SAND2015-4167J

Originally Published by
Sandia National Lagoratories as
SAND2004-3072, October 2004

Dependence in probabilistic
modeling, Dempster-Shafer theory,
and probability bounds analysis*

Scott Ferson', Roger B. Nelsen?, Janos Hajagos', Daniel J. Berleant’, Jianzhong Zhang’,
W. Troy Tucker', Lev R. Ginzburg' and William L. Oberkampf

1Applied Biomathematics, 100 North Country Road, Setauket, New York 11733
’Mathematical Science, Lewis & Clark College, Portland Oregon 97219-7899
*Jowa State University, Electrical and Computer Engineering, Ames, Iowa 50011-3060
*Validation and Uncerstinay Estimation Department, MS 0828, Sandia National
Laboratories, Albuquerque, New Mexico 87175-0828

Abstract

This report summarizes methods to incorporate information (or lack of information)
about inter-variable dependence into risk assessments that use Dempster-Shafer theory
or probability bounds analysis to address epistemic and aleatory uncertainty. The report
reviews techniques for simulating correlated variates for a given correlation measure
and dependence model, computation of bounds on distribution functions under a
specified dependence model, formulation of parametric and empirical dependence
models, and bounding approaches that can be used when information about the inter-
variable dependence is incomplete. The report also reviews several of the most
pervasive and dangerous myths among risk analysts about dependence in probabilistic
models.
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is distributed as

is an element of

is a subset of

plus or minus

addition, subtraction, etc. under no assumption about the dependence
between the operands

addition, subtraction, etc. assuming independence

addition, subtraction, etc. assuming perfect dependence

addition, subtraction, etc. assuming opposite dependence

the empty set, i.e., the set having no members

probability-box specified by a left side F(x) and a right side F(x)
where F(x) < F(x) for all x € R, consisting of all non-decreasing
functions F from the reals into [0,1] such that F(x) < F(x) < F(x).

{(s1,m1),..., (s,,my)} an enumeration of the elements of a Dempster-Shafer structure in

beta(v, w)

terms of its focal elements s; and their nonzero masses m;
a beta distribution with shape parameters v and w

convolve(X,Y,r) convolution (usually addition) assuming that X and Y have correlation
convolve(X,Y,C)convolution (usually addition) assuming the copula C describes the

cov(X, Y)

E(X)
fiA—>B

H.(x)

inf

M(u, v)
normal(p, o)
[1(u, v)

P(4)

P(4|B)
P(4&B)
P(AvB)
pcu(F, G)

R
i}»{+
sgn

dependence between X and Y

covariance between random variables X and Y

expectation (mean) of random variable X

a function f whose domain is the set 4 and whose range is the set B. In
other words, for any element in 4, the function f assigns a value that is
in the set B

the step function that is zero for all values of x<c and one for all x>¢
infimum (for a finite set, simply the minimum)

the copula min(u,v) corresponding to perfect dependence

a normal distribution with mean p and standard deviation o

the copula defined by the product uv corresponding to independence
probability of event 4

probability of event 4 given that event B has occurred

probability of conjunction (and) of events 4 and B

probability of disjunction (or) of events 4 and B

infimal convolution for binary operation L between distribution
functions F and G related to each other by the copula C

the set of all real numbers

the set of all non-negative real numbers

sign or signum function



sup
TC,L(Fa G)

uniform(a, b)
VX)

W(u, v)
weibull(d, ¢)

10

supremum (for a finite set, simply the maximum)

supremal convolution for binary operation L between distribution
functions F and G related to each other by the copula C

a uniform distribution ranging between a and b, where a<b
variance of random variable X

the copula max(u+v-1,0) corresponding to opposite dependence

a Weibull distribution with scale parameter (or characteristic life) d
and shape parameter ¢, where 0<d, 0<c



1 Introduction

Risk analysis and other applications of probabilistic modeling generally require
specification of the joint multivariate distribution of the random variables involved in
the problem. In practice, the input for the mathematical model used in a probabilistic
risk assessment is usually constructed in two steps: (1) the marginal distributions for
the input variables are specified and (2) the dependence between the variables is
specified. The second step is perhaps just as important as the first, but it has received
considerably less attention by theorists and practitioners in risk analysis. Moreover,
there are several pernicious myths about dependence that confuse analysts, not the least
of which is the idea that it is okay to ignore correlations and dependencies altogether.
Even analysts who recognize the importance of dependence sometimes ignore the issue
because of a lack of relevant empirical data on which to base a reasoned model.

Risk assessments based on probability models can be expressed in terms of total
probabilities of events (e.g., the chance that a pump fails to operate) or in terms of
probability distributions of random variables (e.g., the failure temperature of a
population of pumps). Section 2 of this report reviews the modeling of dependence
among events in fault and event trees based on point or interval-valued probabilities. It
reviews how empirical information or theoretical specification about how events are
related to one another can be incorporated into a risk assessment, and it offers strategies
to account for a lack of knowledge about dependence between events that can replace
inappropriate or unjustified use of independence assumptions in such assessments. This
section introduces special, extreme forms of dependence that may be useful as
alternatives to a default or reflexive assumption of independence. These extreme kinds
of dependence are generalized in the following sections. It also introduces the strategy
of bounding results when dependence cannot be specified precisely, which also forms
an important theme throughout the entire document.

Section 3 addresses the problem of dependence among random variables in
more elaborate models based on mathematical functions of probability distributions,
Dempster-Shafer structures or probability boxes. It reviews the methodological dangers
of assuming all variables in an assessment are independent of one another and shows
how different dependencies can lead to quantitatively different results. It includes a
discussion of how the very concept of independence disintegrates into distinct notions
in the context of imprecise probabilities. It describes several strategies that have been
or could be employed to represent knowledge about how the random variables are
interrelated.

Section 4 considers how risk assessment models can account for a lack of
relevant information about the dependence among random variables, and how partial or
qualitative information about dependencies might best be incorporated into the analysis.
Extending the idea of bounding results when dependence cannot be specified precisely,
it considers approaches based on sensitivity studies and direct analytical methods that
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bound results based on theoretical limits governing dependence. This section points out
two surprising results that have implications for risk assessments. The first is that the
question of dependence is usually moot for a binary operation if one of the inputs is
characterized only by an interval. The second is that knowing the correlation
coefficient between two random variables generally tells rather little about how they are
related without additional knowledge about the functional nature of their dependence.

Section 5 reviews a large variety of myths about correlations and dependencies
that are common in risk assessments and probabilistic modeling generally. For the most
part, this section merely highlights ideas explored in the earlier sections, emphasizing
their practical consequences when misapplied. This section can be viewed as a
summary of the essential practical ideas of the report.

The methods considered in this report are to be applied to models involving
Real-valued probabilities,
Interval probabilities,
Probability distributions,
Dempster-Shafer structures of the real line, and

5. Probability boxes (p-boxes).

For readers unfamiliar with recent developments in uncertainty analysis, the following
three subsections introduce the notions of interval probabilities, Dempster-Shafer
structures and probability boxes, respectively, and provide some pointers to their
relevant literatures. Section 9 is a glossary of terms that may be new to many readers.

il e

1.1 Interval probabilities

Some of the probabilities needed as inputs for a fault tree may be difficult to specify
precisely. In such cases, it may be desirable to express the analyst’s uncertainty by
using interval probabilities to characterize the events. The idea is that one may not be
able to give the exact probability of some event but could still given an upper and lower
bound on that probability. This notion of using intervals to describe probabilities is a
very old idea in the history of probability. George Boole (1854; Hailperin, 1986)
considered interval bounds on certain probabilities. Fréchet (1935) discovered the
limits of probabilities of conjunctions and disjunctions of events under all possible
dependencies. Kyburg (1998) reviewed the history of interval probabilities and traced
the development of the critical ideas through the twentieth century. Bounding
probabilities has continued to the present (e.g., Walley and Fine, 1982; Loui, 1986;
Hailperin 1986; Madan and Owings, 1988; Williamson 1989; Walley, 1991; Tessem,
1992). Bounding probability is different from the approach of second-order or two-
dimensional probability (e.g., Hoffman and Hammonds 1994; Cullen and Frey 1999) in
which uncertainty about probabilities is itself modeled with probability.

Although ordinary interval arithmetic (Moore 1966; Alefeld and Herzberger
1983; Neumaier 1990) can be used for some calculations with such intervals, the fact
that the inputs represent probabilities which are constrained to the unit interval makes
these calculations somewhat more subtle. For instance, if 4 and B are exhaustive events
(i.e., at least one must be true), then we know that the sum of their probabilities
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P(A4)+P(B) must equal one, even if we cannot know the precise value of either
individual probability. Hailperin (1986) reviews the kinds of calculations involving
interval probabilities that might be used in a risk or reliability assessment.

1.2 Dempster-Shafer structures

Dempster-Shafer theory (Shafer 1976; Klir and Yuan 1995), which is sometimes called
evidence theory, can be considered as a variant of probability theory in which the
elements of the sample space (to which nonzero probability mass is attributed) are not
single points but rather sets which represent the indistinguishability of alternatives
within bodies of evidence. For instance, instead of a discrete probability mass function
over the real line giving the probability for each of some number of precise points on
the line, a comparable Dempster-Shafer structure might give a probability mass that
corresponds to an interval rather than a point value. The sum of these masses is one,
just as for any probability mass function. The sets that get nonzero mass are called
focal elements. The breadth of these focal elements represents the uncertainty that
might arise from measurement uncertainty or other form of ambiguity. Klir and Yuan
(1994) reviewed the mathematical underpinnings of Dempster-Shafer theory for
uncertainty assessment. Oberkampf and Helton (2002; Oberkampf et al. 2001; Helton
et al. 2004) reviewed and illustrated the use of Dempster-Shafer theory for engineering
applications. Sentz and Ferson (2002) reviewed methods for aggregating multiple
Dempster-Shafer structures from different information sources. Yager (1986; Ferson et
al. 2003) defined the basic algorithms to compute arithmetic operations of Dempster-
Shafer structures under independence in risk assessments.

Dempster-Shafer theory is intimately related, if not equivalent, to the theory of
random sets (Matheron 1975; Robbins 1944; 1945). Tonon et al. (1999; 2000a; 2000b)
have applied random set theory to various problems in reliability and design problems
in engineering.

Although focal elements can generally be any subset of some universal set, in this
report, we consider only Dempster-Shafer structures for which the universal set is the
real line R and whose focal elements are closed intervals of the real line.

1.3 Probability boxes

Risk assessments commonly involve calculations with random variables characterized
by probability distributions. Like probabilities that describe events, these distributions
may sometimes be difficult to specify precisely. A probability box (p-box) is a class of
distribution functions delimited by an upper and a lower bound which collectively
represent the epistemic uncertainty about the distribution function of a random variable.
A p-box is the class of distribution functions F(x) specified by a bounding pair of
cumulative distribution functions F(x) and F (x) such that F(x) < F(x) < F(x) for all x
values. P-boxes thus express interval-like uncertainty about a distribution function.
Probability bounds analysis is the collection of methods and algorithms that are used to
do calculations with, and make inferences from, p-boxes. These methods are essentially
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a combination of the methods of standard interval analysis (Moore, 1966; Neumaier,
1990) and classical probability theory (see, inter alia, Feller, 1968; 1971; Mood et al.
1974).

Like interval probabilities, the idea of bounding probability distribution functions
has a very long tradition throughout the history of probability theory. Indeed,
Chebyshev (1874; Smith 1995) described bounds on a distribution when only the mean
and variance of the variable are known, and Markov (1886) found bounds on a positive
variable when only the mean is known. Kolmogorov posed the question of what the
bounds would be on a sum of random variables if only their marginal distributions and
not the dependence between were known (Makarov 1981). Ferson et al. (2003)
reviewed the characterization of p-boxes from empirical information, the aggregation of
p-boxes from multiple or competing information sources, and the basic algorithms to
compute arithmetic operations under independence between p-boxes in risk
assessments. P-boxes are a somewhat coarser way to describe uncertainty than are
Dempster-Shafer structures on the real line. Every Dempster-Shafer structure specifies
a unique p-box and every p-box specifies an equivalence class of Dempster-Shafer
structures (Regan et al. 2004; Joslyn and Ferson 2004). Ferson et al. (2003) described
the relationship between these two generalizations of probability distributions. P-boxes
are also coarse special cases of imprecise probabilities (Walley 1991), which are
arbitrary sets of probability distributions. As an interval is a special kind of set of real
numbers, a p-boxe is a special kind of imprecise probabilities.
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2 Dependence between events

Fault or event trees are commonly used in risk assessments to estimate the reliability or
risk of some “top event” such as the failure of a system in terms of the probabilities of
failures of the components of the system (Vesely et al. 1981). Compound events in a
fault tree are defined as conjunctions, disjunctions or negations of more elementary
events. The conjunction of events 4 with B is denoted by 4 & B and is sometimes
called the “and” event. It is the event in which both 4 and B occur. For instance, in a
safety assessment, the event 4 might represent an inadvertent fuel spill that produces a
combustible vapor in a closed space. The event B might represent the presence of an
ignition source such as a spark somewhere in the space caused by the closing of an
electrical circuit. The conjunction of these two events would represent the conditions
necessary for an explosion. The disjunction of two events is the event in which one or
the other of 4 or B occurs, or they both occur. The disjunction is sometimes called the
“or” event and it i1s denoted with the expression 4 v B. For instance, if the events
represent the as-designed functioning of redundant safety systems, then only one of the
events must occur for some adverse consequence to be avoided.

The purpose of a fault tree is to recursively express the top event as a function
involving such conjunctions and disjunctions of more elementary events. The endpoints
of these recursions, which are not further decomposed into subevents, are called “basic
events”. Because they are not defined in terms of other events, basic events need to be
characterized by inputs to the analyses that represent empirical observations or
theoretical argument. These basic events are often characterized by real-valued
probabilities, sometimes called “total probabilities” to distinguish them from probability
distributions. This section reviews the representation of dependencies between basic
events and their propagation through the logical model such as a fault tree.

In case two events are independent, the probability of their conjunction can be
computed as the product of the probabilities of the two events, thus

P(4 & B) = andindependent(aa b) = ab,

where a = P(4) and b = P(B). The probability of the disjunction can also be computed
in terms of the probabilities of the separate events with the formula

P(4 v B) = OFingependent(@, b) = 1 = (1 = a)(1 = b).

Although it might be convenient, it is not always possible to assume that the events in a
fault tree are independent of one another (Smith and Watson 1980; Hickman et al.
1983). For example, Vesely et al. (1981) described many situations involving common-
cause or common-mode failures in which events will not generally be independent. For
instance, there can sometimes be a single cause that can precipitate failure of several
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components at the same time. Categories of common causes include many things such
as impact, manufacture or use history, location, vibration, contamination, humidity,
flooding, temperature, fire, etc. If all of the components in a fault tree’s minimal cut set
are affected by the same cause, that cause can trigger the top event. In this way, the risk
of the top event can degenerate to the risk of the occurrence of one of these common
causes. The assessment of a system’s susceptibility to common-cause failures has
become increasingly more important in risk analysis. In engineering practice, common-
cause failures can often dominate random hardware failures (Vesely et al. 1981, page
XII-12). It will be important to the correct assessment of system performance that
involve such phenomena to be able to evaluate risks and reliabilities without necessarily
relying on independence assumptions. Moreover, in the context of abnormal operating
environments such as fires, the independent functioning of components in a system
intended by the designer of the system may actually devolve to dependent behaviors. It
becomes a serious question then to be able to estimate the consequences of a lack of
independence on the risks and reliabilities being estimated in the assessment.

If the probabilities characterizing events are depicted in a Venn diagram, the
dependence between events is completely determined by the area of the overlap
between the sets. Consider the five Venn diagrams shown in Figure 1. Each depicts the
probabilities of two events, the first represented by a stippled circle and the second
represented by a gray circle. The fact that the shapes are circles is irrelevant; only their
areas matter. Likewise, the complexity of the shape of the overlapping region does not
matter because only its area is significant. These diagrams are all drawn to the same
scale, so that the area of the enclosing square for each of the five Venn diagrams is one,
and the area of the larger stippled circle is 0.29 while the area of the smaller gray circle
1s 0.22. Case A depicts the gray event totally inside the stippled event. This represents
the strongest possible dependence between these two events, given their marginal
probabilities. In this perfect dependence, if the event represented by the gray circle
occurs, it is guaranteed that the other event represented by the stippled circle also
occurs. Case C shows the independent case. In this case, the area of overlap is given
by the product 0.29x0.22, which is 0.0638. In general, the probability of the joint event
(in which both events occur) is given by the product of the probabilities of the two
events. The events are not independent unless this quantitative relation holds. Case E
shows the events as mutually exclusive. Their area of overlap is zero. It represents the
other extreme possible case of dependence because it says that the occurrence of one
event precludes the occurrence of the other. Cases B and D depict dependencies that
are intermediate between the extreme cases and independence.
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Figure 1: Dependence between two events (gray and stippled) depicted in Venn
diagrams where area denotes probability

2.1 Extreme dependence: perfect and opposite

To represent different dependencies between the underlying events, the gray and
stippled areas shown in the diagrams of Figure 1 can be moved around within the
square and their shapes arbitrarily deformed so long as the areas are not changed. When
areas are constrained to given values, certain relationships must hold between the areas
of the two sets and their dependence as represented by the degree to which they overlap.
For instance, the dependence that leads to the largest area of overlap is that depicted in
diagram A. Such an eclipse between the two areas cannot be any greater if the areas are
fixed, no matter how the areas are positioned. We can therefore call this dependence
“perfect”. Because one of the areas is totally inside the other, the area of overlap is the
minimum of the two areas. The probabilities of the conjunction and disjunction
between the events are very simple to compute for this kind of dependence:

(Perfect)
P(4 & B) = andperfeci(a, b) = min(a, b),
P(A Vv B) = Orperfect(aa b) = max(a, b)a

where a and b are the two areas. The probability of the conjunction is measured by the
area of the intersection of the two areas. Because they overlap totally, the area of the
intersection must be the smaller of the two areas. Because the probability of the
disjunction is the area of the union of the two areas, this probability must be the larger
of the areas.

The pattern of dependence in Figure 1 that leads to the smallest area of overlap
is that shown in diagram E. The area of the overlap is zero because the sets are disjoint.
We can call the dependence associated with minimal overlap “opposite” dependence.
Note that having opposite dependence does not necessarily mean that the events are
mutually exclusive. For instance, it may be that both events have probabilities greater
than 50%. In such a case, the areas of the events, however they are drawn, must overlap
by some amount. Saying that events are mutually exclusive is therefore not just making
an assertion about their dependence. It also says something about the probabilities of
the events. Saying events have opposite dependence is a claim only about dependence.
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The formulas for probabilities of conjunction and disjunction under opposite
dependence are

(Opposite)
P(4 & B) = andpposite(a, b) = max(a + b -1, 0),
P(4 v B) = oropposite(@, b) = min(1, a + b).

These formulas account for the constraint that probabilities must be no larger than one.

Examples: Suppose that P(4) =a = 0.29 and P(B) = b = 0.22 and the events 4
and B are perfectly dependent. This situation is depicted in diagram A of Figure 1
which shows the areas maximally overlapping. The probability of the conjunction
A & B is min(0.29, 0.22) = 0.22. Despite the use of the minimum operator, this is the
largest possible value of the probability given these marginals. The probability of the
disjunction 4 v B is max(0.29, 0.22) = 0.29. Despite the maximum, this is the smallest
possible value of the probability for any possible dependency. Now suppose that the
dependence is like that depicted in diagram E where the events are oppositely
dependent. Now the areas are minimally overlapping. In this case, the probability of
the conjunction is max(0.29 + 0.22 — 1, 0) = 0, and the probability of the disjunction is
min(1, 0.29+0.22) = 0.51.

These extreme cases are useful mostly as bounds when the analyst has no
empirical knowledge or theoretical argument about the dependency (Section 2.3), but it
is conceivable that they could be used in an actual assessment in their own right. For
instance, in many engineered systems, several of the basic components are often
supplied by a single vendor, or have experienced the same inspection, service and repair
history. Moreover, components may experience a similar, abnormal condition such as a
fire, or the same temporal sequence of environmental conditions. Such commonalities
may tend to suggest that probabilities of failure associated with these components may
be closer to perfectly dependent than to independent. Opposite dependence, on the
other hand, may be suggested by tradeoffs in utilization. For instance, suppose that one
of a pair of redundant safety systems always activates first in response to a particular
kind of stimulus, and that the kinds of stimuli are not randomly experienced by the
systems. If operation of a safety system leads to wear-and-tear aging on that system,
then the joint failure of both systems might be better modeled by events that are
oppositely dependent than an assumption that they are independent. In such situations,
the extreme-dependency formulas might be used in place of the independence formulas
because extreme dependence is a somewhat more reasonable assumption than
independence.

2.2 Correlation between events

Although the idea of dependence applies to both random variables and simple events,
the word correlation is often reserved for use only with random variables. Measuring
the overall degree of association with some scalar quantity ranging between —1 and +1
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can be very useful in risk assessments in general. For this reason, it may be desirable to
extend the notion for use with events each of which is characterized by a total
probability (that is, a dimensionless real number between zero and one). Because of the
simplicity of dependence in the context of events, defining such a scalar measure of the
correlation of events is entirely reasonable. Indeed, this use seems far more reasonable
than the traditional use of scalar measures of overall dependence between random
numbers. The dependence between random numbers is infinite-dimensional (see
Section 3), so the single dimension of a correlation coefficient cannot capture the
potential complexity of the dependence function. The dependence between events,
however, can be characterized completely and without loss of information by a scalar
measure.

Lucas (1995; see also Cheng 2003; cf. Cui and Blockley 1990; Davis and Hall
2003) suggests defining correlation between events as the correlation of their indicator
functions. To illustrate this idea, imagine throwing darts randomly at a Venn diagram
such as those shown in Figure 1 and scoring each throw using two binary values, one
for each event. The value of the indicator function would be zero if the dart misses the
event’s area and one if it hits it. Lucas’ measure of dependence between the two events
would be the correlation coefficient for a long sequence of such scores for randomly
thrown darts. The measure would be the same if, instead of randomly thrown darts, a
grid of many pins were uniformly and systematically getting similar pairs of scores.
The formula for a (Pearson product-moment) correlation between random variables X
and Yis

_ E(XN) —E(DEW)

VV(X) V()

where E denotes the expectation and V denotes the variance. The expectation of an
indicator function for an event 4 is the probability of the event P(4). The variance for
the indicator function is P(4)(1-P(4)). Consequently, when the formula for the
correlation is applied to the indicator functions for events 4 and B, it becomes

. P(4& B)—P(A)P(B)
JP(A)(1-P(4))/P(B)(1-P(B))

because the expected value of the product of the indicator functions is the probability of
the conjunction given the dependence between the two events. With a little rearranging,
this leads to the formulation

P(A & B) = and, ., (a,b,r) = ab+ r+a(l - a)b(1 - b)

Lucas

where a = P(4) and b = P(B). We call this formula the Lucas model for correlated
events. For instance, suppose that @ = 0.29 and b = 0.22 and the correlation » = 0.2.
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The Lucas model suggests the probability of the conjunction A & B would be 0.101. If
r s set to zero, the Lucas model yields the value 0.0638, which is the probability of the
conjunction assuming the events 4 and B are independent. As r varies, the probability
of the conjunction according to the Lucas model changes linearly. This model might be
considered desirable except that it can produce values for the conjunction that are
outside the Fréchet bounds that limit such probabilities (see Section 4.2). In fact, it can
even produce probabilities that are smaller than zero or larger than one. For instance, if
we set 7 = —1, the result of the Lucas model is —0.124. No one likes a negative
probability.

The problem is not with the formula itself, but with the mistaken idea that
correlation can take on any value between positive and negative one. It is well known
that Pearson correlation coefficients cannot always range over this entire range (Feller
1968; Nelsen 1999). In this case, the smallest possible correlation coefficient for the
indicator functions is not —1, but only —0.339. And the largest value is not +1 but only
0.831. This can be demonstrated by considering two columns of numbers. One
column, representing the indicator function for event A has 290 ones and 710 zeros.
The second column of numbers for event B has 220 ones and 780 zeros. If the values in
the columns are sorted so that all the zeros are at the top of the columns, then the
correlation between the two columns will be 0.831. If we then sort one of the columns
in the reverse order so that the zeros are all at the bottom, then the correlation will be
—0.339. No matter how the zeros and ones are shuffled within the columns, the
correlation coefficient between these two columns of numbers cannot be any larger or
smaller than these extremes. If the input values for the correlation » are constrained to
the interval [—0.339, 0.831], then the probabilities computed by the Lucas model are
correctly limited to the possible range that ensures no negative probabilities or
probabilities larger than one. The only way to make using the Lucas model reasonable
is to limit the input correlations to be no smaller than r and no larger than 7, where

max(a+b-1,0)

Ja(—a)p(1-b)’

min(a,b) — ab

Ja(l—a)b(1-b)

Another formulation for correlation of events can be derived from the Frank
family of copulas (Section 3.7), which were first introduced by Frank (1979). In the
Frank model of correlation between events, the probability of a conjunction of events A
and B is given by the formula

I~
Il

N
Il
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min(a,b) if r=+1
ab if r=0
max(a+b—1,0) ifr=—-1
log, [ +(s* ~1)(s* ~1)/(s =1)| otherwise

P(A4 & B) =andy,, (a,b,r) =

where s = tan(n(1-r)/4), a = P(A) and b = P(B). This function is continuous; the special
cases when 7 is +1, 0 or —1 are the limiting values of the bottom expression on the right-
hand side of this formula when r tends to these values respectively. Disjunction of
correlated events can likewise be defined by Frank’s co-copula, so that

max(a,b) ifr=+1
1-(1-a)1-b) if r=0
P(A 4 B) = OrFrank(a’b’r) = min(a +b 1) ifr=-1

I-log,[i+ (s ~1)(s"™ /(s -1)] otherwise.

Example: If we again suppose that a = 0.29 and b = 0.22 and the correlation r =
0.2, the Frank model of dependence suggests that the probability of 4 & B is 0.0695.

In the Frank model of dependence, no value between —1 and +1 is an impossible
correlation. Figure 2 depicts the probabilities of the disjunction (shown as the gray line)
and the conjunction (shown as the black line) for various values of the correlation
according to the Frank model of correlation among the two events.
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Figure 2: Probability of the disjunction (gray) and conjunction (black) of two
correlated events of probability 0.29 and 0.22 as a function of the Frank
correlation.

The Frank model is only one of many possible ways to parameterize a notion of
correlation for events. Several researchers have suggested using t-norms and t-conorms
as models for the “and” and “or” operations (e.g., Joslyn 1995; Klir and Yuan 1994;
Schweizer and Sklar 1983). T-norms are also called generalized intersection operators,
and t-norms include as special cases the functions andindependents @Ndperfect, ANdopposite, as
well as andgni (for a particular value of the correlation) for evaluating conjunctions
under various models of dependence between the events. Likewise, t-conorms, which
are called generalized union operators include the functions ofindependents Ofperfects OTopposites
and orgnk (given 7). However, it does not seem reasonable to use t-norms and t-
conorms to define operations to estimate probabilities of conjunctions and disjunctions.
The reason is that some of these functions are incompatible with probability values. For
instance, the aptly named “drastic intersection” (Klir and Yuan 1994) yields results that
are not possible with probabilities because they are outside the Fréchet limits
(Section 2.3). For this reason, it seems more prudent to look to copulas* (Section 3.7)
as a model characterizing correlations among dependence. The Frank model is a copula
(Frank 1979; Nelsen 1999). Nelsen (1999) describes many other families of copulas
and co-copulas that could also be used for this purpose.

*A t-norm T 'is a copula if and only if it is 2-increasing; that is, if 7(a,, by) — (a1, by) — T(a, by)
+ T(a,, by) 2 0 whenever a; < a, and b, < b, for a, a,, by, b, € [0,1]. A copula is a t-norm if and
only if it is associative.
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2.3 Accounting for unknown dependence

It is possible to estimate bounds on conjunctions and disjunctions and other joint events
using only the marginal information about the probabilities of the events and no
information at all about their dependence. Such calculations make use of the classical
Fréchet inequalities

P(4 & B) = andpecher(a, b) = [ max(0, a + b—1), min(a, b) |,
P(A4 v B) = orgechet(@, b) = [ max(a, b), min(1, a +b) ],

where a = P(4), b = P(B), and the square brackets indicate that the resulting probability
estimates are intervals rather than precise real values even if @ and b are precise. This
says that, whatever the actual probability is, it must lie within the interval. Williamson
(1989, page 131) points out that at least the first of these was known to Boole (1854,
page 299). Fréchet (1935) proved not only that they are the extreme cases but also that
they are the bounds on all possible cases of dependence and, moreover, that they are the
best possible such bounds in the absence of information about the dependence.

The proofs of the Fréchet inequalities are elementary. We consider the proof for
the conjunction. The definition P(4 v B) = P(4) + P(B) — P(4 & B) implies that
P(4 & B) =P(A) + P(B) — P(4 v B). Because P(4 v B) < 1, as all probabilities are no
bigger than one, it must be the case that P(4) + P(B) — 1 < P(4 & B). It’s also true that
0 < P(4 & B), just because all probabilities are no smaller than zero, so it must also be
true that max(0, P(4) + P(B) — 1) < P(4 & B). This establishes the lower bound on the
conjunction. To get the upper bound, recall that P(4 & B) = P(4|B) P(B) = P(B|A) P(4).
Because P(4|B) < 1 and P(B|4) < 1, as all probabilities are, it follows that P(4 & B) <
P(4) and P(4 & B) < P(B), so P(4 & B) < min(P(4), P(B)). The best-possible nature of
these bounds follows by observing that they are realized by some dependency relation
between the events 4 and B.

Example: Suppose that P(4) =a = 0.001 and P(B) = b =0.002, then P(4 & B)
is sure to lie in the interval [max(0, 0.001+0.002—1), min(0.001, 0.002)] = [0, 0.001].
P(4 v B) is likewise certain to be somewhere in [max(0.001, 0.002), min(1,
0.001+0.002)] = [0.002, 0.003]. These intervals are rigorous and true no matter what
dependency there may be between 4 and B.

The Fréchet (1935) inequalities generalize by induction to the multivariate case.
The resulting formulas are straightforward extensions, so

P4,1& 4, & ... & A,) =[ max(0, a; + ax +...+ a, — (n—1)), min(a,, ay,..., a,) ],
P(4\v Ay v ... v 4,) = [ max(ay, a,..., a,), min(l, a; +ax+...+ a,) ],

where a; = P(4)).

Example: Suppose that P(4,) =a; = 0.001, P(4;) = a, = 0.002, and P(43) = a3 =
0.003. Then P(4; & A, & A3) € [max(0, 0.001+0.002+0.003—(3-1)), min(0.001, 0.002,
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0.003)] =0, 0.001]. P(4; v 4, v A3) € [max(0.001, 0.002, 0.003), min(1,
0.001+0.002+0.003)] = [0.003, 0.006].

Section 2.5 will review how the Fréchet inequalities can be incorporated into
more elaborate logical expressions needed for practical fault tree analysis which may
involve composition of many conjunctions and disjunctions, as well as negations and
other kinds of logical gates.

2.3.1 Using knowledge about the sign of the dependence

Williamson (1989; cf. Wise and Henrion 1986) suggested that, even in situations where
one may not know much about the possible dependence between events, it might still be
possible to confidently assert knowledge about the sign of the dependence. For
instance, it might be reasonable to assert that the similar manufacture and repair
histories shared by components in some system means that they could only be
positively dependent (that is, no less strongly dependent than independent). If events 4
and B could only be positively dependent, then

(Positive)
P(4 & B) = andsitive(@, b) = [ ab, min(a, b) ],
P(4 v B) = orpositive(a, b) = [max(a, b), 1 — (1 —a)(1 - b)].

If, on the other hand, an analyst believes that which of two outcomes occurs is the result
of a tradeoff such that the events could not be positively dependent, it might be likewise
reasonable to tighten the Fréchet inequalities. If events 4 and B could only be
negatively dependent, then

(Negative)
P(4 & B) = andyegative(a, b) = [ max(a + b -1, 0), ab |,
P(4 v B) = orpegative(@, b)) =[ 1 = (1 —a)(1 = b), min(1, a + D) ].

Example: Suppose 4 and B are sure to be positively dependent, and that P(4) =
a =0.003 and P(B) = b = 0.005, then P(4 & B) is sure to lie in the interval
[0.003x0.005, min(0.001, 0.002)] = [0.000015, 0.003]. If, however, A and B are
negative dependent, then P(4 v B) is sure to be within [ 1-(1-0.003)(1-0.005), min(1,
0.003+0.005)] =[0.007985, 0.008].

2.4 Interval probabilities

As mentioned in Section 1.1, some of the probabilities needed as inputs for a fault tree
may be difficult to specify precisely and in such cases the analyst’s uncertainty may be
expressed by using intervals that contain the inexactly known probabilities to
characterize some or all of the events. These representations are called interval
probabilities. Even if all of the inputs to a fault tree are precisely specified, applying
the inequalities described in the previous sections in computing bounds on
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subexpressions of the fault tree generally yield interval probabilities rather than point
estimates of probability whenever they account for incompletely specified correlations.
The formulations to evaluate the probabilities in the tree must therefore be capable of
accepting interval inputs. In this section, we briefly describe strategies that can be used
to compute with intervals in such situations.

2.4.1 Interval arithmetic

Moore (1966) described the use of interval arithmetic to evaluate the ranges of
functions taking interval arguments. The approach is to generalize the definitions of the
binary operations out of which the function is composed to handle interval inputs. For
instance, we can define some basic interval operations for use with interval probabilities
(cf. Moore 1966; Neumaier 1990). For all real numbers w, x, y and z such that 0 <w < x
<land0<y<z<1,let

w,x]+ D,z =[wty,x+z],
[w,x] [y, z] =[w—-z,x-y],
w,x] x[y,z]=[wxy,xxz],
[(w,x]/ [y, z]=[w/z x/y], assuming 0<y,
min([w, x], [y, z]) = [ min(w, y), min(x, z) |, and
max([w, x|, [y, z]) = [ max(w, y), max(x, z) ].

Note that these formulas for multiplication and division are considerably simpler than
those of ordinary interval arithmetic. The simplicity is a consequence of the constraint
that probabilities must lie in the interval [0, 1].

Examples: Suppose there is epistemic uncertainty about the probabilities of
events 4 and B so that a = P(4) = [ 0.0015, 0.0025]* and b = P(B) = [ 0.00025,
0.00035]. Then the following table gives bounds on the probabilities for the
conjunction and disjunction of events 4 and B under different assumptions (or, in the
Fréchet case, no assumption) about dependence between the events.

Dependence P(4 & B) P(A v B)

independent | [ 0.000000375, 0.000000875] | [ 0.001749625, 0.002849125]
perfect [ 0.00025, 0.00035] [ 0.0015, 0.0025]
opposite 0 [ 0.00175, 0.00285]

*This just means that we believe that the probability for the event 4 is some value between
0.0015 and 0.0025 (inclusive). Some purists would prefer we write P(4) € [0.0015, 0.0025],but
we have found that more readers are distressed by the unfamiliar symbol € than are perturbed
by the idea that a probability can be identified with an interval. Mathematically, an interval
probability for an event 4 can be defined as the interval [P(4), P(4)], where P(4) = inf {p(4) :
n e and P(4) = sup {(A4) : p € for a given set & of probability measures, all defined on
an algebra ¥ (that contains 4 as an element) over some sample space (universal set). P(4) is
called the lower probability of 4, and f’(A) is called its upper probability.
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positive [ 0.000000375, 0.00035] [0.0015, 0.002849125]
negative [ 0, 0.000000875] [ 0.001749625, 0.00285]
Fréchet [ 0,0.00035] [ 0.0015, 0.00285]

Interestingly, the upper bound for the disjunction is the same (within three significant
figures) for all of the dependence cases except perfect.

In many problems, interval arithmetic can be used in a straightforward way to
obtain results that are both rigorous and best possible. However, when an uncertain
number appears more than once in a mathematical expression, the naive sequential
application of the rules of interval arithmetic may yield results that are wider than they
should be. The result is still rigorous in the sense that it is sure to enclose the true
range, but it may fail to be best-possible if it is wider than it needs to be to do so. The
reason for this loss of optimality is basically that the uncertainty in the repeated
parameter is entered into the calculation more than once. The appearance of repeated
parameters in expressions is a well-known problem with interval arithmetic and, indeed,
with all common uncertainty calculi (e.g., Moore 1966; Manes 1982; Hailperin 1986;
Ferson 1996a). Many strategies have been developed to address this problem. One of
the most direct methods is to algebraically manipulate the expression to reduce the
occurrences of the repeated parameters. Consider, for instance, the probabilistic sum
which is usually written as

a+b-—ab.

Using interval arithmetic to evaluate this expression could lead to probabilities
appearing to be smaller than zero or larger than one because of the uncertainty inflation
from the repetition of @ and b in the expression. Fortunately, this expression can always
be rearranged to

1= (I -a)(1-b),

which is algebraically equivalent to the previous expression but has only one occurrence
of each parameter. This formulation is therefore safe to use with interval probabilities
and will not exhibit inappropriate inflation of uncertainty.

2.4.2 Subinterval reconstitution

Moore (1979; Corliss 1988) described a method to obtain bounds on an interval
expression that are arbitrarily close to best possible. The method works by partitioning
the input interval into a collection of subintervals, projecting the subintervals through
the function separately, and reconstituting the answer as the union of their images. If
the expression of a function f'has interval arguments x, y,..., z which are repeated, and
intervals u, v,..., w, which are not repeated, then
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f(x,y,.z,u,v,..., W) C UU...Uf(xi,yj,...,zk,u,v,...,w).
i k

where

X :le.; y :ij; wy Z :Uzk.
i j k

In general, the reconstituted union may also be overly wide, although it will tend to
narrow as the number of subintervals increases. In all cases, however, it will surely
rigorously contain the true interval. The tightness of the resulting estimate depends on
the fineness of the partitioning of the inputs. This method of subinterval reconstitution
allows us to obtain answers that, with sufficiently many subintervals, are arbitrarily
close to best possible.

Example: Suppose that events 4 and B have a Lucas correlation » of 0.2 and
uncertain marginal probabilities described by the intervals, a = P(4) = [0.045, 0.055] =
[4.5, 5.5]% and b = P(B) =[0.005, 0.015] =[0.5, 1.5]%. Naively applying interval
analysis to the Lucas formula for conjunction, ab + r V(a(1-a) b(1-b)), we calculate
bounds on the probability of the conjunction 4 & B to be [0.312, 0.642]%. Using
subinterval reconstitution with a 10x10 regular partition of the input space, gives us a
tighter estimate of [0.315, 0.637]%. This result can be contrasted with the bounds on
the probability of the conjunction assuming the events are independent, which are
[0.0225, 0.0825]%, or the Fréchet limits assuming nothing about dependence between
the two events, which are [0, 1.5]%.

Subinterval reconstitution is just one of the many tools that have been developed
to handle the ‘excess width problem’ in evaluating expressions with repeated interval
parameters (Moore 1966; 1979). It is the easiest technique to apply and in many
situations sufficient to reduce the excess width with modest computational effort. In
cases where there are many different repeated parameters or the repeated parameter
occurs multiple times in the expression, the rate of convergence to the exact bounds will
be reduced. In some cases, alternative computational strategies will be required to
obtain good results in a reasonable time. The Moore-Skelboe algorithm (Skelboe 1974;
Moore 1979) adaptively subdivides the box defined by the vector of interval inputs to
find the global maximum and minimum of the function. The algorithm is most efficient
when there are few local minima and maxima located in the interior of the box.
Subinterval reconstitution converges to the correct bounds in a linear order. Centered
forms such as the mean-centered form (Moore 1979) and Taylor forms (Neumaier
2002) can converge at rates higher than linear order. However, using a mean-centered
form entails rewriting the original expression in terms of a central point, usually the
midpoint of one or more intervals. For intervals that are wide, as in many of the
examples given in this report, applying centered forms can perform poorly, sometimes
giving bounds that are wider than those obtained by applying naive interval arithmetic.
Centered forms work best when combined with another technique, such as subinterval
reconstitution. In many cases, they can significantly reduce the number of function
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evaluations the Moore-Skelboe algorithm needs to compute to find the global maximum
and minimum.

2.4.3 Range sampling

An alternative approach to evaluate the range of a function with interval inputs is a
variant of Monte Carlo simulation. Scalar-valued “samples” of each input quantity are
selected randomly from their respective intervals. These real numbers are combined
according to the function being evaluated. The observed range of resulting values is
taken to be the estimate of the range of the function. This approach is not guaranteed to
bound the true range of the function. However, as the number of replicates increases,
the interval of the results will tend to widen toward the range of the function. The
resulting interval can never be wider than the true range. It can be narrower than the
true range if, for instance, the function has an extreme behavior at particular points in
the input space which the sampling strategy happens to miss. Interval analysis
techniques such as subinterval reconstitution, in contrast, do not have this disadvantage
because they will never underestimate the width of the true range.

Example: The problem described above in Section 2.4.3 can also be solved
with range sampling. Using 200 paired values for a and b randomly sampled from their
respective intervals, and four additional pairs consisting of the corners (a = 0.045, b =
0.005), (a =0.045, b =0.015), (a = 0.055, b =0.005), and (a = 0.055, b = 0.015), one
obtains [0.315, 0.637] as the estimated range on the probability of the conjunction of the
correlated events. This answer agrees with the answer previously obtained by
subinterval reconstitution, at least in three digits shown.

2.4.4 Mathematical programming

It is also possible to express an interval calculation as a mathematical programming
problem. In particular, linear programming can be used to find bounds on Boolean
functions with interval inputs. Hailperin (1986; Williamson 1989) has explored this
approach and made several significant contributions by use of some duality theorems
that simplify many results. Hailperin proved that linear programming can be used to
determine the best possible bounds on arbitrary Boolean functions having interval
inputs.

2.5 Using inequalities in risk assessments

The methods described in the previous sections motivate a calculus for evaluating fault
and event trees. The approach is fairly general and can readily be extended to the other
logical operations defined for events characterized by interval probabilities besides

conjunction and disjunction. For instance, the exclusive-or operation can be defined by

P(4 v B & (not(4 & B) = XOtprechet(a, b) = [ max(a — b, b —a), min(a + b,2 —a—b) ].
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Unary operations may also be defined, such as negation P(not 4) = 1 — a, although such
operations are not affected by any dependency considerations. When there are more
than two events, calculations proceed by building up the expression by composition of
binary operations. For instance, P(4 & B & C) can be estimated by solving first for the
A & B event and then for (4 & B) & C. It can also be solved by solving for the B & C
event first and then for 4 & (B & C). In many practical problems, these straightforward
methods can be used to make calculations that are guaranteed to be rigorous bounds on
the risks of interest. Moreover, in many cases these bounds will also be best possible
(i.e., as narrow as can be justified by the input assumptions).

The pairwise composition of the formulas will produce the best possible bounds
when there are no repeated parameters and dependence can be fully accounted for in the
binary operations. When the uncertainty about the probabilities of the basic events is
large, or when the events to be combined are numerous, uncertainty can sometimes
become large. Williamson (1989, page 135) argued, “Even when there are not repeated
variables, the bounds can rapidly become quite loose.... This should not be taken as an
argument against [interval probabilities] though. What it does show is the danger, even
in simple problems, of assuming independence in order to obtain a unique value at the
end.” If the intervals are as tight as they can be given the inputs, it is up to the analyst
to justify a narrower answer with empirical information about the input probabilities or
the dependencies between them rather than engaging in a mathematical exercise that
amounts only to wishful thinking.

The challenge for the risk analyst who eschews wishful thinking and adopts an
interval probability approach is to produce the best possible intervals that can be
justified by the available information embodied in the given inputs and assumptions.
The effective use of this calculus for interval probabilities depends on the analyst being
able to make use of the information that is known about dependence to obtain the
tightest justified intervals. The Fréchet case, as well as the positive or negative cases,
tend to widen intervals. Therefore, it is best to use these cases only when one cannot
justify (on either empirical or theoretical grounds) assuming independence or some
particular dependence which would produce tighter intervals. The optimal strategy then
is to arrange the expression being evaluated to one’s best advantage. In many analyses,
dependence is only an issue for a few of the components. Typically (though certainly
not always) components that are likely to be dependent will naturally appear close to
one another in the logical expression. The rules of Boolean algebra can permit the
analyst to rearrange the terms in an expression to bring dependent events together in one
binary operation. When the expressions cannot be arranged to permit the convenient
calculation of best possible results, then an analyst must choose between a suboptimal
(but still rigorous) result and the extra computational burden of subinterval
reconstitution, mathematical programming, or some other approach to obtain the best
possible answer.
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2.6 Caveat: best-possible calculations are NP-hard

The problem of calculating optimal bounds for arbitrary logical functions with interval
parameters and dependencies belongs to a class of problems known to be NP-hard,
which is to say that there is no general algorithm that can produce a solution with
computational effort that grows as some polynomial function of the number of inputs.
Indeed, it is well known that finding the reliability of the top event is already NP-hard
when the fault tree is not in fact a graph-theoretic tree because of links induced by
common cause events (Rosenthal 1975). This does not necessarily imply practical
insolubility, but it surely suggests that big problems such as may arise in complex
assessments with hundreds of components and complicated dependencies may be
daunting. When repeated parameters are sparse and when complex dependencies are
isolated to a few variables or to subportions of the logical expression, fairly large
problems can be tackled in moderate time. Moreover, if one can be satisfied with
answers that are sure bounds on the risk or reliability, but may not be the tightest or best
possible such bounds, then the requisite calculations needed will not be NP-hard. In
fact they will require on the order of only 4n calculations, where 7 is the number of
interval inputs (Moore 1966; 1979).

2.7 Numerical example: fault tree for a pressure tank

This numerical example illustrates how one could account for partial knowledge about
the dependencies between events as well as epistemic uncertainties about the
probabilities of these events. The example will involve the calculation of the
probabilities of conjunctions and disjunctions of both point and interval probabilities
and a variety of dependence assumptions, including independence, perfect dependence,
(Frank) correlation and the Fréchet case of assuming nothing about dependence.

The probabilistic fault-tree model we use is based on an example due to Vesely
et al. (1981). It concerns the risk of rupture associated with the operation of the
pressure tank system depicted in Figure 3. This diagram depicts the control system
regulating a pump that compresses air into a pressure tank. The system is depicted in
the “off” state with the pressure tank empty. The state diagram in Figure 4 shows the
operational modes and the transitions between these modes. The system is turned on by
briefly depressing switch S1. This energizes the coil of relay K1, which closes its
contacts, so that relay K1 becomes electrically self-latched. When relay K1°’s contacts
are closed, the coil of relay K2 is energized and its contacts close and start the pump
motor. This starts a pressurization cycle. When the tank is empty or not fully
pressurized, the pressure switch S is closed. When the tank is fully pressurized,
pressure switch S opens, which de-energizes relay K2 and opens its contacts. This cuts
off power to the pump motor. When the tank’s outlet valve is opened, the tank
depressurizes, the pressure switch closes, and the pressurization cycle begins again.
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Start pump <:

Relay K2 closed
Timer relay starts
Pressure switch closed

Ready
Switch S1 open
Relay K1 closed
Relay K2 open

Timer relay closed
ﬂ Pressure switch open

Startup :> Pumping Stop pump

Switch S1 closed Switch S1 open Relay K2 open

Relay K1 closed Relay K1 closed Timer relay resets
Relay K2 closed Relay K2 closed Pressure switch open
Timer relay closed Timer relay closed

Pressure switch closed Pressure switch closed

System off <: Shut down

Switch S1 open Relay K1 open

Relay K1 open Relay K2 open

Relay K2 open Timer relay open
Timer relay closed Pressure switch closed
Pressure switch closed

Figure 4: State diagram for the pressure tank system.

The design of the system provides for an emergency shutdown. When relay
K1’s contacts are first closed, power is also applied to the timer relay, which begins
counting. After 60 seconds of continuous power, the timer relay’s contacts open and
break the current to relay K1 so the system shuts down. However, if the tank fully
pressurizes before the timer relay times out, the pressure switch contacts open, which
causes the contacts for relay K2 to open which in turn causes the timer relay to reset
itself. In this way, the system continues in ready mode.

Vesely et al. (1981) derived a fault tree, shown in Figure 5, for the pressure tank
rupturing under pumping. The circles indicate basic events corresponding to primary
failures of the components. For instance, the circle enclosing T represents the failure of
the tank to withstand pressures according to its specifications. Other events are denoted
by symbols beginning with E. These include the top event E1 (which is the tank
rupturing under pumping) and the various intermediate events E2, E3, E4, and E5. The
conjunctions and disjunctions are indicated with “and” and “or” gates. For instance,
event E4 is a disjunction that occurs if either the S1 fails or the fault ES occurs. This
fault tree i1s completely equivalent to the logical expression

El=Tv (K2 Vv (S & (S1v (K1 v R)))).
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Figure 5: Fault tree for the pressure tank system.

Quantitative evaluation of the fault tree requires estimates of failure rates for the
components corresponding to the inputs in the logical expression. Suppose the analyst
has the following estimates for the probabilities of primary failure per demand of each
of the major components:

Component Probability
Pressure tank T 5%10°
Relay K2 3x107°
Pressure switch S 1x 107
Relay K1 3x107°
Timer relay R 1x10™
On-switch S1 3x107°

Traditionally, a risk analyst would combine these values to estimate the probability of a
tank rupture under pumping to be about 3.5x107 per demand. This calculation assumes
that all failures are statistically independent of one another. However, this implies that
failure in one component doesn’t somehow make failure in another more likely. It also
assumes that multiple failures are not the result of a common cause or mechanism.

Often the risk analyst has various degrees of information regarding
dependencies between variables and wishes to incorporate this knowledge into the risk
calculation. Continuing with the pressure tank example, suppose that the analyst feels
confident that the tank’s likelihood of failure due to pressure levels that do not exceed
specifications (T) is independent of all other events in the system. The analyst is also
confident that the failure of the on-switch (S1) is independent of relay K1 or the timer
relay (R), and that failure of K1 and R are perfectly correlated. The analyst might have
knowledge of some specific correlations as well, for example, pressure switch failure
(S) might be known to be correlated under the Frank copula with the conjunction of the
on switch or relay K1 or timer relay failure, by a specific coefficient, ». Finally, the
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analyst might know nothing regarding dependency or lack thereof between the relay K2
and any events further down in the tree, and might want this lack of knowledge to be
fully expressed by allowing for any and all possible dependencies (including but not
limited to independence). The event tree model can be written to incorporate this
collection of information regarding dependencies between events as

E1=T|v|(K2 v (S &, (S1 |v| (K1 /v/ R)))),

where the vertical lines around a logical operator indicate that the operation is to be
carried out assuming independence, the forward (back) slashes around a logical operator
indicate the operation is to be carried out assuming perfect (opposite) correlation,
logical operators with subscripts indicate the operation is to be carried out assuming
correlation between operands as specified by the subscript, and logical operators with
no additional notational elements indicate operations to be carried out making no
assumption whatsoever regarding dependency. Equivalently, one could write

El = Orindependent(Ta OrFréchet(Kza andFrank(Sa Orindependent(SI, Orperfect(Kla R))a r )))

The result of this calculation, with 7 specified to be equal to 0.15, is the interval
[3.499%x107°, 3.504x107°]. The result is an interval even though all of the input failure
probabilities are point values. This is the result of not knowing the dependence among
some of the components. In this case, the interval turns out to be a narrow one. For this
particular calculation, then, the independence assumptions have a rather small effect on
the answer.

It is certainly not true that dependence assumptions always (or even usually)
have minor consequences on a calculation. For instance, suppose the analyst knows
nothing about the dependence between the pressure switch S and the components S1, K
and R. This can be expressed by replacing the Frank correlation with Fréchet limits:

El = Orindependent(Ta OrFréchet(Kza andFréCth(S’ Orindependent(sL Orperfect(Kla R)))))

The result of this calculation is the wider interval [3.50x107, 1.35x107*]. As the
amount of information regarding dependencies between variables decreases, the interval
grows wider, reflecting the analyst’s increasing uncertainty. In the face of a complete
lack of knowledge, the analyst can evaluate the fault tree allowing for any and all
dependencies between all events, expressed as

El = OrFréchet(Ta OrFréchet(Kz, andFréchet(S, OrFréchet(Sls OrFréchet(Kla R)))))a

which reflects the analyst’s level of ignorance more accurately than the more traditional
assumption of independence. The result of this calculation is the interval [3x107,
1.4x107*]. These bounds are both rigorous and best possible. They are rigorous
because they are sure to contain the true frequency of the top event, so long as the input
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intervals contain the true failure rates of the respective components and, of course, that
the model by which we combined these inputs is correct. The bounds are best possible
in the sense that they could not be any narrower and still contain all outcomes that
might actually arise given the uncertainties about the dependencies. If, on the other
hand, one assumes independence when it’s not justified, the error can result in estimates
that are too tight and may therefore lead to underestimation of risks. For this reason, the
default should be no assumption rather than an independence assumption. Figure 6
summarizes the effect of the different treatments of dependency in the fault tree model
discussed thus far.

Vesely et al.
Mixed dependencies

Frank to Fréchet

Mixed dependence with intervals

®
|
| All Fréchet
[
T

107 104 1073
Probability of tank rupturing under pumping

Figure 6: Comparison of the effect of assumptions regarding dependence between
variables on the outcome of the probability calculation.

All the calculations thus far in the event tree example assumed that the inputs were
precise point estimates. An analyst should of course use whatever information is
available to get estimates that are as precise as possible. As Vesely et al. (1981)
acknowledge, however, extreme precision is not required for these failure rate and
importance calculations, and it would probably not be believed if it were provided.
Instead, what are typically sought are order-of-magnitude results. How does
uncertainty in the inputs affect the result? To find out, we can replace the precise point
estimates with intervals representing that uncertainty. Suppose the analyst now has
these inputs to the event tree:
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Component Probability interval

Pressure tank T [45%10°, 5.5 % 1076]
Relay K2 [2.5%107,3.5% 107]
Pressure switch S [0.5x107% 1.5% 107
Relay K1 [2.5x107,3.5% 107
Timer relay R [0.5x 107, 1.5 x 107"
On-switch S1 [2.5%107°,3.5%107]

How does the uncertainty in the input failure rates affect the assessment of the failure
probability of the top event? The event tree equation incorporating the mix of
dependencies

El = Orindependent(T, OrFréchet(Kza andFrank(Sa Orindependent(SIa Orperfect(Kla R)), 7 )))7

and using all interval inputs yields the answer [2.9x107°, 4.1x107°]. This can be
considered the comprehensive answer because it incorporates what is known and what
1s not known about both the marginal probabilities and their dependencies. Its range is
of course much wider than the probability interval based on the same dependencies but
with point estimates for the event probabilities. The answer can also be compared with
the traditional answer of 3.5x10™° computed by Vesely et al. (1981) which was based on
point estimates and independence among all the inputs. The breadth of the range
represents uncertainty of about 30% of the point estimate’s magnitude. In this case, the
uncertainty is roughly symmetric around the point estimate. Given the stated
uncertainty in the inputs, the probability of the tank rupturing under pressurization
might be as large as 0.000041, or about one in 25,000. Or it might be as low as
0.000029 or about one in 34,000.
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3 Dependence between random variables

This section reviews the most important strategies a risk analyst can use to account for
knowledge about correlations and dependencies between the random variables in an
assessment. Several recent reviews have considered strategies to model inter-variable
dependencies in probabilistic models (Helton and Davis 2003; 2002; Henderson et al.
2000; Clemen and Reilly 1999; Cullen and Frey 1999; Cario and Nelson 1997; Cooke
1997; Hutchinson and Lai 1990; Morgan and Henrion 1990). These reviews have
addressed the issue with respect to variables that are characterized by (precise)
probability distributions. This section focuses on those techniques that can also be
applied to Dempster-Shafer structures and probability boxes. Section 4 addresses
methods that can be used when information about dependence is incomplete.

Sections 3.2 through 3.8 consider a variety of possible approaches, including
both mechanistic and phenomenological modeling of dependence. In the former, a risk
model involving dependent variables is re-expressed in terms of one involving variables
that are mutually independent. In the latter, methods to generate correlated random
deviates are used in a statistical model that does not seek to represent the underlying
physical relationships behind the dependencies. The strategies for handling
dependencies that are discussed in this section include counterfactually assuming
independence (Section 3.1), functional modeling of dependence (Section 3.2),
stratification (3.3), conditioning (3.4), assuming perfect or opposite dependence (3.5),
simulating observed correlations (3.6), using parameterized copulas (3.7), and appealing
to empirical copulas (3.8) or constructed copulas (3.9).

3.1 Assume independence anyway

The zeroth strategy for dealing with dependencies among variables is to simply ignore
them and assume all variables are independent of one another. In fact, it is still
common practice among risk analysts in many quarters to assume independence among
variables even when this assumption is known to be false. The reasons for this are
many, ranging from mathematical convenience and the laziness of the analyst, to the
preliminary nature of the analysis, to a lack of ready and workable alternative strategies
and misconceptions about how important dependence can be in risk assessments. We
mention this zeroth strategy mostly to emphasize its wrongness (Section 3.1.1) and
dangers for risk assessments (Section 3.1.2).

3.1.1 Caveat: uncorrelatedness does not imply independence

Setting aside, for the moment, the cases of correlated variables, this section considers
the cases in which random variables are uncorrelated. One might expect or hope that
dependence, at least in these cases, would have a negligible or small effect on

convolutions. This turns out to be false. Although most risk assessors recognize that
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uncorrelatedness between variables does not formally imply their independence, many
are apparently not aware of how much difference dependence can make in their
calculations. Many patterns of dependence produce the same correlation, and, in
particular, there are a /ot of ways a joint distribution can yield uncorrelated variables.

Consider a small example in which X and Y have the same marginal distribution,
which is a discrete uniform on the integers from 1 to 25. Thus, the chance that X'is 1 is
1/25; the chance that it’s 2 is 1/25, and so on, and the same for Y. What can be said
about the sum X+Y if we suppose that X and Y are uncorrelated? Consider the ten
dependence patterns in Figure 7. The abscissa of each plot is the value of X and the
ordinate is the value of Y. Because the distributions are discrete, there is a mass (of size
1/25) allotted for each of twenty-five columns in each plot. Likewise, the same amount
of mass is allotted for each of twenty-five rows. To make the illustration easy to
understand, let’s further suppose that all of each row’s mass is concentrated into a
single slug of density located at some x-value, and all of each column’s mass is likewise
condensed at one y-value. (This is different from our previous assumption that the mass
in the marginal distributions were at discrete points. We’re not only saying that the
mass has to be at the integer points, but also that there is only one y-value that has mass
for each x-value.) By rearranging these masses on a 25x25 grid, we can create different
joint distributions between X and Y. We will consider only those distributions that
respect the marginal distributions by constraining our arrangements so that each row has
only one mass and each column has one mass. Of these, we consider only those
patterns that also have a correlation equal to zero (or so close to zero as to be
appropriate for our example). Even with all of these constraints, there are still many
possible arrangements. Figure 7 depicts only a few of them.
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Figure 7: Some possible patterns of dependence between uncorrelated variables.

Now consider how these patterns of dependencies, all of which are uncorrelated,
influence the distribution of an arithmetic combination of X' and Y. Figure 8 shows the
distributions of X+Y associated with each of the ten patterns of dependence shown in
Figure 7. Also shown in this figure is the distribution under independence (it’s the one
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going down the middle with somewhat smoother tails). It should probably not be
surprising that the distribution of X+Y depends on the dependence between X and Y, but
many analysts are surprised to see the magnitude of its potential influence. Note, for
instance, that the smallest possible value of the sum ranges between 2 and 14,
depending on which pattern of dependency exists between the addends. This range is a
quarter of the entire support of the distribution! Around the value 14, the cumulative
probability ranges between zero and almost 30%. In other words, there might be no

chance that the sum is smaller than 14, or there might be a 30% chance that it’s smaller
than 14.
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Figure 8: Some possible distributions of a sum of uncorrelated random variables.

In fact, the true uncertainty about the distribution of the sum is even larger than
that depicted in Figure 8 which only depicts distributions for the independent case and
10 dependent cases. There are many more patterns of dependency that would lead to
uncorrelated variables. For instance, the mass need not be concentrated in unit slugs in
the joint distribution. A column’s mass could be distributed throughout the column
without altering the discreteness of the distributions. The results depicted in Figure 8
are only a few of the infinitely many possible outcomes that are consistent with the
uncorrelatedness of X and Y and their given marginal distributions. As we shall see in
Section 4.3.3, it can be shown that the region depicted in Figure 9 represents bounds on
all distributions of the sum X+Y that could arise when X and Y are uncorrelated and both
distributions are uniform on the integers from 1 to 25. We see in Figure 9 that the
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minimum value of the sum can be any integer between 2 and 21, and there could be as
much as a 40% chance that the sum is less than 14. All of this uncertainty surrounds the
sum of X and Y, even though their marginal distributions are precisely specified and
even though the variables are exactly uncorrelated.

1 -

X, Yuncorrelated
(r=0)

Cumulative probability

-

0 10 20 30 40 50
X+Y

Figure 9: Bounds on the distribution of the sum X+Y given that X and Y are
uncorrelated and identically distributed as discrete uniforms on [1,25].

3.1.2 Unjustified independence assumptions harmful

Many risk analysts reflexively assume independence among all events or random
variables even when they have no particular justification for doing so other than
mathematical convenience. It is improper, however, to assume independence among
variables in an analysis unless there is reliable evidence or a compelling argument that
this is a reasonable assumption. If a dependency is neglected, the answer obtained by
an analysis assuming independence will generally be wrong. Under certain conditions,
the central tendency of output distributions could be approximately correct (Smith et al.
1992). However, the estimated dispersion and especially the tail probabilities can be
highly inaccurate (Bukowski et al. 1995; Ferson and Burgman 1995; Ferson 1994). In
some cases, the dispersion will be larger than it should be. In some cases, it will be
smaller. In the latter, the probabilities of extreme events will likely be underestimated.
These extreme events are often the primary focus of the risk assessment. They may
represent very large stresses or threatening conditions that correspond to system failures
and structural collapses that the risk analysis was intended to assess. In such cases, it is
therefore crucial that these tail probabilities be accurately characterized and, in no
circumstance, underestimated. Assuming independence without proper justification
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amounts to wishful thinking and is therefore detrimental to the purposes of risk
assessment to be a dispassionate and reasoned accounting of the possible adverse
consequences and their probabilities.

3.1.3 Caveat: independence in imprecise probabilities

In probability theory, there are several ways to define the concept of independence
between events and between random variables. For events 4 and B characterized by
real-valued probabilities P(4) and P(B), independence between A4 and B is implied by
any of the following conditions:

i)  P(4 & B)=P(4) P(B),

iy  P(4vB)=P(4)+P(B) - P(4) P(B),
iii)  P(4|B)=P(4)if0<P(B),

iv)  P(B|A)=P(B)if0<P),

where P denotes the probability of an event. It is an elementary exercise in
mathematical probability to prove that each of these four conditions implies the others
(Mood et al. 1974, page 40). The case of random variables similarly has several
possible definitions for independence. For random variables X and Y characterized by
the joint distribution H with marginals F"and G such that P(X <x) = F(x), P(Y < y) =
G(y) and P(X <x, Y <y) = H(x, y), then independence between X and Y implies, and is
implied by, each of the following conditions:

1) H(x,y) = F(x) G(y) , for all values x and y,

i1) P(Xel, YeJ) =P(Xel) P(YeJ), for any subsets /, J of the real line,
1i1) h(x,y) =f(x) g(y) , for all values x and y,

v) PX<x|Y)=PX<x)and P(Y<y | X)=P(Y <y),

V) E(w(X) z(Y)) = Emw(X)) E(z(Y)), for arbitrary functions w and z, and
Vi)  oxHts) = ox(t) Px(s).

where P is probability, £, g and 4 are density analogs of F, G and H respectively, E is
expectation, and ¢ denotes the Fourier transform (characteristic function). As was true
for events, when probabilities are precise these various definitions of independence
between random numbers are all equivalent. Each definition implies all the others.
Therefore, there’s a single concept of independence that simultaneously embodies all of
these possible definitions.

There is a decidedly different story in the context of imprecise probabilities
(Walley 1991). Here, the special case of independence, which is unique in probability
theory, disintegrates into several different cases when probabilities are imprecise.
Couso et al. (2000) pointed out that, for imprecise probabilities (which includes both
Dempster-Shafer structures and probability boxes as special cases), the various possible
definitions of independence are no longer equivalent to each other. The different
definitions induce distinct concepts of independence for imprecise probabilities. Couso
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et al. (2000) recognized several concepts that might be called independence, of which
four seem especially germane for risk assessments: repetition independence, strong
independence, epistemic independence, and random-set independence. We briefly
describe these four ideas in turn:

e Repetition independence arises when there is stochastic independence (in the
traditional sense) between random variables that are identically distributed,
although their distribution may be imprecisely known. Repetition independence
is thus the analog in the context of imprecise probabilities of the constraint in
probability theory that variables are independent and identically distributed (iid).

e Strong independence, on the other hand, is the complete absence of any
relationship between random variables. Variables X and Y are strongly
independent if the set of possible joint distributions is the largest set such that
each joint distribution H(x, y) = F(x) G(y), where F is one of the possible
distribution functions characterizing X and G is one of the possible distribution
functions characterizing Y. Variables X and Y should be characterized as
strongly independent if (i) X and Y result from random experiments, each
governed by a unique albeit possibly unknown probability distribution, (ii) the
random experiments are stochastically independent (in the traditional sense), and
(ii7) there is no known relationship between the variables that would preclude
some possible combinations of the possible marginal distributions.

e [Epistemic independence arises when an analyst’s uncertainty about either of two
outcomes of a random experiment does not change when some information
about the outcome of one of them becomes known. Random variables X and Y
are epistemically independent if the conditional probability of each given the
other is equal to its unconditional probability, so that P(X]Y) = P(X) and P(Y]X) =
P(Y). In the context of imprecise probabilities, epistemic independence is
defined in terms of lower bounds on expectations such that E(f(X)|Y) = E(f(X))
and E(f(Y)|X) = E(A(Y)) for all functions f where E(Z) denotes the infimum of all
expectations of Z over all possible probability distributions that could
characterize Z.

e Random-set independence is the kind of independence embodied in the
Cartesian products between Dempster-Shafer structures originally proposed by
Yager (1986) and used in Berleant (1993; 1996), Williamson and Downs (1990)
and Ferson et al. (2003). Dempster-Shafer structures X and Y with mass
functions my and my respectively are random-set independent if the Dempster-
Shafer structure for their joint distribution has mass function m(4,x4,) = my (A4;)
my (A2) when A4, is a focal element of X and 4, is a focal element of Y, with m(A4)
= ( for all subsets not of the form 4 = 4, x A4,.

Couso et al. (2000) review these definitions and give simple examples of each of these
definitions (and more). Couso et al. (1999) gave examples of how the definitions could
influence numerical calculations. Fetz (2001) illustrated the consequences of the
various independence definitions in a probabilistic assessment for an engineering
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system. Cozman and Walley (2001) explored the properties of epistemic irrelevance
and epistemic independence.

The various possible definitions of independence correspond to nested sets of
probability distributions, as depicted with Venn diagrams in Figure 10. Couso et al.
(2000) explained that the set of joint distribution functions that are repetition-
independent is a subset of the set of joint distribution functions for variables that are
strongly independent, which is a subset of distributions for variables that are
epistemically independent which, in turn, is a subset of the distributions under random-
set independence. All of these joint distributions are members of the set of uncorrelated
distributions, but, as emphasized in Section 3.1.1, uncorrelatedness is not a category of
independence and, therefore, it is the outer ring in gray in the figure. Beyond the
category of uncorrelated lie joint distributions for correlated variables, distributions for
variables with functional dependencies and more complex patterns which we
collectively call simply the Fréchet case. One very important advantage of this nesting
is that methods and algorithms that can compute bounds assuming random-set
independence (such as those described in Ferson et al. 2003) can be used to compute
sure bounds on results that are epistemically or strongly independent. In such cases, the
bounds may not be best possible of course, but they may still be useful if it is practical
or expedient to have conservative results.

It is no doubt possible to divide categories of independence even more finely
than this picture suggests, and the discussion in Couso et al. (2000) hints at this. It is
also conceivable that researchers will identify other, perhaps non-nested categories. If
such definitions turn out to be important in engineering contexts, the analyses they will
require will almost certainly demand a much fuller treatment than can be currently
mustered in either Dempster-Shafer theory or probability bounds analysis.

Uncorrelated

Random-set

Epistemic

Strong

Repetition

Figure 10: Categories of ‘independence’ for imprecise probabilities.
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3.2 Functional modeling (reducing to independence)

Some methodologicians (e.g., Morgan and Henrion 1990) argue that it would be best for
an analyst to reduce any risk assessment problem involving dependent variables into
one involving only independent variables. This strategy, which can be viewed as an
extreme form of conditioning (Section 3.4), does not try to characterize the
dependencies statistically, but rather tries to sidestep the problem altogether. In the case
of a risk expression involving correlated variables X and Y, this strategy would replace
the Y with some function of X based on the physical relationship that produced the
dependency between the variables in the first place. If this relationship is completely
specified, the value of Y can be precisely determined solely by the value of X. Of
course, cases of such complete predictability are very rare in science and engineering,
and generally the function will involve a random error term that represents the residual
uncertainty about Y after accounting for X. By construction, however, this error term
can be made independent of X, and therefore the problem with two correlated variables
has been changed into a different problem with two, or possibly more, independent
variables.

Although this approach can require considerably more scientific understanding
about the modeled system than is commonly available in risk assessments, some
analysts feel this strategy is the best way to treat dependencies. For instance, the
developers of the probabilistic modeling software package Analytica* suggest that any
dependencies present should be accounted for and modeled explicitly (Morgan and
Henrion 1998). In fact, their package does not even support user-defined correlations,
so it forces users to untangle any dependencies before they can begin an analysis.

This purist approach does not always provide a workable strategy however. For
example, suppose an analyst has been charged with conducting a risk assessment for
vegetation wildfire in the Everglades that might be sparked by a malfunction and
explosion of solid-propellant boosters used at Cape Canaveral. Such an assessment
would likely be very complex and might involve considerations about current weather
patterns such as a wind rose, humidity distributions, recent weather’s impact on the
vegetation’s fire risk, and a host of sundry design and mission parameters. The model
of the explosion’s effects on the ground vegetation might require probability
distributions for the mass and surface area for fragments of the propellant and the
housing vehicle. These variables are clearly unlikely to be stochastically independent
of one another. A functional modeling approach to accounting for their dependence
would be to develop a submodel about how the fragments were produced in the
explosion process itself. Obviously, this could significantly enlarge the modeling effort.

Even if the analyst were game to undertake the challenge of modeling the
generation of explosion fragments, there could be other pesky correlations and

* Analytica is the successor to the Demos software (Morgan and Henrion 1990).
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dependencies among the weather parameters. For instance, wind speed and humidity
may not be independent meteorological variables in south Florida. Vegetation fire risk
tends to vary over the course of a year. Therefore the timing of launches may tend to
covary with fire risk on the ground. To explicate all of these dependencies by
functional modeling, the analyst would need to employ (or become) a meteorologist. At
some point, the analytical demands of the functional modeling approach will likely
become prohibitive.

Besides the obvious disadvantage owing to the extra modeling effort that may be
required by the use of functional modeling to account for dependencies in a risk
assessment, there is one further caveat: it is not generally sufficient to transform the
model into uncorrelated variables (Section 3.1.1); they must be statistically
independent variables.

3.3 Stratification

Some risk analysts find it useful to stratify the assessment by creating relatively
homogeneous subgroups that have similar characteristics to reduce dependencies among
variables (Frey 1992; Cullen and Frey 1999). For these cases, one isolates the
covariance into the difference between the groups. Within groups, the assumption of
independence is more reasonable and workable. For instance, if some components were
manufactured in Oak Ridge, Tennessee, and some were manufactured in Paducah,
Kentucky, it may be reasonable to treat these two subgroups in completely separate
analyses rather than trying to pool them together into a heterogeneous population of
components manufactured at two facilities. Such stratification by age group or gender
is often employed in human health assessments in part to avoid having to specify and
model correlations. The separate treatment of different receptor wildlife species can
also be viewed as an example of this strategy. The cost of this strategy is that the
analysis becomes more complex and cumbersome because it must be repeated for each
new group in the stratification.

3.4 Conditioning

A standard approach in probability theory for modeling a joint distribution has been to
specify the joint distribution as a product of marginals and conditional distributions
(Clemen and Reilly 1999). In this way, arbitrary intervariable dependencies can be
expressed in terms of conditioning, at least in principle. For instance, it may be
convenient to use distributions that are conditional on the values sampled from other
distributions. This approach has been useful in hierarchical simulations (e.g., Voit et al.
1995). This strategy extends to making the parameters or even the shape of a
distribution depend on the value of other random variable(s). This use of conditioning
to account for dependence is essentially similar to functional modeling described above
in Section 3.2 and shares its main disadvantage. The task of specifying all the
necessary conditional distributions grows combinatorially with the number of variables,
and Clemen and Reilly (1999) suggest that this may make the approach unwieldy for
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large assessment problems. Unless most of the underlying variables are independent or
conditionally independent, this strategy is information-intensive strategy and may not
often be practical for risk assessments where empirical knowledge is limiting.

3.5 Perfect and opposite dependence

Random variables have perfect dependence if each is almost surely a non-decreasing
function* of the other. Some authors call this relationship comonotonicity (e.g., Miiller
1997; Vyncke et al. 2000; Goovaerts et al. 2000; Kaas et al. 2000). This is the
distributional analog of the concept of perfect dependence for events introduced in
Section 2.1. In many cases, assuming variables are perfectly dependent may be a better
default strategy than one assuming they are independent. For instance, suppose the
variables are component mass and surface area and the population under study includes
a wide variety of components. Presuming the variables covary perfectly is probably
considerably better than assuming they are statistically independent which is manifestly
false. Bernat et al. (2004) describe applications in timing analysis for computer codes
where perfect dependence is a good assumption because execution times of different
program blocks can depend on common parameter settings.

In other circumstances, the dependence may be similar to perfect but opposite in
sign. In this case, we say that the variables have opposite dependence. This often
happens, for example, with reciprocal losses and gains, as well as with quantities that
are constrained to add to a fixed sum. When variables are oppositely dependent,
knowing that one variable is at the upper end of its range tells us that the other variable
is surely at the lower end of its range. Opposite dependence between random variables
is also called countermonotonicity because each variable is almost surely a non-
increasing function of the other (Kaas et al. 2000).

It is generally easy to simulate perfect dependence between probability
distributions (Bratley et al. 1983; Whitt 1976; Fréchet 1951; Hoeffding 1940). Saying
that variables perfectly covary in this way means that knowing that one variable is large
with respect to its statistical distribution implies the other variable is surely large to the
same degree with respect to its own statistical distribution. This suggests the
relationship ¥ = G '(F(X)) where F and G are the cumulative distribution functions for
the random variables X and Y respectively. In principle, one could use this relationship
to simulate variates from a specified marginal distribution that are perfectly dependent
with sampled X-values. Alternatively, one could simulate values for both variables
from a single uniform deviate with the assignments X = F'(x) and Y = G"'(u) where u ~
uniform(0,1). If the dependence is opposite, on the other hand, the relationship between
the variates is Y = G"'(1 — F(X)) instead. In simulations this relationship can be
expressed by generating X = F~ "(u) and Y = G"'(1-u) where u ~ uniform(0,1).
Convolutions under perfect or opposite dependence can then be estimated by operating
on these simulated variates.

* Assuming variables are perfectly dependent is different from assuming that either is
completely dependent on the other, which is a more general situation.
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Simulating perfect or opposite dependence is quite different from simulating a
functional dependence because the relationship is expressed through the distribution
functions. And, in fact, perfect dependence between variables is not the same as a
functional relationship between them. Y can be completely dependent on X and yet the
dependence between X and Y is neither perfect nor opposite.

Both perfect and opposite dependence imply the quantities have extremal
correlations. Perfect dependence is associated with maximal correlation for the given
marginal distribution shapes. Opposite dependence induces the minimal correlation
possible given the margins. In both situations, the dependence is as strong as it can be
given the marginal distributions of the variables.

Example: Suppose that the random variable X is normally distributed with
mean zero and unit variance, and that random variable Y is uniformly distributed
between zero and one. Further suppose that X and Y are oppositely dependent, so that
large values of one are invariably associated with small values of the other and vice
versa. Figure 11 depicts the cumulative distribution function for the product XY. The
expression “X \x\Y”” denotes the product of X and Y under opposite dependence. The
slashes are mnemonic for the underlying non-increasing relationship between the
variables. The distribution of this product has a mean of about —0.28 and a variance of
about 0.33. This asymmetric distribution contrasts strongly with the product under
independence, which is symmetric about zero.

- X ~normal(0,1)
Y ~ uniform(0,1)

S
W
|

Cumulative probability

||\|\|\|\|\|\||||||||||||||||||
-3 -2 -1 0 1
X X\Y

Figure 11: Distribution function of products of random variables with opposite
dependence.

47



3.5.1 Extreme dependence with p-boxes

Perfect and opposite dependence can be assumed for convolutions involving probability
boxes. For instance, consider the sum of X and Y under perfect dependence, which we
can symbolize as X /+/ Y. The right bound of the p-box for X /+/ Y is defined by the

inverse of

(F.) ' (p=EF) "' (»+(Ey) ()

where 0 < p < 1, and (F)"' denotes the inverse or quantile functions of the bounding
function. Likewise, the left bound of the p-box for X /+/ Y is defined by the inverse of

F ) oy =F T o+ (F T ().

Note that the functions that are added together are quantile functions of the bounds, not
bounds on the quantile function (Williamson and Downs 1990). This distinction can
make a difference when discretization is coarse. Figure 12 shows how this addition is
done for hypothetical p-boxes 4 and B. For every probability level p, the corresponding
values of the right bound for 4 and the right bound for B are added together to get the
right bound at the same probability level for the sum 4 /4+/ B. For instance, we see in
the figure that, at the level p=0.21, 4 + 6.4 = 10.4. As p is varied, the right bound is
traced out. Similar calculations are used to obtain the left bound.

[E—
J

'A/+/B

AN

0O 2 4 6 8 10 12 14

Figure 12: Addition of probability boxes under perfect dependence.

Cumulative probability

<

The p-box for the sum of X and Y under opposite dependence, which we
symbolize X \+\ Y, is defined on the other hand by the inverses of the pair of functions
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(F,) () =F ) (p)+(Ey ) 1-p)

(7)) =(Fc ) ()+(F) a-p)

where 0 < p < 1. Notice in this case that the bound at p is added to the opposite bound
at 1-p. The formulas for multiplication under perfect and opposite dependence are
analogous to those for addition. For subtraction and division, however, the operations
are performed not on corresponding bounds, but on the opposite bounds. For instance,
the p-box for the difference Z = X — Y under opposite dependence is defined by the
inverse of the functions

F,) ' =EF) - (F)'a-p)
(F, ) (p)=(F ) () -(E, ) (1= p).

Example: Suppose that X ~ weibull(1,2), where weibull(d,c) denotes a Weibull
distribution with scale parameter d and shape parameter c. Now suppose that Y is
distributed according to a distribution function about which all that is known is its
possible range is [0, 1] and its mean = 0.2. We want to characterize the product XY
under the assumption that X and Y are perfectly dependent. The probability distribution
for X can be characterized by a degenerate p-box whose upper and lower bounds are
coincident. This p-box is depicted in the left graph of Figure 13. For the sake of
plotting convenience, the Weibull distribution was truncated at its 99.5% percentile,
slightly above the value 2.3. The p-box for the variable Y is depicted in the middle
graph of Figure 13. Consult Ferson et al. (2003) for details about how the best possible
bounds for the unknown distribution function can be obtained from constraints on the
range and mean. The multiplicative convolution under perfect dependence between X
and Y is symbolized as X /x/ Y. The p-box for the product X /x/ Y can be obtained by
computing the left bound at any probability level from the left bounds of X and Y at the
same probability level. The right bound is computed similarly from the right bounds.
In principle, these bounds for X and Y could be read from the left and middle graphs of
the p-boxes shown in Figure 13. In a computer implementation, the bounds on X would
be obtained by evaluating the quantile function (i.e., the inverse of the distribution
function) of the Weibull distribution. The values of the bounds and their products are
given for several different probability levels p in the table below.

Left bounds Right bounds
p X Y X/x'Y X Y X/xl'Y
0 0 0 0 0 0202 0
0.01 0.1 0 0 0.1 0.202  0.0203
0.02 0142 0 0 0.142 0204 0.029
0.03 0175 0 0 0.175 0206 0.036
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0.04 0202 0 0 0.202 0.208 0.0421

0.05 0226 O 0 0.226 0211 0.0477
0.95 1.73 0.149  0.258 1.73 1 1.73
0.96 1.79 0.158  0.283 1.79 1 1.79
0.97 1.87 0.167 0.312 1.87 1 1.87
0.98 1.98 0.175 0.347 1.98 1 1.98
0.99 2.15 0.184 0.394 2.15 1 2.15

1 e 0.191 00 o0 1 o

The resulting p-box for X /x/ Y consists of the left and right bounds in the fourth and
seventh columns of the table as functions of the probability level in the first column.
This p-box is shown in Figure 13 as the graph on the right.

—
[un—y

2 ] ]
B | | |
[a+]
s | | |
S .
§‘05— X 0.5 Y 0.5 X/x'Y
& ’ / i ]
= | | |
g i
O O_ 0 TTYVYTTTTT \\IIIII|II\IIIIII| 0_
100 1 2 3 -1 0 1 2 100 1 2 3
X Y X/ x'Y
Figure 13: Probability boxes for factors and their product under perfect
dependence.

3.5.2 Extreme dependence with Dempster-Shafer structures

Convolutions under extreme dependence assumptions are also possible between
Dempster-Shafer structures. Berleant and Goodman-Strauss (1998) described
algorithms for such calculations based on linear programming. Although they did not
refer to the mathematical objects as Dempster-Shafer structures and they allowed
multiple mass assignments to a single focal element, a simple normalization that
condenses multiple masses would convert Berleant’s objects into traditional Dempster-
Shafer structures. One can often avoid the necessity of using linear programming to
compute convolutions under extreme dependence by exploiting the transformations
between p-boxes and Dempster-Shafer structures. The following three examples
illustrate convolution of Dempster-Shafer structures under extremal dependence.
Example: Suppose that an uncertain number X is characterized by the
Dempster-Shafer structure given by three equiprobable intervals {([1,3], 1/3), ([2,3],
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1/3), ([3,5], 1/3)}* and that another uncertain number Y is characterized by a similar
Dempster-Shafer structure {([2,8], 1/3), ([6,10], 1/3), ([8,12], 1/3)}. The lists within
curly braces, consisting of pairs of intervals and masses, are Dempster-Shafer structures
because the masses sum to one in both cases. Figure 14 depicts these two Dempster-
Shafer structures (in the left and middle graphs) in terms of their cumulative plausibility
and belief functions. Further suppose that X and Y are perfectly dependent and that we
want to propagate them through an addition operation. The Dempster-Shafer structure
of the convolution of X and Y assuming they are perfectly dependent, which we
symbolize as X /+/ Y, can be computed with the Cartesian product depicted below.

X
X/+Y |[13] [2,3] [3,5]
1/3 1/3 1/3
[2,8] [3,11]
1/3 1/3
[6,10] [8, 13]
1/3 1/3
[8,12] [11,17]
1/3 1/3

The focal elements of X and their associated masses are arrayed in the top row, and the
focal elements and masses of Y are arrayed in the leftmost column. Each cell of the
table consists of an interval and its associated mass. The marginal focal elements are
used to compute the intervals in the interior of the table via interval arithmetic. For
instance, the first focal element of X is added to the first focal element of Y to obtain
[1,3] +[2,8] =[3,11]. Nine such interval additions are needed to fill up the table. If X
and Y were independent, the masses associated with these intervals in the interior would
be computed as the products of the masses of the marginal elements. In this case,
because the quantities are perfectly dependent, only the diagonal elements of the
Cartesian product get nonzero masses. In this example, the elements have a convenient
order that makes computing the sum under perfect dependence very easy. Here, the
first element of the resulting Dempster-Shafer structure arises from the addition of the
first element of X with the first element of Y, the second element comes from adding the
second intervals, and the third comes from adding the third intervals. In each of these
three cases, the associated mass is just the same as the mass of X and Y elements. The
result of this convolution is thus the Dempster-Shafer structure {([3, 11], 1/3), ([8, 13],
1/3), ([11, 17], 1/3)}. Figure 14 also shows (on the right) the cumulative belief and
plausibility functions for the Dempster-Shafer structure characterizing the sum X /4/ Y.

*In this report, Dempster-Shafer structures are often specified in this format. Each pair in the
list has the form (focal element, associated mass), where the masses in the list sum to one.
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Figure 14: Cumulative plausibility and belief functions for addends and sum of
Dempster-Shafer structures under perfect dependence.

Example: Another example involves a more complicated situation in which the
focal elements and masses of the two Dempster-Shafer structures do not match quite so
nicely. Let X be characterized as before by the Dempster-Shafer structure {([1,3], 1/3),
([2,3], 1/3), ([3,5], 1/3)}, but let Y be characterized by {([2,8], 1/4), ([3,10], 1/4),
([6,12], 1/4), ([8,15], 1/4)}. These two structures are depicted in terms of their
cumulative plausibilities and beliefs in Figure 15. We seek to compute the X /+/ Y.
Because X has three focal elements and Y has four, they cannot be combined using the
method used in the previous example. However, that method could be used if we
express the Dempster-Shafer structures in compatible forms. To do this, we expand the
Dempster-Shafer structure for X to the twelve-element list {([1,3], 1/12), ([1,3], 1/12),
([1,3], 1/12), ([1,3], 1/12), ([2,3], 1/12), ([2,3], 1/12), ([2,3], 1/12), ([2,3], 1/12), ([3,5],
1/12), ([3,5], 1/12), ([3,5], 1/12), ([3,5], 1/12)}. This list is like a Dempster-Shafer
structure in that the masses sum to unity, but it has repeated intervals. The Dempster-
Shafer structure for Y is likewise expanded to a twelve-element list {([2,8], 1/12), ([2,8],
1/12), ([2,8], 1/12), ([3,10], 1/12), ([3,10], 1/12), ([3,10], 1/12), ([6,12], 1/12), ([6,12],
1/12), ([6,12], 1/12), ([8,15], 1/12), ([8,15], 1/12), ([8,15], 1/12)}. It is clear that these
transformations neither lose information nor create additional structure beyond that in
the original specifications for X and Y. The twelve-by-twelve Cartesian product can
now be formed between these expanded lists. To reflect the perfect dependence
between X and Y, all the mass is assigned to the diagonal elements of the matrix. When
the masses are integrated for the focal elements, the result of this convolution is the
Dempster-Shafer structure {([3,11], 3/12), ([4,13], 1/12), ([5,13], 2/12), ([8,15], 2/12),
([9,17], 1/12), ([11,20], 3/12)}. The cumulative plausibility and belief functions for this
structure are depicted on the rightmost graph in Figure 15.
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Figure 15: Addition of general Dempster-Shafer structures under perfect
dependence.

Example: The focal elements of the Dempster-Shafer structures in the previous
examples had a convenient order that enabled us to use a simple Cartesian product to
effect convolutions under perfect and opposite dependence. Suppose we want to
compute the sum X /+/ Y where X is {([1,4], 1/2), ([2,3], 1/2)} and Y'is {([11,13], 1/2),
([12,14], 1/2)}. In this case, the focal elements of X cannot be arranged into a
comparable Cartesian product. The equivalence relations explored in Ferson et al.
(2003) suggest that a transformation of X into a related Dempster-Shafer structure could
be used to do the calculation. In particular, we might replace X with the Dempster-
Shafer structure {([1,3], 1/2), ([2,4], 1/2)}, which does allow the convenient ordering of
its focal elements. This transformation of X leaves unchanged its cumulative
plausibility and belief functions. If we then apply the method used in the previous
examples, we will obtain the result {([12,16], 1/2), ([14,18], 1/2)}.

The algorithms based on linear programming described by Berleant and
Goodman-Strauss (1998) give the same results in numerical experiments as the methods
based on p-boxes, and Regan et al. (2004) argued that this equivalence is general. Jim
Hall (pers. comm.) has pointed out that the transformation used in the third example
corresponds to weak inclusion (sensu Dubois and Prade 1990) between the original and
transformed Dempster-Shafer structures, and that this may have implications for what
can be assumed about their relationship.

3.6 Simulating correlations

When the correlations among variables can be estimated empirically or assigned by
theoretical considerations, several standard techniques are used to simulate the
dependence relationships among variables in a Monte Carlo analysis. This would be
useful in any sort of risk assessment or uncertainty propagation problem in which
analysts would like to use their knowledge about the interactions or dependencies
between the input variables to tighten or reduce the bias of the results. This section
considers a few of the methods that represent specified correlation coefficients between

53



uncertain quantities. It is important to understand at the outset that merely giving a
correlation coefficient, whether it be Pearson, Spearman, Kendall or some other index,
is usually not sufficient to fully specify the dependence model. There must, therefore,
be some further implicit or explicit constraint that makes the problem well defined.

Scheuer and Stoller (1962) described a numerical method in the general
multivariate case (i.e., for two or more variables) that is still widely used to generate
normal deviates with a specified variance-covariance matrix

where o;; is the variance of the i variable and o, for i # j, is the covariance between
the i and /™ variables. Correlated normal random deviates are computed as weighted
linear combinations of independent normal random deviates

Z; = e, i=lok,
j=1

where Y; ~ normal(0,1) are independent standard normal random deviates, and c;; are the
elements of a lower triangular matrix C solving £ = CC", which can be obtained
numerically by Cholesky decomposition (Gentle 1998; Press et al. 1992). Recursive
formulas for the elements of C are given by Scheuer and Stoller (1962). The resulting
Z; are normally distributed, each with zero mean and unit variance, and they have the
desired cross correlations. The final step is to rescale the values so they have the
variance-covariance matrix X and translate them to the desired central tendencies. The
Scheuer and Stoller method can generate extremal correlations (Section 3.5) by setting
the appropriate correlations to £1. Because all the marginals are normal, correlations
can be varied over the entire range [1, +1].

In the bivariate case k = 2, these equations reduce to

X, =Yoo, +1,
X, =(r1/1 - 1—r2)/2)<52 +,

where r is the desired (Pearson product-moment) correlation between the two random
variables, p; and p, are their respective desired means, 6| and o, are their standard
deviations, and Y, and Y, are independent standard normal deviates.

Example: Suppose we wish to estimate the distribution function of X+Y where
X ~normal(10,2) and Y ~ normal(5,1) and X and Y have Pearson correlation 0.5. In this
problem, we can use the formulas for the bivariate case with p; =10, 6, =2, u, =5, oy
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=1, and »=0.5. The value of \(1—%) = 0.866. Figure 16 depicts the distribution of the
sum X+Y as computed by a Monte Carlo simulation involving 1000 replications. The
observed correlation between the variables was 0.510, compared to the planned value of
0.5. The observed mean of the resulting normal distribution was 15.11, compared to the
theoretical expectation of 15 (the mean of a sum is not affected by correlation). The
observed variance was 7.12. The theoretical variance can be computed from the
covariance. The Pearson correlation is defined to be the covariance of the variables
divided by their standard deviations. Thus, for the correlation of 0.5, the covariance
would be 1. This allows us to compute the theoretical variance of the sum of these
correlated normals as V(X) + V(Y) + 2 cov(X,Y) = 7, rather larger than the variance
under independence, which would be V(X)+V(Y) = 5.

1
E X ~normal(10,2)
S 081 Y~ normal(5,1)
S correlation = 0.5
S 0.6
.
)
> 044
k=
= 0.2 -
E .
=
SO . , . .
0 5 10 15 20 25 30

X+Y

Figure 16: Distribution of the sum of correlated normals.

The Scheuer and Stoller method is accurate, numerically inexpensive and
suitable for use in multivariate settings, but it is restricted to normally distributed
variables. Although analogous methods can be derived for other distribution shapes
(e.g. Song 1997), such a parametric approach seems impractical given the great variety
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of distribution shapes* encountered in practical risk assessments. But, most importantly
for this report, it does not seem possible that this method can be easily generalized for
use with Dempster-Shafer structures and probability boxes. The reason for this is not
because the methodology is based on sampling; one can ‘sample’ from a Dempster-
Shafer structure or a p-box by selecting a random deviate u ~ uniform(0,1) and taking as
the sample the interval formed by the u™ quantiles of the cumulative plausibility and
cumulative belief functions. One can also compose Dempster-Shafer structures and p-
boxes from sets of such interval samples (see Ferson et al. 2003). The reason that the
Scheuer and Stoller approach does not extend easily to the context of imprecise
probabilities is that it requires that the marginal distributions be decomposed into
distribution shape and parameters. The epistemic uncertainty embodied in Dempster-
Shafer structures and p-boxes cannot be partitioned in this way. Their epistemic
uncertainty is distributional too. Although one can specify a p-box by giving the shape
and, say, interval bounds on the parameters such as the mean and standard deviation, it
is not possible to characterize every p-box in this way. Dempster-Shafer structures can
also be complicated structures that cannot be decomposed quite so handily. The method
is not modeling the dependencies per se, but rather sidestepping the problem by
inducing a superficial conformance of the simulated deviates with the specified
dependencies.

Iman and Conover (1982) described another, more robust technique for
simulating deviates from distributions of general distribution shapes and Spearman rank
correlation structure. Iman and Davenport (1980; 1982a) gave many example
scatterplots illustrating the results of the technique on assorted combinations of
marginal distributions. Helton (1993, section 3.2; Helton and Davis 2002, section 5)
reviewed this method and its compatibility with Latin hypercube sampling techniques,
giving an overview of the algorithm, illustrative examples and an argument for the
naturalness of Spearman correlation as how most people intuitively think about
correlation. There are, nevertheless, some caveats (see Section 3.6.2) that an analyst
should keep in mind about how the traditional Pearson correlation coefficient and rank
correlation can differ substantially. The approach assumes that the joint distribution is a
transform of a joint normal distribution and it uses a variant of the Scheuer and Stoller
method. Interestingly, however, it does not seem to create extremal dependencies by
setting the input correlations to 1. The Iman and Conover method was criticized as ad
hoc by Clemen and Reilly (1999) and considered dismissively by Cooke (1997), but it
is fairly simple to implement and it can be applied to arbitrary marginal distributions in
the multivariate context. Because it was the first method with these important features,
it has been widely adopted. For instance, the Iman and Conover method is used in the
Crystal Ball software package (Eric Wainwright, pers. comm.; Decisioneering 1996;
Burmaster and Udell 1990; Metzger et al. 1998) and is probably the most widely used
method for inducing correlations in Monte Carlo simulations. However, like the

*Lurie and Goldberg (1994) described an iterative approach for obtaining a desired pattern of
Pearson correlations matching specified marginal distributions, but it is essentially a trial-and-
error approach that can be computationally intensive.

56



Scheuer and Stoller method, the Iman and Conover method does not seem to generalize
easily to Dempster-Shafer structures or p-boxes.

Nelsen (1986, 1987) gave methods to simulate bivariate deviates from
distributions having arbitrary marginal shapes and arbitrary rank correlation (measured
with either Spearman’s p correlation or Kendall’s T correlation). Clemen and Reilly
(1999) described another method based on the dependence model expressed in
multivariate normal distributions. When the marginals are normal, the correlation can
be specified with the Pearson coefficient, but because the dependence function can be
freely wedded to arbitrary marginals, the approach immediately applies to all other
distribution shapes too. The resulting correlations are no longer the specified Pearson’s
coefficients, but the transformation leaves rank correlations unchanged. Cario and
Nelson (1997) described yet another very general analytical approach to the problem
and spell out how it too can be applied in the multivariate case.

These recent approaches all rely on transformations that are usually expressed in
terms of the theory of “copulas” (Schweizer 1991; Nelsen 1999). Copulas are simply
the dependence functions that knit together marginal distributions to form their joint
distribution. In fact, the copula is also called the “dependence function”. Copulas have
very simple structures and have many useful properties. They greatly simplify the
generation of correlated random numbers. Consider, for example, the method of
Clemen and Reilly (1999). This method can be described in three steps. Given k
marginal distributions characterizing k random variables and a kxk positive semi-
definite matrix of correlation coefficients (considered to be either Spearman correlations
or Kendall correlations) that characterize the dependence between these random
variables, the first step is to translate the given correlations into Pearson correlations. If
the given values are Spearman correlations p;;, compute 7;; = 2sin(np;;/6), i,j = 1,..., k.
If the given values are Kendall correlations t;;, compute instead r;; = sin(nt;;/2). These
formulas depend on the family of copulas employed. The Clemen and Reilly method
uses the normal family of copulas, so named because they are exactly the dependence
functions embodied in all multivariate normal distributions. The second step is to
generate k correlated unit normal random deviates Z; using an approach such as that of
Scheuer and Stoller (1962) according to the computed Pearson correlations. The third
and last step is to compute

X, = F((Z)
foreachi=1, ..., k, where @ is the standard normal distribution function, and F, s
the inverse function of the desired marginal distribution for variable i. This process is
repeated as many times as the analyst needs correlated deviates. Because the Spearman
and Kendall correlations are invariant to monotone transformations, the .X; will have the
same correlations as the ¥;. However, the @ transformation changes the unit normal

deviates into unit uniform deviates, and the F;™' functions changes unit uniform deviates
into deviates that have the desired marginal distributions. Therefore the X; have the
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correct marginal distributions and the desired nonparametric correlations. Cario and
Nelson (1997) call the strategy of transforming correlated normals to arbitrary marginal
distributions “NORTA”, an acronym for “normal to anything”. This strategy is what
gives the Iman and Conover method its flexibility too. Henderson et al. (2000) noted
that, although this approach is quite flexible, there are possible variance-covariance
structures and sets of marginals distributions that it cannot generate. They described an
adjustment to the algorithm that will produce results that approximate the desired
covariance.

Very similar strategies can be mounted for other copula families if one has
access to an algorithm for creating correlated deviates within that family and a way to
express the intended correlation in terms of the parameter(s) of the family. What had
previously been the difficult part of accounting for arbitrary marginals in a multivariate
context has been made straightforward. This copula approach must be considered the
state of the art. It has proven so simple and fruitful that it has lately spawned something
of a cottage industry in developing methods for generating correlated random numbers
to specification. Nelsen (1986) used the Frank family of copulas. Nelsen (1987) used a
family of copulas formed as convex linear combination of the Fréchet limiting cases.
Clemen and Reilly (1999) used the normal family, and Kurowicka et al. (2001) used the
elliptic family. These different families and parameterizations have various advantages
and disadvantages, although these details are beyond the scope of this report. The
normal family is actually among the most computationally intensive algorithms because
it involves evaluating the normal distribution function. This function, which has no
closed form expression, is of course widely available (e.g., Abramowitz and Stegun
1964). It is, for instance, the NormsDIST function in Microsoft Excel. The operations
needed for the Frank family, in contrast, are very convenient to compute, although the
functions to translate the correlations are given as lookup tables.

Example: Suppose that X is lognormally distributed such that the mean p of
In(X) is 5 and its geometric standard deviation ¢ = 1, and that Y has a beta distribution
with parameters 10 and 2. Further suppose that the Spearman correlation between X
and Yis 0.8. The complete calculations to compute the correlated random variables can
be encapsulated in the following pseudocode (when we cannot specify values because
they are random, we give the Microsoft Excel expressions that could be used to
generate them):

r=2sin(m p/6)=0.8135

W= ®(U;) = NORMSINV(RAND())

W, = ®(U,) = NORMSINV(RAND())

Z1 =W

Z,=r W, +sqrt(1-%) W, = 0.8135 W, + 0.5816 W,
X=F,"(®(Z))) = LOGINV(NORMSDIST(Z,),5,1)

Y = F,"(®(Z,)) = BETAINV(NORMSDIST(Z,),10,2)
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where U; are independent unit uniform deviates and words in all capital letters are
functions in Excel syntax. Figure 17 shows 200 hundred random pairs of (X, )
resulting from these calculations. Iman and Davenport (1980; 1982a) show a variety of
comparable scatterplots for various different marginal distributions and Spearman
correlations.

%‘Q}:.w,o . *» o0
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X ~ lognormal(5,1)
0.4 Y ~ beta(10,2)
0.2 correlation = 0.8
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Figure 17: Scattergram depicting correlation (p=0.8) for non-normal marginals.

3.6.1 Feasibility of correlation matrix

There are mathematical constraints associated with correlations. For instance, one
variable cannot be strongly positively correlated with each of two variables that are
themselves strongly negatively correlated. Such constraints can be summarized by
saying the matrix of correlations must always be a positive semi-definite matrix.
Checking for positive semi-definiteness requires a special algorithm (Iman and
Davenport 1982b). An infeasible correlation matrix amounts to gibberish for the model
that uses it. If the input correlations are the result of coherent empirical studies, this
will never be a problem. However, if the inputs are mixed results from different
studies, or if they are based on hypothetical values or best professional judgments about
correlations, infeasible configurations may be specified.

Many specially developed computer codes and even some commercially
available software packages for Monte Carlo simulation do not check that the input
correlation matrix satisfies the positive semi-definiteness condition. It is not clear what
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their algorithms for generating correlated deviates would do if the feasibility condition
is not satisfied. It is therefore important for analysts always to check that the input
corresponds to a feasible correlation matrix.

If the matrix is positive semi-definite, then it is a possible correlation matrix. If
it is not positive semi-definite, then it cannot be a correlation matrix in the first place
and certainly should not be used in modeling dependencies in a risk analysis. This is
the result of some impossible scenario such as variable X being strongly positively
correlated with both Y and Z, but Y and Z being strongly negatively correlated with each
other. It may even be possible and useful to employ the positive semi-definiteness of
correlation matrices to tighten some interval estimate of correlation. For instance,
knowing the correlations between X and Y and between X and Z can constrain the
correlation between Y and Z to an interval smaller than [-1, +1].

Unfortunately, this strategy of using available information about the
relationships among some variables to inform us about the relationships among others
does not extend to feasibility constraints on the qualitative (sign) information about
dependencies, which is especially weak. Even information about how some variables
are perfectly or oppositly dependent does not induce constraints that can be used to
make inferences about unknown dependencies. Indeed, seemingly self-evident
inferences involving extremal dependencies are demonstrably false. For instance,
suppose 4 and B are oppositely dependent and that 4 and C are oppositely dependent.
Thinking something like “the enemy of my enemy is my friend”, one might expect that
it would be possible to infer from this that B and C are perfect dependent. However,
this is not a correct inference. Although one can infer that B and C could not be
oppositely dependent, they may be independent. Here is a simple example. Consider
discrete distributions such that there are four possible configurations as given in the
following table.

W NN =
— W = Wy
»—»—AUJL»JQ

It is easy to see by plotting these three variables against each other in various
combinations, that 4 and B are oppositely dependent on one another, as are 4 and C.
(Their Pearson correlation is - 0.707, but their Spearman correlation is - 1.)
Nevertheless, B and C are independent. Likewise, it is very easy to construct examples
in which a variable X is perfectly associated with both Y and Z, and yet the variables ¥
and Z themselves are independent. Thus, one cannot use information that some
variables are maximally dependent to infer very much about other variables.
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3.6.2 Caveats

There are four major caveats to consider when applying any of the methods discussed
above to generate correlated variates.

(1) The first caveat is that there are many measures of correlation, and an analyst must
specify which correlation is intended. The correlation measures are sensitive to
different aspects of the possible dependence between variables. For instance, consider
Figure 18, which depicts two dissimilar patterns of bivariate dependence. The Pearson
correlation for the data in the graph labeled A is 0.786. The Spearman correlation is a
comparable value of 0.794. These values agree that there is a moderately strong
positive relationship between the two variables. In contrast, the Pearson correlation for
the data depicted in graph B is 0.655, suggesting a somewhat weaker relationship.
However, the Spearman correlation for the data in graph B is 1.0 because the points are
monotonically increasing. The discrepancy arises, of course, from the fact that this
perfect monotonic relationship is still strongly nonlinear.
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Figure 18: Two patterns of bivariate dependence.

(2) The second caveat about generating correlated variates is that one cannot reconstruct
complex or idiosyncratic nonlinear dependencies. It is essential to understand, for
instance, that some of the algorithms mentioned above that generate correlated random
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deviates cannot produce a pattern of bivariate dependence that looks anything like the
pattern shown in graph B of Figure 18, no matter what correlation coefficient is used as
input.

(3) Although the methods are fairly well developed for simulating correlations and
other dependencies in probabilistic risk analysis, these methods are not very useful if
the nature or degree of correlation is unknown. This is the third caveat about generating
correlated variates. If the analyst believes the variables may be correlated or dependent
in some way, but does not know the magnitude or details of the interaction, the methods
described above cannot be used because the methods need these details. Estimating
correlations usually requires paired or joint observations that can often be difficult or
sometimes even impossible to collect. Section 4 describes some approaches to
accounting for partial or even total ignorance about dependence.

(4) The presence of correlated variables in a regression-based sensitivity analysis can
produce strange and potentially misleading results (Helton and Davis 2000; Helton
1997). This is not a good reason to neglect correlations when they exist, but care should
be exercised.

3.7 Parameterized copulas

As discussed in Section 3.6, specifying a correlation coefficient is insufficient to fully
determine the dependence between two variables. Methods that seem to do this are
implicitly assuming some copula family that takes the correlation and specifies a
particular dependence function. This section shows how the theory of copula can be
used directly and explicitly to compute arithmetic functions between the variables with
arbitrarily complex dependencies.

It is important for an analyst to be able to model dependencies (rather than
merely correlations) because complex dependencies routinely appear among variables
in risk assessments and these dependencies can have profound impacts on the numerical
results of risk calculations. Complex dependencies are certainly not rare. They are
perhaps as common as nonlinearity generally in physical systems. Vesely et al. (1981)
argued that dependencies may often dominate system performance. Hickman et al.
(1983, their section 3.7) discuss a variety of reasons that dependencies can arise in
nuclear power plants, including common-cause initiating events, functional
dependencies, shared-equipment dependencies, physical interactions, human-interaction
dependencies, and inter-component dependencies. Hart et al. (2004) discuss a variety
of mechanisms that lead to complex dependencies.

Although there is a vast literature in risk analysis and uncertainty modeling on
selecting marginal distributions (see Haimes et al. 1994; Morgan and Henrion 1990;
Cullen and Frey 1999; inter alia), there has been considerably less consideration of how
an analyst should select and implement models of dependence (but see Cooke 2002;
Haas 1999; Hutchinson and Lai 1990). How would a risk analyst make use of detailed
information about dependence in an assessment? How can we make use of our
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knowledge about the constraints that prohibit or favor certain combinations of variable
values in order to obtain better calculations and reduce our uncertainty about them? It
turns out that it is relatively easy to do these things by making fuller use of the theory of
copulas. The rest of this section gives a sketch of this theory.

Given marginal distributions Fy and Fy characterizing random variables X and Y
respectively, the Lesbesgue-Steiltjes integral

Fy(2)= [dC(Fy(x), Fy(»))

z=x+y

(which always exists) gives the distribution of the sum Z = X+Y in terms of the
dependence (copula) function C(u,v) between X and Y. If the variables are independent,
so that C(u,v)=uv, and the integral for the distribution function of Z reduces to

[Fedr, ()= [Fe(z-0dF, ().

z=x+y

There are very similar formulas for the distribution of differences, products, quotients,
etc., where the plus sign in the condition specifying the integral is replaced by a minus,
multiplication sign, division sign, etc. We mention these formulas only in passing. In
practice, they are very rarely actually used in risk assessments or other applications of
probabilistic modeling, except in a few very simple cases (simulation methods are used
instead). We mention these formulas only to say that their assumption of independence
makes them far less useful for general problems than might be supposed.

The probability that a random variable is within a closed region can be estimated
by integrating its probability density function over that region. In many cases, however,
it can be far easier to compute it directly from the joint distribution function at the
corners of the region. For example, the probability associated with the region x; < X <
X2, ¥1 £ Y <y, can be computed as the diagonal difference

H(x1, y1) = H(x1, y2) = Hxo, y1) + H(xa, 12),

where H is the cumulative bivariate joint distribution function for X and Y. Figure 19
shows how this diagonal difference finds the mass associated with a rectangle. The
masses that are added together are depicted with hatching that slants upward; masses
that are subtracted have hatching that slants downward. Because H is the joint
cumulative distribution, the result is the cumulative mass that is associated with the
rectangle marked b, that is, the rectangle limited by x; < X < x,, y; < Y <y,. Using this
fact, the probability distribution function for Z = g(X, Y), for some function g, can be
estimated by the discretization
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F,(z)= ZH(x+Ax,y+Ay)—H(x+Ax,y)—H(x,y+Ay)+H(x,y).

z=g(x,y)

The summation is needed because there could be several combinations of X and Y that
produce the same value of Z, so the probability of each should be added together.
Sklar’s (1959) theorem tells us how to compute the joint distribution function H(x, y)
from specified marginal distributions and a dependence function represented by a
copula. For any (univariate) distribution functions Fxy and Fy and any copula C, the
function

Hix, y) = C(Fx(x), Fy))

is a two-dimensional distribution function having marginals Fy and Fy. If Fyand Fy are
continuous, then C is unique. This decomposition of a joint distribution into its
marginals and the copula that knits them together is a very general approach. The
marginal distributions can be specified arbitrarily. The discretization can be made
arbitrarily fine to achieve any desired precision. Sklar’s theorem generalizes to
dimensions higher than two (Nelsen 1999; Cossette et al. 2001; cf. Bernat et al. 2004).

H(xy, y,) H(x,, y,)

B .
A\ ‘ Y

X1 Xy X1 %)

|
H(xl’ yl) X H(x2> yl)
B! b 3 %)

a

a b

"% d AN

X1 X2 X1 X2
Figure 19: Diagonal difference estimate of the mass associated with a rectangle.
Hutchinson and Lai (1990) and Haas (1999) give accessible introductions to
copulas and their use in modeling dependence in risk and uncertainty modeling. A

copula is simply the dependence function between random variables. Figure 20 depicts
the copulas corresponding to three special cases of dependence. Irrespective of what
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the marginal distributions are, every perfectly dependent pair of random variables has
the dependence function represented by the copula M(u, v) = min(u, v). Moreover, any
pair of random variables characterized by given marginals can be made to be perfectly
dependent on one another by combining their marginal distribution with the copula M
as specified by Sklar’s theorem. This function is shown on the left graph of Figure 20.
Similar statements are possible with opposite dependence and the copula W(u, v) =
max(u + v — 1, 0), which is depicted in the right graph. Finally, the middle graph,
depicting the product copula I'l(x, v) = uv, has the same intimate connection with
independence. Fréchet (1951) and Hoeffding (1940) showed that, in fact, all
dependencies between any two variables correspond to a copula between M and W, that
is, for any copula C,

W(u,v) < C(u,v) < M(u,v)

(see Whitt 1976). These special cases are called the Fréchet-Hoeffding limits, or
simply, the Fréchet limits.

M(u,v) = min(u(,)v)

W(u,v) = max(u+v—1,0)

Figure 20: Three special cases of dependence functions.

Nelsen (1999) reviews many copula families that have been proposed. A family
of copulas is a model of the dependence between random variables. A copula family
that includes the special cases of perfect dependence, opposite dependence and
independence is called comprehensive. There are several families that have this
property. For example, the Frank family of copulas (Frank 1979; Nelsen 1999), which
is defined by

Crrans (t1,9) = log 1+ (s* ~1)(s* = 1) (s 1)

where 0 < 5. Perfect dependence arises in the limit as s tends to zero. Opposite
dependence arises when s goes to infinity, and independence corresponds to an s of one.
The Clayton family is
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Clayton (V) = rnax((u_9 +y 07O, 0)

where —1 < 0. Perfect dependence corresponds to 8 = co. Setting 6 to —1 yields
opposite dependence, and zero corresponds to independence. The Mardia family is
defined as a linear combination of the three special cases

_0%(1+0) 0%(1-0)
2 2

M (u,v)+ (1 —02)IT(u,v) +

Chtardia (V) W(u,v)

where the functions M, I'T and W are the functions defined above. Clemen and Reilly
(1999) argued that the normal copula is especially useful. It is the dependence between
variables that are multivariately normal. The normal copula is

Crommat (1) = @ (07 (1), D™ (1))
where

: ]]‘exp[_(sz —2rst+t2)jdsdt

1
D (x,y)=—F——
2Nl —-r" %% 2(1—r2)

and @ ' is the quantile function of the standard univariate normal distribution function,
and @, is the joint cumulative distribution function for the standard bivariate normal
distribution with Pearson correlation 7, 0 <r < 1.

Not all copula families are comprehensive. Indeed, most of the families
described by Nelsen (1999) that have arisen in the statistical and engineering literature
do not include all three special cases of perfect dependence, opposite dependence and
independence. Elliptic copulas, which were recommended by Kurowicka et al. (2001),
include all correlations between —1 and +1, but, interestingly, they do not include the
independent copula IT when the correlation is zero.

As we discussed in Section 3.6.2, there are several measures of correlation that
could be used to index the strength of dependence. Hutchinson and Lai (1990) describe
a host of possible measures of correlation/dependence, including not only Pearson,
Spearman and Kendall, but also medial correlation, maximal (sup) correlation,
monotone correlation indices, and several indices of concordance, such as Blomqvist’s
(1950) quadrant measure. These various measures are scales that summarize
dependence in different ways (comparable in this sense to the mph scale and kph scales
on a speedometer, or perhaps to linear and log scales describing the same phenomenon).
In principal, one could match a copula family with one of these measures, which would
specify how to select a particular copula from the family.

The literature about dependence has exploded over the last two decades. Many
disparate ideas and approaches have been proposed about how to measure and model
dependence. Future research in this area may witness some pruning or weeding among

66



the many ideas that have developed to select a few that are most generally useful. At
least for the foreseeable future, however, none of the copula families is likely to emerge
as “the” family to use for all applications. Like the various measures of correlation, the
different families are useful in different circumstances to represent different sorts of
phenomena. This methodological embarrassment of riches need not, however, lead to
confusion or anxiety among risk analysts. The algorithmic tools described in this and
the following sections to compute convolutions can be used with essentially all of the
copula families irrespective of their origin or complexity, so long as they admit the
numerical specification of the dependence function. This means that, even though it
may not always be clear which copula family or correlation measure we should be
using, we will always be able to compute convolutions with our choices.

Examples: Figure 21 shows how the distribution of a sum of random variables
X ~normal(5,1) and Y ~ uniform(2,5) can vary with the choice of copula family and
correlation measure that are used to model the dependence between X and Y. The top
graph represents the Frank copula family, parameterized by the medial correlation
coefficient. The middle graph represents the Mardia family parameterized by Kendall
correlation, and the bottom graph represents the Clayton copula family (which specifies
its own index of correlation). Each of the three graphs shows six distributions,
corresponding to the correlations +1, +0.6, +0.2, —0.2, —0.6 and —1. The correlation of
+1 represents perfect dependence and it produces the shallowest distribution function
for the sum. The correlation of —1 likewise represents opposite dependence, which
produces the steepest distribution function for the sum. These two distributions are
identical among the three graphs. The other correlations yield distributions that are
intermediate in slope to these two extreme cases. These intermediate distributions vary
markedly in shape across the three graphs. Notice, for instance that all the distributions
produced by the Frank copula go through a single point at the median. The distributions
from the Mardia copula, on the other hand, share even greater commonality. They
variously trace along a common set of percentiles in the middle of the distributions.
The distributions from the Clayton copula don’t have any common points for all
correlations except at the extreme tails.
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Figure 21: Variation in the distribution of a sum of correlated variables where

correlation is interpreted according to three copula families.

3.7.1 Using copulas with Dempster-Shafer structures

The computational approach using a parametric copula that was described in

Section 3.7 for computing convolutions among random variables characterized by
probability distributions extends immediately to Dempster-Shafer structures so long as
these structures have a natural order for their focal elements. In this case, as before, the
probability associated with a closed region is computed directly from the joint
distribution function at the corners of the region as the diagonal difference.
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The first step of the calculation is to compute the focal elements. Suppose the
first Dempster-Shafer structure has elements {([a1, b1], p1), ([a2, b2], p2), - .., ([an, bnl,
pn)} wherea; <ay <... <a,and by £ b, <... <b,, and the second has the elements
{([c1, d1], q1), ([c2, 2], G2)s --vs ([Cms A, gm)}Where 1 <2 < ... <cpandd) <d,<... <
dn, and we wish to combine these two Dempster-Shafer structures with the binary
function /. The (i, j)th elements in Yager’s (1986) Cartesian product is f([a;, bi], [c), d}]).

The second step in the calculation is to compute the masses associated with each
of the focal elements. The probability mass associated with any closed region x; < X' <
X2, ¥1 < Y <y, can be computed from the joint distribution H as the diagonal difference

H(x1, y1) = H(x1, y2) = Hxo, y1) + H(xa, 12),

where each of these H’s can be evaluated in terms of the copula applied to the marginal
cumulative probabilities H(x,y) = C(F(x), G(y)). This means that the mass associated
with the (i, /)™ focal element is

C(Pi, Q) = C(Pi-1, Q) = C(Pis Q1) + C(Pi1, O-1)

where P; and (; are the cumulative masses

Whenever the focal elements have a natural order, these cumulative masses have the
interpretation as the probability that the underlying variable is smaller than the indicated
focal element. The last step is to sum the masses for any elements of the Cartesian
product that happen to be identical. The sum of all of the probability masses in the
Cartesian product will be one (except for possible discretization error).

Example: Suppose we want to use the Frank family of copulas parameterized
by Spearman correlation to compute the sum of X+Y. Further suppose that X is
characterized by the Dempster-Shafer structure {([1,6], 0.25), ([5,9], 0.5), ([7,10],
0.25)} and that Y is characterized by the Dempster-Shafer structure {([2,4], 0.5), ([3,5],
0.5)}, and their Spearman correlation is 0.6. The cumulative plausibility and belief
functions for these two inputs are shown in the left and middle graphs of Figure 22.
The focal elements for the answer can be obtained as the Cartesian product of the input
focal elements, so, for instance, the first focal element is just [1,6]+[2,4] = [3,10]. The
focal elements are thus
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Jj=1 J=2

i=1 [3,10] [4,11]
i=2 [7,13] [8,14]
i=3 [9,14] [10,15]

where 7 indexes the elements of the X structure, and j indexes the elements from the ¥
structure. The mass to be associated with the i,/ focal element in the Cartesian product
is the diagonal difference

C(Pi, Q) — C(Pi-1, Q) — C(Pi, Qj-1) + C(Pi-1, Q1)

where C is the dependence function, P; is the cumulated probability for the ith focal
element of )X, and Q; is the cumulated probability for the jth focal element of Y. The
value of P; is 0.25; the value P; is 0.75; the value of P5 is 1. The value of Q; is 0.5, and
the value of O, is 1. (Pp and Qy are of course zero.) For the dependence function we
are using the Frank copula family

Clu,v)=log(1+E"—=1)(s"=1)/(s—1))
where the parameter s is chosen to yield the correct Spearman correlation. From a table

given by Nelsen (1986, table I*), the value of the Frank parameter s corresponding to a
Spearman correlation of 0.6 is about 0.01. The matrix of the copula values is

J=1 Jj=2
i=1 0.211 0.25
i=2 0.461 0.75
i=3 0.5 1.0.

The mass for each focal element is obtained from the diagonal difference, so, for
instance, the mass for the focal element when i=2 and j=1 is just

C(P2, Q1) — C(Py, Q1) — C(P2, Qo) + C(P1, Qo),

which is 0.461 — 0.211 — 0 — 0 = 0.25. Other elements are evaluated similarly. The
matrix of masses to be associated with the focal elements is therefore

J=1 Jj=2
i=1 0.211 0.039
i=2 0.25 0.25
i=3 0.039 0.211.

Consequently, the Dempster-Shafer structure associated with the sum X+Y assuming X
and Y are correlated according to a Frank copula with correlation 0.6 is {([3,10], 0.211),

*s = exp(—exp(—z)), where z is Nelsen’s tabled value.
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([4,11], 0.039),([7,13], 0.25), ([8,14], 0.25), ([9,14], 0.039), ([10,15], 0.211)}. The
cumulative plausibility and belief functions for this structure are displayed on the right-
most graph of Figure 22.
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Figure 22: Convolution between Dempster-Shafer structures with a specified
copula (Frank family, parameterized by Spearman correlation).

Examples: If the elements of a Dempster-Shafer structure do not have the
convenient ordering, then the Dempster-Shafer structure should first be transformed to a
related structure that is so ordered. For instance, if X were characterized by {([5,9],
0.5), ([1,6], 0.25), ([7,10], 0.25)}, it would first be rewritten as {([1,6], 0.25), ([5,9],
0.5), ([7,10], 0.25)}. This is merely a reordering of the focal elements, so it does not
alter the Dempster-Shafer structure at all. If, on the other hand, X were characterized by
{([1,6], 0.25), ([5,10], 0.5), ([7,9], 0.25)}, it would first be replaced by the related
Dempster-Shafer structure {([1,6], 0.25), ([5,9], 0.25), ([5,10], 0.25), ([7,10], 0.25)}.
This is necessary because [7,9] is inside [5,10] so there can be no convenient ordering
of the focal elements. This might seem like a substantial change because it alters the
number of focal elements from 3 to 4, but it does not change the cumulative plausibility
and belief functions. Once both input structures have the requisite ordering, then they
may be convolved using the method outlined in the previous example.

3.7.2 Using copulas with p-boxes

Using the machinery developed for Dempster-Shafer structures in the previous section,
it is straightforward to calculate convolutions between p-boxes under the assumption
that the variables represented by the p-boxes are dependent and their dependence is
expressed by some parametric copula. The p-boxes are first discretized into Dempster-
Shafer structures. The calculation then proceeds exactly as it did for Dempster-Shafer
structures. In the case of p-boxes, however, the requisite natural ordering of the focal
elements is always present because of the way the discretization is done. The resulting
Dempster-Shafer structure is then reassembled into a p-box.
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Discretization of p-boxes is described by Ferson et al. (2003, their section 2.3).
If a p-box is specified by the bounding functions F(x) and F (x) such that F(x) < F(x),

then the discretization will be have focal elements [ F ™' (p), F'(p)] where the
superscript denotes the inverse function (or some quasi-inverse if the function is not
strictly invertible), and 0 < p < 1, for as many levels of p as are required to make an
adequate discretization. The mass associated with the focal elements is Ap, which can
be made arbitrarily fine. When the bounds of the p-box are step functions, the
discretization can be exact; when they are curves, the discretization will be an
approximation to the p-box.

Example: Suppose we want to compute the product XY, where the random
variable X is a proportion whose median is no larger than 0.1 and whose 95t percentile
is no larger than 0.3, and the random variable Y is a proportion with a mean of 0.2.
These two marginal inputs are depicted in as the left and middle graphs of Figure 23.
Suppose that the dependence between X and Y is to be modeled with a normal copula
with a Kendall correlation of —0.5. As Clemen and Reilly (1999) explain, this Kendall
correlation corresponds to a Pearson correlation of 2 sin(n(—0.5)/6) = —0.51764 for a
normal copula. The discretization for X is the Dempster-Shafer structure {([0,0.1],0.5),
([0,0.3],0.45), ([0,1],0.05)}. The Dempster-Shafer structure for Y is only approximate
because its bounds are not step functions. With 100 discretization levels, it is {([O0,
0.202], 0.01), ([0, 0.204], 0.01),..., ([0.192, 1], 0.01)}. The 300 focal elements in the
Cartesian product between X and Y consequently are the intervals {[0, 0.0202], [0,
0.0204],..., [0, 0.1],..., [0, 0.0606], [0, 0.0612],..., [0, 0.3]...., [0, 0.202], [0, 0.204]...., [0,
1]}. The associated mass for each of these intervals is computed using the diagonal
difference with C = Cormal, the normal copula with » =—0.51764. The cumulated
masses for X are P; = 0.5, P, =0.95, and P; = 1. The cumulated masses for ¥ are Q| =
0.01, 0, =0.02, ..., and Qg9 = 0.99 and Q;¢po = 1. The calculated Dempster-Shafer
structure is then reintegrated to obtain the p-box shown in the right graph of Figure 23.
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Figure 23: Convolution between p-boxes under a particular dependence function
(normal copula, parameterized by Kendall correlation).
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It is worth noting that the approach based on parameterized copulas developed
here is compatible with, and provides a unifying justification for, the approaches used in
Section 3.5.1 and 3.5.2 to convolve probability boxes or Dempster-Shafer structures
under perfect or opposite dependence. We can conveniently illustrate this for the case
of perfect dependence, for which the copula is M(u,v) = min(u,v). In this case, the joint
distribution is

H(x, y) = M(F(x), G(y)) = min(F(x), G(»)),
where F(x) and G(y) are the cumulative masses associated with values x and y
respectively. Consider two uncertain numbers X and Y that have been discretized into n
equiprobable levels. The cumulative mass associated with the i slice of the
discretization is i/n. Such discretizations therefore imply that a particular diagonal
difference

H(x,y)—H(x,y +Ay) = H(x + Ax, y) + H(x + Ax, y + Ay)

would be evaluated under perfect dependence as

min| 2,4 | = min[ £, 2 S minf 2EL ) 4 i 2L L
n n n n n n n n

for some i and j. Across the Cartesian product, there are three situations. If i <j, then
i+1 <, and the diagonal difference would simplify to

l(i—i—(i+1)+(i+1))=o.
n
If, on the other hand, j < i, then j+1 < i, and the diagonal difference simplifies to

L=Gn=j+(+1)=0,

The quantity is nonzero only when i = j, in which case it is
1 1
—(i—i—j+(i+1))=—.
n n

This is why only the diagonal elements in the Cartesian product get mass when
dependence is perfect. A similar argument can be constructed from the copula W(u,v) =
max(u+v—1, 0) that shows why it is the anti-diagonal elements that get the mass when
the dependence is opposite.
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3.7.3 Caveat: incompleteness of correlation

As will be evident to the reader, modeling dependence between variables with a scalar
measure of the strength of correlation is likely to be a superficial description of their
relationship. Any model that characterizes dependence well enough to, say, allow the
generation of sample variates is employing some particular dependence function
(copula), although its details may be implicit and not obvious to the analyst. The set of
such dependence functions parameterized by the correlation constitutes a copula family
which is a model of the dependence. When such characterizations are used in risk
assessments, analysts are relying on the assumption that this copula family is an
appropriate one, and that it is faithful to the true dependence resulting from the
mathematical or physical relationship between the variables both in terms of its
summary correlation and its consequences for whatever arithmetic functions involving
the dependent variables are to be computed. Sections 3.8 and 3.9 review the use of
copulas that are not members of parametrically prescribed families. Section 4 considers
methods that will be useful when little or no information is available to select the
dependence function.

3.8 Empirical copulas

An empirical copula, also known as an empirical dependence function (Deheuvels

1979; Nelsen 1999), is a characterization of the dependence function between variables
based on observational data. It is the analog of the empirical distribution function for
the question of dependence. (In fact, if the marginal distributions are first transformed
to standard uniforms, the empirical copula is just the empirical distribution function for
the joint distribution.) An empirical copula can be computed from bivariate sample data
(xi, v1),i=1,..., n, with

Cu,v) = c(l EJ e x <3,y <y

n n n

where # denotes the cardinality of a set, and x(; and y, , for 1<j, k < n, denote order
statistics from the sample. The numerator is just the number of points in a scattergram
of the data that are lower and to the left of the point (x;), y), where x, is the /™
smallest value of the sample x’s and y is the K™ smallest value of the sample y’s.

Example: The leftmost graph in Figure 24 is the scattergram of 300
hypothetical data points exhibiting an interesting nonlinear dependence between its
variables X and Y. The marginal distribution for X was uniform over the unit interval.
Y was a randomized function of X. Its values were computed as
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X Z ) 1
—+—, if W<—
3 6 2
Y =
1 X Z .
—+—+—, otherwise
2 3 6

where W and Z were independent random uniform deviates also from [0,1]. This
formula results in a distribution for Y that is close to (but not exactly) uniform over the
unit interval. The 300 X- and Y-values were sorted independently. At each of 300x300
evenly spaced points in the unit square [0,1]x[0,1], the number of data points were
tallied that were smaller (in the X direction) than the i™ sorted X-value and
simultaneously smaller (in the Y direction) than the /™ sorted Y-value. These tallies
were all normalized by dividing by 300. Plots of these normalized tallies are shown in
the middle and right graphs of Figure 24. The function is the empirical copula
associated with the scattergram. The vertical axis of the middle graph is the value
C(u,v) for the empirical copula at given values for u and v. The rightmost graph shows
the same function, in a contour plot with gray shading.
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Figure 24: Empirical copula (middle and right graphs) from observational data
(left graph).

By construction, the copula is zero along the u- and v-axes. It is intersects with
the forty-five degree line in the v,C-plane at u = 1, and similarly in the u,C-plane at v =
1. All copulas have these characteristics; copulas differ only in the internal details of
the 2-increasing function that connects these edges together. The observed scattergram
creates, and is captured by, the wrinkles in the surface of the copula.

Empirical copulas may be used in the algorithms described in Section 3.7 and its
subsections to make arithmetic calculations with probability distributions, Dempster-
Shafer structures and probability boxes. This use is completely straightforward. The
empirical copula simply replaces the C’s (the parameterized copula) previously used.
For any pair of values from the unit interval, the empirical copula returns another value
from the unit interval. Rather than computing the copula from some parameterized
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expression, its value is simply read from the (discretized) table storing the normalized
tallies.

Some analysts find it hard to understand why one would bother with an
empirical compula if computing it implies one already has empirical data for a joint
distribution from which the model could be constructed directly. Does not this joint
information allow one to sidestep the question of modeling dependence altogether? If
the data are abundant and reliable, the answer might be yes. But in many cases, the
empirical information is sparse, or based on imperfect samples, or associated with
surrogate variables similar not identical to those of interest. In such situations, an
analyst might prefer to build a model of the dependence that makes use the available
data, but that can go beyond those data. It is important to understand that the
calculations or simulations based on an empirical copula are not simply reconstructing
the precise details* of the scattergram on which the copula is based. Instead, what is
reconstructed is the overall statistical pattern of the dependence in the joint distribution.
This is the sense in which the empirical copula goes beyond the joint data. It means that
one can easly apply the dependence observed for one set of marginal distributions to
another set of marginal distributions for which no joint data may even be available.

One important caveat in this use of empirical copulas is that they can only
reflect the variation exhibited in the data sets used to construct them. Just as an analyst
who uses an empirical distribution function (EDF) to model some univariate marginal
distribution takes a risk that the available data may not reflect the entire range of
possible values for that variable, the analyst who employs an empirical copula to model
the bivariate dependence takes a risk the combinations observed in the available data
may not reflect the full variety of combinations that are actually possible. These risks
grow very large when empirical data are sparse, but, for reasons of dimension, they are
likely to be much worse for empirical copulas than for (univariate) empirical
distribution functions.

3.9 Constructed arbitrary copulas

Nelsen (1999) considers the problem of constructing copulas to suit one’s modeling
purposes. One application of constructed copulas might be to reflect hypothetical or
planned constraints in the dependencies among variables. For instance, if a new safety
release system is designed to activate when two variables become jointly extreme, then
such conditions would not, in principle, be able to propagate through the system. The
resulting dependence pattern would permit large values for both variables but wouldn’t
allow them to be simultaneously large. How could this dependence pattern be modeled
and represented in calculations? One way to obtain a copula that respects such
constraints is to manually edit an observed scattergram. This editing would consist of
removing all or a proportion of the points in disallowed regions. In the absence of
paired empirical observations, a bivariate scattergram developed using independent

*To reconstruct the precise locations of the data in the scattergram, one could employ a
permutation or randomization strategy such as bootstrapping.
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uniform marginals could be edited. The resulting “empirical” copula obtained from this
edited scattergram would express the nonlinear dependence represented by the
constraints. Another use of constructed copulas might be to posit the potential existence
of combinations of variable values that have never been observed but are thought to be
possible. This might be effected by adding points in underpopulated regions of the
scattergram. The resulting edited scattergram could then be used to compute an
empirical copula using the formula just discussed in Section 3.8 and incorporated into
calculations using the methods described in Sections 3.7, 3.7.1, and 3.7.2.

77



4 Accounting for incertitude about dependence

Empirical information about dependencies among variables in an assessment is often
sparse. In multivariate problems, it is commonly not practical to specify the entire
variance-covariance matrix (Cooke 1997), much less the full multidimensional
character of the dependence among the variables. In such an environment, analysts
sometimes express a desire to relax some of the independence assumptions in their
assessments. By this, what they may often mean is to alter those assumptions away
from independence to some other precisely specified dependence assumption. But they
may also actually intend to relax the assumption in the sense of making fewer or no
assumptions about the dependence. The methods described in this section allow
analysts to do this. The study of how assumptions about dependence affect the
quantitative results of an assessment might be called dependency bounds analysis
(Williamson and Downs 1990; Ferson 1994; Ferson and Long 1995).

4.1 Sensitivity analyses and dispersive Monte Carlo

In some situations, it may be reasonable to assume that some or all of the statistical
relationships among the variables are simple* and do not harbor cryptic nonlinearities
so that they can be adequately characterized by correlation coefficients. Even with such
an assumption, the magnitude of the correlations may be unknown, or the correlation
coefficients may be known only to within intervals because empirical information
relating the variables is sparse. In these cases, straightforward sensitivity studies that
vary correlations or some more integrated approach would be useful.

Whitt (1976) described a scheme to simulate bivariate distributions from
specified marginals with the largest (or smallest) possible correlation. This technique
has often been used in Monte Carlo simulations to estimate random quantities with
minimal variance (see Bratley et al. 1983). The approach can be extended to the
multivariate case to compute conservative estimates of risks. Suppose that X and Y are
random variables with marginal distributions ' and G respectively. The distribution
with greatest dispersion that could arise as the sum X+Y is that obtained when the
variables have the largest possible correlation between them. This is because the
variance of a sum is the sum of the variances of the addends plus twice their covariance,
which depends directly on their correlation (Mood et al. 1975). The exact opposite is
true for subtraction. The greatest dispersion in a distribution of differences comes from

* As might by now be apparent to the reader, there is no simple definition of what a simple
dependence is. Simplicity might be characterized by linearity or ellipticity, symmetry, an
absence of unexpected constraints or interactions, or any of several other qualitative features. A
person’s definition of simplicity is perhaps clear until he views real data with their
idiosyncrasies and subtleties. All it means in this context is that a scalar correlation coefficient
is a robust and appropriate descriptor for the pattern of dependence.
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the case in which the correlation between the subtrahend and the minuend is most
negative. Similar statements can be made about multiplication and division of numbers
whose distributions are non-negative.

The following scheme allows one to sample Monte Carlo variates from specified
distributions such that they exhibit the greatest possible correlation. Sample variates
X~F and Y~G by randomly and repeatedly selecting « from a uniform random
distribution between 0 and 1 and mapping the value through the inverse functions
X=F'(u) and Y=G '(u). The resulting set of variate pairs has the maximal correlation
possible subject to the specified marginal distributions /' and G. To obtain the smallest
(maximally negative) correlation possible between the variates, the mapping should be
X=F'(u) and Y=G"'(1-u). Since the most dispersed distribution arising from the
addition of two random variables occurs when their correlation is maximal (Miiller
1997; Goovaerts et al. 2000), a conservative estimate of the extreme values of the
distribution of the sum X+Y might be estimated with the quantity F~ ") + G”'(u) where
u is sampled from a uniform distribution on [0,1]. This can be referred to as the (u,u)
strategy. The most dispersed distribution arising from subtraction of two random
variables is that obtained when there is minimal (that is, most negative) correlation
between them. This can be estimated by F'(u) — G"'(1—u), which can be called the
(u,1—u) strategy. So long as the distributions are of like sign, then the dispersive
sampling strategy for multiplication is like that for addition, and the one for division is
like that for subtraction. That is, the products F~'(1)G (1) form the most dispersed
distribution that can result from multiplication of random variables having marginals ¥
and G. Likewise, F"'(1)/G"'(1-u) represents the most dispersed distribution that could
result from division.

To compute conservative estimates of a distribution resulting from more
complex arithmetic combinations of positive random numbers, one can use the (u,u)
strategy among variables that are added or multiplied together and the (u,1-u) strategy
when they are subtracted or divided. A mixed expression such as 4/(1-B) requires,
again, the (u,u) strategy, and in arbitrary mathematical expression involving multiple
variables, assigning u and 1—u will necessitate a symbolic analysis of the mathematical
expression. This approach will work in situations where the original distributions and
intermediate results are strictly positive, and it could be generalized in a software
implementation for general distributions. It is compatible with ordinary Monte Carlo
analyses that assume independence or a particular correlation structure among other
variables. This approach can be called dispersive Monte Carlo sampling because it
yields simulated distributions with extremal dispersion, i.e., the largest possible
variance, given the specified marginals. Note however that there is no mathematical
guarantee that the tail probabilities computed will be upper bounds irrespective of the
dependencies among the variables. However, in many situations the maximally
dispersed result is likely to be an appropriately conservative estimate that may be useful
for risk analysis for practical cases (Burgman et al. 1993, page 154; Ferson 1994;
Bukowski et al. 1995; Miiller 1997; Vyncke et al. 2000; Goovaerts et al. 2000; Kaas et
al. 2000).
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Example: Suppose that we need to estimate the distribution of V=WX/(Y-Z2),
where W~ normal(5,1), X ~ lognormal(1.2,0.3), ¥ ~ uniform(2,14), and Z ~ beta(2,3),
and we want to use dispersive Monte Carlo sampling to conservatively account for
ignorance about the magnitude of the correlations among the variables. In a Microsoft
Excel spreadsheet, this simulation could be implemented with the expression
=(NORMINV(U,5,1)*LOGINV(U,1.2,0.3))/(((1-U)*12+2)-BETAINV(U,2,3)) where
U is (a single value of) a uniformly distributed random variate between zero and one.
Figure 25 shows the distribution function (estimated from 1000 random samples) of V'
resulting from the dispersive Monte Carlo sampling as a black curve. The gray curve is
the corresponding distribution of J assuming that all of the inputs were mutually
independent. The differences between the two curves are striking. The observed mean
of the distribution obtained from dispersive sampling was 4.9 and the observed standard
deviation was 7.7. The observed mean of the distribution obtained from ordinary
Monte Carlo sampling assuming independence was 3.1 and the observed standard
deviation was 2.4. The tail weights are considerably greater for the dispersive
distribution. For instance, the 90" percentile of the independent distribution is about 6.
The 90" percentile of the dispersive distribution is more than twice that value. It is also
clear that the left-tail percentiles for the dispersive distribution are lower than for the
independent distribution.

W~ normal(5,1)
X ~ lognormal(1.2,0.3)
Y ~uniform(2,12)

0.2 Z ~ beta(2,3)

Cumulative probability

-

0 10 20 30 40
V=(WxX)/(Y-Z)
Figure 25: Arithmetic function of random variables estimated by dispersive

Monte Carlo sampling (black) and ordinary Monte Carlo sampling
assuming independence (gray)
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A modification of the dispersive Monte Carlo approach is to make the
correlations as large as plausible, rather than as large as possible. For instance, one
might know that the correlation between two variables could not be larger than some
degree, and feel it improper to assume counterfactually that the correlation is bigger
than this maximum. In this approach, any pair of variables that would have been treated
with the (u,u) strategy would now be assigned the largest reasonable correlation. And
any pair of variables that would have been treated with the (u,1—u) strategy would now
be assigned the smallest (most negative) plausible correlation. The simulation would
then employ the methods discussed in Section 3.6 to generate variables correlated as
prescribed.

Example: This example merely illustrates the monotonicity of the influence of
correlation on a convolution. Figure 26 shows the variation in the distributions of
products XY where X ~ normal(5,1) and Y ~ normal(10,2) and X and Y are correlated to
various degrees as computed in a Monte Carlo simulation involving 1000 replications
using the method of Scheuer and Stoller (1962). There are nine distributions depicted,
corresponding to Pearson correlations of —1, —0.75, —0.5, -0.25, 0, 0.25, 0.5, 0.75 and 1.
The correlation of —1 yields the steepest distribution, and the correlation of +1 yields
the shallowest. Intermediate correlations yield distributions intermediate in slope. The
effect on the tails of the product distribution can be seen in the figure. The effect on the
mean of the distribution is fairly minor and ranges roughly linearly from 48 to 52 as
correlation increases. The effect on the standard deviation, on the other hand, is more
substantial. For the correlation of —1, the standard deviation is 2.88, but for the
correlation of +1, it is 20.5. Figure 27 depicts the effects on these parameters.
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Figure 26: Distributions of products of normal factors under varying correlations.
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Figure 27: Effect of correlation on parameters of the product distributions.

There are some significant caveats associated with dispersive Monte Carlo
sampling. The most important caveat is that it is incomplete. It cannot assess the
possible consequences of nonlinear dependencies. Some authors (e.g., Burgman et al.
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1993; Goovaerts et al. 2000; Kaas et al. 2000) seem to suggest that the dispersive
answer is an “upper bound” on the unknown true distribution, but this is certainly not
the case, as we shall discuss in Section 4.2. If an analyst uses this approach, it should
be with a full understanding of the nature of the assumption that excludes so many
potential dependencies. Another disadvantage of this approach is that it usually cannot
be used to estimate the how narrow the final probability distribution might be.
Although it can find the most dispersed (i.e., the widest) distribution, it cannot be used
to get the least dispersed (narrowest) one. This is apparent as soon as one tries to
estimate the narrowest distribution for the sum A+B+C. If u is assigned to 4 and 1—u to
B, there isn’t anything that can be assigned to C. (Assuming independence certainly
does not yield the narrowest distribution. This is clear in the very simplest case. For
instance, if 4 and B are uniformly distributed on [0,1], an assumption of independence
yields the triangular distribution [0,1,2]. The narrowest possible distribution, of course,
is the invariant distribution at 1.)

4.2 Fréchet bounds

When empirical information is lacking so that an analyst cannot be confident about the
nature of the dependencies among the variables, it may often be useful to compute
bounds on the risk result without making any assumption at all about one, some or all of
the dependencies. Dependency bounds analysis (Makarov 1981; Frank et al. 1987;
Williamson 1989; Williamson and Downs 1990; Ferson and Long 1995) produces such
bounds, which are often also mathematically best possible in the sense of being as tight
as possible given the stated information. This strategy generalizes the assumption of
multivariate linearity of the relationships described in Section 4.1. Dependency bounds
are sure to enclose the result, no matter what correlation or nonlinear dependency may
exist between or among any of the variables. Thus, the results of a dependency bounds
analysis are generally bounds on a cumulative distribution function, rather than an
approximation of one such as might be given by Monte Carlo simulation. The strategy
is flexible enough to model independence among some variables while making no
assumption about the dependencies among others.

Kolmogorov posed the question: what are bounds on the distribution function of
a sum given fixed marginal distributions? Only quite recently did Makarov (1981)
solve Kolmogorov’s problem by finding the best possible bounds for the distribution.
Frank et al. (1987) showed that the solution to the Kolmogorov problem is a special
case of a simple inequality and generalized the result to arbitrary functions increasing in
each place such as multiplication of positive variables. Williamson and Downs (1990)
articulated the strategies for how these bounding formulas could be used in practice,
extended the proof of the best possible nature of the bounds, and described software
code to implement the calculations. Here we briefly describe the main result of this
body of work and give a numerical example to illustrate the calculation.

Let us start with the main theorem of Frank et al. (1987). Let X' and Y be
random variables on R" with distribution functions F and G respectively. For the
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distribution function of Z = L(X, Y) where L is a binary operation onto R" that is non-
decreasing in each place and continuous (except possibly at infinity), Ty .(F, G) is an
upper bound and py.(F, G) is a lower bound. These are pointwise best possible
bounds.

The bounds Ty .(F, G) and py(F, G) mentioned in the theorem are the
supremal and infimal convolutions respectively, which are defined by

T (FG)z)= sup C(F(x),G(»))

z=L(x,y)

per(FGN2)=_inf C/(F(x).G(»)
z=L(x,y)

where C?(u, v) = u + v — C(u, v), as applied to the copula W(u, v) = max(u + v — 1, 0),
which is the lower Fréchet-Hoeffding limit on all copulas. It is interesting that the
lower copula bound determines both the lower and the upper bound on the distribution
function of Z. The upper bound has no role in the calculation.

Setting L(X, Y) to addition (which is increasing in each place) and simplifying,
the upper and lower bounds on the distribution of Z=X+Y are

1, , (F,G)(z) = sup max(F(x)+G(»)-1,0)

z=Xx+y

Py, (F,G)(z) = inf min(F(x)+G(y),1)

respectively. Actually, these bounds are valid for all real values because addition is
monotonic over all R. Comparable bounds on the product Z=XY are almost identical
except that the + in the conditions for the supremum and infimum is replaced with x.
These bounds are valid so long as X and Y are almost surely* positive. Transformations
may be employed to extend the approach to multiplication between distributions that are
either entirely non-negative or entirely non-positive, but distributions that straddle zero
remain problematic in this approach.

Because subtraction is not increasing in each place, we require a substitution
replacing Y with its image —Y, whose distribution is just 1-G(—y). Thus, the upper and
lower bounds for the difference Z=X—Y =X+(-Y) are

sup max(F (x)-G(»), 0)

z=x—-y

1+ inf min(F(x)-G(y),0)

z=Xx—y

respectively. With a similar substitution, the bounds for quotients of positive numbers
can also be obtained.

*The phrase “almost surely” means “except possibly for a set of measure zero”.
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Note that the bounds obtained rigorously contain the distribution for Z no matter
what the correlation or dependency between X and Y. They are also the pointwise best
possible such bounds, which means they could not be any tighter without excluding
some possible distributions. Note also that these bounds are often considerably wider
that those obtained by wiggling the correlation coefficient in a sensitivity study.

Example: Suppose that X ~ weibull(1.5,3.5) and Y ~ uniform(2, 9). These input
distributions are depicted on the left and middle graphs of Figure 28. (The Weibull
distribution is truncated at the 99.5™ percentile for convenience.) The best possible
bounds on the distribution of the quotient without making any assumption about the
dependence between X and Y are shown in the rightmost graph. The distribution
resulting from convolution under an independence assumption is also shown on the
same graph in gray for comparison.
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Figure 28: Dependency bounds for the quotient of random variables.

4.2.1 Fréchet bounds with Dempster-Shafer structures

This section explains how one can project Dempster-Shafer structures through
arithmetic operations such as addition, multiplication, etc., without making any
assumption about the dependence between the operands. We will first try to extend the
approach we’ve used in previous sections but will discover that it does not produce
good results. We will then introduce two methods that work well which are based on
entirely different approaches.

The computational approach based on the Cartesian product described by Yager
(1986; Ferson et al. 2003) apparently does not readily generalize to this case. To see
why, consider the following numerical example. Suppose that X is the Dempster-Shafer
structure {([0,1], 1/4), ([0,2], 1/4), ([2,3], 1/4), ([3,4], 1/4)} and that Y is the Dempster-
Shafer structure {([2,5], 1/3), ([4,9], 1/3), ([8.,9], 1/3)}. And suppose that we want to
compute the Dempster-Shafer structure that characterizes the quotient X/Y without
making any assumption about the dependence between the two quantities. One
approach is to fashion the Cartesian product:
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XY

¥ | [0.1] [0,2] [2,3] [3.4]
v 1/4 1/4 1/4 1/4

[2,5] [0, 0.5] [0,1] [0.4,1.5] [0.6,2]

1/3 [0,0.25] [0,025] | [0,0.25] [0,0.25]

[4,9] [0,0.25] [0,0.5] [0.222,0.75] | [0.333,1]

1/3 [0,0.25] [0,025] | [0,0.25] [0,0.25]

[8,9] [0,0.125] | [0,0.25] | [0.222,0.375] | [0.333,0.5]

1/3 [0,0.25] [0,025] | [0,0.25] [0,0.25]

where the elements of X are along the top row and the elements of Y are down the
leftmost column. The first lines in the cells of the Cartesian product are the focal
elements of the quotient. They are obtained by division of the marginal intervals, i.e.,
the focal elements of X and Y using standard interval arithmetic (Moore 1966). (Note,
for instance, that [2,3] / [4,9] is [0.222,0.75] and not [0.5,0.333].) The second line in
each cell is supposed to be the probability mass associated with that focal element. In
this situation where we make no assumption about dependence between X and Y, this
probability mass must be given as an interval. Following the rules described in
Section 2.3 for computing probabilities of events when their dependence is unknown,
the bounds of each interval are obtained from the Fréchet inequalities on the
conjunction of two events: (i) the numerator is in that column’s marginal focal element,
and (ii) the denominator is in that row’s marginal focal element. The operation is
conjunction because we want the probability that X is in its focal element and that Y is
in its focal element. In this case, andgwschet(1/3, 1/4) = [0, 0.25] for each cell.

This Cartesian product is unlike that suggested by Yager (1986) or the one
considered in Section 3.5.2, because the probability masses do not seem to sum to unity.
The sum of the twelve interval probability masses is [0, 3], which includes but does not
equal 1. Note that it would be clearly wrong to arbitrarily assign equal masses to each
focal element or scale them so that they sum to one. The only correct interpretation of
this Cartesian product is that each cell could have as little as zero or as much as one
quarter of the mass. Because we are making no assumption about dependence, we’re
not sure exactly where the mass might go. Figure 29 depicts the focal elements
associated with the quotient that were computed in the Cartesian product. (In this
graph, the vertical scale is not meaningful; the intervals are simply arranged in an
arbitrary vertical order so that their horizontal locations will be clear). Note that the
expression ‘focal elements’ for these intervals could be considered an abuse of
terminology because their masses don’t strictly sum to one. The cumulative plausibility
function of a Dempster-Shafer structure characterizes the most leftward disposition of
mass consistent with that structure. For the array shown in Figure 29, the cumulative
plausibility function computed by this approach based on the Cartesian product must be
the unit step function at zero Hy(x/y). It would have to be there because 6 of the focal
elements have left endpoints at zero. Any four of them could be such that all of the
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mass is assigned to this value. The cumulative belief function, on the other hand,
reflects the most rightward disposition of mass. If each focal element contains at most a
quarter of the mass, we need only examine the largest four right endpoints. These are 2,
1.5, 1 and 1. Thus, the cumulative belief function computed by this approach is a
discrete distribution with half its mass at 1, a quarter of its mass at 1.5 and the
remaining quarter of its mass at 2. See the gray step functions in Figure 30.

Figure 29: ‘Focal elements’ from the Cartesian product for the quotient X/Y
under no dependence assumptions (only the horizontal position is
meaningful).

Although the computational approach based on the Cartesian product respects
the constraint that probabilities have to sum to unity, it does not take a full proper
account of this fact to obtain the best possible bounds on the quotient. The probability
interval given for each cell in the Cartesian product represents the best possible bounds
on the mass associated with that interval, but there are necessary relationships between
the elements that are not captured in this computational approach. For instance, notice
that the focal elements in 6 cells of the Cartesian product overlap zero. According to
the mass calculations in these 6 cells, the total mass that could be at zero must be
between 0 and 1.5. Of course, we know that the mass cannot possibly be more than 1!
Indeed, we can see by inspection that, at most, only half of the mass for X could be at
the value zero because two columns have focal elements containing zero, and each has a
probability mass of /4 according to the top margin.

Berleant and Goodman-Strauss (1998; Berleant and Cheng 1998; Berleant and
Zhang 2004a; 2004b) described a mathematical programming approach to the
computation that produces a substantially better answer because it takes account of the
information and constraints in a fully comprehensive way. Their approach maximizes
the probability represented by the cumulative plausibility function (or left bound of a p-
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box) for every value of the abscissa, subject to the constraints that the masses in each
row must add up to 1/3, and the masses in each column must add up to 1/4, and all
masses must be non-negative. The approach likewise minimizes the probability
represented by the cumulative belief function at every value of the abscissa subject to
the same constraints. More generally, a linear program is formulated for each abscissa
value for each bound that takes as constraints the fact that the probability masses in the
cells of each interior (non-marginal) row must sum to the marginal probability of that
row, and likewise for each interior column. This approach neatly sidesteps the problem
of determining exact joint distributions of probability masses and finds the maximum
(or minimum) value of the p-box bounds given the set of all joint probability mass
distributions satisfying the constraints. The output from these mathematical
programming exercises yields the best-possible cumulative plausibility and belief
functions for arithmetic operations and other binary functions that are monotonic in all
directions (including diagonally; see Section 8 for an example of a function that s not
monotonic in the diagonal direction) over the range of the input arguments. Because
linear programming is required to implement this approach, they must generally be
done by computer, even for fairly simple problems.

Example: Consider again the numerical example with which this section began.
Evaluate the quotient X/Y without making any dependence assumption, where X is the
Dempster-Shafer structure {([0,1], 1/4), ([0,2], 1/4), ([2,3], 1/4), ([3,4], 1/4)} and that ¥
is the Dempster-Shafer structure {([2,5], 1/3), ([4.,9], 1/3), ([8,9], 1/3)}. The cumulative
plausibility and believe functions for the two inputs are shown in the left two graphs of
Figure 30. The calculations implied by the Berleant-Goodman-Strauss algorithm are
too complex to show, but they yield the Dempster-Shafer structure ([0, 0.375], 0.08),
([0, 0.5], 0.25), ([0, 0.75], 0.09), ([0, 1], 0.11), ([0.222, 1], 0.14), ([0.222, 1.5], 0.09),
([0.222, 2], 0.01), ([0.333, 2], 0.25)}. The cumulative plausibility and belief functions
for this structure are displayed as black bounds on the right-most graph of Figure 30.
For contrast, the analogous functions that would have been obtained from the approach
based on the Cartesian product are displayed as the gray bounds. As expected, the
black bounds are considerably tighter than the gray bounds. The optimal bounds
produced by the this calculation involving linear programming are identical to the
results that would be obtained from the approach that will be described next in
Section 4.2.2.
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Figure 30: Quotient of Dempster-Shafer structures without any dependence
assumptions.

4.2.2 Fréchet bounds with p-boxes

Williamson (1989; Williamson and Downs 1990, page 112) explained how the Fréchet
bounds could be used with probability boxes. If the p-box for the quantity X is

[I? x,F ] and the p-box for the quantity Y is [FY ,F' ], then the p-box for the quantity

X+Y computed without dependence assumptions is [F x+v, F x+y ] where

Fxuy (z) = inf min(FX(x) +FY()’): 1)»
Z=x+Yy

Fy.y(2)=sup max(EX ()+F,(y)—-1, 0).

z=x+y
In contrast, the analogous formulas for the p-box of the difference X—Y are
F x-r(z) =1+ inf min(F ,(x)=F, (), 0),
z=x-y

F oy (2) = sup max(F , (x)=F ,(»), 0).

z=x-y

Note that in these formulas, the upper bound is combined with the lower bound and the
lower bound is combined with the upper bound. This is reminiscent of interval
subtraction (Moore 1966). The formulas for multiplication and division of p-boxes
characterizing non-negative quantities are very similar to the formulas for addition and
subtraction respectively. The only differences are in the conditions for the supremums
and infimums (z=x+y becomes z=xy for multiplication and z=x—y becomes z=x/y for
division). Although the formulas given here are rather simple, they are not well suited
to calculation via computer because they involve finding the largest and smallest values
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over an infinite number of cases, but Williamson and Downs (1990) gave explicit
algorithms that are convenient for such calculations.

Example: Suppose that X ~ weibull([1,2], [3,4]) and Y ~ uniform([2,5], [8,9]).
(This means that X is distributed as a Weibull distribution characteristic life between 1
and 2, and shape parameter between 3 and 4, and Y is uniformly distributed but we are
unsure about what the endpoints of this distribution are. See Ferson et al. 2003 for
details about how p-boxes are generated from such specifications.) These inputs, along
with the resulting p-box for the quotient X/Y are depicted in Figure 31. The result was
computed without appealing to any assumption about the dependence between X and Y.
It was obtained using the Williamson and Downs (1990) formulations described above.
For instance, the upper bound on the distribution of the quotient was computed as

Faiy(z)=1+ inf min(F x (x) - F, (1),0)
z=x/y

where F'x(x) is the left bound on the X (which is the s-shaped curve from 0 to about
1.5) and Fy(y) is the right bound of ¥ (which is the straight line going from 5 to 9). This
operation to obtain the upper bound on the quotient is itself a convolution because the
value of the bound at any value z is computed from all possible values of x and all
possible values of y that combine to give that z =x/y.
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Figure 31: Quotient of probability boxes without dependence assumptions.

4.2.3 Dependence may not always matter

It is certainly true that the dependencies between random variables can often make a
substantial difference to the results of risk assessments that depend on them. In such
cases, knowing the dependency may provide considerable improvement (tightening) of
the p-box or Dempster-Shafer structure that characterizes the answer. But there are
situations involving epistemic uncertainty when knowing the dependence between
random variables is irrelevant to the risk result that depends jointly on these variables.
In particular, suppose a random variable X is characterized only by the interval [x;, x2].
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(This interval is equivalent to the degenerate Dempster-Shafer structure {([x1, x2], 1)}.
It is also equivalent to the degenerate probability box (H,;(x), Hy2(x)), consisting of
spike bounds at the endpoints of the range.) Then, under many practical conditions,
convolutions between X and any other probability distribution, Dempster-Shafer
structure or p-box under the Fréchet assumption will yield the same result as the
convolution under an independence assumption, or, indeed, any assumption about
correlation or dependence between X and Y. We might write this as

X+Y:X|+| Y=X/+Y=X\WY =convolve(X, Y, r) =convolve(X, Y, C)

where + denotes addition under no assumption about the dependence between X and Y,
[+| denotes addition under independence, /+/ denotes addition under perfect dependence,
\+\ denotes addition under opposite dependence,  is any correlation and C is any
copula. Similar equivalences can hold for subtraction, multiplication, etc. This means
that, if one of the operands is an interval or something equivalent to an interval, the
knowing the dependence does not allow one to tighten or improve the estimate of a
convolution involving it. In this sense, having only an interval estimate for a quantity
means that the analyst is freed from any concern about its dependence with other
variables with which it is to be combined in the assessment. Fetz and
Oberguggenberger (2004) review the conditions under which these equivalences hold.

There are two caveats about this. The first caveat is that this applies only to
convolutions of distributions. Dependence will generally still be relevant and important
for tightening the result from the Fréchet case if the interval represents a probability of
an event. The second caveat is that there are exceptions to this even for convolutions of
distributions. For instance, suppose we want to compute the product XY where X is the
interval [—1, +1] and Y is the Dempster-Shafer structure {([—1, 0], 0.5), ([0, 1], 0.5)}.
The convolution via Yager’s (1986) Cartesian product, which assumes random-set
independence, produces the same answer as the Fréchet case, but it is not* best possible
if X and Y are strongly dependent (see Section 3.1.3).

4.3 Using partial information about the dependency

The algorithms of Yager (1986), Williamson (1989; Williamson and Downs 1990) and
Berleant (1993; 1996; Berleant and Goodman-Strauss 1998) provide bounds for
convolutions (i) under an assumption of independence, and (i7) in the Fréchet case with
no assumption at all about dependence between the variables. The bounds for the
Fréchet case are generally much wider than for they are for independence. It would be
helpful to be able to tighten the bounds when partial information is available about
dependencies among the input variables. Ideally, for instance, an analyst might like to
be able to translate an empirical statement like “the correlation coefficient is between
0.5 and 0.6” into bounds on the convolution. It might likewise be desirable to account
for the qualitative information about dependency to tighten the uncertainty in a risk

*It is worth understanding why it isn’t because it highlights a difference between random-set
independence and strong independence. See Section 8 for the explanation and proofs.
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assessment. The result would be a tightening over the Fréchet case but a relaxation of
the result based on a precise dependency model.

The algorithms currently used to compute convolutions between dependent
variables, or between variables with unknown dependence, are of two distinct kinds.
The first approach is fundamentally mathematical programming (e.g., Berleant and
Zhang 2003; Berleant and Goodman-Strauss 1998). The second way is an analytical
approach based on sets of copulas (e.g., Williamson and Downs 1990). Consequently,
there are two avenues on which to seek ways to use partial information about
dependencies.

4.3.1 Lower bound on copula

This section describes a general way that the copula approach of Williamson and
Downs (1990) can be made to produce tighter bound on convolutions from partial
knowledge about the dependency between the variables involved.

The Fréchet bounds (Section 4.2) limit the distributions of convolutions of
variables when their dependence is totally unknown. The computation of these bounds
depends on the marginal distributions of the variables, which operation (+, —, x, +)
characterizes the convolution, and the Fréchet-Hoeffding lower limit W, which is the
lower bound on all copulas. The bounds on the distribution functions could be tighter if
the copulas could be restricted to a smaller set than “all possible dependencies”. For
instance, if C is a different lower bound on the copula connecting random variables X
and Y with distribution functions F and G respectively, then t¢ (F, G) is the pointwise
best possible upper bound and p¢ +(F, G) is the pointwise best possible lower bound on
the distribution of Z=X+Y, where

1, (FG)(z) = sup C(F(x),G(»))

z=x+y

Pes(FGN2) = inf C(F(x),G(»)

where C(u, v) = u + v — C(u, v). The lower bound on the copulas need not be described
parametrically or even have a closed-form expression. It could, for instance, be
represented in a lookup table which could be computationally efficient.

There are some situations in which partial knowledge about the dependence
could be used to obtain substantially tighter bounds on convolutions. For instance,
knowing the value of the copula at one or more points allows us to improve the Fréchet-
Hoeftding bounds (Nelsen 1999, page 62). (Such points should be in the interior of the
unit square, because all the points on its edge are already specified for any copula.)
Suppose the value of the copula at the point (a, b) is 6. This value must of course be in
the interval [max(a+b—1, 0), min(a, b)], which is the elementary Fréchet limit. Then the
lower bound on the copula is the function
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max(0,u —a+v—>b+0), u<a,

max(0,u +v—1l,u—a+0), ua,b<v
Clower (M,V) =

max(0,u +v—1,v—b+0), a<u,v<b

max(0,u +v—1), a<u,b<v.

Knowing multiple points allow one to create a synthetic bound as the maximum at each
point (&,v) of all these functions. A similar upper bound can be specified for the copula,
but our interest focuses on the lower bound because it determines both upper and lower
bounds on convolutions.

Nelsen et al. (2001; 2004) studied the problem of bounding copulas. Cossette et
al. (2001) also reviewed ways to improve the Fréchet bounds given partial information
about correlation and covariance among the inputs.

4.3.2 Sign of dependence

A promising approach to tighten risk calculations is to make use of information about
the sign of the dependence between the variables. There are several notions of sign
dependence. In this section, we consider the most important and common one.

Two random variables are “positive quadrant dependent” (PQD, Lehmann 1966;
Hutchinson and Lai 1990; Nelsen 1991; 1995) if the probability that the random
variables are both small (or large) together is at least as great as if they were
independent. For random variables, X ~ F(x) and Y ~ G(y) whose joint distribution is H
and whose copula is C, the following definitions of positive quadrant dependence are
equivalent in the context of precise probabilities:

1) PX<x, Y<y)2P(X<x)P(Y<y)forall x and y,
i1) H(x, y) 2 F(x) G(y) for all x and y,

111) C(u,v) = uv for all u and v, and

v) PY<y|X<x)2P(Y<y).

Thus, random variables are PQD if their joint distribution function is no smaller than
the product of their respective marginal distribution functions at every point in the space
of the two variables. There are several conditions that imply variables will be PQD,
including when each is a stochastically increasing function of the other, i.e., P(Y>y |
X=x) is a non-decreasing function of x for all y, and P(X>x | Y=y) is a non-decreasing
function of y for all x. Positive quadrant dependence implies non-negative Pearson,
Spearman and Kendall correlations. However, the observation that a correlation is
positive does not imply the variables are PQD. Even knowing a measure of correlation
15 0.999 is not enough to conclude that two variables are positively quadrant dependent.
This notion of dependence is quite a bit stronger than that measured by the traditional
coefficients. Nevertheless, it seems that is often still a plausible one that may
reasonably be expected to hold in nature in many circumstances. This idea has been
used in many statistical and engineering settings (see the references in Hutchinson and
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Lai 1990; Nelsen 1999), and seems to capture one sense analysts have in mind when
they use the phrase ‘positively depends’.

In the context of imprecise probabilities, however, it seems clear that, like the
concept of independence (Section 3.1.3), the concept of positive quadrant dependence
will furcate into multiple notions (Peter Walley, pers. comm.) so that the various
definitions above could lead to different properties. Numerical discrepancies in
calculations arising from the different possible definitions have not yet, however, been
observed in practice.

Bounds on the convolution of PQD variables can be computed by extending the
theorem of Frank et al. (1987) simply by replacing the lower copula bound W with I1
(see Section 4.3.1 and 4.2). For example, bounds for a sum of PQD variables whose
marginals " and G are

1, (F,G)(z) = sup (F(x)G(»)),

z=x+y

P (F,G)(2) = inf (1= (1= F())1-G(»)

Note that these formulas give bounds that are not the same as an envelope of the perfect
and independent convolutions (which would be narrower and pinch to a point that may
be untenable; see Figure 41). The differences in the formulas for the other arithmetic
operations are similar to those for the original Fréchet bounds. Straightforward
derivations allow these formulas to be extended to p-boxes. There is no known
analogous algorithm based on mathematical programming for Dempster-Shafer
structures, but they can be handled by first converting them to probability boxes (Ferson
et al. 2003).

There is of course a complementary notion of negative quadrant dependence.
Random variables X and Y are negative quadrant dependent (NQD) if and only if X and
—Y are positively quadrant dependent. Convolutions with NQD variables can be
calculated similarly. The intersection of the convolution bounds for positive and
negative quadrant dependencies is nof the same as the bounds obtained under
independence.

One significant caveat about using qualitative information about signs of
dependencies is that the feasibility checks (Section 3.6.1) cannot be used to check the
reasonableness of an analyst’s specifications. Because there is no analog of the positive
semi-definiteness constraint on correlation matrices for sign information about
dependencies, analysts are free to specify almost any pattern of intervariable
dependencies. This means that there are very few consistency checks that can be used
by reviewers or automatically applied by software to help to ensure that the assessment
is reasonable. One can, however, infer from the fact that X and Y are PQD that X and
—Y are NQD, and that —X and —Y are PQD.

Figure 32 shows the lattice of dependencies arranged by sign considerations. It
characterizes the relationship between the qualitative sign dependencies considered in
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this section and the quantitative correlation constraints considered in Section 4.3.3.
Going up on the lattice relaxes a dependence assumption. This would tend to widen the
uncertainty of the output of an analysis. Going down on the lattice specifies a
dependence more fully, and would generally result in tighter results. The figure
visually emphasizes that positive quadrant dependence and negative quadrant
dependence are subsets, respectively, of positive and negative correlations. Each node
of this lattice contains any lower node in its conceptual definition of dependency. It
also ‘contains’ the lower node in the sense that a convolution based on the lower node’s
dependency will always be tighter than a convolution based on the higher node’s
dependency.

Fréchet
<0 0<r
NQD =0 PQD
opposite, W independence, I1 perfect, M

Figure 32: Lattice of sign dependencies.

Example: Consider two discrete random variables, X and Y, identically and
uniformly distributed on the integers 1, ..., 25. The Fréchet bounds for the convolution
of these random variables are displayed on Figure 33 as gray step functions. If the
variables are held to be PQD, these bounds contract to those shown in black on the
figure. Note that, although there is a noticeable tightening of uncertainty, it is weakest
at the tails. In assessments where focal interest is in extremal values of the output, the
advantage of using knowledge about sign of the dependence may be less than might
have otherwise been expected. The quantitative effects of using such knowledge will
vary from problem to problem and it would premature to dismiss it without careful
specific study.
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Figure 33: Convolution of positive quadrant dependent random variables (black)
compared to the Fréchet bounds for the same variables (gray).

Example: The leftmost graph of Figure 34 depicts a p-box for a variable X that
we know to be unimodal and to have as its minimum, maximum and modal values, 0, 1
and 0.2, respectively. The middle graph depicts the p-box for a variable ¥ which we
know to have uniform distribution but only know the intervals [1,2] and [3,4] for its
minimum and maximum respectively. Suppose that we wish to compute the bounds on
the distribution of the sum X+Y under the assumption that X and Y are positive quadrant
dependent. According to the formulas described above, the upper and lower bounds on
the distribution of the sum z are

sup (F(x)G(»))

z=Xx+y

inf (1=(1= E@)1=G(»),

where F(x) = max (0, min(1,x/0.2)) is the left bound of X (which is the increasing

straight line from 0 to 0.2), G(y) = max(0,min(1,(y —1)/2)) is the left bound for Y (the
increasing straight line from 1 to 3), F(x)=max(0,min(l,(x —0.2)/0.8)) is the right
bound of X (the straight line from 0.2 to 1), and G(y) = max(0,min(L,(y —2)/2)) (the
straight line from 2 to 4). To evaluate the supremum and infimums, the calculations
require convolutions that consider all possible combinations of x and y that sum to the
given z. The result in this case is very broadly uncertain. The uncertainty is almost as
wide as the Fréchet case where we make no assumption whatever about dependence
between X and Y. Knowing that the variables X and Y are positively dependent only
reduces uncertainty by shaving a part off the lower right corner of the output p-box (and
a much smaller part off the upper left corner).
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Figure 34: Convolution of positive quadrant dependent probability boxes.

4.3.3 Specified correlation coefficient

As already mentioned, it would be desirable to be able use quantitative information
about dependencies among the input variables to improve the risk estimates. For
instance, an analyst might like to be able to translate a statement like “the correlation
coefficient is between 0.5 and 0.6” into improved bounds on the convolution. This
section shows some example calculations that suggest that such information is not likely
to be nearly as important as might have otherwise been thought.

Example: Suppose X and Y are both integers uniformly distributed between 1
and 4. What are bounds on the distribution function for X+Y given that X and Y are
uncorrelated, i.e., their Pearson correlation is zero? There is no known copula-based
approach to solve this question (but see Nelsen et al. 2001; 2004). The question can,
however, be framed and solved as a mathematical programming problem similar to
those addressed in Berleant and Goodman-Strauss (1998) with the additional constraint
that correlation is zero (Berleant and Zhang 2003a; 2003b). The result of this numerical
exercise is shown in Figure 35. The gray cumulative plausibility and belief functions
circumscribe the sum X+Y given their uniform marginals and their lack of correlation.
Also shown on the same figure in black are the bounds for the Fréchet case in which no
assumption at all was made about dependence between X and Y. The surprising finding
of this exercise is that most of the Fréchet case’s incertitude already exists in the
uncorrelated case. This means that the analyst’s knowing the variables are uncorrelated
does not help much to tighten the uncertainty of the result. We see that assessments in
which an analyst has interpreted an empirical correlation near to zero as evidence of
independence between the variables without ancillary evidence or argument are actually
extremely weak and unreliable analyses.

97



—
1

. i
;,; | —
e |

g | |

g | Fréchet Uncorrelated

> I
g i

a ] |
S )

0

| 2 3 4 5 6 7 8
X+Y

Figure 35: Bounds on convolution assuming inputs are uncorrelated compared to
bounds under the Fréchet case for X,Y ~ discreteuniform(1,4)

Example: To dispel the notion that this finding could be due to having so few
possible values in the marginal distribution, we repeated the exercise but allowed more
values in the marginals. Suppose now that X and Y are integers, each uniformly
distributed over the integers 1 to 25. The bounds on the convolution X+Y in the Fréchet
case for which no assumption is made about the dependence between X and Y are
shown as black step functions in Figure 36 The bounds on the same convolution
assuming that the variables have zero correlation are shown as gray step functions.
Clearly, it is still the case that almost all of the uncertainty of the Fréchet case remains
even when we add the information that the variables are uncorrelated. Of special
interest are the distribution tails, where knowing the correlation is zero allows no
improvement at all over the Fréchet case.
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Figure 36: Bounds on convolution assuming inputs are uncorrelated compared to
bounds under the Fréchet case for X,Y ~ discreteuniform(1,25)

Example: We extend the previous example by specifying the correlation as 0.5
rather than zero. Again, mathematical programming is used to compute the bounds on
the distribution (Berleant and Zhang 2003a; 2003b). The result shows fairly wide
bounds on the sum X+Y, which is shown as the gray step functions in Figure 37. These
bounds are slightly tighter overall than the comparable bounds for the case when
correlation is zero shown in the previous figure, but they are still virtually as wide as the
bounds for the Fréchet case in the tails where interest is usually focused.
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Figure 37: Bounds on convolution assuming inputs have correlation 0.5 (gray)
compared to bounds for the Fréchet case (black).
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We saw in Section 3.1.1 that uncorrelatedness does not imply independence, and
that the variety of dependencies each yielding a correlation of zero could lead to wide
variation in the resulting convolutions. The last example shows that, to a large extent,
the same is true for other magnitudes of correlation. So what does quantitative
information correlation tell us about convolutions? It turns out that the answer is, often,
not very much. The reason for this is that many* copulas produce the same correlation.
This is especially true of correlation near zero. Uncorrelatedness, when correlation is
zero, entails very few constraints on the copula and therefore there is more freedom for
the distribution of the convolution. There are very many ways a joint distribution can
have zero correlation. The consequence of this is that, the closer a correlation gets to
zero, the less it says about a dependency. This is an important fact that may seem
counterintuitive. Although independence is a very strong assumption, uncorrelatedness
is a very weak assumption, at least with respect to the bounds it implies for
convolutions. It is interesting to note that saying a correlation is, say, 0.8, tells more
about the convolution result than saying the correlation is exactly 0. As the specified
correlation gets stronger and stronger (whether positively or negatively), in fact, it
constrains the convolution more and more, until the extremal correlation is reached
which corresponds to perfect or opposite dependence.

It is unlikely that this idea of using quantitative information about dependence
can be rescued by switching to a different measure of correlation. The fact that
Kendall’s 1 is 0, for instance, implies no nontrivial constraints on a copula at all. If
Spearman’s p is 0, there may be some weak constraints, but it is not entirely clear how
to make use of this fact to tighten the bounds on the resulting distribution (but see
Nelsen et al. 1999). The Pearson product moment correlation coefficient is itself not a
function solely of the copula, but also depends on the marginals as well. Basically, the
central problem is that these single scalar measures of dependency are averages over a
two-dimensional function characterizing the interaction (the copula). But the extreme
behaviors of the convolution function depend on /ocal features of the copula. Thus,
even if general constraint relationships could be found they are likely to be rather weak,
so that knowing any of the correlation coefficients would not substantially improve or
tighten the uncertainty about a calculation.

Despite the modestness of its quantitative effect on calculations, it would be
misguided for analysts to neglect the accounting of all available information about
correlations or dependencies in their assessments and uncertainty models. Making use
of all such information, whether it be qualitative or quantitative, enhances the credibility
of the resulting analysis. It is often very important to risk managers, decision makers
and other consumers of uncertainty analyses that this information is incorporated and
properly accounted for in the analysis, especially if the information was hard won by
special empirical effort. Without assurances that the available information has been

*Recall that Figure 7 showed ten disparate dependence patterns associated with the same
marginal distributions. Flury (1986) also gave examples of different copulas associated with the
same marginals.
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included in the analysis, they will find it easier to reject or ignore its conclusions. In
situations when an analytical result can be shown to be best possible in the sense that it
has the smallest uncertainty given the uncertainty present, the force of the conclusions
becomes considerably stronger.
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5 Myths about correlations and dependencies

This section summarizes several of the most pervasive and pernicious myths in risk
analysis about correlations and dependencies. It addresses again many ideas that have
already been introduced elsewhere in this report, but structures them in terms of the
myths that interfere with conducting good assessments. Some of these myths are
obvious and widely recognized but still often perpetuated for the sake of mathematical
convenience. Other myths are more subtle or even rather esoteric and may not be
widely appreciated by risk analysts. Several of the myths about correlations and
dependencies outlined here can lead to profound errors in risk assessments.

Myth 1
All variables are mutually independent.

Many variables in complex natural and engineered systems are, in fact, correlated or
have some nonlinear interdependence. Although most risk analysts recognized that it is
improper to assume that variables are independent in the face of evidence that they are
not, many do so anyway as a shortcut or mathematical convenience. In some cases,
these counterfactual assumptions are laughable, as in the case of assuming mass of
some component and its surface area are independent. In some cases, assuming a
perfect or opposite dependence would be a better default assumption than
independence. In general, it is incumbent on the analyst to model the dependence if
only approximately.

There is also impropriety in cases where independence is routinely assumed
when there are no observations or other evidence available about the dependence
between variables one way or the other. The lack of evidence about dependence does
not by itself justify an assumption of independence, although many analysts argue as
though it does. Fact: wishing variables were independent so the analysis is easier
doesn’t make them so. In cases when the dependence is partially or completely
unknown, appropriate methods to account for this epistemic uncertainty such as those
described in Section 4 should be employed.

Myth 2
If X and Y are independent and Y and Z are independent, then X and Z are too.

Mutual independence between X and Y and between and Y and Z doesn’t guarantee that
X and Z are also independent. In other words, independence is not transitive. This fact
should perhaps be obvious to risk analysts. We have nevertheless observed the
corresponding faulty reasoning applied in actual risk assessments. Fact: independence
between X and Y and between and Y and Z implies nothing at all about the dependence
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between X and Z. Consider the following very simple example. Let (X, Y, Z) bea
discrete distribution consisting of the four points (1,1,1), (1,2,1), (3,2,3) and (3,1,3),
each with probability “4. As depicted in Figure 38, plotting the three bivariate
scattergrams (X versus Y, Y versus Z, and X versus Z) reveals that X and Y are
independent, as are Y and Z, but that X and Z are (perfectly) positively dependent on
each other. If the four equiprobable points of the discrete distribution are instead
(1,1,3), (1,2,3), (3,2,1) and (3,1,1), then the first two graphs are unchanged, but the third
graph would show an oppositely dependent relationship between X and Z.

0 1 2 3 4 0 1 2 3 0 1 2 3 4
X Y X

Figure 38. Discrete example of non-transitivity of independence.

Myth 3
Variables X and Y are independent if and only if they are uncorrelated.

Whenever correlation is introduced in beginning statistics courses, a counterexample to
this myth such as that shown in Figure 39 is immediately presented. The variables X
and Y in this graph are uncorrelated, i.e., they have a Pearson correlation of zero.
However, they are clearly not independent. Despite widespread attempts to disabuse
students of the difference between uncorrelatedness and independence, this myth or the
consequences of the myth nevertheless pervade risk assessment. Uncorrelatedness does
not generally* imply independence. Fact: independence implies that the correlation
will be zero, but not vice versa.

*There are exceptions where uncorrelatedness actually does imply independence. One
exception, for instance, is when X and Y both have Bernoulli distributions such that P(X'= 0) =
P(X=1)=0.5and P(Y=0)=P(Y=1)=0.5. Let A(x, y) denote the joint mass function for X
and Y. Let a = h(0,0), b= h(0,1), c = h(1,0),d=h(1,1),s0 0 <a,b,c,d <1 and a+b+c+d=1.
Because the marginals are Bernoulli distributions, we know that a+b = c¢+d = a+c = b+d =
0.5. If X and Y are uncorrelated, then » = E(XY) = E(X) E(Y)) / sqrt(V(X) V(Y)) = 0, which
implies E(XY) = E(X) E(Y). But E(XY) =2 xyh(x,y) = 0x0xa + 0x1xb + 1x0xc + 1x1xd = d.
At the same time, E(X) E(Y) = 0.5 x 0.5 =0.25, so d = 0.25. But this means that b has to also
equal 0.25 (because b+d = 0.5), and, in fact, the Bernoulli constraints cascade so thata = b = ¢
=d = (0.25, which means that / is necessarily the independence copula. Thus, in this
exceptional case, uncorrelatedness implies independence.
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Sometimes the myth appears as “If two variables are normally distributed, then a
zero correlation between them implies independence.” Actually, normality of the
marginal distributions is not sufficient. Melnick and Tenenbein (1982) provides
counterexamples (see also Flury 1986; Kowalski 1973). Fact: if variables are
bivariately normal, then zero correlation implies independence.

Figure 39. Variables that are uncorrelated but obviously dependent.

Myth 4
Zero correlation between X and Y means there’s no relationship between X and Y.

This myth is closely related to the previous one. The phrase “no relationship” is really
just another way of saying that knowing the value of either variable doesn’t help in any
way to establish the value of the other variable. (For precise probabilities, this is
equivalent to saying the variables are independent; see Section 3.1.3.) Figure 39 also
provides a counterexample to this myth. Fact: uncorrelatedness does not imply there is
no relationship between the variables. X and Y are uncorrelated, but they clearly have a
very strong relationship. Knowing that X is 3 tells us that Y is around 12. Knowing that
Xis 5 tells us that Y is around 15. Knowing that Y is 8 tells us that X is either around 2
or around 7.5. There is an immense amount of information embodied in the relationship
between the two variables even though they have zero correlation. There are examples
known in which random variables are uncorrelated yet are mutually completely
dependent, that is, each is a function of the other.
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Myth 5
Small correlations imply weak dependence.

Figure 39 also disproves this myth, which is closely related to the previous two myths.
The falsity of this one is just as obvious, and yet it appears surprisingly often in
multivariate data analyses and risk assessments.

Myth 6
Small correlations can be “safely ignored” in risk assessments.

In an important paper, Smith et al. (1992) suggested that small-magnitude correlations
could be “safely ignored” in risk assessments seeking estimates of means of linear
arithmetic functions of random variables. This is possible because means of sums and
products are often similar to means for the independent case if a simple dependence
with small correlation is introduced between the inputs. In the real world, however,
there are three complications that prevent us from ignoring dependence among
variables. First, many of the functions we need to evaluate are nonlinear. Second, the
dependencies involved are more complicated than can be captured with simple
correlation coefficients. Third, and probably most important, risk analysts are usually
more concerned about the distributions’ fails rather than their means. As has been
illustrated several times in this report, tail risks can be radically influenced by
dependencies even if correlation is zero. The Smith et al. (1992) paper has been widely
overextended and abused, and risk analysts should generally try to account for all
dependencies that relate their input variables to one another even if they might happen
to yield correlations of small magnitude.

Myth 7
Different measures of correlation are similar.

Some risk analysts suggest that it doesn’t make much difference which measure of
correlation is employed and that the various measures are pretty much interchangeable.
This view is false, however, as even cursory inspection of examples will easily reveal.
There are many different measures of correlation that are in common use and many
more that have been proposed. The most commonly used measures are Pearson’s
product moment correlation and Spearman’s rank correlation, but there are a host of
other measures that also arise in various engineering contexts, including Kendall’s rank
correlation, concordance, Blomqvist’s coefficient, etc. Hutchinson and Lai (1990)
review many of these. The choice of the measure can strongly influence the numerical
characterization of a scattergram. Figure 40 shows a variety of bivariate relationships
as scattergrams. Note that the units of the abscissa and ordinate are not shown because
they are irrelevant and do not affect the magnitudes of the correlations. Each of the six
scattergrams displayed has the same Spearman rank correlation, which is one,
corresponding to perfect dependence or comonotonicity. But the scattergrams have
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widely different Pearson correlation coefficients. For instance, the Pearson correlation
for the scattergram in the upper, left-hand graph is one, but the Pearson correlation for
the scattergram below it in the lower, left-hand graph is about 0.6. Fact: the various
measures of correlation are sensitive to different features of the scattergram.

Nime

7 ;

o’ .!!-.‘

Figure 40. Different bivariate relationships with the same Spearman rank
correlation (unity) but widely different Pearson correlation coefficients.

Myth 8
A correlation coefficient specifies the dependence between two random variables.

In fact, it takes a copula (dependence function) to fully specify the dependence between
two random variables. A correlation coefficient is often a very poor summary of the
dependence; it generally does not specify or determine the dependence. Instead, it
determines only a class of such dependencies. In other words, many dependence
functions have the same correlation. See Section 3.7 for an introduction to copulas.

Despite all appearances, Figure 40 is actually not an illustration of the fact that
many dependence functions have the same correlation. All of the scattergrams in this
figure have exactly the same dependence function (which is the copula M associated
with perfect or comonotonic dependence). The differences among the scattergrams in
Figure 40 are due entirely to the differences in the marginal distributions for the
abscissa and ordinate variables.
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In the assertion above that the correlation does not generally specify the
dependence, the adverb “generally” was necessary because there some exceptions when
the correlation does completely determine the dependence. One exception is when the
correlation is extreme, that is, when the dependence is perfect or opposite. In this case,
the Spearman rank correlation and Kendall correlation are either +1 or —1 (and the
Pearson correlation is as large or as small as it can get given the marginal distributions).
When one of these correlation measures is 1, the dependence function is determined to
be M or W respectively (see Section 3.7). Interestingly, as the correlation gets closer to
zero, the family of dependence functions having that correlation gets larger and larger in
its diversity. (This fact tends to explain why Myth 6 is not true.) See Figure 7 for
examples of scattergrams corresponding to fixed marginal distributions with different
dependence functions that all have the same Pearson correlation.

Myth 9
Pearson correlation varies between —1 and +1.

By convention, most measures of correlation are scaled so that they range in the interval
[-1, +1]. Some measures, such as Spearman correlation, can always range over this
entire interval. But not all correlation coefficients can vary across this range for
arbitrary marginal distributions. The Pearson correlation, in particular, often cannot
achieve either —1 or +1. For instance, if X is uniformly distributed over the unit interval
[0,1] and Y is a lognormal distribution with underlying p = 0 and ¢ = 1, then the
correlation between X and Y cannot be any larger than about 0.7. Depending on the
marginal distributions involved, the largest possible Pearson correlation could in fact be
arbitrarily close to zero. Fact: the Pearson correlation coefficient ranges within [—1,
+1], but it may not reach all possible values in the interval for some marginal
distributions.

Myth 10
Any patterns of correlations can be specified between multiple input variables.

This myth is unrelated to the previous one, where constraints arose because of
marginals. Here we consider constraints on correlation that are irrespective of
marginals. If variable X is strongly correlated to both variables Y and Z, then it may not
be possible that Y and Z are strongly negatively correlated to each other. Fact: the
pairwise correlations for a set of variables must satisfy certain feasibility constraints, so
not all sets of correlations that one might specify are possible. These constraints are
rather complicated, but can be summarized by saying that a correlation matrix must be
positive semi-definite (see Section 3.6.1). Early versions of the software package
@Risk (Palisade Corporation 1996; Salmento et al. 1989; Barton 1989; Metzger et al.
1998) did not account for this constraint, and consequently would have produced
nonsensical results whenever users would specify an infeasible set of correlations.
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Myth 11

Perfect dependencies between X and Y and between X and Z imply perfect
dependence between Y and Z.

Extending the ideas discussed above about constraints on the correlation matrix, one
might have expected that if a variable X is maximally correlated to variable Y, and
variable Y 1s maximally correlated to variable Z, then we might be able to conclude that
and X and Z are also maximally correlated. Expressed in other terms, comonotonicity
between both X and Y and between Y and Z would seem to imply there should likewise
be comonotonicty between X and Z. Furthermore, one might expect that if X and Y are
maximally correlated (comonotonic) and Y and Z are minimally correlated
(countermonotonic) then X and Z should be minimally correlated (countermonotonic)
too.

Let // denote perfect dependence, i.e., maximal correlation and comonotonicity,
and let \\ denote opposite dependence, i.e., minimal correlation and
countermonotonicity. Below are facts that correct some of the mistaken ideas:

Fact: X//Y,and Y //Z do not generally imply X // Z.
Fact: X//Y,and Y \\ Z do not generally imply X \\ Z.
Fact: X\\Y, and Y\\ Z do not generally imply X // Z.

Perhaps even more surprising is that X // Y and Y // Z together don’t even imply that X
and Z can’t be independent. A counterexample is easy to construct. Let (X, ¥, Z) be
discrete, taking on of the four values (1,1,1), (1,2,3), (3,2,1), and (3,3,3), each with
probability Y4. Sketching the three bivariate plots reveals that X // Y and Y // Z, but X
and Z are independent. It is possible to conclude from perfect dependence between X
and Y and between Y and Z that X and Z cannot be oppositely dependent, but that is a
fantastically weaker conclusion that will rarely matter in a practical risk assessment.

If Y and Z are independent, then f(Y) and g(Z) are also independent, where f and
g are arbitrary measurable functions (Roussas 1997, page 166). One might expect this
fact could be extended to comonotonic or countermonotonic variables, but this is not the
case. Let L denote independence.

Fact: X//Y,and Y L Z do not imply X L Z
Fact: X\\Y,and Y L Z do not imply X | Z.

The combination of perfect dependence with independence is subtle, and the mistakes
that analysts make are understandable. In fact, however, assuming perfect or opposite
dependence between X and Y and independence between Y and Z doesn’t allow any
conclusion at all about the dependence between X and Z. Any relationship between
them is possible. One example would be where (X, Y, Z) take on the four values (1,1,3),
(2,1,1),(2,3,3) and (3,3,1), each with probability %. Bivariate sketches show that X //' Y
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and Y L Z, but X\\ Z. If the equiprobable points were instead (1,1,1), (2,1,3), (2,3,1)
and (3,3,3), then still X /Y and Y L Z, but now X // Z.

This flexibility about dependencies might be surprising because it seems to
contradict the strictures on correlations mentioned in the discussion of the previous
myth. In fact, the constraint of positive semi-definiteness that correlations must observe
does not generalize to the case of dependencies, even in the extreme cases where
correlations are minimal or maximal. However, this flexibility disappears if the analyst
makes the assumption that the random variables have continuous distributions. In this
case, X/ Y,and Y // Z does imply that X // Z, and similarly for the other displayed facts
on the previous page. This highlights the strength of assumptions about the continuity
of distributions, which themselves would need specific justification.

Myth 12
Monte Carlo simulations can account for dependencies between variables.

Cullen and Frey (1999, page 202) complain that critics of Monte Carlo simulation
unfairly accuse it of “ignoring correlations”. They point out that restricted pairing
methods developed by Iman and his colleagues allow analysts to construct deviates in
Monte Carlo simulations that have a prescribed correlation (Section 3.6; Iman and
Conover 1982; Helton 1993; Helton and Davis 2002; 2003). However, what Cullen and
Frey don’t mention is that these algorithms pick a particular dependency function with
the prescribed correlation, and that this is only one of infinitely many possible
dependencies having this correlation. Fact: Monte Carlo methods can simulate
correlations, but they do so by making unstated assumptions about the nature of the
copula representing the dependence function. Monte Carlo methods cannot truly
account for correlations in the sense of computing how low or high risks might be
without making such assumptions. As discussed in Section 3.1.1, the effect on
numerical results of these different dependence functions can be substantial, even
though they may all have the same correlation coefficient.

The origin of Myth 7 discussed above seems to be due to the mistaken
impression that Monte Carlo simulation can account for correlations. Given a
magnitude of the correlation, one observes scattergrams from Monte Carlo simulations
that are fairly similar to one another whichever measure of correlation is used. For
instance, it may be hard to distinguish scattergrams generated in simulations using thei
different measures. Their similarity, however, may mostly be a consequence of the very
myopic selection of the copulas used in Monte Carlo simulations to generate correlated
deviates. There are generally other possible choices for the dependence function that
have the same correlation and yet produce substantially different scattergrams and result
in considerably different answers.
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Myth 13

Varying correlation coefficients constitutes a sensitivity analysis for uncertainty
about dependence.

Fact: varying correlations is insufficient to explore the possible nonlinear dependencies
between variables. For this reason, a sensitivity analysis based on varying correlation
gives an incomplete picture of uncertainty that is far too tight, even if we vary
correlation between —1 and +1. As an example, consider the problem of estimating the
distribution of the sum 4+B, where A and B are both uniform random numbers over the
interval [2,13] but the dependence between 4 and B is unknown. The range of
distributions that would be seen in Monte Carlo simulations by varying the correlation
between 4 and B over its possible range of [—1, +1] is shown in Figure 41 as a gray
slanted hourglass. The simulation strategies that could be used to obtain the hourglass
are described in Section 3.6 and, in particular, in Section 4.1. This hourglass can be
compared with the best possible limits on these distributions with no assumptions about
dependence. These limits form a black parallelogram underneath the hourglass shape.
The limits can be computed using the methods of Frank et al. (1987; Williamson and
Downs 1990; Berleant and Goodman Strauss 1998) described in Section 4.2. The black
parallelogram is substantially larger than the gray hourglass, and, although the bulk of
the difference is about the central parts of the distribution rather than the extreme tails,
the potential tails risks are underestimated by the Monte Carlo sensitivity analysis
strategy.

—

Cumulative probability

(@)

20 30
A+B
A,B ~ uniform(2, 13)
Figure 41. The envelope of distributions of sums 4+B obtainable from Monte
Carlo simulations varying the A4,B correlation between —1 and +1 (gray

slanted hourglass) and best possible limits on these distributions
making no assumptions about dependence (black parallelogram).
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Myth 14
A model should be expressed in terms of independent variables only.

The idea behind this myth is discussed in Section 3.2. Strictly speaking, it might better
be labeled an “opinion” rather than a “myth”, but the idea is so clearly unworkable in
general that it seems fair to list it here with other ideas that are impediments to
conducting good risk assessments. The essential problem is that modeling all the
underlying sources of the dependencies will often quickly become unwieldy and may be
recursively complex. For instance, it would probably be unrealistic to ask a dam safety
engineer to deconstruct his model’s dependence on rainfall patterns in terms of
independent variables (because even meteorologists can’t do this). Fact: a statistical
approach may be needed to handle dependencies in risk assessment models.

Myth 15
You have to know the dependence to model it.

Recent algorithmic advances allow the calculation of bounds on risks (1) under only
partially specified dependence functions, or even (2) without any assumption whatever
about dependence. As explained in Section 4.2, even if there is no information at all
available about the dependence function relating variable X and Y for which we know
the respective marginal distributions F and G, it is still possible to compute upper and
lower bounds on the distribution function for Z = X+Y as

[ sup max(F(x)+ G(y)-1,0), inf min(F(x) + G(y), 1)]

These limits are bounds on the distribution function of the sum for every possible value
z it might take. The limits are based on the classical Fréchet-Hoeffding limits for the
dependence (copula) function. There are similar formulas for the distribution of
differences, products, quotients, etc. Similar methods can be applied to probability
boxes and Dempster-Shafer structures.

When there is partial information about the dependence function, such as that
the relationship between X and Y is certainly positive (positive-quadrant dependent),
then bounds on the distribution for Z can be computed with a formula like

{ sup (F(0)G()), inf (1-(1- F (1= G(y)))} -

There are similar formulas for differences, etc., and for dependence functions that are
surely negative. Similar methods can be applied to probability boxes and Dempster-
Shafer structures. See Section 4.3 for a full discussion of these formulas.
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Myth 16
The notion of independence generalizes to imprecise probabilities.

In fact, there are several distinct concepts that might deserve to be called independence
in the context of imprecise probabilities (Couso et al 1999). These concepts are not
equivalent to one another and they can lead to numerical differences in convolution
results (Fetz and Oberguggenberger 2004). The issue is discussed in Section 3.1.3.
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6 Choosing a strategy for modeling dependence

Figure 42 depicts the relationships among the various possible dependence assumptions
that have been described in this report. It illustrates the fundamental tradeoff in
modeling dependencies. One can have a result that makes few or no assumptions about
dependence, but this result will be wider than it could be if the analyst had made use of
available knowledge about dependence, or one can have a result that will be narrower
but makes strong and perhaps unjustifiable assumptions about dependence.

(needs most data L (needs nodata
~ »
or assumptions) or assumptions)
particular class of range of
copula copulas correlatio
perfect
dependence
positive
dependence positive
PQD correlation
repetition strong epistemic random-set uncorrelated 0<r Fréchet
independence independence independence independence r=0 .
negative
. correlation
ngative r<0
dependence
. NQD
opposite
dependence
functional
modeling

v

(gets tightest <

(gets widest

answers) answers)

Figure 42: Relationships among dependency assumptions.

What is not emphasized in the figure is that, once one abandons the notion that
the dependence function is known completely (i.e., that the particular copula can be
specified precisely), then the resulting breadth of uncertainty in subsequent
convolutions can be fairly large compared to the total possible breadth obtained in the
Fréchet case. The uncertainty is often not greatly diminished even with additional
qualitative information such as the sign of dependence or even with quantitative
information such as the magnitude of the correlation coefficient. Consequently, once
one admits uncertainty about the precise nature of the dependency function, there may
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be little difference between the best possible bounds that account for what is known and
the Fréchet bounds which make no assumption whatever about dependence. Further
research is needed to discover the circumstances when partial information about
intervariable dependencies can have a significant effect on the results of a calculation.
In any case, however, such issues can be localized to considerations of particular pairs
of variables or to small groups of variables; using the Fréchet case for some variables
does not necessitate its use for other variables. The Fréchet case can be used in the
same model with the independent case and, indeed, other assumptions about
dependence.

The traditional approach to modeling dependencies in probabilistic assessments
has been to start with the default assumption of independence and then consider
evidence or scenarios that suggest some correlation or perhaps a functional dependence.
Essentially, an analyst would start on the left side of the middle line of the diagram in
Figure 42 at independence and move either up or down. We believe that a more
appropriate strategy for risk analysts is to start with no assumptions, at the Fréchet case
at the far right of the figure. As information in the form of empirical evidence or
theoretical arguments is considered, one moves leftward. This difference of what
assumptions are made by default can have a tremendous impact on the resulting
assessments. If results are seen to be too uncertain to support decisions of concern there
would be impetus to review more evidence, collect new data, and devote more
empirical and theoretical attention to the matter. We view such an outcome as salutary
for the discipline. The present state of affairs is too often one in which a risk analysis
based on convenient assumptions is simply a regurgitation of preconceptions that adds
little to the assessment process.

The following list is a synopsis of the various assumptions and modeling
strategies that one could employ to account for dependence among random variables.
Relevant sections in this report are given for each in parentheses.

Imprecise dependence
Fréchet case (no assumption about dependence) (Section 4.2)
Known or interval-bounded correlation (Section 4.3.3)
Sign of dependence (Section 4.3.2)
Positive dependence (Section 4.3.2)
Negative dependence (Section 4.3.2)
Linear dependence
Known correlation (Section 3.6)
Interval-bounded correlation (Section 4.1)
Precise dependence
Specified dependence model (copula family) and correlation (Section 3.7)
Known dependence function (copula) (Section 3.7)
Empirical dependence function (Section 3.8)
Perfect dependence (Section 3.5)
Opposite dependence (Section 3.5)
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Independence (Section 3.1)
Random-set independence (Sections 3.1, 3.1.3)
Epistemic independence (Section 3.1.3)
Strong independence (Section 3.1.3)
Repetition independence (Section 3.1.3)
Functional modeling
Known functional relationship (Section 3.2)
Stratification (Section 3.3)
Conditioning (Section 3.4)

6.1 Modeling dependence through a black box

Many of the techniques outlined in this report can be applied to real-world risk
assessment or uncertainty modeling problems in which the evaluated function is a black
box that cannot be decomposed into a sequence of binary arithmetic operations. In
particular, any method that can be implemented via a sampling strategy can be used.
This includes models that specify a dependence model (copula family) and correlation
(Section 3.7) or an empirical copula (Section 3.8). Also amenable to sampling
strategies are models of known functional relationships (Section 3.2), stratification
approaches (Section 3.3), models assuming independence, or perfect or opposite
dependence based onWhitt’s sampling strategy (Section 3.5).

When dependence is not well parameterized, then it may be possible to use
dispersive sampling within a black box assessment. Such use would require the analyst
to specify the slope of the partial gradient with respect to each input variable through
some sort of prior sensitivity analysis of the black box function. In fact, if the black box
function is known to be monotonic in each input, then, in principle, the methods to
account for the Fréchet case (making no assumption about dependence) (Section 4.2), or
sign of dependence (Section 4.3.2) could be theoretically employed on the black box
itself, although doing so would require enough samples to evaluate the required infimal
and supremal convolutions. In most cases, it would probably be more reasonable to
model the black box with a computationally simpler function such as a response
surface. When the response surface is simple and decomposable, the dependency
methods can be applied to it directly. If it too cannot be decomposed but it is
monotonic, then an intensive sampling strategy to evaluate the infimal and supremal
convolutions could be employed. As an alternative strategy, it might also be useful to
use constructed copulas (Section 3.9) to study the putative response of the function to
especially important features of the dependence.
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7 Conclusions and future research

We make six major conclusions.
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i)

Dependence considerations and special strategies to model dependence are
not necessarily needed for each and every operation in a risk analysis.
There are many situations in which independence is clearly warranted. There
are other situations in which dependence is irrelevant (such as for unary
operations negation, square root, log, etc.). And there are cases in which the
dependence between variables is moot because knowing the dependence has no
effect on the result of the analysis. For instance, it is typically the case that if
one of the operands is an interval (or a Dempster-Shafer structure or a p-box
equivalent to an interval) knowing dependence will not allow one to reduce the
uncertainty in the result compared to that obtained without making any
assumption about dependence. Similarly, if one of the operands is a point value,
then there can be no dependency between it and any variables with which it
might be combined.

A sensitivity study in which correlation coefficients are varied among
possible values to represent incertitude about inter-variable dependence is
generally insufficient to reveal the true breadth of uncertainty. If the
dependence between variables can include subtle nonlinearities, then
convolutions between these variables can yield tail risks that are more extreme
at some percentile than the cases represented by perfect or opposite dependence.
It is, however, possible to compute rigorous bounds on the convolution
irrespective of the dependence between the inputs, and these bounds will also be
best possible in many cases. Several convenient computational methods are
currently available that can be used to calculate appropriate bounds on the
distribution tails whenever there is partial or even complete ignorance about
correlation and dependency among the variables. Dispersive Monte Carlo
simulation is based on variance maximization/minimization. It is compatible
with existing Monte Carlo methods, but it accounts only for linear dependencies.
Dependency bounds analysis, based on Fréchet bounds, guarantees conservative
estimates of tail probabilities no matter what dependence structure exists among
the variables in the analysis.

ii1) Feasibility checks can be helpful. When correlations are simulated, an analyst

should ensure that the matrix of planned correlation coefficients is feasible by
checking that it is positive semi-definite (Section 3.6.1). If the matrix is positive
semi-definite, then it is a possible correlation matrix. If it is not positive semi-
definite, then it cannot be a correlation matrix in the first place. It would be a
mistake akin to specifying a negative variance and certainly should not be used
in modeling dependencies in a risk analysis. It may even be possible and useful
to employ this constraint on correlation matrices to tighten some interval



estimate of correlation. For instance, knowing the correlations between X and Y
and between X and Z may constrain the correlation between Y and Z to an
interval smaller than [—1, +1].

iv) Using unjustified or false independence assumptions can be dangerous.
Extreme-event probabilities (i.e., the tails) of a statistical distribution resulting
from probabilistic risk analysis can depend strongly on dependencies among the
variables involved in the calculation. Ignoring dependencies that are present can
result in substantial underestimate of tail risks (Section 3.1.2). Although well
known techniques exist for incorporating correlation into analyses, unfortunately
in practice they are often neglected on account of a paucity of information about
joint distributions. Furthermore, certain forms of dependency that are not
adequately measured by simple correlation must by necessity be omitted from
such assessments.

v) Knowing only that some correlation is zero is hardly better than knowing
nothing at all about the dependence. The bounds on convolutions between
distributions, p-boxes or Dempster-Shafer structures that enclose all
dependencies that create a correlation of a particular magnitude are surprisingly
wide and, in the tails, essentially indistinguishable from the Fréchet bounds
(Section 4.3.3).

vi) Dependence is considerably more complicated in the context of imprecise
probabilities than it is in classical probability theory. For instance, the
unique notion of independence in probability degenerates into many distinct
notions when Dempster-Shafer structures, p-boxes or comparable structures are
employed in an analysis (Section 3.1.3). Nevertheless, using random-set
independence as implemented in the calculations with the Cartesian product will
provide a conservative approach that never underestimates uncertainty about the
result. If it is important to account for a more delicate notion of independence to
reduce the uncertainty in the results, special ad hoc analysis may be required.

7.1 Future research

Once an analyst switches from a precise model of independence (in which the
dependence function is completely specified) to an imprecise model of dependence
(e.g., Fréchet or a sign dependence), there is often a marked increase in the overall
uncertainty of the resulting convolution. As mentioned in Section 4.3, research is
needed to develop intuition about when and under what circumstances partial
information about dependencies between variables can be helpful in significantly
reducing the uncertainty about the calculations in an analysis. Research is also needed
on other ways to decrease the uncertainty about convolutions based on further empirical
information or reasonable assumptions about dependence. Having a variety of
approaches and arguments for reducing uncertainty would make the technology more
flexible and appealing to analysts and modelers.

Another avenue of potentially useful research would be the development of
methods to constrain copulas to reflect features of empirical joint distribution functions.
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Even if they are not entirely reliable as descriptions of dependence because they are
based on sparse information and data that were measured with error, such structures can
suggest models of dependence for analysis. For instance, if the patterns in a scattergram
of a joint distribution tend to suggest that a certain region is impossible by an absence of
data points there, it could be useful to be able to reflect the impossibility of such
variable pairings in specifying the family of copulas and thus the resulting bounds on
convolutions. In particular, it would be useful to be able to construct copulas that
embody several disparate features that are observed separately.
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8 Appendix: an exceptional case

This appendix describes a numerical example that is of interest because it

1) 1llustrates a practical difference between random-set independence and strong
independence (Section 3.1.3),

11) constitutes an exception to the typical situation in which the convolution of
uncertain numbers 4 and B is not affected by dependence assumptions if at least
one of them is an interval (Section 4.2.3), and

1i1) tempers the claim about the best-possible nature of the simple convolutions with
probability boxes and Dempster-Shafer structures (see Ferson et al. 2003).

Suppose X is the interval [—1, +1] and Y is the Dempster-Shafer structure {([-1, 0], 0.5),
([0, 1], 0.5)}. The cumulative plausibility and belief functions for X are shown on the
top, left graph in Figure 43. The same functions for ¥ are shown on the top, middle
graph. What can be said about the product Z = XY assuming X and Y are independent?
What can be said without any assumption about their dependence?

Let us address the second question first. We cannot use the methods of Frank et
al. (1987) or Williamson and Downs (1990) to obtain the bounds on Z = XY for the
Fréchet case in which we make no assumption about dependence because the problem
involves multiplication between distributions that have both positive and negative
values. The method doesn’t work for this case. But we can obtain the best possible
bounds for the Fréchet case by ad hoc analysis. First, interval analysis tells us that the
product is Z = XY is totally constrained to the interval [-1, +1]. So we know that,
whatever else is true, this interval forms a probability box about the product. Denote by
B the discrete distribution with half its mass at —1 and half at +1. The Dempster-Shafer
structure for B is {(—1, 0.5), (+1, 0.5)}. B is also depicted in the top, right graph of
Figure 43. B is clearly consistent with X because it lies entirely within the range [—1,
+1]. It is also consistent with Y because the locations for the point masses of B are
within the two focal elements of ¥ and consistent with its partition of mass. Now
suppose that the distributions for X and Y are both identical to B, and that they are
perfectly dependent so that when X 'is —1, Y is too, and when X is +1, Y is too. In such a
case, all the mass of Z will concentrate at the value +1. In that case, the cumulative
belief and plausibility functions for Z are coincident spikes at +1. If, on the other hand,
X and Y are oppositely dependent, then X and Y always have opposite signs and all the
mass of Z concentrates at —1, and there is a spike at —1. Note that these two spikes are
at the edges of the permissible range for Z as obtained by interval analysis. Therefore,
the best possible p-box for the Fréchet case of the product Z = XY is identical to the
interval [-1, +1] and the corresponding Dempster-Shafer structure is {[-1, +1], 1}.

119



1]
] X
0 | | |
-1 0 +1
X
Random-set independence
1 _
] XY
0 . .
-1 0 +1
XY

Figure 43: Inputs and outputs for the counterexample.
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Now let us consider the problem of characterizing the product XY assuming that
X and Y are independent. If we interpret the problem to be saying that X and Y have
random-set independence, then we can compute the result with a convolution via
Yager’s (1986) Cartesian product with two rows and one column

XY
v | L+
y 1
[-1,0] |[-1,+1]
0.5 0.5
[0,+1] | [=1,+1]
0.5 0.5

where X is given in the right cell of the top row, and Y is given in the lower two cells of
the first column. The variable X has only a single focal element; the variable Y has
two. Each cell of the Cartesian product consists of an interval focal element on the first
line and a probability mass on the second line. The interior of the Cartesian product has
just two focal elements. They are the lower two cells in the right column. Because the
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two intervals produced in the Cartesian product are the same, they are combined to
produce a Dempster-Shafer structure with one focal element, {([-1, +1], 1)}, which is
equivalent to the interval [—1, +1]. The algorithms given by Williamson and Downs
(1990) and Berleant (1993) are equivalent to that of Yager for this problem and give the
same answer.

So far so good, because the Fréchet case and the random-set-independent case
have both given the answer as the interval [—1, +1]. But is this answer best possible if X
and Y are independent? An easy argument shows that it is not. The mean of a product
of independent random variables is the product of their means (Mood et al. 1974, page
180). The bounds on the mean of X are itself, that is, the interval [-1, +1]. The mean of
Y is somewhere in the interval [—0.5, +0.5]. Interval analysis tells us that the product of
these is just [-0.5, +0.5]. Therefore, Z = XY where X and Y are independent has a range
of [-1, +1] and a mean of [-0.5, +0.5]. But probability bounds analysis tell us that the
distribution functions for any random variable with such a range and mean is
constrained by the probability box shown in the bottom, middle graph of Figure 43
(Ferson et al. 2003). Clearly the interval shown on the bottom, left graph cannot be best
possible if all distributions must lie inside the bounds in the bottom, middle graph. The
discrepancy arises from the fact that we have used random-set independence when
computing the earlier result but were interpreting the assertion that X and Y were
independent to mean that they were strongly independent (Section 3.1.3).

So what are the best possible bounds on Z = XY in case X and Y are strongly
independent? The distribution for Z is a mixture of four cases: (i) when X and Y are
both positive, (if) when X is positive and Y is negative, (iii) when X is negative and Y is
positive, and (iv) when both X and Y are negative. The probability that Z is positive
comes only from the cases (i) and (iv). If we let Py=P(0 < X) and Py=P(0 <Y), then
P(0 £Z)=Px Py+ (1 — Py) (1 — Py). Because Py= 1/2 by construction, this simplifies
to P(0 £2) = Px/2 + (1 — Px)/2 = 1/2. This proves, then, that the median for Z is a
pinch point at zero. Because the scalar zero is a possible value for X, the bounds on the
product Z = XY must include the scalar zero too. Because the scalar value one is a
possible realization for X, and B is a possible realization for Y, the bounds on the
product Z = XY must also include the distribution B as well. Since both the scalar value
zero and B are solutions under strong independence, their envelope (which is the largest
p-box on the permissible interval with a medial pinch point at zero) is the best possible
p-box on Z=XY under strong independence between X and Y. This result is also
depicted as the bottom, right graph in Figure 43.

This example shows that the convolution via Yager’s (1986) Cartesian product,
which assumes random-set independence, produces the same answer as the Fréchet
case, but it is not best possible if X and Y are strongly independent. Further research is
needed to fully understand the conditions under which the straightforward calculation
involving the Cartesian product will be best possible and when it will at least be
conservative in the sense of not underestimating uncertainty. Analysts must learn when
it is reasonable to assume strong independence, and when it is not.
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9 Glossary

2-increasing The property of a bivariate function Z such that Z(a, b,) — Z(ai, b2) —
Z(ay, by) + Z(ay, b)) =2 0 whenever a;<a; and b;<bh,. This property is distinct
from and neither implies nor is implied by monotonicity. Copulas (q.v.) are 2-
increasing functions.

aleatory uncertainty The kind of uncertainty resulting from randomness or
unpredictability due to stochasticity. Aleatory uncertainty is also known as
variability, stochastic uncertainty, Type I or Type A uncertainty, irreducible
uncertainty, or objective uncertainty.

almost surely A property holds almost surely if it holds always except possibly for a
set of measure zero.

best possible An upper bound is best possible if it is the smallest such bound possible.
A lower bound best possible if it is the largest lower bound possible.

bound An upper bound of a set of real numbers is a real number that is greater than or
equal to every number in the set. A lower bound is a number less than or equal
to every number in the set. In this report, we also consider bounds on functions.
These are not bounds on the range of the function, but rather bounds on the
function for every function input. For instance, an upper bound on a function
F(x) is another function B(x) such that B(x) > F(x) for all values of x. B(x)is a
lower bound on the function if the inequality is reversed. If an upper bound
cannot be any smaller, or a lower bound cannot be any larger, it is called a best
possible bound.

CDF Cumulative distribution function (see distribution function).

comprehensive A family of copulas is called comprehensive if it includes the special
cases of perfect dependence, opposite dependence and independence.

comonotonicity Perfect dependence (q.v.) between random variables.

conjunction The truth-functional operation that yields true if all of its arguments are
true and false otherwise.

convolution The mathematical operation which finds the distribution of a sum of
random variables from the distributions of its addends. The term can be
generalized to refer to differences, products, quotients, etc. It can also be
generalized to refer to intervals, p-boxes and Dempster-Shafer structures as well
as distributions.

copula A joint distribution function, each of the marginal distributions for which is
uniform over the interval [0,1]. In the bivariate case, a copula is a function
C:[0,1]%x[0,1]—[0,1] such that C(0, a) = C(a, 0) = 0 and C(1, a) = C(a, 1) = a for
alla € [0,1], and C(az, bz)—C(al, bz)—C(Clz, b1)+C(a1, b]) >0 for all
a,a,b1,b,€[0,1], whenever a1<a, and b;<b,. A copula is the function that
expresses the dependence between variables and knits together their respective
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marginal distribution functions to form their joint distribution function. For
instance, the copula of continuous random variables X ~ F(x) and ¥ ~ G(y) is the
joint distribution of (F(X), G(Y)). Every joint distribution can be decomposed
into, and reconstructed from, its marginal distributions and a copula. Every
possible dependence among random variables, even including functional
relationships, is expressed by some copula. For any copula C, max(a+b—0) <
C(a, b) < min(a, b).

correlation The tendency of two paired variables to vary in the same direction.
Correlation can be measured by several coefficients, conventionally constrained
to the interval [—1, +1], such as Pearson correlation, Spearman correlation,
Kendall correlation, among others. If used without qualification, correlation
usually refers to Pearson correlation.

countermonotonicity Opposite dependence (q.v.) between random variables.

covariance The first product moment of two variables about their means. For random
variable X and Y, their covariance is cov(X, ¥) = E((X— E(X)) (Y — E(Y))) =
E(XY) - E(X) E(Y).

cumulative distribution function A distribution function (q.v.).

Dempster-Shafer structure A set of focal elements (in this report, closed intervals of
the real line), each of which is associated with a non-negative value m such that
the sum of all the m’s is one.

Dempster-Shafer theory A variant of probability theory in which the elements of the
probability space to which nonzero mass is attributed, called focal elements, are
not singletons but rather sets which represent the indistinguishability of
alternatives within bodies of evidence. Dempster-Shafer theory is sometimes
called evidence theory.

dependence The relationship between events or between random variables. If one
event (random variable) is unrelated to another event (random number), they are
said to be independent. Otherwise, they are said to be dependent. Hutchinson
and Lai (1990; section 11.4) review sets of axioms for a measure of dependence.
Interestingly, the traditional measure, Pearson correlation, does not satisfy many
of them.

disjunction The truth-functional operation that yields true if any of its arguments is
true and false if they are all false.

dispersive Monte Carlo simulation A Monte Carlo simulation in which unknown
correlations are set to their most extreme plausible values in order to obtain
results that conservatively estimate variances and tail probabilities.

distribution function The function F, associated with a random variable X, that
describes the probability F(x) that X will take on a value not greater than x,
which is often denoted as Prob(X < x). If the random variable takes on only a
finite set of values, then F{(x) is the sum of the probabilities of the values less
than or equal to x. Also known as a cumulative distribution function.

epistemic independence The property that an analyst’s uncertainty about either of two
outcomes of a random experiment does not change when some information
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about the outcome of one of them becomes known. For random variables X and
Y, X and Y are epistemically independent if the conditional probability of each
given the other is equal to its unconditional probability,
P(X|Y) = P(Y),
P(YX) = P(D).

In the context of imprecise probabilities, epistemic independence is defined in
terms of lower bounds on expectations such that E(f(X)|Y) = E(f{X)) and
E(f(Y)|X) = E(f(Y)) for all functions f where E(Z) denotes the infimum of all
expectations of Z over all possible probability distributions that could
characterize Z. Epistemic independence does not imply strong independence.

epistemic uncertainty The kind of uncertainty arising from imperfect knowledge.
Epistemic uncertainty is also known as incertitude, ignorance, subjective
uncertainty, Type II or Type B uncertainty, reducible uncertainty, and state-of-
knowledge uncertainty.

event A subset of the sample space, which is the set of all possible outcomes of a
random experiment. If the outcome of the random experiment is a member of
an event, then the event is said to have occurred. In probability theory, an event
is a collection of outcomes for which a probability has been assigned.

focal element A set (in this report, a closed interval of the real line) associated with a
nonzero mass as a part of a Dempster-Shafer structure.

Fréchet case The strategy of making no assumption about dependence.

Fréchet bounds Bounds on a joint distribution H(x,y), specified by having marginal
distributions F(x) and G(y), given by

max(F(x) +G(y) -1, 0)< H(x,y) < min(F(x), G(»)).

These bounds are also known as the Fréchet-Hoeffding limits (Fréchet 1951;
Hoeffding 1940). They are the distributional analogs of the bounds in the
Fréchet inequalities.

Fréchet inequalities Inequalities due to Fréchet (1935) on the probabilities of
conjunctions and disjunctions of events 4; given by

max(0, a; + axt...+ a, —(n-1)) <P(4,1& 42 & ... & 4,) < min(ay, ay,..., a,),
max(ay, a,..., ay) <PAv Ay v ... v 4,) <min(1, a; + ay*...+ ay),

where a; = P(4)).

imprecise probabilities The subject of any of several theories involving models of
uncertainty that do not assume a unique underlying probability distribution, but
instead correspond to a set of probability distributions (Couso et al. 2000). The
lower probability P(4) for event 4 is the maximum rate one would be willing to
pay for a gamble that pays 1 unit of utility if 4 occurs and nothing otherwise.
The upper probability P(A) for event 4 is 1-P(not A), i.e., one minus the lower
probability of 4 not occurring. An imprecise probability arises when one’s
lower probability for an event is strictly smaller than one’s upper probability for
the same event (Walley 1991). Theories of imprecise probabilities are often
expressed in terms of a lower probability measure giving the lower probability
for every possible event from some universal set, or in terms of closed convex
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sets of probability distributions. Interval probabilities, Dempster-Shafer
structures and probability boxes can be regarded as special-cases of imprecise
probabilities.

incertitude The kind of uncertainty arising from imperfect knowledge. Incertitude is
also known as epistemic uncertainty, ignorance, subjective uncertainty, Type II
or Type B uncertainty, reducible uncertainty, and state-of-knowledge
uncertainty.

independence The unrelatedness between events or between random variables. In the
context of probability theory, the concept of independence is unique for events
and unique for random variables. Events are said to be independent (in the
probabilistic sense) if the probability that both occur is the product of the
probability of either occurring. Random variables X and Y are said to be
independent if their joint distribution function H is equal to the product of their
respective marginal distributions, in the bivariate case, H(x, y) = F(x) G(y). In
the context of imprecise probabilities, however, there are several concepts that
could be called independence. See epistemic independence, random-set
independence, repetition independence and strong independence.

infimum The greatest lower bound of a set of values. When the set consists of a finite
collection of closed intervals, the infimum value is the same as the minimum
value.

interval The set of all real numbers lying between two fixed numbers called the
endpoints of the interval. In this report, intervals are always closed so that the
endpoints are considered part of the set.

inverse function For a function y = F(x), an inverse function F ' takes y-values in the
range of the function F to x-values in the domain of F in such a way that
F'(F(x)) =x and F(F '(y)) = y. For instance, if F(x) is the distribution function
for a random variable X giving the probability associated with the event X<x,
then the inverse function F~ 1(p) is the value of x associated with any value p.
An inverse function does not necessarily exist for any function, but any one-to-
one function will have an inverse.

joint distribution A distribution function in two (or more) variables. In the bivariate
case, a joint distribution H(x, y) gives the probability that X < x and, jointly, ¥ <
y. A joint distribution can be decomposed into, and reconstructed from its
marginal distributions and a copula that characterizes the dependence between
the variables.

Kendall correlation The index named for M.G. Kendall (Huchinson and Lai 1990;
Nelsen 1999) that measures the strength of the association between two
variables X and Y. It is defined by

T= P[O < (X] —Xz)(Yl - Yz)] - P[(Xl —Xz)(Yl - Yz) < 0]
where (X1,Y)) and (X2,Y>) are independent realizations from a joint distribution.
It can also be expressed as T = cov(sgn(X;—X>), sgn(Y¥1—-Y>)). The Kendall
correlation coefficient measures monotonicity of the relationship between X and
Y by considering the preponderance of pairs of bivariate data points (X;, Y;) and
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(X;, Y)) that are concordant in the sense that ¥; is larger than Y; is if X; is larger
than X;. Unlike the Pearson correlation, any value in [—1, +1] is a possible
Kendall correlation between any pair of marginal distributions. Independence
between X and Y produces a value of zero for t, although t=0 does not
conversely imply independence. Perfect correlation leads to a value of +1;
opposite correlation leads to a value of —1.

Lucas correlation A measure of association between two events given by the Pearson
correlation between the indicator functions of the events. See Section 2.2.

marginal distribution (or margin) Given two random variables X and Y and their
(bivariate) joint cumulative distribution H(x,y), F(x,0), which is the limit of
F(x,y) as y approaches infinity, is marginal distribution for X, and F(o, y) is the
marginal distribution for Y. The marginal distribution gives the unconditional
probability for one of the variables, so F(x;) = Prob(X; < x;), irrespective of the
other variable and ignoring any information about it. Marginal distributions
may also be defined in terms of more than one of the random variables. There
are in general many joint distributions having specified marginal distributions.

Monte Carlo simulation A method of calculating functions of probability distributions
by repeatedly sampling random values from those distributions and forming an
empirical distribution function of the results.

negation The truth-functional operation that yields true if its argument is false and
false if its argument is true. Extended to probabilities of events, the probability
of a negation of an event is one minus the probability of the event.

negative quadrant dependence A pattern of dependence between random variables X
and Y such that P(X < x, Y <y) <P(X<x) P(Y<y). In this case, X and Y have
non-positive (Spearman and Kendall and Pearson) correlations. The copula
associated with this pattern of dependence is everywhere smaller than the copula
associated with independence. Variables having negative quadrant dependence
are said to be negatively quadrant dependent or NQD.

NQD Negatively quadrant dependent.

opposite dependence A pattern of dependence between events 4 and B such that
P(4 & B) = max(0, P(4) + P(B) — 1), or between random variables X and Y such
that P(X <x, Y <y) =max(0, P(X<x) + P(Y<y) — 1). In the case of random
variables, opposite dependence is also called countermonotonicity and the
related variables said to be countermonotone. In this case, X and Y have
Spearman and Kendall correlations equal to —1 and the smallest Pearson
correlation they could possibly have given their marginal distributions (Whitt
1976). If X and Y are oppositely dependent, then X is almost surely a non-
increasing function of Y, and vice versa, and the graph of the support of the joint
distribution function is non-increasing in the plane (Nelsen 1999, page 27).

p-box A probability box (q.v.).

Pearson correlation The statistic due to Karl Pearson that measures the strength of the
association between two variables X and Y. It is defined by
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cov(X,Y) _ E(XY)-E(X)E(Y)

VV(X) V() VV(X)V(T)

where cov denotes the covariance of random variables, and V and E denote the
variance and expectation (mean) of a random variable, respectively. The
Pearson correlation measures the similarity of the association between X and Y
with a straight line. It is only one of several measures of correlation that have
been proposed. Independence between X and Y produces a value of zero for r.
Perfect correlation leads to the largest possible value for r given the marginal
distributions, although this value may be less than +1. Likewise, opposite
correlation leads to the smallest possible value of » for the marginal
distributions, but this may sometimes be greater than —1. Pearson correlation is
also called product-moment correlation, and sometimes simply linear
correlation.

perfect dependence A pattern of dependence between events 4 and B such that
P(4 & B) = min(P(4), P(B)), or between random variables X and Y such that
P(X<x, Y<y)=min(P(X<x), P(Y<y)). In the case of random variables,
perfect dependence is also called comonotonicity and the related variables said
to be comonotone or comonotonous. In this case, X and Y have Spearman and
Kendall correlations equal to +1 and the largest correlation they could possibly
have given their marginal distributions (Whitt 1976). If X and Y are perfectly
dependent, then X is almost surely a non-decreasing function of Y, and vice
versa, and the graph of the support of the joint distribution function is non-
decreasing in the plane (Nelsen 1999, page 27).

positive quadrant dependence A pattern of dependence between random variables X
and Y such that P(X<x) P(Y<y) <P(X<x, Y<y). In this case, X and Y have
non-negative (Spearman and Kendall and Pearson) correlations. The copula
associated with this pattern of dependence is everywhere larger than the copula
associated with independence. Variables having positive quadrant dependence
are said to be positively quadrant dependent or PQD.

positive semi-definiteness Property of a matrix 4 by which 4 is symmetric and 0 <
x'Ax for all x, and by which all the principal minors of 4 are non-negative, and
by which there exists a matrix C of rank » such that 4 = C"C.

PQD Positively quadrant dependent.

probability bounds analysis An analysis or calculation involving interval probabilities
or probability boxes.

probability box A class of distribution functions F(x) specified by a bounding pair of
distribution functions F(x) and F (x) such that F(x) < F(x) < F(x) for all x
values.

quadrant dependence Dependence that is either positive quadrant dependence or
negative quadrant dependence.

quantile A number that divides the range of a set of data or a distribution such that a
specified fraction of the data or distribution lies below this number.

127



random-set independence The dependence between Dempster-Shafer structures X and

Y, which have mass functions my and my respectively, such that the Dempster-
Shafer structure for the joint distribution has mass function m(4,x4;) = my (A4;)
my (A2) when 4, is a focal element of X and 4, is a focal element of Y, with
m(A)=0 for all subsets not of the form 4 = 4, x A,. This is the weakest
definition of independence in the context of imprecise probabilities (cf. Couso et
al. 2000). It therefore leads to the broadest uncertainty in results compared to
other definitions of independence such as strong independence or epistemic
independence.

random variable A variable quantity whose values are distributed according to a

probability distribution. If the potential values of the random variable are a
finite or countable set, the random variable is said to be discrete. For a discrete
random variable, each potential value has an associated probability between zero
and one, and the sum of all of these probabilities is one. If the random variable
can take on any value in some interval of the real line (or any rational value
within some interval), it is called a continuous random variable.

rank correlation Any measure of correlation based on the (within-variable) ranks of

random variables rather than their absolute magnitudes. An unqualified
reference to rank correlation usually refers to Spearman’s rank correlation.

real number A real number is an element from the real line consisting of positive and

negative integers, rational numbers, irrationals and transcendental numbers. A
real number is a rational number or the limit of a sequence of rational numbers.
Real numbers are sometimes called scalars.

repetition independence Independence between random variables that are identically

distributed, although their distribution may be imprecisely known. Repetition
independence is the analog in the context of imprecise probabilities of the
constraint in probability theory that variables are independent and identically
distributed (iid). Repetition independence implies a class of joint distribution
functions that is smaller than from assuming strong independence, but repetition
independence does not imply strong independence because the marginal
distributions, whatever they are, must be identical, which precludes all other
combinations of possible marginal distributions. This kind of independence
corresponds to the smallest set of joint distribution functions of all the
definitions of independence identified by Couso et al. (2000).

rigorous Exact or sure, as opposed to merely approximate. Usually said of bounds

which can be rigorous without being best possible.

Sklar’s theorem A result in the study of probabilistic metric spaces due to Sklar
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(1959) that states, if H(x,y) is a joint distribution function with marginal
distribution functions F and G, then there exists a copula C such that

H(x, y) = C(F(x), G()).
Conversely, for any univariate distribution functions /" and G and any copula C,
the function H is a two-dimensional distribution function having marginals F’
and G. If F and G are continuous, then C is unique; otherwise it can be uniquely



determined on the product of the ranges of /" and G. The theorem generalizes to
dimensions higher than two.

Spearman correlation The nonparametric index due to Spearman (1904; Hutchinson
and Lai 1990; Nelsen 1999) that measures the strength of the association
between two variables X and Y. It is defined by

p=PX| <Xy, V1 <Y3) +P(Xa <Xy, Y3< 1))
which can also be expressed as p = cov(sgn(X>—X), sgn(¥s—Y;)). Note that this
formulation compares a vector (X;,Y;) with another vector (X>,Y3) with the same
margins, but whose elements are independent. The Spearman correlation is
identical to the Pearson correlation computed between the ranks of X and Y, or
between their grades F(X) and G(Y), where X ~ F and Y ~ G. The Spearman
correlation measures the monotone association between the variables and is
often considered a more appropriate measure of correlation for nonlinear
relationships or non-normal variables than the traditional Pearson correlation.
Unlike the Pearson correlation, any value in [—1, +1] is a possible Spearman
correlation between any pair of marginal distributions. Independence between X
and Y produces a value of zero for p, although the fact that p = 0 does not imply
independence. Perfect correlation leads to a value of +1; opposite correlation
leads to a value of —1. The Spearman correlation is sometimes known as the
grade correlation.

strong independence The complete absence of any relationship between variables.
Variables X and Y are strongly independent if (i) X and Y result from random
experiments, each governed a unique but possibly unknown probability
distribution, (if) the random experiments are stochastically independent (in the
traditional sense), and (ii7) there is no known relationship between the variables
that would preclude some possible combinations of the possible marginal
distributions. Variables X and Y are strongly independent if the set of possible
joint distributions is the largest set such that each joint distribution H(x, y) =
F(x) G(y), where F is one of the possible distribution functions characterizing X
and G is one of the possible distribution functions characterizing Y. Strong
independence implies epistemic independence of the marginal experiments.

support The subset of the domain of a distribution function over which the function is
neither perfectly zero nor perfectly one.

supremum The least upper bound of a set of values. When the set consists of a finite
collection of closed intervals, the supremum value is the same as the maximum
value.

total probability The probability of a single event.

two-dimensional Monte Carlo A kind of nested Monte Carlo simulation in which
distributions representing both incertitude and variability are combined together.
Typically, the outer loop selects random values for the parameters specifying the
distributions used in an inner loop to represent variability. This approach is also
called second-order Monte Carlo simulation.
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uncertainty The absence of perfectly detailed knowledge. Uncertainty includes
incertitude (the exact value is not known) and variability (the value is changing).
Uncertainty may also include other forms such as vagueness, ambiguity and
fuzziness (in the sense of border-line cases).

uncorrelated Having a (Pearson) correlation of zero magnitude. Uncorrelatedness
does not imply independence.

variability The fluctuation or variation due to randomness or stochasticity. Variability
is also associated with aleatory uncertainty, stochastic uncertainty, Type I or
Type A uncertainty, irreducible uncertainty, objective uncertainty.
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