance) to shield the users from low-level MPI
features

 Process recovery through spare process pool

 Process failure is checked at PMPI layer and recovery
happens under the cover

 Data recovery

 In-memory data redundancy

 Multi-versioning (similar to GVR by U Chicago &ANL)

7

S3D Modifications

Topology module

Main function

• Only 35 new, changed, or
rearranged lines in S3D code

Original vs Fenix-enabled

Original vs Fenix-enabled

Only 35 new,
changed, or

rearranged lines
in S3D code

Global Online Recovery – Results

MTBF Total overhead

Production 2.6 h 31 %

Global recovery 189 s 10 %

Global recovery 94 s 15 %

Global recovery 47 s 31 %

• Uses S3D (scientific application)

• Titan Cray XK7 (#3 on top500.org)

• Injecting node failures (16-core failures)

Solution #2: Local Online Recovery

 Fenix-1.0 is a first step toward local recovery
 Avoid global termination and restart

 All processes rollback to the Fenix_Init() call

 Natural for algorithms and applications that makes collective calls
frequently

 Some applications fit more scalable recovery model
 Stencil Computation

 Master-Worker execution model

 Solution: Local Online Recovery

10

Local Recovery Methodology

1. Replace failed processes

2. Rollback to the last checkpoint (only replaced processes)

3. Other processes continue with the simulation

 How do we guarantee consistency?
 Implicitly coordinated checkpoint

 Log messages since last checkpoint in local sender memory

 Message logging has been studied in MPI fault tolerance and Actor
Execution Model (Charm++)

 Performance may not be optimal for many parallel applications

 Stencil computation provides built-in message logging == Ghost
Points

 Implemented in new framework: FenixLR

Target: Stencil-based Scientific Applications

 Application domain is
partitioned using a block
decomposition across
processes

 Typically, divided into
iterations (timesteps),
which include:
 Computation to advance

the local simulated data

 Communication with
immediate neighbors

 Example: PDEs using
finite-difference
methods, S3D

One failureNo failures

Rank Rank

Performance Model of Local Recovery
W

al
l t

im
e

Simulated execution of a 1D PDE

Multiple failures,
no delay overlap

One failureNo failures

Effect of Multiple Failures with Local
Recovery

Simulated execution of a 1D PDE

Rank Rank

W
al

l t
im

e

Experimental Evaluation with S3D

 Same experiment executed injecting different number of failures

 X axis is rank number, but more complex to see than 1D, because 3D domain is mapped to
core ranking in a linear fashion

 Note that total overhead is as if only one failure occurred (except in 4224c 8f)

Failure Masking

Experimental Evaluation
Goal

 Evaluate local recovery techniques using S3D on Titan to show

 Low overhead while recovering from node failures every 5 seconds

 Failure recovery is scalable

 Recovery overhead is not proportional to system size

Experiments

 Recovery scalability up to 262272 cores

 Total overhead of fault tolerance

Methodology

 Study the overheads related to the recovery processes

 Compare local vs global recovery

 Failure recovery cost can be decomposed into:

 Environment recovery

 Checkpoint fetching from neighbor (scalable, 130MB/core)

 Rollback cost (average of 1/2 iteration time, O(2.5 seconds), scalable)

Recovery Scalability

 Using MTBF of 10s

 Core count from 4224 to 262272 (including 128 spare cores)

 Result shows the average recovery time for all failures injected.

 Conclusion:

 Process recovery time is independent of system size

 Good scalability

Local Recovery

Total Overhead of Fault Tolerance

 End-to-end time vs
failure-free,
checkpoint-free time

 Overall overhead:

 Checkpointing

 Process/data
recovery

 Rollback

• 4096 cores + 640
spare cores

• Right-most bar,
global recovery
with MTBF of 47s

 Local recovery has
scalability advantages
over global recovery

• Conclusion:

– Local recovery is superior to global recovery in this scenario:

• compare MTBF 45s (8%)

• with MTBF 47/GR (31%)

Total overhead

Production (MTBF 2.6h) 31 %

Global recovery (MTBF 189s) 10 %

Global recovery (MTBF 47s) 31 %

Local recovery (MTBF 45s) 8%

Local recovery (MTBF 20s) 25%

Local Recovery

Solution #3: Toward Resilient Asynchronous
Many Task (AMT) Parallel Execution Model

19

 AMT allows
 Concurrent task execution

 Overlap of communication and computation

 Over-decomposition of Data

 Node/Process Failure is manifested as loss of task and data
 Generic model for online local recovery

 Recovery is done through task replay

Research Challenges

 How to express the resilience to the users?

 How to maintain the persistence of task and data?
 How to maintain the persistence of task scheduler?

 Need to store all runtime information?

 Similar to system-level checkpoint (TASCEL project at PNNL)

 How to reschedule task replay?

 How to build a framework?

20

Ongoing Work: Sandia ATDM Software
Stack

21

Resource Allocation Middleware

Portable Task Programming (PTP) Layer

NVRAM, Parallel IO

Data
Management

Application

Sandia-ATDM Software Stack

Runtime

Transport Layer

Computing Systems

SLRUM/PMI-X

Application written with PTP

Kelpie Charm++/HPX/MPI

NNTI, OpBox, Converse, MPI

NVRAM/Parallel
IO

Computing Systems

Lunasa

Data Warehouse

ATDM Software Stack

DARMA (distributed)

Kokkos (on-node)

 ATDM Program (Advanced Technology Development and
Mitigation) to prepare the software for future HPC systems

 Resilience AMT will serve abstraction in the frontend and backend
to bridge between applications and runtime

Application Level Resilience Abstraction

Runtime Level Resilience Abstraction

Portable Task Programming (PTP) Layer

Example: Fenix(1.0)-ULFM Model

22

Resource Allocation Middleware
NVRAM, Parallel IO

Data
Management

Application

 Fault Tolerant Message Passing for SPMD
 Assuming MPI-ULFM or its equivalent

 No task parallel programming layer

 Fenix takes major responsibility in data management. A better model is desired.

 Solution: Resilient DARMA, Sandia’s AMT Framework

Application Level Resilience Abstraction

Runtime

Runtime Level Resilience Abstraction

Transport Layer

Computing Systems

MPI Program

Fenix

Fenix MPI-ULFM

SLRUM/PMI
Parallel IO

Computing Systems

Missing!
Portable Task Programming (PTP) Layer

MPI-ULFM

DARMA

Architecture of DARMA

23

Sandia-ATDM Software Stack

SLRUM/PMI-X

Application

Kelpie Charm++/HPX/MPI

NNTI, OpBox, Converse, MPI

NVRAM/Parallel
IO

Computing Systems

Lunasa

Data Warehouse

DARMA

Kokkos
Front-End API

Translation Layer

Back-end API

Charm++/HPX/MPI

Glue Code
(runtime specific)

 Provides an abstraction in multiple levels for:
 Ease of programming

 Sequential Semantics
 Publish/Fetch semantics for data exchange between tasks

 Support of multiple runtime options
 DARMA’s data and task are translated to the runtime specific representations

Resilient DARMA

24

SLRUM/PMI-X

Application written with PTP

Kelpie Charm++/HPX/ MPI

NNTI, OpBox, Converse, MPI

NVRAM/Parallel
IO

Computing Systems

Lunasa

Resilient Data
Warehouse

DARMA (coarse grained)

Kokkos (fine grained)
Front-End API Extension

Translation Layer

Back-end API Extension

Charm++/HPX/MPI with their own resilience
extension

Glue Code
(runtime specific)

 API extensions
 Frontend allows the users to describe application-specific based resilience
 Backend leverages resilient data warehouse for persistent storage for efficient task

replay
 Backend leverages resilience specific to runtime

 Checkpoint capability of Charm++
 Fenix+MPI

Resilient Data
Warehouse

Conclusion

 Scalable Application Recovery at Scale
 Extend Fault-Tolerant MPI prototype

 Hot spare procesess

 In-meory checkpoiting

 Application specific message logging to allow localized online recovery

 Future work explore resilience in AMT runtime
 Require vertical integration

 Lots of opportunities on the horizon

25

Acknowledgement

 Janine Bennet, Robert Clay, Michael Heroux and Jeremiah
Wilke (Sandia National Labs)

 Sanjay Chatterjee and Vivek Sarkar (Rice U)

 George Bosilca, Aurélien Bouteiller and Thomas Herault

26

