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Abstract 
This report summarizes methods to incorporate information (or lack of information) 
about inter-variable dependence into risk assessments that use Dempster-Shafer theory 
or probability bounds analysis to address epistemic and aleatory uncertainty.  The report 
reviews techniques for simulating correlated variates for a given correlation measure 
and dependence model, computation of bounds on distribution functions under a 
specified dependence model, formulation of parametric and empirical dependence 
models, and bounding approaches that can be used when information about the inter-
variable dependence is incomplete.  The report also reviews several of the most 
pervasive and dangerous myths among risk analysts about dependence in probabilistic 
models. 
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Symbols 
~  is distributed as 
�  is an element of 
�  is a subset of 
�  plus or minus 
+, �, etc. addition, subtraction, etc. under no assumption about the dependence 

between the operands 
|+|, |�|, etc. addition, subtraction, etc. assuming independence 
/+/, /�/, etc. addition, subtraction, etc. assuming perfect dependence 
\+\, \�\, etc. addition, subtraction, etc. assuming opposite dependence 
�  the empty set, i.e., the set having no members 
[�      F, F]  probability-box specified by a left side�F(x) and a right side F(x) 

where F(x) ��F(x) for all x � �, consisting of all non-decreasing 
functions F from the reals into [0,1] such that F(x) � F(x) ��F(x). 

{(s1,m1),…, (sn,mn)}   an enumeration of the elements of a Dempster-Shafer structure in 
terms of its focal elements si and their nonzero masses mi 

beta(v, w) a beta distribution with shape parameters v and w 
convolve(X,Y,r) convolution (usually addition) assuming that X and Y have correlation r 
convolve(X,Y,C) convolution (usually addition) assuming the copula C describes the 

dependence between X and Y 
cov(X, Y) covariance between random variables X and Y 
E(X) expectation (mean) of random variable X 
f:A�B  a function f whose domain is the set A and whose range is the set B.  In 

other words, for any element in A, the function f assigns a value that is 
in the set B 

Hc(x)  the step function that is zero for all values of x<c and one for all x	c 
inf  infimum (for a finite set, simply the minimum) 
M(u, v) the copula min(u,v) corresponding to perfect dependence 
normal(
, �)  a normal distribution with mean 
 and standard deviation � 
�(u, v) the copula defined by the product uv corresponding to independence 
P(A) probability of event A 
P(A|B) probability of event A given that event B has occurred 
P(A&B) probability of conjunction (and) of events A and B 
P(A
B) probability of disjunction (or) of events A and B 
�C,L(F, G) infimal convolution for binary operation L between distribution 

functions F and G related to each other by the copula C 
�  the set of all real numbers 
�+ the set of all non-negative real numbers 
sgn sign or signum function 
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sup  supremum (for a finite set, simply the maximum) 
�C,L(F, G) supremal convolution for binary operation L between distribution 

functions F and G related to each other by the copula C 
uniform(a, b) a uniform distribution ranging between a and b, where a�b 
V(X) variance of random variable X 
W(u, v) the copula max(u+v�1,0) corresponding to opposite dependence 
weibull(d, c) a Weibull distribution with scale parameter (or characteristic life) d 

and shape parameter c, where 0�d, 0�c 
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1 Introduction 
Risk analysis and other applications of probabilistic modeling generally require 
specification of the joint multivariate distribution of the random variables involved in 
the problem.  In practice, the input for the mathematical model used in a probabilistic 
risk assessment is usually constructed in two steps:  (1) the marginal distributions for 
the input variables are specified and (2) the dependence between the variables is 
specified.  The second step is perhaps just as important as the first, but it has received 
considerably less attention by theorists and practitioners in risk analysis.  Moreover, 
there are several pernicious myths about dependence that confuse analysts, not the least 
of which is the idea that it is okay to ignore correlations and dependencies altogether.  
Even analysts who recognize the importance of dependence sometimes ignore the issue 
because of a lack of relevant empirical data on which to base a reasoned model. 

Risk assessments based on probability models can be expressed in terms of total 
probabilities of events (e.g., the chance that a pump fails to operate) or in terms of 
probability distributions of random variables (e.g., the failure temperature of a 
population of pumps).  Section 2 of this report reviews the modeling of dependence 
among events in fault and event trees based on point or interval-valued probabilities.  It 
reviews how empirical information or theoretical specification about how events are 
related to one another can be incorporated into a risk assessment, and it offers strategies 
to account for a lack of knowledge about dependence between events that can replace 
inappropriate or unjustified use of independence assumptions in such assessments.  This 
section introduces special, extreme forms of dependence that may be useful as 
alternatives to a default or reflexive assumption of independence.  These extreme kinds 
of dependence are generalized in the following sections.  It also introduces the strategy 
of bounding results when dependence cannot be specified precisely, which also forms 
an important theme throughout the entire document. 

Section 3 addresses the problem of dependence among random variables in 
more elaborate models based on mathematical functions of probability distributions, 
Dempster-Shafer structures or probability boxes.  It reviews the methodological dangers 
of assuming all variables in an assessment are independent of one another and shows 
how different dependencies can lead to quantitatively different results.  It includes a 
discussion of how the very concept of independence disintegrates into distinct notions 
in the context of imprecise probabilities.  It describes several strategies that have been 
or could be employed to represent knowledge about how the random variables are 
interrelated. 

Section 4 considers how risk assessment models can account for a lack of 
relevant information about the dependence among random variables, and how partial or 
qualitative information about dependencies might best be incorporated into the analysis.  
Extending the idea of bounding results when dependence cannot be specified precisely, 
it considers approaches based on sensitivity studies and direct analytical methods that 
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bound results based on theoretical limits governing dependence.  This section points out 
two surprising results that have implications for risk assessments.  The first is that the 
question of dependence is usually moot for a binary operation if one of the inputs is 
characterized only by an interval.  The second is that knowing the correlation 
coefficient between two random variables generally tells rather little about how they are 
related without additional knowledge about the functional nature of their dependence. 

Section 5 reviews a large variety of myths about correlations and dependencies 
that are common in risk assessments and probabilistic modeling generally.  For the most 
part, this section merely highlights ideas explored in the earlier sections, emphasizing 
their practical consequences when misapplied.  This section can be viewed as a 
summary of the essential practical ideas of the report. 

The methods considered in this report are to be applied to models involving 
1. Real-valued probabilities, 
2. Interval probabilities, 
3. Probability distributions, 
4. Dempster-Shafer structures of the real line, and 
5. Probability boxes (p-boxes). 

For readers unfamiliar with recent developments in uncertainty analysis, the following 
three subsections introduce the notions of interval probabilities, Dempster-Shafer 
structures and probability boxes, respectively, and provide some pointers to their 
relevant literatures.  Section 9 is a glossary of terms that may be new to many readers. 

1.1 Interval probabilities 
Some of the probabilities needed as inputs for a fault tree may be difficult to specify 
precisely.  In such cases, it may be desirable to express the analyst’s uncertainty by 
using interval probabilities to characterize the events.  The idea is that one may not be 
able to give the exact probability of some event but could still given an upper and lower 
bound on that probability.  This notion of using intervals to describe probabilities is a 
very old idea in the history of probability.  George Boole (1854; Hailperin, 1986) 
considered interval bounds on certain probabilities.  Fréchet (1935) discovered the 
limits of probabilities of conjunctions and disjunctions of events under all possible 
dependencies.  Kyburg (1998) reviewed the history of interval probabilities and traced 
the development of the critical ideas through the twentieth century.  Bounding 
probabilities has continued to the present (e.g., Walley and Fine, 1982; Loui, 1986; 
Hailperin 1986; Madan and Owings, 1988; Williamson 1989; Walley, 1991; Tessem, 
1992).  Bounding probability is different from the approach of second-order or two-
dimensional probability (e.g., Hoffman and Hammonds 1994; Cullen and Frey 1999) in 
which uncertainty about probabilities is itself modeled with probability. 

Although ordinary interval arithmetic (Moore 1966; Alefeld and Herzberger 
1983; Neumaier 1990) can be used for some calculations with such intervals, the fact 
that the inputs represent probabilities which are constrained to the unit interval makes 
these calculations somewhat more subtle.  For instance, if A and B are exhaustive events 
(i.e., at least one must be true), then we know that the sum of their probabilities 
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P(A)+P(B) must equal one, even if we cannot know the precise value of either 
individual probability.  Hailperin (1986) reviews the kinds of calculations involving 
interval probabilities that might be used in a risk or reliability assessment. 

1.2 Dempster-Shafer structures 
Dempster-Shafer theory (Shafer 1976; Klir and Yuan 1995), which is sometimes called 
evidence theory, can be considered as a variant of probability theory in which the 
elements of the sample space (to which nonzero probability mass is attributed) are not 
single points but rather sets which represent the indistinguishability of alternatives 
within bodies of evidence.  For instance, instead of a discrete probability mass function 
over the real line giving the probability for each of some number of precise points on 
the line, a comparable Dempster-Shafer structure might give a probability mass that 
corresponds to an interval rather than a point value.  The sum of these masses is one, 
just as for any probability mass function.  The sets that get nonzero mass are called 
focal elements.  The breadth of these focal elements represents the uncertainty that 
might arise from measurement uncertainty or other form of ambiguity.  Klir and Yuan 
(1994) reviewed the mathematical underpinnings of Dempster-Shafer theory for 
uncertainty assessment.  Oberkampf and Helton (2002; Oberkampf et al. 2001; Helton 
et al. 2004) reviewed and illustrated the use of Dempster-Shafer theory for engineering 
applications.  Sentz and Ferson (2002) reviewed methods for aggregating multiple 
Dempster-Shafer structures from different information sources.  Yager (1986; Ferson et 
al. 2003) defined the basic algorithms to compute arithmetic operations of Dempster-
Shafer structures under independence in risk assessments. 

Dempster-Shafer theory is intimately related, if not equivalent, to the theory of 
random sets (Matheron 1975; Robbins 1944; 1945).  Tonon et al. (1999; 2000a; 2000b) 
have applied random set theory to various problems in reliability and design problems 
in engineering. 

Although focal elements can generally be any subset of some universal set, in this 
report, we consider only Dempster-Shafer structures for which the universal set is the 
real line � and whose focal elements are closed intervals of the real line. 

1.3 Probability boxes 
Risk assessments commonly involve calculations with random variables characterized 
by probability distributions.  Like probabilities that describe events, these distributions 
may sometimes be difficult to specify precisely.  A probability box (p-box) is a class of 
distribution functions delimited by an upper and a lower bound which collectively 
represent the epistemic uncertainty about the distribution function of a random variable.  
A p-box is the class of distribution functions F(x) specified by a bounding pair of 
cumulative distribution functions F(x) and )(xF  such that )()()( xFxFxF ��  for all x 
values.  P-boxes thus express interval-like uncertainty about a distribution function.  
Probability bounds analysis is the collection of methods and algorithms that are used to 
do calculations with, and make inferences from, p-boxes.  These methods are essentially 



 14 

a combination of the methods of standard interval analysis (Moore, 1966; Neumaier, 
1990) and classical probability theory (see, inter alia, Feller, 1968; 1971; Mood et al. 
1974).   

Like interval probabilities, the idea of bounding probability distribution functions 
has a very long tradition throughout the history of probability theory.  Indeed, 
Chebyshev (1874; Smith 1995) described bounds on a distribution when only the mean 
and variance of the variable are known, and Markov (1886) found bounds on a positive 
variable when only the mean is known.  Kolmogorov posed the question of what the 
bounds would be on a sum of random variables if only their marginal distributions and 
not the dependence between were known (Makarov 1981).  Ferson et al. (2003) 
reviewed the characterization of p-boxes from empirical information, the aggregation of 
p-boxes from multiple or competing information sources, and the basic algorithms to 
compute arithmetic operations under independence between p-boxes in risk 
assessments.  P-boxes are a somewhat coarser way to describe uncertainty than are 
Dempster-Shafer structures on the real line.  Every Dempster-Shafer structure specifies 
a unique p-box and every p-box specifies an equivalence class of Dempster-Shafer 
structures (Regan et al. 2004; Joslyn and Ferson 2004).  Ferson et al. (2003) described 
the relationship between these two generalizations of probability distributions.  P-boxes 
are also coarse special cases of imprecise probabilities (Walley 1991), which are 
arbitrary sets of probability distributions.  As an interval is a special kind of set of real 
numbers, a p-boxe is a special kind of imprecise probabilities. 
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2 Dependence between events 
Fault or event trees are commonly used in risk assessments to estimate the reliability or 
risk of some “top event” such as the failure of a system in terms of the probabilities of 
failures of the components of the system (Vesely et al. 1981).  Compound events in a 
fault tree are defined as conjunctions, disjunctions or negations of more elementary 
events.  The conjunction of events A with B is denoted by A & B and is sometimes 
called the “and” event.  It is the event in which both A and B occur.  For instance, in a 
safety assessment, the event A might represent an inadvertent fuel spill that produces a 
combustible vapor in a closed space.  The event B might represent the presence of an 
ignition source such as a spark somewhere in the space caused by the closing of an 
electrical circuit.  The conjunction of these two events would represent the conditions 
necessary for an explosion.  The disjunction of two events is the event in which one or 
the other of A or B occurs, or they both occur.  The disjunction is sometimes called the 
“or” event and it is denoted with the expression A 
 B.  For instance, if the events 
represent the as-designed functioning of redundant safety systems, then only one of the 
events must occur for some adverse consequence to be avoided.   

The purpose of a fault tree is to recursively express the top event as a function 
involving such conjunctions and disjunctions of more elementary events.  The endpoints 
of these recursions, which are not further decomposed into subevents, are called “basic 
events”.  Because they are not defined in terms of other events, basic events need to be 
characterized by inputs to the analyses that represent empirical observations or 
theoretical argument.  These basic events are often characterized by real-valued 
probabilities, sometimes called “total probabilities” to distinguish them from probability 
distributions.  This section reviews the representation of dependencies between basic 
events and their propagation through the logical model such as a fault tree. 

In case two events are independent, the probability of their conjunction can be 
computed as the product of the probabilities of the two events, thus 
 

P(A & B) = andindependent(a, b) = ab, 
 
where a = P(A) and b = P(B).  The probability of the disjunction can also be computed 
in terms of the probabilities of the separate events with the formula 
 

P(A 
 B) = orindependent(a, b) = 1 � (1 � a)(1 � b). 
 
Although it might be convenient, it is not always possible to assume that the events in a 
fault tree are independent of one another (Smith and Watson 1980; Hickman et al. 
1983).  For example, Vesely et al. (1981) described many situations involving common-
cause or common-mode failures in which events will not generally be independent.  For 
instance, there can sometimes be a single cause that can precipitate failure of several 



 16 

components at the same time.  Categories of common causes include many things such 
as impact, manufacture or use history, location, vibration, contamination, humidity, 
flooding, temperature, fire, etc.  If all of the components in a fault tree’s minimal cut set 
are affected by the same cause, that cause can trigger the top event.  In this way, the risk 
of the top event can degenerate to the risk of the occurrence of one of these common 
causes.  The assessment of a system’s susceptibility to common-cause failures has 
become increasingly more important in risk analysis.  In engineering practice, common-
cause failures can often dominate random hardware failures (Vesely et al. 1981, page 
XII-12).  It will be important to the correct assessment of system performance that 
involve such phenomena to be able to evaluate risks and reliabilities without necessarily 
relying on independence assumptions.  Moreover, in the context of abnormal operating 
environments such as fires, the independent functioning of components in a system 
intended by the designer of the system may actually devolve to dependent behaviors.  It 
becomes a serious question then to be able to estimate the consequences of a lack of 
independence on the risks and reliabilities being estimated in the assessment. 

If the probabilities characterizing events are depicted in a Venn diagram, the 
dependence between events is completely determined by the area of the overlap 
between the sets.  Consider the five Venn diagrams shown in Figure 1.  Each depicts the 
probabilities of two events, the first represented by a stippled circle and the second 
represented by a gray circle.  The fact that the shapes are circles is irrelevant; only their 
areas matter.  Likewise, the complexity of the shape of the overlapping region does not 
matter because only its area is significant.  These diagrams are all drawn to the same 
scale, so that the area of the enclosing square for each of the five Venn diagrams is one, 
and the area of the larger stippled circle is 0.29 while the area of the smaller gray circle 
is 0.22.  Case A depicts the gray event totally inside the stippled event.  This represents 
the strongest possible dependence between these two events, given their marginal 
probabilities.  In this perfect dependence, if the event represented by the gray circle 
occurs, it is guaranteed that the other event represented by the stippled circle also 
occurs.  Case C shows the independent case.  In this case, the area of overlap is given 
by the product 0.29�0.22, which is 0.0638.  In general, the probability of the joint event 
(in which both events occur) is given by the product of the probabilities of the two 
events.  The events are not independent unless this quantitative relation holds.  Case E 
shows the events as mutually exclusive.  Their area of overlap is zero.  It represents the 
other extreme possible case of dependence because it says that the occurrence of one 
event precludes the occurrence of the other.  Cases B and D depict dependencies that 
are intermediate between the extreme cases and independence. 
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Figure 1:  Dependence between two events (gray and stippled) depicted in Venn 

diagrams where area denotes probability 
 

2.1 Extreme dependence:  perfect and opposite 
To represent different dependencies between the underlying events, the gray and 
stippled areas shown in the diagrams of Figure 1 can be moved around within the 
square and their shapes arbitrarily deformed so long as the areas are not changed.  When 
areas are constrained to given values, certain relationships must hold between the areas 
of the two sets and their dependence as represented by the degree to which they overlap.  
For instance, the dependence that leads to the largest area of overlap is that depicted in 
diagram A.  Such an eclipse between the two areas cannot be any greater if the areas are 
fixed, no matter how the areas are positioned.  We can therefore call this dependence 
“perfect”.  Because one of the areas is totally inside the other, the area of overlap is the 
minimum of the two areas.  The probabilities of the conjunction and disjunction 
between the events are very simple to compute for this kind of dependence: 
 
(Perfect) 

P(A & B) = andperfect(a, b) = min(a, b), 
P(A 
 B) = orperfect(a, b) = max(a, b), 

 
where a and b are the two areas.  The probability of the conjunction is measured by the 
area of the intersection of the two areas.  Because they overlap totally, the area of the 
intersection must be the smaller of the two areas.  Because the probability of the 
disjunction is the area of the union of the two areas, this probability must be the larger 
of the areas. 

The pattern of dependence in Figure 1 that leads to the smallest area of overlap 
is that shown in diagram E.  The area of the overlap is zero because the sets are disjoint.  
We can call the dependence associated with minimal overlap “opposite” dependence.  
Note that having opposite dependence does not necessarily mean that the events are 
mutually exclusive.  For instance, it may be that both events have probabilities greater 
than 50%.  In such a case, the areas of the events, however they are drawn, must overlap 
by some amount.  Saying that events are mutually exclusive is therefore not just making 
an assertion about their dependence.  It also says something about the probabilities of 
the events.  Saying events have opposite dependence is a claim only about dependence.  
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The formulas for probabilities of conjunction and disjunction under opposite 
dependence are 
 
(Opposite) 

P(A & B) = andopposite(a, b) = max(a + b � 1, 0), 
P(A 
 B) = oropposite(a, b) = min(1, a + b). 

 
These formulas account for the constraint that probabilities must be no larger than one. 

Examples:  Suppose that P(A) = a = 0.29 and P(B) = b = 0.22 and the events A 
and B are perfectly dependent.  This situation is depicted in diagram A of Figure 1 
which shows the areas maximally overlapping.  The probability of the conjunction 
A & B is min(0.29, 0.22) = 0.22.  Despite the use of the minimum operator, this is the 
largest possible value of the probability given these marginals.  The probability of the 
disjunction A 
 B is max(0.29, 0.22) = 0.29.  Despite the maximum, this is the smallest 
possible value of the probability for any possible dependency.  Now suppose that the 
dependence is like that depicted in diagram E where the events are oppositely 
dependent.  Now the areas are minimally overlapping.  In this case, the probability of 
the conjunction is max(0.29 + 0.22 � 1, 0) = 0, and the probability of the disjunction is 
min(1, 0.29+0.22) = 0.51. 

These extreme cases are useful mostly as bounds when the analyst has no 
empirical knowledge or theoretical argument about the dependency (Section 2.3), but it 
is conceivable that they could be used in an actual assessment in their own right.  For 
instance, in many engineered systems, several of the basic components are often 
supplied by a single vendor, or have experienced the same inspection, service and repair 
history.  Moreover, components may experience a similar, abnormal condition such as a 
fire, or the same temporal sequence of environmental conditions.  Such commonalities 
may tend to suggest that probabilities of failure associated with these components may 
be closer to perfectly dependent than to independent.  Opposite dependence, on the 
other hand, may be suggested by tradeoffs in utilization.  For instance, suppose that one 
of a pair of redundant safety systems always activates first in response to a particular 
kind of stimulus, and that the kinds of stimuli are not randomly experienced by the 
systems.  If operation of a safety system leads to wear-and-tear aging on that system, 
then the joint failure of both systems might be better modeled by events that are 
oppositely dependent than an assumption that they are independent.  In such situations, 
the extreme-dependency formulas might be used in place of the independence formulas 
because extreme dependence is a somewhat more reasonable assumption than 
independence. 

2.2 Correlation between events 
Although the idea of dependence applies to both random variables and simple events, 
the word correlation is often reserved for use only with random variables.  Measuring 
the overall degree of association with some scalar quantity ranging between �1 and +1 
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can be very useful in risk assessments in general.  For this reason, it may be desirable to 
extend the notion for use with events each of which is characterized by a total 
probability (that is, a dimensionless real number between zero and one).  Because of the 
simplicity of dependence in the context of events, defining such a scalar measure of the 
correlation of events is entirely reasonable.  Indeed, this use seems far more reasonable 
than the traditional use of scalar measures of overall dependence between random 
numbers.  The dependence between random numbers is infinite-dimensional (see 
Section 3), so the single dimension of a correlation coefficient cannot capture the 
potential complexity of the dependence function.  The dependence between events, 
however, can be characterized completely and without loss of information by a scalar 
measure. 

Lucas (1995; see also Cheng 2003; cf. Cui and Blockley 1990; Davis and Hall 
2003) suggests defining correlation between events as the correlation of their indicator 
functions.  To illustrate this idea, imagine throwing darts randomly at a Venn diagram 
such as those shown in Figure 1 and scoring each throw using two binary values, one 
for each event.  The value of the indicator function would be zero if the dart misses the 
event’s area and one if it hits it.  Lucas’ measure of dependence between the two events 
would be the correlation coefficient for a long sequence of such scores for randomly 
thrown darts.  The measure would be the same if, instead of randomly thrown darts, a 
grid of many pins were uniformly and systematically getting similar pairs of scores.  
The formula for a (Pearson product-moment) correlation between random variables X 
and Y is 
 

)V()V(
)E()E()E(

YX
YXXYr �

�  

 
where E denotes the expectation and V denotes the variance.  The expectation of an 
indicator function for an event A is the probability of the event P(A).  The variance for 
the indicator function is P(A)(1�P(A)).  Consequently, when the formula for the 
correlation is applied to the indicator functions for events A and B, it becomes  
 

))P(1)(P())P(1)(P(
)P()P()&P(

BBAA
BABAr
��

�
�  

 
because the expected value of the product of the indicator functions is the probability of 
the conjunction given the dependence between the two events.  With a little rearranging, 
this leads to the formulation 
 

)1()1(),,(and)&P( Lucas bbaarabrbaBA �����  
 
where a = P(A) and b = P(B).  We call this formula the Lucas model for correlated 
events.  For instance, suppose that a = 0.29 and b = 0.22 and the correlation r = 0.2.  
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The Lucas model suggests the probability of the conjunction A & B would be 0.101.  If 
r is set to zero, the Lucas model yields the value 0.0638, which is the probability of the 
conjunction assuming the events A and B are independent.  As r varies, the probability 
of the conjunction according to the Lucas model changes linearly.  This model might be 
considered desirable except that it can produce values for the conjunction that are 
outside the Fréchet bounds that limit such probabilities (see Section 4.2).  In fact, it can 
even produce probabilities that are smaller than zero or larger than one.  For instance, if 
we set r = �1, the result of the Lucas model is �0.124.  No one likes a negative 
probability. 

The problem is not with the formula itself, but with the mistaken idea that 
correlation can take on any value between positive and negative one.  It is well known 
that Pearson correlation coefficients cannot always range over this entire range (Feller 
1968; Nelsen 1999).  In this case, the smallest possible correlation coefficient for the 
indicator functions is not �1, but only �0.339.  And the largest value is not �1 but only 
0.831.  This can be demonstrated by considering two columns of numbers.  One 
column, representing the indicator function for event A has 290 ones and 710 zeros.  
The second column of numbers for event B has 220 ones and 780 zeros.  If the values in 
the columns are sorted so that all the zeros are at the top of the columns, then the 
correlation between the two columns will be 0.831.  If we then sort one of the columns 
in the reverse order so that the zeros are all at the bottom, then the correlation will be 
�0.339.  No matter how the zeros and ones are shuffled within the columns, the 
correlation coefficient between these two columns of numbers cannot be any larger or 
smaller than these extremes.  If the input values for the correlation r are constrained to 
the interval [�0.339, 0.831], then the probabilities computed by the Lucas model are 
correctly limited to the possible range that ensures no negative probabilities or 
probabilities larger than one.  The only way to make using the Lucas model reasonable 
is to limit the input correlations to be no smaller than r and no larger than�r, where 

 

.
)1()1(

),min(

,
)1()1(
)0,1max(

bbaa
abbar

bbaa
bar

��

�
�
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�

 

 
Another formulation for correlation of events can be derived from the Frank 

family of copulas (Section 3.7), which were first introduced by Frank (1979).  In the 
Frank model of correlation between events, the probability of a conjunction of events A 
and B is given by the formula 
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where s = tan(�(1�r)/4), a = P(A) and b = P(B).  This function is continuous;  the special 
cases when r is �1, 0 or �1 are the limiting values of the bottom expression on the right-
hand side of this formula when r tends to these values respectively.  Disjunction of 
correlated events can likewise be defined by Frank’s co-copula, so that  
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 Example:  If we again suppose that a = 0.29 and b = 0.22 and the correlation r = 
0.2, the Frank model of dependence suggests that the probability of A & B is 0.0695.   

In the Frank model of dependence, no value between �1 and +1 is an impossible 
correlation.  Figure 2 depicts the probabilities of the disjunction (shown as the gray line) 
and the conjunction (shown as the black line) for various values of the correlation 
according to the Frank model of correlation among the two events. 
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Figure 2:  Probability of the disjunction (gray) and conjunction (black) of two 

correlated events of probability 0.29 and 0.22 as a function of the Frank 
correlation. 

 
The Frank model is only one of many possible ways to parameterize a notion of 

correlation for events.  Several researchers have suggested using t-norms and t-conorms 
as models for the “and” and “or” operations (e.g., Joslyn 1995; Klir and Yuan 1994; 
Schweizer and Sklar 1983).  T-norms are also called generalized intersection operators, 
and t-norms include as special cases the functions andindependent, andperfect, andopposite, as 
well as andFrank (for a particular value of the correlation) for evaluating conjunctions 
under various models of dependence between the events.  Likewise, t-conorms, which 
are called generalized union operators include the functions orindependent, orperfect, oropposite, 
and orFrank (given r).  However, it does not seem reasonable to use t-norms and t-
conorms to define operations to estimate probabilities of conjunctions and disjunctions.  
The reason is that some of these functions are incompatible with probability values.  For 
instance, the aptly named “drastic intersection” (Klir and Yuan 1994) yields results that 
are not possible with probabilities because they are outside the Fréchet limits 
(Section 2.3).  For this reason, it seems more prudent to look to copulas* (Section 3.7) 
as a model characterizing correlations among dependence.  The Frank model is a copula 
(Frank 1979; Nelsen 1999).  Nelsen (1999) describes many other families of copulas 
and co-copulas that could also be used for this purpose. 

                                                 
*A t-norm T is a copula if and only if it is 2-increasing; that is, if T(a2, b2) � T(a1, b2) � T(a2, b1) 
+ T(a1, b1) � 0 whenever a1 � a2 and b1 � b2 for a1, a2, b1, b2 � [0,1].  A copula is a t-norm if and 
only if it is associative. 
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2.3 Accounting for unknown dependence 
It is possible to estimate bounds on conjunctions and disjunctions and other joint events 
using only the marginal information about the probabilities of the events and no 
information at all about their dependence.  Such calculations make use of the classical 
Fréchet inequalities 
 

P(A & B) = andFréchet(a, b) = [ max(0, a + b–1),   min(a, b) ], 
P(A 
 B) = orFréchet(a, b) = [ max(a, b),   min(1, a + b) ], 

 
where a = P(A), b = P(B), and the square brackets indicate that the resulting probability 
estimates are intervals rather than precise real values even if a and b are precise.  This 
says that, whatever the actual probability is, it must lie within the interval.  Williamson 
(1989, page 131) points out that at least the first of these was known to Boole (1854, 
page 299).  Fréchet (1935) proved not only that they are the extreme cases but also that 
they are the bounds on all possible cases of dependence and, moreover, that they are the 
best possible such bounds in the absence of information about the dependence. 

The proofs of the Fréchet inequalities are elementary.  We consider the proof for 
the conjunction.  The definition P(A 
 B) = P(A) + P(B) � P(A & B) implies that 
P(A & B) = P(A) + P(B) � P(A 
 B).  Because P(A 
 B) � 1, as all probabilities are no 
bigger than one, it must be the case that P(A) + P(B) � 1 � P(A & B).  It’s also true that 
0 � P(A & B), just because all probabilities are no smaller than zero, so it must also be 
true that max(0, P(A) + P(B) � 1) � P(A & B).  This establishes the lower bound on the 
conjunction.  To get the upper bound, recall that P(A & B) = P(A|B) P(B) = P(B|A) P(A).  
Because P(A|B) � 1 and P(B|A) � 1, as all probabilities are, it follows that P(A & B) � 
P(A) and P(A & B) � P(B), so P(A & B) � min(P(A), P(B)).  The best-possible nature of 
these bounds follows by observing that they are realized by some dependency relation 
between the events A and B. 

Example:  Suppose that P(A) = a = 0.001 and P(B) = b = 0.002, then P(A & B) 
is sure to lie in the interval [max(0, 0.001+0.002–1), min(0.001, 0.002)] = [0, 0.001].  
P(A 
 B) is likewise certain to be somewhere in [max(0.001, 0.002), min(1, 
0.001+0.002)] = [0.002, 0.003].  These intervals are rigorous and true no matter what 
dependency there may be between A and B. 

The Fréchet (1935) inequalities generalize by induction to the multivariate case.  
The resulting formulas are straightforward extensions, so 
 

P(A1& A2 & … & An) = [ max(0, a1 + a2 +…+ an – (n�1)),  min(a1, a2,…, an) ], 
P(A1
 A2 
 … 
 An) = [ max(a1, a2,…, an),  min(1, a1 + a2 +…+ an) ], 

 
where ai = P(Ai).   

Example:  Suppose that P(A1) = a1 = 0.001, P(A2) = a2 = 0.002, and P(A3) = a3 = 
0.003.  Then P(A1 & A2 & A3) � [max(0, 0.001+0.002+0.003–(3�1)), min(0.001, 0.002, 
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0.003)] = [0, 0.001].  P(A1 
 A2 
 A3) � [max(0.001, 0.002, 0.003), min(1, 
0.001+0.002+0.003)] = [0.003, 0.006].   

Section 2.5 will review how the Fréchet inequalities can be incorporated into 
more elaborate logical expressions needed for practical fault tree analysis which may 
involve composition of many conjunctions and disjunctions, as well as negations and 
other kinds of logical gates. 

2.3.1 Using knowledge about the sign of the dependence 
Williamson (1989; cf. Wise and Henrion 1986) suggested that, even in situations where 
one may not know much about the possible dependence between events, it might still be 
possible to confidently assert knowledge about the sign of the dependence.  For 
instance, it might be reasonable to assert that the similar manufacture and repair 
histories shared by components in some system means that they could only be 
positively dependent (that is, no less strongly dependent than independent).  If events A 
and B could only be positively dependent, then  
 
(Positive) 

P(A & B) = andpositive(a, b) = [ ab,   min(a, b) ], 
P(A 
 B) = orpositive(a, b) = [max(a, b), 1 � (1 � a)(1 � b)]. 

 
If, on the other hand, an analyst believes that which of two outcomes occurs is the result 
of a tradeoff such that the events could not be positively dependent, it might be likewise 
reasonable to tighten the Fréchet inequalities.  If events A and B could only be 
negatively dependent, then  
 
(Negative) 

P(A & B) = andnegative(a, b) = [ max(a + b � 1, 0), ab ], 
P(A 
 B) = ornegative(a, b) = [ 1 � (1 � a)(1 � b), min(1, a + b) ]. 

 
Example:  Suppose A and B are sure to be positively dependent, and that P(A) = 

a = 0.003 and P(B) = b = 0.005, then P(A & B) is sure to lie in the interval 
[0.003�0.005, min(0.001, 0.002)] = [0.000015, 0.003].  If, however, A and B are 
negative dependent, then P(A 
 B) is sure to be within [1�(1�0.003)(1�0.005), min(1, 
0.003+0.005)] = [0.007985, 0.008]. 

2.4 Interval probabilities 
As mentioned in Section 1.1, some of the probabilities needed as inputs for a fault tree 
may be difficult to specify precisely and in such cases the analyst’s uncertainty may be 
expressed by using intervals that contain the inexactly known probabilities to 
characterize some or all of the events.  These representations are called interval 
probabilities.  Even if all of the inputs to a fault tree are precisely specified, applying 
the inequalities described in the previous sections in computing bounds on 
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subexpressions of the fault tree generally yield interval probabilities rather than point 
estimates of probability whenever they account for incompletely specified correlations.  
The formulations to evaluate the probabilities in the tree must therefore be capable of 
accepting interval inputs.  In this section, we briefly describe strategies that can be used 
to compute with intervals in such situations. 

2.4.1 Interval arithmetic 
Moore (1966) described the use of interval arithmetic to evaluate the ranges of 
functions taking interval arguments.  The approach is to generalize the definitions of the 
binary operations out of which the function is composed to handle interval inputs.  For 
instance, we can define some basic interval operations for use with interval probabilities 
(cf. Moore 1966; Neumaier 1990).  For all real numbers w, x, y and z such that 0 ��w � x 
��� and 0 ��y ��z ��, let  
 

[w, x] + [y, z] = [ w + y, x + z ], 
[w, x] � [y, z] = [w � z, x � y], 
[w, x] � [y, z] = [ w ��y, x ��z], 

[w, x] / [y, z] = [ w ��z, x ��y], assuming 0<y, 
min([w, x], [y, z]) = [ min(w, y), min(x, z) ], and 

max([w, x], [y, z]) = [ max(w, y), max(x, z) ]. 
 
Note that these formulas for multiplication and division are considerably simpler than 
those of ordinary interval arithmetic.  The simplicity is a consequence of the constraint 
that probabilities must lie in the interval [0, 1].   
 Examples:  Suppose there is epistemic uncertainty about the probabilities of 
events A and B so that a = P(A) = [ 0.0015, 0.0025]* and b = P(B) = [ 0.00025, 
0.00035].  Then the following table gives bounds on the probabilities for the 
conjunction and disjunction of events A and B under different assumptions (or, in the 
Fréchet case, no assumption) about dependence between the events. 
 

Dependence P(A & B) P(A � B) 
independent 
perfect 
opposite 

[ 0.000000375, 0.000000875] 
[ 0.00025, 0.00035] 

0 

[ 0.001749625, 0.002849125]  
[ 0.0015, 0.0025]  

[ 0.00175, 0.00285]  
                                                 
*This just means that we believe that the probability for the event A is some value between 
0.0015 and 0.0025 (inclusive).  Some purists would prefer we write P(A) � [0.0015, 0.0025],but 
we have found that more readers are distressed by the unfamiliar symbol � than are perturbed 
by the idea that a probability can be identified with an interval.  Mathematically, an interval 
probability for an event A can be defined as the interval [P(A),�P(A)], where P(A) = inf {�(A) : 
� ��} and�P(A) = sup {�(A) : � ��} for a given set �  of probability measures, all defined on 
an algebra � (that contains A as an element) over some sample space (universal set).  P(A) is 
called the lower probability of A, and�P(A) is called its upper probability. 
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positive 
negative 
Fréchet 

[ 0.000000375, 0.00035] 
[ 0, 0.000000875] 

[ 0, 0.00035] 

[ 0.0015, 0.002849125]  
[ 0.001749625, 0.00285]  

[ 0.0015, 0.00285]  
 
Interestingly, the upper bound for the disjunction is the same (within three significant 
figures) for all of the dependence cases except perfect. 

In many problems, interval arithmetic can be used in a straightforward way to 
obtain results that are both rigorous and best possible.  However, when an uncertain 
number appears more than once in a mathematical expression, the naïve sequential 
application of the rules of interval arithmetic may yield results that are wider than they 
should be.  The result is still rigorous in the sense that it is sure to enclose the true 
range, but it may fail to be best-possible if it is wider than it needs to be to do so.  The 
reason for this loss of optimality is basically that the uncertainty in the repeated 
parameter is entered into the calculation more than once.  The appearance of repeated 
parameters in expressions is a well-known problem with interval arithmetic and, indeed, 
with all common uncertainty calculi (e.g., Moore 1966; Manes 1982; Hailperin 1986; 
Ferson 1996a).  Many strategies have been developed to address this problem.  One of 
the most direct methods is to algebraically manipulate the expression to reduce the 
occurrences of the repeated parameters.  Consider, for instance, the probabilistic sum 
which is usually written as 
 

a + b � ab. 
 
Using interval arithmetic to evaluate this expression could lead to probabilities 
appearing to be smaller than zero or larger than one because of the uncertainty inflation 
from the repetition of a and b in the expression.  Fortunately, this expression can always 
be rearranged to  
 

1 � (1 � a)(1 � b), 
 
which is algebraically equivalent to the previous expression but has only one occurrence 
of each parameter. This formulation is therefore safe to use with interval probabilities 
and will not exhibit inappropriate inflation of uncertainty. 

2.4.2 Subinterval reconstitution 
Moore (1979; Corliss 1988) described a method to obtain bounds on an interval 
expression that are arbitrarily close to best possible.  The method works by partitioning 
the input interval into a collection of subintervals, projecting the subintervals through 
the function separately, and reconstituting the answer as the union of their images.  If 
the expression of a function f has interval arguments x, y,…, z which are repeated, and 
intervals u, v,…, w, which are not repeated, then  
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In general, the reconstituted union may also be overly wide, although it will tend to 
narrow as the number of subintervals increases.  In all cases, however, it will surely 
rigorously contain the true interval.  The tightness of the resulting estimate depends on 
the fineness of the partitioning of the inputs.  This method of subinterval reconstitution 
allows us to obtain answers that, with sufficiently many subintervals, are arbitrarily 
close to best possible. 

Example:  Suppose that events A and B have a Lucas correlation r of 0.2 and 
uncertain marginal probabilities described by the intervals, a = P(A) = [0.045, 0.055] = 
[4.5, 5.5]% and b = P(B) = [0.005, 0.015] = [0.5, 1.5]%.  Naively applying interval 
analysis to the Lucas formula for conjunction, ab + r �(a(1�a) b(1�b)), we calculate 
bounds on the probability of the conjunction A & B to be [0.312, 0.642]%.  Using 
subinterval reconstitution with a 10�10 regular partition of the input space, gives us a 
tighter estimate of [0.315, 0.637]%.  This result can be contrasted with the bounds on 
the probability of the conjunction assuming the events are independent, which are 
[0.0225, 0.0825]%, or the Fréchet limits assuming nothing about dependence between 
the two events, which are [0, 1.5]%. 

Subinterval reconstitution is just one of the many tools that have been developed 
to handle the ‘excess width problem’ in evaluating expressions with repeated interval 
parameters (Moore 1966; 1979).  It is the easiest technique to apply and in many 
situations sufficient to reduce the excess width with modest computational effort.  In 
cases where there are many different repeated parameters or the repeated parameter 
occurs multiple times in the expression, the rate of convergence to the exact bounds will 
be reduced.  In some cases, alternative computational strategies will be required to 
obtain good results in a reasonable time.  The Moore-Skelboe algorithm (Skelboe 1974; 
Moore 1979) adaptively subdivides the box defined by the vector of interval inputs to 
find the global maximum and minimum of the function.  The algorithm is most efficient 
when there are few local minima and maxima located in the interior of the box.  
Subinterval reconstitution converges to the correct bounds in a linear order.  Centered 
forms such as the mean-centered form (Moore 1979) and Taylor forms (Neumaier 
2002) can converge at rates higher than linear order.  However, using a mean-centered 
form entails rewriting the original expression in terms of a central point, usually the 
midpoint of one or more intervals.  For intervals that are wide, as in many of the 
examples given in this report, applying centered forms can perform poorly, sometimes 
giving bounds that are wider than those obtained by applying naïve interval arithmetic.  
Centered forms work best when combined with another technique, such as subinterval 
reconstitution.  In many cases, they can significantly reduce the number of function 
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evaluations the Moore-Skelboe algorithm needs to compute to find the global maximum 
and minimum. 

2.4.3 Range sampling 
An alternative approach to evaluate the range of a function with interval inputs is a 
variant of Monte Carlo simulation.  Scalar-valued “samples” of each input quantity are 
selected randomly from their respective intervals.  These real numbers are combined 
according to the function being evaluated.  The observed range of resulting values is 
taken to be the estimate of the range of the function.  This approach is not guaranteed to 
bound the true range of the function.  However, as the number of replicates increases, 
the interval of the results will tend to widen toward the range of the function.  The 
resulting interval can never be wider than the true range.  It can be narrower than the 
true range if, for instance, the function has an extreme behavior at particular points in 
the input space which the sampling strategy happens to miss.  Interval analysis 
techniques such as subinterval reconstitution, in contrast, do not have this disadvantage 
because they will never underestimate the width of the true range. 

Example:  The problem described above in Section 2.4.3 can also be solved 
with range sampling.  Using 200 paired values for a and b randomly sampled from their 
respective intervals, and four additional pairs consisting of the corners (a = 0.045, b = 
0.005), (a = 0.045, b = 0.015), (a = 0.055, b = 0.005), and (a = 0.055, b = 0.015), one 
obtains [0.315, 0.637] as the estimated range on the probability of the conjunction of the 
correlated events.  This answer agrees with the answer previously obtained by 
subinterval reconstitution, at least in three digits shown. 

2.4.4 Mathematical programming 
It is also possible to express an interval calculation as a mathematical programming 
problem.  In particular, linear programming can be used to find bounds on Boolean 
functions with interval inputs.  Hailperin (1986; Williamson 1989) has explored this 
approach and made several significant contributions by use of some duality theorems 
that simplify many results.  Hailperin proved that linear programming can be used to 
determine the best possible bounds on arbitrary Boolean functions having interval 
inputs.   

2.5 Using inequalities in risk assessments 
The methods described in the previous sections motivate a calculus for evaluating fault 
and event trees.  The approach is fairly general and can readily be extended to the other 
logical operations defined for events characterized by interval probabilities besides 
conjunction and disjunction.  For instance, the exclusive-or operation can be defined by 
 

P(A 
 B & (not(A & B) = xorFréchet(a, b) = [ max(a – b, b – a), min(a + b, 2 – a – b) ]. 
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Unary operations may also be defined, such as negation P(not A) = 1 – a, although such 
operations are not affected by any dependency considerations.  When there are more 
than two events, calculations proceed by building up the expression by composition of 
binary operations.  For instance, P(A & B & C) can be estimated by solving first for the 
A & B event and then for (A & B) & C.  It can also be solved by solving for the B & C 
event first and then for A & (B & C).  In many practical problems, these straightforward 
methods can be used to make calculations that are guaranteed to be rigorous bounds on 
the risks of interest.  Moreover, in many cases these bounds will also be best possible 
(i.e., as narrow as can be justified by the input assumptions).   

The pairwise composition of the formulas will produce the best possible bounds 
when there are no repeated parameters and dependence can be fully accounted for in the 
binary operations.  When the uncertainty about the probabilities of the basic events is 
large, or when the events to be combined are numerous, uncertainty can sometimes 
become large.  Williamson (1989, page 135) argued, “Even when there are not repeated 
variables, the bounds can rapidly become quite loose….  This should not be taken as an 
argument against [interval probabilities] though.  What it does show is the danger, even 
in simple problems, of assuming independence in order to obtain a unique value at the 
end.”  If the intervals are as tight as they can be given the inputs, it is up to the analyst 
to justify a narrower answer with empirical information about the input probabilities or 
the dependencies between them rather than engaging in a mathematical exercise that 
amounts only to wishful thinking. 

The challenge for the risk analyst who eschews wishful thinking and adopts an 
interval probability approach is to produce the best possible intervals that can be 
justified by the available information embodied in the given inputs and assumptions.  
The effective use of this calculus for interval probabilities depends on the analyst being 
able to make use of the information that is known about dependence to obtain the 
tightest justified intervals.  The Fréchet case, as well as the positive or negative cases, 
tend to widen intervals.  Therefore, it is best to use these cases only when one cannot 
justify (on either empirical or theoretical grounds) assuming independence or some 
particular dependence which would produce tighter intervals.  The optimal strategy then 
is to arrange the expression being evaluated to one’s best advantage.  In many analyses, 
dependence is only an issue for a few of the components.  Typically (though certainly 
not always) components that are likely to be dependent will naturally appear close to 
one another in the logical expression.  The rules of Boolean algebra can permit the 
analyst to rearrange the terms in an expression to bring dependent events together in one 
binary operation.  When the expressions cannot be arranged to permit the convenient 
calculation of best possible results, then an analyst must choose between a suboptimal 
(but still rigorous) result and the extra computational burden of subinterval 
reconstitution, mathematical programming, or some other approach to obtain the best 
possible answer. 
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2.6 Caveat: best-possible calculations are NP-hard 
The problem of calculating optimal bounds for arbitrary logical functions with interval 
parameters and dependencies belongs to a class of problems known to be NP-hard, 
which is to say that there is no general algorithm that can produce a solution with 
computational effort that grows as some polynomial function of the number of inputs.  
Indeed, it is well known that finding the reliability of the top event is already NP-hard 
when the fault tree is not in fact a graph-theoretic tree because of links induced by 
common cause events (Rosenthal 1975).  This does not necessarily imply practical 
insolubility, but it surely suggests that big problems such as may arise in complex 
assessments with hundreds of components and complicated dependencies may be 
daunting.  When repeated parameters are sparse and when complex dependencies are 
isolated to a few variables or to subportions of the logical expression, fairly large 
problems can be tackled in moderate time.  Moreover, if one can be satisfied with 
answers that are sure bounds on the risk or reliability, but may not be the tightest or best 
possible such bounds, then the requisite calculations needed will not be NP-hard.  In 
fact they will require on the order of only 4n calculations, where n is the number of 
interval inputs (Moore 1966; 1979). 

2.7 Numerical example: fault tree for a pressure tank 
This numerical example illustrates how one could account for partial knowledge about 
the dependencies between events as well as epistemic uncertainties about the 
probabilities of these events.  The example will involve the calculation of the 
probabilities of conjunctions and disjunctions of both point and interval probabilities 
and a variety of dependence assumptions, including independence, perfect dependence, 
(Frank) correlation and the Fréchet case of assuming nothing about dependence.   

The probabilistic fault-tree model we use is based on an example due to Vesely 
et al. (1981).  It concerns the risk of rupture associated with the operation of the 
pressure tank system depicted in Figure 3.  This diagram depicts the control system 
regulating a pump that compresses air into a pressure tank.  The system is depicted in 
the “off” state with the pressure tank empty.  The state diagram in Figure 4 shows the 
operational modes and the transitions between these modes.  The system is turned on by 
briefly depressing switch S1.  This energizes the coil of relay K1, which closes its 
contacts, so that relay K1 becomes electrically self-latched.  When relay K1’s contacts 
are closed, the coil of relay K2 is energized and its contacts close and start the pump 
motor.  This starts a pressurization cycle.  When the tank is empty or not fully 
pressurized, the pressure switch S is closed.  When the tank is fully pressurized, 
pressure switch S opens, which de-energizes relay K2 and opens its contacts.  This cuts 
off power to the pump motor.  When the tank’s outlet valve is opened, the tank 
depressurizes, the pressure switch closes, and the pressurization cycle begins again. 
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Figure 3:  Pressure tank system. 
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Startup
Switch S1 closed
Relay K1 closed
Relay K2 closed
Timer relay closed
Pressure switch closed

Start pump
Relay K2 closed
Timer relay starts
Pressure switch closed

Ready
Switch S1 open
Relay K1 closed
Relay K2 open
Timer relay closed
Pressure switch open

System off
Switch S1 open
Relay K1 open
Relay K2 open
Timer relay closed
Pressure switch closed

Shut down
Relay K1 open
Relay K2 open
Timer relay open
Pressure switch closed

Pumping
Switch S1 open
Relay K1 closed
Relay K2 closed
Timer relay closed
Pressure switch closed

Stop pump
Relay K2 open
Timer relay resets
Pressure switch open

 
Figure 4:  State diagram for the pressure tank system. 
 
 The design of the system provides for an emergency shutdown.  When relay 
K1’s contacts are first closed, power is also applied to the timer relay, which begins 
counting.  After 60 seconds of continuous power, the timer relay’s contacts open and 
break the current to relay K1 so the system shuts down.  However, if the tank fully 
pressurizes before the timer relay times out, the pressure switch contacts open, which 
causes the contacts for relay K2 to open which in turn causes the timer relay to reset 
itself.  In this way, the system continues in ready mode.   
 Vesely et al. (1981) derived a fault tree, shown in Figure 5, for the pressure tank 
rupturing under pumping.  The circles indicate basic events corresponding to primary 
failures of the components.  For instance, the circle enclosing T represents the failure of 
the tank to withstand pressures according to its specifications.  Other events are denoted 
by symbols beginning with E.  These include the top event E1 (which is the tank 
rupturing under pumping) and the various intermediate events E2, E3, E4, and E5.  The 
conjunctions and disjunctions are indicated with “and” and “or” gates.  For instance, 
event E4 is a disjunction that occurs if either the S1 fails or the fault E5 occurs.  This 
fault tree is completely equivalent to the logical expression  
 

E1 = T 
 (K2 
 (S & (S1 
 (K1 
 R)))). 
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Figure 5:  Fault tree for the pressure tank system. 
 
 Quantitative evaluation of the fault tree requires estimates of failure rates for the 
components corresponding to the inputs in the logical expression.  Suppose the analyst 
has the following estimates for the probabilities of primary failure per demand of each 
of the major components: 
 

Component 
Pressure tank T  
Relay K2  
Pressure switch S  
Relay K1  
Timer relay R  
On-switch S1  

Probability 
5 � 10�6 
3 � 10�5 
1 � 10�4 
3 � 10�5 
1 � 10�4 
3 � 10�5 

 
Traditionally, a risk analyst would combine these values to estimate the probability of a 
tank rupture under pumping to be about 3.5�10�5 per demand.  This calculation assumes 
that all failures are statistically independent of one another.  However, this implies that 
failure in one component doesn’t somehow make failure in another more likely.  It also 
assumes that multiple failures are not the result of a common cause or mechanism.   

Often the risk analyst has various degrees of information regarding 
dependencies between variables and wishes to incorporate this knowledge into the risk 
calculation.  Continuing with the pressure tank example, suppose that the analyst feels 
confident that the tank’s likelihood of failure due to pressure levels that do not exceed 
specifications (T) is independent of all other events in the system.  The analyst is also 
confident that the failure of the on-switch (S1) is independent of relay K1 or the timer 
relay (R), and that failure of K1 and R are perfectly correlated.  The analyst might have 
knowledge of some specific correlations as well, for example, pressure switch failure 
(S) might be known to be correlated under the Frank copula with the conjunction of the 
on switch or relay K1 or timer relay failure, by a specific coefficient, r.  Finally, the 
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analyst might know nothing regarding dependency or lack thereof between the relay K2 
and any events further down in the tree, and might want this lack of knowledge to be 
fully expressed by allowing for any and all possible dependencies (including but not 
limited to independence).  The event tree model can be written to incorporate this 
collection of information regarding dependencies between events as 
 

E1 = T |
| (K2 
 (S &r (S1 |
| (K1 /
/ R)))), 
 
where the vertical lines around a logical operator indicate that the operation is to be 
carried out assuming independence, the forward (back) slashes around a logical operator 
indicate the operation is to be carried out assuming perfect (opposite) correlation, 
logical operators with subscripts indicate the operation is to be carried out assuming 
correlation between operands as specified by the subscript, and logical operators with 
no additional notational elements indicate operations to be carried out making no 
assumption whatsoever regarding dependency.  Equivalently, one could write 
 

E1 = orindependent(T, orFréchet(K2, andFrank(S, orindependent(S1, orperfect(K1, R)), r))). 
 
The result of this calculation, with r specified to be equal to 0.15, is the interval 
[3.499�10�5, 3.504�10�5].  The result is an interval even though all of the input failure 
probabilities are point values.  This is the result of not knowing the dependence among 
some of the components.  In this case, the interval turns out to be a narrow one.  For this 
particular calculation, then, the independence assumptions have a rather small effect on 
the answer.   
 It is certainly not true that dependence assumptions always (or even usually) 
have minor consequences on a calculation.  For instance, suppose the analyst knows 
nothing about the dependence between the pressure switch S and the components S1, K 
and R.  This can be expressed by replacing the Frank correlation with Fréchet limits: 
 

E1 = orindependent(T, orFréchet(K2, andFréchet(S, orindependent(S1, orperfect(K1, R))))). 
 
The result of this calculation is the wider interval [3.50�10�5, 1.35�10�4].  As the 
amount of information regarding dependencies between variables decreases, the interval 
grows wider, reflecting the analyst’s increasing uncertainty.  In the face of a complete 
lack of knowledge, the analyst can evaluate the fault tree allowing for any and all 
dependencies between all events, expressed as 
 

E1 = orFréchet(T, orFréchet(K2, andFréchet(S, orFréchet(S1, orFréchet(K1, R))))), 
 
which reflects the analyst’s level of ignorance more accurately than the more traditional 
assumption of independence.  The result of this calculation is the interval [3�10�5, 
1.4�10�4].  These bounds are both rigorous and best possible.  They are rigorous 
because they are sure to contain the true frequency of the top event, so long as the input 
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intervals contain the true failure rates of the respective components and, of course, that 
the model by which we combined these inputs is correct.  The bounds are best possible 
in the sense that they could not be any narrower and still contain all outcomes that 
might actually arise given the uncertainties about the dependencies.  If, on the other 
hand, one assumes independence when it’s not justified, the error can result in estimates 
that are too tight and may therefore lead to underestimation of risks.  For this reason, the 
default should be no assumption rather than an independence assumption.  Figure 6 
summarizes the effect of the different treatments of dependency in the fault tree model 
discussed thus far. 
 

 
Figure 6:  Comparison of the effect of assumptions regarding dependence between 

variables on the outcome of the probability calculation. 
 

All the calculations thus far in the event tree example assumed that the inputs were 
precise point estimates.  An analyst should of course use whatever information is 
available to get estimates that are as precise as possible.  As Vesely et al. (1981) 
acknowledge, however, extreme precision is not required for these failure rate and 
importance calculations, and it would probably not be believed if it were provided.  
Instead, what are typically sought are order-of-magnitude results.  How does 
uncertainty in the inputs affect the result?  To find out, we can replace the precise point 
estimates with intervals representing that uncertainty.  Suppose the analyst now has 
these inputs to the event tree: 
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Component 
Pressure tank T  
Relay K2  
Pressure switch S  
Relay K1  
Timer relay R  
On-switch S1  

Probability interval 
[4.5 � 10�6, 5.5 � 10�6] 
[2.5 � 10�5, 3.5 � 10�5] 
[0.5 � 10�4, 1.5 � 10�4] 
[2.5 � 10�5, 3.5 � 10�5] 
[0.5 � 10�4, 1.5 � 10�4] 
[2.5 � 10�5, 3.5 � 10�5] 

 
How does the uncertainty in the input failure rates affect the assessment of the failure 
probability of the top event?  The event tree equation incorporating the mix of 
dependencies 
 

E1 = orindependent(T, orFréchet(K2, andFrank(S, orindependent(S1, orperfect(K1, R)), r))), 
 
and using all interval inputs yields the answer [2.9�10�5, 4.1�10�5].  This can be 
considered the comprehensive answer because it incorporates what is known and what 
is not known about both the marginal probabilities and their dependencies.  Its range is 
of course much wider than the probability interval based on the same dependencies but 
with point estimates for the event probabilities.  The answer can also be compared with 
the traditional answer of 3.5�10�5 computed by Vesely et al. (1981) which was based on 
point estimates and independence among all the inputs.  The breadth of the range 
represents uncertainty of about 30% of the point estimate’s magnitude.  In this case, the 
uncertainty is roughly symmetric around the point estimate.  Given the stated 
uncertainty in the inputs, the probability of the tank rupturing under pressurization 
might be as large as 0.000041, or about one in 25,000.  Or it might be as low as 
0.000029 or about one in 34,000.   
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3 Dependence between random variables 
This section reviews the most important strategies a risk analyst can use to account for 
knowledge about correlations and dependencies between the random variables in an 
assessment.  Several recent reviews have considered strategies to model inter-variable 
dependencies in probabilistic models (Helton and Davis 2003; 2002; Henderson et al. 
2000; Clemen and Reilly 1999; Cullen and Frey 1999; Cario and Nelson 1997; Cooke 
1997; Hutchinson and Lai 1990; Morgan and Henrion 1990).  These reviews have 
addressed the issue with respect to variables that are characterized by (precise) 
probability distributions.  This section focuses on those techniques that can also be 
applied to Dempster-Shafer structures and probability boxes.  Section 4 addresses 
methods that can be used when information about dependence is incomplete. 

Sections 3.2 through 3.8 consider a variety of possible approaches, including 
both mechanistic and phenomenological modeling of dependence.  In the former, a risk 
model involving dependent variables is re-expressed in terms of one involving variables 
that are mutually independent.  In the latter, methods to generate correlated random 
deviates are used in a statistical model that does not seek to represent the underlying 
physical relationships behind the dependencies.  The strategies for handling 
dependencies that are discussed in this section include counterfactually assuming 
independence (Section 3.1), functional modeling of dependence (Section 3.2), 
stratification (3.3), conditioning (3.4), assuming perfect or opposite dependence (3.5), 
simulating observed correlations (3.6), using parameterized copulas (3.7), and appealing 
to empirical copulas (3.8) or constructed copulas (3.9). 

3.1 Assume independence anyway 
The zeroth strategy for dealing with dependencies among variables is to simply ignore 
them and assume all variables are independent of one another.  In fact, it is still 
common practice among risk analysts in many quarters to assume independence among 
variables even when this assumption is known to be false.  The reasons for this are 
many, ranging from mathematical convenience and the laziness of the analyst, to the 
preliminary nature of the analysis, to a lack of ready and workable alternative strategies 
and misconceptions about how important dependence can be in risk assessments.  We 
mention this zeroth strategy mostly to emphasize its wrongness (Section 3.1.1) and 
dangers for risk assessments (Section 3.1.2). 

3.1.1 Caveat: uncorrelatedness does not imply independence 
Setting aside, for the moment, the cases of correlated variables, this section considers 
the cases in which random variables are uncorrelated.  One might expect or hope that 
dependence, at least in these cases, would have a negligible or small effect on 
convolutions.  This turns out to be false.  Although most risk assessors recognize that 
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uncorrelatedness between variables does not formally imply their independence, many 
are apparently not aware of how much difference dependence can make in their 
calculations.  Many patterns of dependence produce the same correlation, and, in 
particular, there are a lot of ways a joint distribution can yield uncorrelated variables. 

Consider a small example in which X and Y have the same marginal distribution, 
which is a discrete uniform on the integers from 1 to 25.  Thus, the chance that X is 1 is 
1/25;  the chance that it’s 2 is 1/25, and so on, and the same for Y.  What can be said 
about the sum X+Y if we suppose that X and Y are uncorrelated?  Consider the ten 
dependence patterns in Figure 7.  The abscissa of each plot is the value of X and the 
ordinate is the value of Y.  Because the distributions are discrete, there is a mass (of size 
1/25) allotted for each of twenty-five columns in each plot.  Likewise, the same amount 
of mass is allotted for each of twenty-five rows.  To make the illustration easy to 
understand, let’s further suppose that all of each row’s mass is concentrated into a 
single slug of density located at some x-value, and all of each column’s mass is likewise 
condensed at one y-value.  (This is different from our previous assumption that the mass 
in the marginal distributions were at discrete points.  We’re not only saying that the 
mass has to be at the integer points, but also that there is only one y-value that has mass 
for each x-value.)  By rearranging these masses on a 25�25 grid, we can create different 
joint distributions between X and Y.  We will consider only those distributions that 
respect the marginal distributions by constraining our arrangements so that each row has 
only one mass and each column has one mass.  Of these, we consider only those 
patterns that also have a correlation equal to zero (or so close to zero as to be 
appropriate for our example).  Even with all of these constraints, there are still many 
possible arrangements.  Figure 7 depicts only a few of them. 
 

 
Figure 7:  Some possible patterns of dependence between uncorrelated variables. 
 
 Now consider how these patterns of dependencies, all of which are uncorrelated, 
influence the distribution of an arithmetic combination of X and Y.  Figure 8 shows the 
distributions of X+Y associated with each of the ten patterns of dependence shown in 
Figure 7.  Also shown in this figure is the distribution under independence (it’s the one 
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going down the middle with somewhat smoother tails).  It should probably not be 
surprising that the distribution of X+Y depends on the dependence between X and Y, but 
many analysts are surprised to see the magnitude of its potential influence.  Note, for 
instance, that the smallest possible value of the sum ranges between 2 and 14, 
depending on which pattern of dependency exists between the addends.  This range is a 
quarter of the entire support of the distribution!  Around the value 14, the cumulative 
probability ranges between zero and almost 30%.  In other words, there might be no 
chance that the sum is smaller than 14, or there might be a 30% chance that it’s smaller 
than 14. 
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Figure 8:  Some possible distributions of a sum of uncorrelated random variables. 
 

In fact, the true uncertainty about the distribution of the sum is even larger than 
that depicted in Figure 8 which only depicts distributions for the independent case and 
10 dependent cases.  There are many more patterns of dependency that would lead to 
uncorrelated variables.  For instance, the mass need not be concentrated in unit slugs in 
the joint distribution.  A column’s mass could be distributed throughout the column 
without altering the discreteness of the distributions.  The results depicted in Figure 8 
are only a few of the infinitely many possible outcomes that are consistent with the 
uncorrelatedness of X and Y and their given marginal distributions.  As we shall see in 
Section 4.3.3, it can be shown that the region depicted in Figure 9 represents bounds on 
all distributions of the sum X+Y that could arise when X and Y are uncorrelated and both 
distributions are uniform on the integers from 1 to 25.  We see in Figure 9 that the 
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minimum value of the sum can be any integer between 2 and 21, and there could be as 
much as a 40% chance that the sum is less than 14.  All of this uncertainty surrounds the 
sum of X and Y, even though their marginal distributions are precisely specified and 
even though the variables are exactly uncorrelated. 
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Figure 9:  Bounds on the distribution of the sum X+Y given that X and Y are 

uncorrelated and identically distributed as discrete uniforms on [1,25]. 
 

3.1.2 Unjustified independence assumptions harmful 
Many risk analysts reflexively assume independence among all events or random 
variables even when they have no particular justification for doing so other than 
mathematical convenience.  It is improper, however, to assume independence among 
variables in an analysis unless there is reliable evidence or a compelling argument that 
this is a reasonable assumption.   If a dependency is neglected, the answer obtained by 
an analysis assuming independence will generally be wrong.   Under certain conditions, 
the central tendency of output distributions could be approximately correct (Smith et al. 
1992).   However, the estimated dispersion and especially the tail probabilities can be 
highly inaccurate (Bukowski et al. 1995; Ferson and Burgman 1995; Ferson 1994).   In 
some cases, the dispersion will be larger than it should be.   In some cases, it will be 
smaller.   In the latter, the probabilities of extreme events will likely be underestimated.  
These extreme events are often the primary focus of the risk assessment.  They may 
represent very large stresses or threatening conditions that correspond to system failures 
and structural collapses that the risk analysis was intended to assess.  In such cases, it is 
therefore crucial that these tail probabilities be accurately characterized and, in no 
circumstance, underestimated.  Assuming independence without proper justification 
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amounts to wishful thinking and is therefore detrimental to the purposes of risk 
assessment to be a dispassionate and reasoned accounting of the possible adverse 
consequences and their probabilities. 

3.1.3 Caveat: independence in imprecise probabilities 
In probability theory, there are several ways to define the concept of independence 
between events and between random variables.  For events A and B characterized by 
real-valued probabilities P(A) and P(B), independence between A and B is implied by 
any of the following conditions: 
 

i) P(A & B) = P(A) P(B), 
ii) P(A 
 B) = P(A) + P(B) � P(A) P(B), 
iii) P(A | B) = P(A) if 0 < P(B), 
iv) P(B | A) = P(B) if 0 < P(A), 

 
where P denotes the probability of an event.  It is an elementary exercise in 
mathematical probability to prove that each of these four conditions implies the others 
(Mood et al. 1974, page 40).  The case of random variables similarly has several 
possible definitions for independence.  For random variables X and Y characterized by 
the joint distribution H with marginals F and G such that P(X � x) = F(x), P(Y � y) = 
G(y) and P(X � x, Y � y) = H(x, y), then independence between X and Y implies, and is 
implied by, each of the following conditions: 
 

i) H(x,y) = F(x) G(y) , for all values x and y, 
ii) P(X�I, Y�J) = P(X�I) P(Y�J), for any subsets I, J of the real line, 
iii) h(x,y) = f(x) g(y) , for all values x and y,  
iv) P(X � x | Y) = P(X � x) and P(Y � y | X) = P(Y � y), 
v) E(w(X) z(Y)) = E(w(X)) E(z(Y)), for arbitrary functions w and z, and 
vi) �X,Y(t,s) = �X(t) �Y(s). 

 
where P is probability, f, g and h are density analogs of F, G and H respectively, E is 
expectation, and � denotes the Fourier transform (characteristic function).  As was true 
for events, when probabilities are precise these various definitions of independence 
between random numbers are all equivalent.  Each definition implies all the others.  
Therefore, there’s a single concept of independence that simultaneously embodies all of 
these possible definitions. 
 There is a decidedly different story in the context of imprecise probabilities 
(Walley 1991).  Here, the special case of independence, which is unique in probability 
theory, disintegrates into several different cases when probabilities are imprecise.  
Couso et al. (2000) pointed out that, for imprecise probabilities (which includes both 
Dempster-Shafer structures and probability boxes as special cases), the various possible 
definitions of independence are no longer equivalent to each other.  The different 
definitions induce distinct concepts of independence for imprecise probabilities.  Couso 
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et al. (2000) recognized several concepts that might be called independence, of which 
four seem especially germane for risk assessments:  repetition independence, strong 
independence, epistemic independence, and random-set independence.  We briefly 
describe these four ideas in turn: 

�� Repetition independence arises when there is stochastic independence (in the 
traditional sense) between random variables that are identically distributed, 
although their distribution may be imprecisely known.  Repetition independence 
is thus the analog in the context of imprecise probabilities of the constraint in 
probability theory that variables are independent and identically distributed (iid). 

�� Strong independence, on the other hand, is the complete absence of any 
relationship between random variables.  Variables X and Y are strongly 
independent if the set of possible joint distributions is the largest set such that 
each joint distribution H(x, y) = F(x) G(y), where F is one of the possible 
distribution functions characterizing X and G is one of the possible distribution 
functions characterizing Y.  Variables X and Y should be characterized as 
strongly independent if (i) X and Y result from random experiments, each 
governed by a unique albeit possibly unknown probability distribution, (ii) the 
random experiments are stochastically independent (in the traditional sense), and 
(iii) there is no known relationship between the variables that would preclude 
some possible combinations of the possible marginal distributions. 

�� Epistemic independence arises when an analyst’s uncertainty about either of two 
outcomes of a random experiment does not change when some information 
about the outcome of one of them becomes known.  Random variables X and Y 
are epistemically independent if the conditional probability of each given the 
other is equal to its unconditional probability, so that P(X|Y) = P(X) and P(Y|X) = 
P(Y).  In the context of imprecise probabilities, epistemic independence is 
defined in terms of lower bounds on expectations such that E(f(X)|Y) = E(f(X)) 
and E(f(Y)|X) = E(f(Y)) for all functions f where E(Z) denotes the infimum of all 
expectations of Z over all possible probability distributions that could 
characterize Z. 

�� Random-set independence is the kind of independence embodied in the 
Cartesian products between Dempster-Shafer structures originally proposed by 
Yager (1986) and used in Berleant (1993; 1996), Williamson and Downs (1990) 
and Ferson et al. (2003).  Dempster-Shafer structures X and Y with mass 
functions mX and mY  respectively are random-set independent if the Dempster-
Shafer structure for their joint distribution has mass function m(A1�A2) = mX (A1) 
mY (A2) when A1 is a focal element of X and A2 is a focal element of Y, with m(A) 
= 0 for all subsets not of the form A = A1 � A2.   

Couso et al. (2000) review these definitions and give simple examples of each of these 
definitions (and more).  Couso et al. (1999) gave examples of how the definitions could 
influence numerical calculations.  Fetz (2001) illustrated the consequences of the 
various independence definitions in a probabilistic assessment for an engineering 
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system.  Cozman and Walley (2001) explored the properties of epistemic irrelevance 
and epistemic independence. 

The various possible definitions of independence correspond to nested sets of 
probability distributions, as depicted with Venn diagrams in Figure 10.  Couso et al. 
(2000) explained that the set of joint distribution functions that are repetition-
independent is a subset of the set of joint distribution functions for variables that are 
strongly independent, which is a subset of distributions for variables that are 
epistemically independent which, in turn, is a subset of the distributions under random-
set independence.  All of these joint distributions are members of the set of uncorrelated 
distributions, but, as emphasized in Section 3.1.1, uncorrelatedness is not a category of 
independence and, therefore, it is the outer ring in gray in the figure.  Beyond the 
category of uncorrelated lie joint distributions for correlated variables, distributions for 
variables with functional dependencies and more complex patterns which we 
collectively call simply the Fréchet case.  One very important advantage of this nesting 
is that methods and algorithms that can compute bounds assuming random-set 
independence (such as those described in Ferson et al. 2003) can be used to compute 
sure bounds on results that are epistemically or strongly independent.  In such cases, the 
bounds may not be best possible of course, but they may still be useful if it is practical 
or expedient to have conservative results. 
 It is no doubt possible to divide categories of independence even more finely 
than this picture suggests, and the discussion in Couso et al. (2000) hints at this.  It is 
also conceivable that researchers will identify other, perhaps non-nested categories.  If 
such definitions turn out to be important in engineering contexts, the analyses they will 
require will almost certainly demand a much fuller treatment than can be currently 
mustered in either Dempster-Shafer theory or probability bounds analysis. 
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Figure 10:  Categories of ‘independence’ for imprecise probabilities. 
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3.2 Functional modeling (reducing to independence) 
Some methodologicians (e.g., Morgan and Henrion 1990) argue that it would be best for 
an analyst to reduce any risk assessment problem involving dependent variables into 
one involving only independent variables.  This strategy, which can be viewed as an 
extreme form of conditioning (Section 3.4), does not try to characterize the 
dependencies statistically, but rather tries to sidestep the problem altogether.  In the case 
of a risk expression involving correlated variables X and Y, this strategy would replace 
the Y with some function of X based on the physical relationship that produced the 
dependency between the variables in the first place.  If this relationship is completely 
specified, the value of Y can be precisely determined solely by the value of X.  Of 
course, cases of such complete predictability are very rare in science and engineering, 
and generally the function will involve a random error term that represents the residual 
uncertainty about Y after accounting for X.  By construction, however, this error term 
can be made independent of X, and therefore the problem with two correlated variables 
has been changed into a different problem with two, or possibly more, independent 
variables. 

Although this approach can require considerably more scientific understanding 
about the modeled system than is commonly available in risk assessments, some 
analysts feel this strategy is the best way to treat dependencies.  For instance, the 
developers of the probabilistic modeling software package Analytica* suggest that any 
dependencies present should be accounted for and modeled explicitly (Morgan and 
Henrion 1998).  In fact, their package does not even support user-defined correlations, 
so it forces users to untangle any dependencies before they can begin an analysis. 

This purist approach does not always provide a workable strategy however.  For 
example, suppose an analyst has been charged with conducting a risk assessment for 
vegetation wildfire in the Everglades that might be sparked by a malfunction and 
explosion of solid-propellant boosters used at Cape Canaveral.  Such an assessment 
would likely be very complex and might involve considerations about current weather 
patterns such as a wind rose, humidity distributions, recent weather’s impact on the 
vegetation’s fire risk, and a host of sundry design and mission parameters.  The model 
of the explosion’s effects on the ground vegetation might require probability 
distributions for the mass and surface area for fragments of the propellant and the 
housing vehicle.  These variables are clearly unlikely to be stochastically independent 
of one another.  A functional modeling approach to accounting for their dependence 
would be to develop a submodel about how the fragments were produced in the 
explosion process itself.  Obviously, this could significantly enlarge the modeling effort.   

Even if the analyst were game to undertake the challenge of modeling the 
generation of explosion fragments, there could be other pesky correlations and 
                                                 
*Analytica is the successor to the Demos software (Morgan and Henrion 1990). 
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dependencies among the weather parameters.  For instance, wind speed and humidity 
may not be independent meteorological variables in south Florida.  Vegetation fire risk 
tends to vary over the course of a year.  Therefore the timing of launches may tend to 
covary with fire risk on the ground.  To explicate all of these dependencies by 
functional modeling, the analyst would need to employ (or become) a meteorologist.  At 
some point, the analytical demands of the functional modeling approach will likely 
become prohibitive. 

Besides the obvious disadvantage owing to the extra modeling effort that may be 
required by the use of functional modeling to account for dependencies in a risk 
assessment, there is one further caveat:  it is not generally sufficient to transform the 
model into uncorrelated variables (Section 3.1.1);  they must be statistically 
independent variables. 

3.3 Stratification 
Some risk analysts find it useful to stratify the assessment by creating relatively 
homogeneous subgroups that have similar characteristics to reduce dependencies among 
variables (Frey 1992; Cullen and Frey 1999).  For these cases, one isolates the 
covariance into the difference between the groups.  Within groups, the assumption of 
independence is more reasonable and workable.  For instance, if some components were 
manufactured in Oak Ridge, Tennessee, and some were manufactured in Paducah, 
Kentucky, it may be reasonable to treat these two subgroups in completely separate 
analyses rather than trying to pool them together into a heterogeneous population of 
components manufactured at two facilities.  Such stratification by age group or gender 
is often employed in human health assessments in part to avoid having to specify and 
model correlations.  The separate treatment of different receptor wildlife species can 
also be viewed as an example of this strategy.  The cost of this strategy is that the 
analysis becomes more complex and cumbersome because it must be repeated for each 
new group in the stratification. 

3.4 Conditioning 
A standard approach in probability theory for modeling a joint distribution has been to 
specify the joint distribution as a product of marginals and conditional distributions 
(Clemen and Reilly 1999).  In this way, arbitrary intervariable dependencies can be 
expressed in terms of conditioning, at least in principle.  For instance, it may be 
convenient to use distributions that are conditional on the values sampled from other 
distributions.  This approach has been useful in hierarchical simulations (e.g., Voit et al. 
1995).  This strategy extends to making the parameters or even the shape of a 
distribution depend on the value of other random variable(s).  This use of conditioning 
to account for dependence is essentially similar to functional modeling described above 
in Section 3.2 and shares its main disadvantage.  The task of specifying all the 
necessary conditional distributions grows combinatorially with the number of variables, 
and Clemen and Reilly (1999) suggest that this may make the approach unwieldy for 



 46 

large assessment problems.  Unless most of the underlying variables are independent or 
conditionally independent, this strategy is information-intensive strategy and may not 
often be practical for risk assessments where empirical knowledge is limiting. 

3.5 Perfect and opposite dependence 
Random variables have perfect dependence if each is almost surely a non-decreasing 
function* of the other.  Some authors call this relationship comonotonicity (e.g., Müller 
1997; Vyncke et al. 2000; Goovaerts et al. 2000; Kaas et al. 2000).  This is the 
distributional analog of the concept of perfect dependence for events introduced in 
Section 2.1.  In many cases, assuming variables are perfectly dependent may be a better 
default strategy than one assuming they are independent.  For instance, suppose the 
variables are component mass and surface area and the population under study includes 
a wide variety of components.  Presuming the variables covary perfectly is probably 
considerably better than assuming they are statistically independent which is manifestly 
false.  Bernat et al. (2004) describe applications in timing analysis for computer codes 
where perfect dependence is a good assumption because execution times of different 
program blocks can depend on common parameter settings. 

In other circumstances, the dependence may be similar to perfect but opposite in 
sign.  In this case, we say that the variables have opposite dependence.  This often 
happens, for example, with reciprocal losses and gains, as well as with quantities that 
are constrained to add to a fixed sum.  When variables are oppositely dependent, 
knowing that one variable is at the upper end of its range tells us that the other variable 
is surely at the lower end of its range.  Opposite dependence between random variables 
is also called countermonotonicity because each variable is almost surely a non-
increasing function of the other (Kaas et al. 2000).   

It is generally easy to simulate perfect dependence between probability 
distributions (Bratley et al. 1983; Whitt 1976; Fréchet 1951; Hoeffding 1940).  Saying 
that variables perfectly covary in this way means that knowing that one variable is large 
with respect to its statistical distribution implies the other variable is surely large to the 
same degree with respect to its own statistical distribution.  This suggests the 
relationship Y = G–1(F(X)) where F and G are the cumulative distribution functions for 
the random variables X and Y respectively.  In principle, one could use this relationship 
to simulate variates from a specified marginal distribution that are perfectly dependent 
with sampled X-values.  Alternatively, one could simulate values for both variables 
from a single uniform deviate with the assignments X = F–1(u) and Y = G–1(u) where u ~ 
uniform(0,1).  If the dependence is opposite, on the other hand, the relationship between 
the variates is Y = G–1(1 – F(X)) instead.  In simulations this relationship can be 
expressed by generating X = F–1(u) and Y = G–1(1�u) where u ~ uniform(0,1).  
Convolutions under perfect or opposite dependence can then be estimated by operating 
on these simulated variates.   
                                                 
*Assuming variables are perfectly dependent is different from assuming that either is 
completely dependent on the other, which is a more general situation. 
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Simulating perfect or opposite dependence is quite different from simulating a 
functional dependence because the relationship is expressed through the distribution 
functions.  And, in fact, perfect dependence between variables is not the same as a 
functional relationship between them.  Y can be completely dependent on X and yet the 
dependence between X and Y is neither perfect nor opposite. 

Both perfect and opposite dependence imply the quantities have extremal 
correlations.  Perfect dependence is associated with maximal correlation for the given 
marginal distribution shapes.  Opposite dependence induces the minimal correlation 
possible given the margins.  In both situations, the dependence is as strong as it can be 
given the marginal distributions of the variables. 

Example:  Suppose that the random variable X is normally distributed with 
mean zero and unit variance, and that random variable Y is uniformly distributed 
between zero and one.  Further suppose that X and Y are oppositely dependent, so that 
large values of one are invariably associated with small values of the other and vice 
versa.  Figure 11 depicts the cumulative distribution function for the product XY.  The 
expression “X \�\Y” denotes the product of X and Y under opposite dependence.  The 
slashes are mnemonic for the underlying non-increasing relationship between the 
variables.  The distribution of this product has a mean of about �0.28 and a variance of 
about 0.33.  This asymmetric distribution contrasts strongly with the product under 
independence, which is symmetric about zero. 
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Figure 11:  Distribution function of products of random variables with opposite 

dependence. 



 48 

 

3.5.1 Extreme dependence with p-boxes 
Perfect and opposite dependence can be assumed for convolutions involving probability 
boxes.  For instance, consider the sum of X and Y under perfect dependence, which we 
can symbolize as X /+/ Y.  The right bound of the p-box for X /+/ Y  is defined by the 
inverse of  
 

� � � � � � )()()( 111 pFpFpF YXZ
��� ��  

 
where 0 � p � 1, and (F)�1 denotes the inverse or quantile functions of the bounding 
function.  Likewise, the left bound of the p-box for X /+/ Y is defined by the inverse of  
 

� � � � � � )()()( 111 pFpFpF YXZ
���

�� . 
 
Note that the functions that are added together are quantile functions of the bounds, not 
bounds on the quantile function (Williamson and Downs 1990).  This distinction can 
make a difference when discretization is coarse.  Figure 12 shows how this addition is 
done for hypothetical p-boxes A and B.  For every probability level p, the corresponding 
values of the right bound for A and the right bound for B are added together to get the 
right bound at the same probability level for the sum A /+/ B.  For instance, we see in 
the figure that, at the level p=0.21, 4 + 6.4 = 10.4.  As p is varied, the right bound is 
traced out.  Similar calculations are used to obtain the left bound. 
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Figure 12:  Addition of probability boxes under perfect dependence. 
 

The p-box for the sum of X and Y under opposite dependence, which we 
symbolize X \+\ Y, is defined on the other hand by the inverses of the pair of functions 
 



 49 

� � � � � �

� � � � � � )1()()(

)1()()(
111

111

pFpFpF

pFpFpF

YXZ

YXZ

���

���
���

���

 

 
where 0 � p � 1.  Notice in this case that the bound at p is added to the opposite bound 
at 1�p.    The formulas for multiplication under perfect and opposite dependence are 
analogous to those for addition.  For subtraction and division, however, the operations 
are performed not on corresponding bounds, but on the opposite bounds.  For instance, 
the p-box for the difference Z = X � Y under opposite dependence is defined by the 
inverse of the functions 
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Example:  Suppose that X ~ weibull(1,2), where weibull(d,c) denotes a Weibull 

distribution with scale parameter d and shape parameter c.  Now suppose that Y is 
distributed according to a distribution function about which all that is known is its 
possible range is [0, 1] and its mean = 0.2.  We want to characterize the product XY 
under the assumption that X and Y are perfectly dependent.  The probability distribution 
for X can be characterized by a degenerate p-box whose upper and lower bounds are 
coincident.  This p-box is depicted in the left graph of Figure 13.  For the sake of 
plotting convenience, the Weibull distribution was truncated at its 99.5% percentile, 
slightly above the value 2.3.  The p-box for the variable Y is depicted in the middle 
graph of Figure 13.  Consult Ferson et al. (2003) for details about how the best possible 
bounds for the unknown distribution function can be obtained from constraints on the 
range and mean.  The multiplicative convolution under perfect dependence between X 
and Y is symbolized as X /�/ Y.  The p-box for the product X /�/ Y can be obtained by 
computing the left bound at any probability level from the left bounds of X and Y at the 
same probability level.  The right bound is computed similarly from the right bounds.  
In principle, these bounds for X and Y could be read from the left and middle graphs of 
the p-boxes shown in Figure 13.  In a computer implementation, the bounds on X would 
be obtained by evaluating the quantile function (i.e., the inverse of the distribution 
function) of the Weibull distribution.  The values of the bounds and their products are 
given for several different probability levels p in the table below. 

 
 Left bounds     Right bounds 
p X Y X /�/ Y  X Y X /�/ Y 
0   0   0   0     0   0.202   0 
0.01   0.1   0   0     0.1   0.202   0.0203 
0.02   0.142   0   0     0.142   0.204   0.029 
0.03   0.175   0   0     0.175   0.206   0.036 
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0.04   0.202   0   0     0.202   0.208   0.0421 
0.05   0.226   0   0     0.226   0.211   0.0477  .   .   .   .    .   .   .  .   .   .   .    .   .   .  .   .   .   .    .   .   . 
0.95   1.73   0.149   0.258     1.73   1   1.73 
0.96   1.79   0.158   0.283     1.79   1   1.79 
0.97   1.87   0.167   0.312     1.87   1   1.87 
0.98   1.98   0.175   0.347     1.98   1   1.98 
0.99   2.15   0.184   0.394     2.15   1   2.15 
1   �   0.191   �     �  1   � 
 

The resulting p-box for X /�/ Y consists of the left and right bounds in the fourth and 
seventh columns of the table as functions of the probability level in the first column.  
This p-box is shown in Figure 13 as the graph on the right. 
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Figure 13:  Probability boxes for factors and their product under perfect 

dependence. 
 

3.5.2 Extreme dependence with Dempster-Shafer structures 
Convolutions under extreme dependence assumptions are also possible between 
Dempster-Shafer structures.  Berleant and Goodman-Strauss (1998) described 
algorithms for such calculations based on linear programming.  Although they did not 
refer to the mathematical objects as Dempster-Shafer structures and they allowed 
multiple mass assignments to a single focal element, a simple normalization that 
condenses multiple masses would convert Berleant’s objects into traditional Dempster-
Shafer structures.  One can often avoid the necessity of using linear programming to 
compute convolutions under extreme dependence by exploiting the transformations 
between p-boxes and Dempster-Shafer structures.  The following three examples 
illustrate convolution of Dempster-Shafer structures under extremal dependence. 

Example:  Suppose that an uncertain number X is characterized by the 
Dempster-Shafer structure given by three equiprobable intervals {([1,3], 1/3), ([2,3], 
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1/3), ([3,5], 1/3)}* and that another uncertain number Y is characterized by a similar 
Dempster-Shafer structure {([2,8], 1/3), ([6,10], 1/3), ([8,12], 1/3)}.  The lists within 
curly braces, consisting of pairs of intervals and masses, are Dempster-Shafer structures 
because the masses sum to one in both cases.  Figure 14 depicts these two Dempster-
Shafer structures (in the left and middle graphs) in terms of their cumulative plausibility 
and belief functions.  Further suppose that X and Y are perfectly dependent and that we 
want to propagate them through an addition operation.  The Dempster-Shafer structure 
of the convolution of X and Y assuming they are perfectly dependent, which we 
symbolize as X /+/ Y, can be computed with the Cartesian product depicted below. 

 
X 

 X /+/ Y [1,3] 
1/3 

[2,3] 
1/3 

[3,5] 
1/3 

 [2,8] 
1/3 

[3, 11] 
1/3 

[4,11] 
0 

[5,13] 
0 

Y [6,10] 
1/3 

[7,13] 
0 

[8, 13] 
1/3 

[9,15] 
0 

 [8,12] 
1/3 

[9,15] 
0 

[10,15] 
0 

[11, 17] 
1/3 

 
The focal elements of X and their associated masses are arrayed in the top row, and the 
focal elements and masses of Y are arrayed in the leftmost column.  Each cell of the 
table consists of an interval and its associated mass.  The marginal focal elements are 
used to compute the intervals in the interior of the table via interval arithmetic.  For 
instance, the first focal element of X is added to the first focal element of Y to obtain 
[1,3] + [2,8] = [3,11].  Nine such interval additions are needed to fill up the table.  If X 
and Y were independent, the masses associated with these intervals in the interior would 
be computed as the products of the masses of the marginal elements.  In this case, 
because the quantities are perfectly dependent, only the diagonal elements of the 
Cartesian product get nonzero masses.  In this example, the elements have a convenient 
order that makes computing the sum under perfect dependence very easy.  Here, the 
first element of the resulting Dempster-Shafer structure arises from the addition of the 
first element of X with the first element of Y, the second element comes from adding the 
second intervals, and the third comes from adding the third intervals.  In each of these 
three cases, the associated mass is just the same as the mass of X and Y elements.  The 
result of this convolution is thus the Dempster-Shafer structure {([3, 11], 1/3), ([8, 13], 
1/3), ([11, 17], 1/3)}.  Figure 14 also shows (on the right) the cumulative belief and 
plausibility functions for the Dempster-Shafer structure characterizing the sum X /+/ Y. 
 

                                                 
*In this report, Dempster-Shafer structures are often specified in this format.  Each pair in the 
list has the form (focal element, associated mass), where the masses in the list sum to one. 
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Figure 14:  Cumulative plausibility and belief functions for addends and sum of 

Dempster-Shafer structures under perfect dependence. 
 
 Example:  Another example involves a more complicated situation in which the 
focal elements and masses of the two Dempster-Shafer structures do not match quite so 
nicely.  Let X be characterized as before by the Dempster-Shafer structure {([1,3], 1/3), 
([2,3], 1/3), ([3,5], 1/3)}, but let Y be characterized by {([2,8], 1/4), ([3,10], 1/4), 
([6,12], 1/4), ([8,15], 1/4)}.  These two structures are depicted in terms of their 
cumulative plausibilities and beliefs in Figure 15.  We seek to compute the X /+/ Y.  
Because X has three focal elements and Y has four, they cannot be combined using the 
method used in the previous example.  However, that method could be used if we 
express the Dempster-Shafer structures in compatible forms.  To do this, we expand the 
Dempster-Shafer structure for X to the twelve-element list {([1,3], 1/12), ([1,3], 1/12), 
([1,3], 1/12), ([1,3], 1/12), ([2,3], 1/12), ([2,3], 1/12), ([2,3], 1/12), ([2,3], 1/12), ([3,5], 
1/12), ([3,5], 1/12), ([3,5], 1/12), ([3,5], 1/12)}.  This list is like a Dempster-Shafer 
structure in that the masses sum to unity, but it has repeated intervals.  The Dempster-
Shafer structure for Y is likewise expanded to a twelve-element list {([2,8], 1/12), ([2,8], 
1/12), ([2,8], 1/12), ([3,10], 1/12), ([3,10], 1/12), ([3,10], 1/12), ([6,12], 1/12), ([6,12], 
1/12), ([6,12], 1/12), ([8,15], 1/12), ([8,15], 1/12), ([8,15], 1/12)}.  It is clear that these 
transformations neither lose information nor create additional structure beyond that in 
the original specifications for X and Y.  The twelve-by-twelve Cartesian product can 
now be formed between these expanded lists.  To reflect the perfect dependence 
between X and Y, all the mass is assigned to the diagonal elements of the matrix.  When 
the masses are integrated for the focal elements, the result of this convolution is the 
Dempster-Shafer structure {([3,11], 3/12), ([4,13], 1/12), ([5,13], 2/12), ([8,15], 2/12), 
([9,17], 1/12), ([11,20], 3/12)}.  The cumulative plausibility and belief functions for this 
structure are depicted on the rightmost graph in Figure 15. 
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Figure 15:  Addition of general Dempster-Shafer structures under perfect 

dependence. 
 
 Example:  The focal elements of the Dempster-Shafer structures in the previous 
examples had a convenient order that enabled us to use a simple Cartesian product to 
effect convolutions under perfect and opposite dependence.  Suppose we want to 
compute the sum X /+/ Y where X is {([1,4], 1/2), ([2,3], 1/2)} and Y is {([11,13], 1/2), 
([12,14], 1/2)}.  In this case, the focal elements of X cannot be arranged into a 
comparable Cartesian product.  The equivalence relations explored in Ferson et al. 
(2003) suggest that a transformation of X into a related Dempster-Shafer structure could 
be used to do the calculation.  In particular, we might replace X with the Dempster-
Shafer structure {([1,3], 1/2), ([2,4], 1/2)}, which does allow the convenient ordering of 
its focal elements.  This transformation of X leaves unchanged its cumulative 
plausibility and belief functions.  If we then apply the method used in the previous 
examples, we will obtain the result {([12,16], 1/2), ([14,18], 1/2)}.   

The algorithms based on linear programming described by Berleant and 
Goodman-Strauss (1998) give the same results in numerical experiments as the methods 
based on p-boxes, and Regan et al. (2004) argued that this equivalence is general.  Jim 
Hall (pers. comm.) has pointed out that the transformation used in the third example 
corresponds to weak inclusion (sensu Dubois and Prade 1990) between the original and 
transformed Dempster-Shafer structures, and that this may have implications for what 
can be assumed about their relationship. 

3.6 Simulating correlations 
When the correlations among variables can be estimated empirically or assigned by 
theoretical considerations, several standard techniques are used to simulate the 
dependence relationships among variables in a Monte Carlo analysis.  This would be 
useful in any sort of risk assessment or uncertainty propagation problem in which 
analysts would like to use their knowledge about the interactions or dependencies 
between the input variables to tighten or reduce the bias of the results.  This section 
considers a few of the methods that represent specified correlation coefficients between 
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uncertain quantities.  It is important to understand at the outset that merely giving a 
correlation coefficient, whether it be Pearson, Spearman, Kendall or some other index, 
is usually not sufficient to fully specify the dependence model.  There must, therefore, 
be some further implicit or explicit constraint that makes the problem well defined. 

Scheuer and Stoller (1962) described a numerical method in the general 
multivariate case (i.e., for two or more variables) that is still widely used to generate 
normal deviates with a specified variance-covariance matrix 
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where �ii is the variance of the ith variable and �ij, for i & j, is the covariance between 
the ith and jth variables.  Correlated normal random deviates are computed as weighted 
linear combinations of independent normal random deviates 
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where Yj ~ normal(0,1) are independent standard normal random deviates, and cij are the 
elements of a lower triangular matrix C solving ' = CCT, which can be obtained 
numerically by Cholesky decomposition (Gentle 1998; Press et al. 1992).  Recursive 
formulas for the elements of C are given by Scheuer and Stoller (1962).  The resulting 
Zi are normally distributed, each with zero mean and unit variance, and they have the 
desired cross correlations.  The final step is to rescale the values so they have the 
variance-covariance matrix ' and translate them to the desired central tendencies.  The 
Scheuer and Stoller method can generate extremal correlations (Section 3.5) by setting 
the appropriate correlations to �1.  Because all the marginals are normal, correlations 
can be varied over the entire range [�1, +1]. 

In the bivariate case k = 2, these equations reduce to  
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where r is the desired (Pearson product-moment) correlation between the two random 
variables, 
1 and 
2 are their respective desired means, �1 and �2 are their standard 
deviations, and Y1 and Y2 are independent standard normal deviates. 

Example:  Suppose we wish to estimate the distribution function of X+Y where 
X ~ normal(10,2) and Y ~ normal(5,1) and X and Y have Pearson correlation 0.5.  In this 
problem, we can use the formulas for the bivariate case with 
1 = 10, �1 = 2, 
2 = 5, �1 
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= 1, and r = 0.5.  The value of �(1�r2) = 0.866.  Figure 16 depicts the distribution of the 
sum X+Y as computed by a Monte Carlo simulation involving 1000 replications.  The 
observed correlation between the variables was 0.510, compared to the planned value of 
0.5.  The observed mean of the resulting normal distribution was 15.11, compared to the 
theoretical expectation of 15 (the mean of a sum is not affected by correlation).  The 
observed variance was 7.12.  The theoretical variance can be computed from the 
covariance.  The Pearson correlation is defined to be the covariance of the variables 
divided by their standard deviations.  Thus, for the correlation of 0.5, the covariance 
would be 1.  This allows us to compute the theoretical variance of the sum of these 
correlated normals as V(X) + V(Y) + 2 cov(X,Y) = 7, rather larger than the variance 
under independence, which would be V(X)+V(Y) = 5. 
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Figure 16:  Distribution of the sum of correlated normals. 
 

The Scheuer and Stoller method is accurate, numerically inexpensive and 
suitable for use in multivariate settings, but it is restricted to normally distributed 
variables.  Although analogous methods can be derived for other distribution shapes 
(e.g. Song 1997), such a parametric approach seems impractical given the great variety 
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of distribution shapes* encountered in practical risk assessments.  But, most importantly 
for this report, it does not seem possible that this method can be easily generalized for 
use with Dempster-Shafer structures and probability boxes.  The reason for this is not 
because the methodology is based on sampling;  one can ‘sample’ from a Dempster-
Shafer structure or a p-box by selecting a random deviate u ~ uniform(0,1) and taking as 
the sample the interval formed by the uth quantiles of the cumulative plausibility and 
cumulative belief functions.  One can also compose Dempster-Shafer structures and p-
boxes from sets of such interval samples (see Ferson et al. 2003).  The reason that the 
Scheuer and Stoller approach does not extend easily to the context of imprecise 
probabilities is that it requires that the marginal distributions be decomposed into 
distribution shape and parameters.  The epistemic uncertainty embodied in Dempster-
Shafer structures and p-boxes cannot be partitioned in this way.  Their epistemic 
uncertainty is distributional too.  Although one can specify a p-box by giving the shape 
and, say, interval bounds on the parameters such as the mean and standard deviation, it 
is not possible to characterize every p-box in this way.  Dempster-Shafer structures can 
also be complicated structures that cannot be decomposed quite so handily.  The method 
is not modeling the dependencies per se, but rather sidestepping the problem by 
inducing a superficial conformance of the simulated deviates with the specified 
dependencies. 

Iman and Conover (1982) described another, more robust technique for 
simulating deviates from distributions of general distribution shapes and Spearman rank 
correlation structure.  Iman and Davenport (1980; 1982a) gave many example 
scatterplots illustrating the results of the technique on assorted combinations of 
marginal distributions.  Helton (1993, section 3.2; Helton and Davis 2002, section 5) 
reviewed this method and its compatibility with Latin hypercube sampling techniques, 
giving an overview of the algorithm, illustrative examples and an argument for the 
naturalness of Spearman correlation as how most people intuitively think about 
correlation.  There are, nevertheless, some caveats (see Section 3.6.2) that an analyst 
should keep in mind about how the traditional Pearson correlation coefficient and rank 
correlation can differ substantially.  The approach assumes that the joint distribution is a 
transform of a joint normal distribution and it uses a variant of the Scheuer and Stoller 
method.  Interestingly, however, it does not seem to create extremal dependencies by 
setting the input correlations to �1.  The Iman and Conover method was criticized as ad 
hoc by Clemen and Reilly (1999) and considered dismissively by Cooke (1997), but it 
is fairly simple to implement and it can be applied to arbitrary marginal distributions in 
the multivariate context.  Because it was the first method with these important features, 
it has been widely adopted.  For instance, the Iman and Conover method is used in the 
Crystal Ball software package (Eric Wainwright, pers. comm.; Decisioneering 1996; 
Burmaster and Udell 1990; Metzger et al. 1998) and is probably the most widely used 
method for inducing correlations in Monte Carlo simulations.  However, like the 
                                                 
*Lurie and Goldberg (1994) described an iterative approach for obtaining a desired pattern of 
Pearson correlations matching specified marginal distributions, but it is essentially a trial-and-
error approach that can be computationally intensive. 
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Scheuer and Stoller method, the Iman and Conover method does not seem to generalize 
easily to Dempster-Shafer structures or p-boxes. 

Nelsen (1986, 1987) gave methods to simulate bivariate deviates from 
distributions having arbitrary marginal shapes and arbitrary rank correlation (measured 
with either Spearman’s � correlation or Kendall’s � correlation).  Clemen and Reilly 
(1999) described another method based on the dependence model expressed in 
multivariate normal distributions.  When the marginals are normal, the correlation can 
be specified with the Pearson coefficient, but because the dependence function can be 
freely wedded to arbitrary marginals, the approach immediately applies to all other 
distribution shapes too.  The resulting correlations are no longer the specified Pearson’s 
coefficients, but the transformation leaves rank correlations unchanged.  Cario and 
Nelson (1997) described yet another very general analytical approach to the problem 
and spell out how it too can be applied in the multivariate case.   

These recent approaches all rely on transformations that are usually expressed in 
terms of the theory of “copulas” (Schweizer 1991; Nelsen 1999).  Copulas are simply 
the dependence functions that knit together marginal distributions to form their joint 
distribution.  In fact, the copula is also called the “dependence function”.  Copulas have 
very simple structures and have many useful properties.  They greatly simplify the 
generation of correlated random numbers.  Consider, for example, the method of 
Clemen and Reilly (1999).  This method can be described in three steps.  Given k 
marginal distributions characterizing k random variables and a k�k positive semi-
definite matrix of correlation coefficients (considered to be either Spearman correlations 
or Kendall correlations) that characterize the dependence between these random 
variables, the first step is to translate the given correlations into Pearson correlations.  If 
the given values are Spearman correlations �ij, compute rij = 2sin(��ij /6), i,j = 1,…, k.  
If the given values are Kendall correlations �ij, compute instead rij = sin(��ij /2).  These 
formulas depend on the family of copulas employed.  The Clemen and Reilly method 
uses the normal family of copulas, so named because they are exactly the dependence 
functions embodied in all multivariate normal distributions.  The second step is to 
generate k correlated unit normal random deviates Zi using an approach such as that of 
Scheuer and Stoller (1962) according to the computed Pearson correlations.  The third 
and last step is to compute  
 

� �)(1
iii ZFX (� �  

 
for each i = 1, …, k, where ( is the standard normal distribution function, and Fi

�1. is 
the inverse function of the desired marginal distribution for variable i.  This process is 
repeated as many times as the analyst needs correlated deviates.  Because the Spearman 
and Kendall correlations are invariant to monotone transformations, the Xi will have the 
same correlations as the Yi.  However, the ( transformation changes the unit normal 
deviates into unit uniform deviates, and the Fi

�1 functions changes unit uniform deviates 
into deviates that have the desired marginal distributions.  Therefore the Xi have the 
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correct marginal distributions and the desired nonparametric correlations.  Cario and 
Nelson (1997) call the strategy of transforming correlated normals to arbitrary marginal 
distributions “NORTA”, an acronym for “normal to anything”.  This strategy is what 
gives the Iman and Conover method its flexibility too.  Henderson et al. (2000) noted 
that, although this approach is quite flexible, there are possible variance-covariance 
structures and sets of marginals distributions that it cannot generate.  They described an 
adjustment to the algorithm that will produce results that approximate the desired 
covariance. 

Very similar strategies can be mounted for other copula families if one has 
access to an algorithm for creating correlated deviates within that family and a way to 
express the intended correlation in terms of the parameter(s) of the family.  What had 
previously been the difficult part of accounting for arbitrary marginals in a multivariate 
context has been made straightforward.  This copula approach must be considered the 
state of the art.  It has proven so simple and fruitful that it has lately spawned something 
of a cottage industry in developing methods for generating correlated random numbers 
to specification.  Nelsen (1986) used the Frank family of copulas.  Nelsen (1987) used a 
family of copulas formed as convex linear combination of the Fréchet limiting cases.  
Clemen and Reilly (1999) used the normal family, and Kurowicka et al. (2001) used the 
elliptic family.  These different families and parameterizations have various advantages 
and disadvantages, although these details are beyond the scope of this report.  The 
normal family is actually among the most computationally intensive algorithms because 
it involves evaluating the normal distribution function.  This function, which has no 
closed form expression, is of course widely available (e.g., Abramowitz and Stegun 
1964).  It is, for instance, the NORMSDIST function in Microsoft Excel.  The operations 
needed for the Frank family, in contrast, are very convenient to compute, although the 
functions to translate the correlations are given as lookup tables. 

Example:  Suppose that X is lognormally distributed such that the mean 
 of 
ln(X) is 5 and its geometric standard deviation � = 1, and that Y has a beta distribution 
with parameters 10 and 2.  Further suppose that the Spearman correlation between X 
and Y is 0.8.  The complete calculations to compute the correlated random variables can 
be encapsulated in the following pseudocode (when we cannot specify values because 
they are random, we give the Microsoft Excel expressions that could be used to 
generate them): 
 

r =2sin(� � / 6) = 0.8135 
W1 = ((U1) = NORMSINV(RAND()) 
W2 = ((U2) = NORMSINV(RAND()) 
Z1 = W1 
Z2 = r W1 + sqrt(1�r2) W2 = 0.8135 W1 + 0.5816 W2 
X = F1

�1(((Z1)) = LOGINV(NORMSDIST(Z1),5,1) 
Y = F2

�1(((Z2)) = BETAINV(NORMSDIST(Z2),10,2) 
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where Ui are independent unit uniform deviates and words in all capital letters are 
functions in Excel syntax.  Figure 17 shows 200 hundred random pairs of (X, Y) 
resulting from these calculations.  Iman and Davenport (1980; 1982a) show a variety of 
comparable scatterplots for various different marginal distributions and Spearman 
correlations. 
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Figure 17:  Scattergram depicting correlation (�=0.8) for non-normal marginals. 
 

3.6.1 Feasibility of correlation matrix 
There are mathematical constraints associated with correlations.   For instance, one 
variable cannot be strongly positively correlated with each of two variables that are 
themselves strongly negatively correlated.   Such constraints can be summarized by 
saying the matrix of correlations must always be a positive semi-definite matrix.   
Checking for positive semi-definiteness requires a special algorithm (Iman and 
Davenport 1982b).  An infeasible correlation matrix amounts to gibberish for the model 
that uses it.  If the input correlations are the result of coherent empirical studies, this 
will never be a problem.   However, if the inputs are mixed results from different 
studies, or if they are based on hypothetical values or best professional judgments about 
correlations, infeasible configurations may be specified.   

Many specially developed computer codes and even some commercially 
available software packages for Monte Carlo simulation do not check that the input 
correlation matrix satisfies the positive semi-definiteness condition.  It is not clear what 
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their algorithms for generating correlated deviates would do if the feasibility condition 
is not satisfied.  It is therefore important for analysts always to check that the input 
corresponds to a feasible correlation matrix.   

If the matrix is positive semi-definite, then it is a possible correlation matrix.  If 
it is not positive semi-definite, then it cannot be a correlation matrix in the first place 
and certainly should not be used in modeling dependencies in a risk analysis.  This is 
the result of some impossible scenario such as variable X being strongly positively 
correlated with both Y and Z, but Y and Z being strongly negatively correlated with each 
other.  It may even be possible and useful to employ the positive semi-definiteness of 
correlation matrices to tighten some interval estimate of correlation.  For instance, 
knowing the correlations between X and Y and between X and Z can constrain the 
correlation between Y and Z to an interval smaller than [�1, +1].   

Unfortunately, this strategy of using available information about the 
relationships among some variables to inform us about the relationships among others 
does not extend to feasibility constraints on the qualitative (sign) information about 
dependencies, which is especially weak.  Even information about how some variables 
are perfectly or oppositly dependent does not induce constraints that can be used to 
make inferences about unknown dependencies.  Indeed, seemingly self-evident 
inferences involving extremal dependencies are demonstrably false.  For instance, 
suppose A and B are oppositely dependent and that A and C are oppositely dependent.  
Thinking something like “the enemy of my enemy is my friend”, one might expect that 
it would be possible to infer from this that B and C are perfect dependent.  However, 
this is not a correct inference.  Although one can infer that B and C could not be 
oppositely dependent, they may be independent.  Here is a simple example.  Consider 
discrete distributions such that there are four possible configurations as given in the 
following table. 

 
A B C 
1 3 3 
2 1 3 
2 3 1 
3 1 1 

 
It is easy to see by plotting these three variables against each other in various 
combinations, that A and B are oppositely dependent on one another, as are A and C.  
(Their Pearson correlation is � ������ ��� �	
�� 
�
����� ����
������ �� � ���

Nevertheless, B and C are independent.  Likewise, it is very easy to construct examples 
in which a variable X is perfectly associated with both Y and Z, and yet the variables Y 
and Z themselves are independent.  Thus, one cannot use information that some 
variables are maximally dependent to infer very much about other variables. 
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3.6.2 Caveats 
There are four major caveats to consider when applying any of the methods discussed 
above to generate correlated variates.  
 
(1) The first caveat is that there are many measures of correlation, and an analyst must 
specify which correlation is intended.  The correlation measures are sensitive to 
different aspects of the possible dependence between variables.  For instance, consider 
Figure 18, which depicts two dissimilar patterns of bivariate dependence.  The Pearson 
correlation for the data in the graph labeled A is 0.786.  The Spearman correlation is a 
comparable value of 0.794.  These values agree that there is a moderately strong 
positive relationship between the two variables.  In contrast, the Pearson correlation for 
the data depicted in graph B is 0.655, suggesting a somewhat weaker relationship.  
However, the Spearman correlation for the data in graph B is 1.0 because the points are 
monotonically increasing.  The discrepancy arises, of course, from the fact that this 
perfect monotonic relationship is still strongly nonlinear. 
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Figure 18:  Two patterns of bivariate dependence. 
 
(2) The second caveat about generating correlated variates is that one cannot reconstruct 
complex or idiosyncratic nonlinear dependencies.  It is essential to understand, for 
instance, that some of the algorithms mentioned above that generate correlated random 
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deviates cannot produce a pattern of bivariate dependence that looks anything like the 
pattern shown in graph B of Figure 18, no matter what correlation coefficient is used as 
input.   
 
(3)  Although the methods are fairly well developed for simulating correlations and 
other dependencies in probabilistic risk analysis, these methods are not very useful if 
the nature or degree of correlation is unknown.  This is the third caveat about generating 
correlated variates.  If the analyst believes the variables may be correlated or dependent 
in some way, but does not know the magnitude or details of the interaction, the methods 
described above cannot be used because the methods need these details.  Estimating 
correlations usually requires paired or joint observations that can often be difficult or 
sometimes even impossible to collect. Section 4 describes some approaches to 
accounting for partial or even total ignorance about dependence. 
 
(4) The presence of correlated variables in a regression-based sensitivity analysis can 
produce strange and potentially misleading results (Helton and Davis 2000; Helton 
1997).  This is not a good reason to neglect correlations when they exist, but care should 
be exercised. 

3.7 Parameterized copulas 
As discussed in Section 3.6, specifying a correlation coefficient is insufficient to fully 
determine the dependence between two variables.  Methods that seem to do this are 
implicitly assuming some copula family that takes the correlation and specifies a 
particular dependence function.  This section shows how the theory of copula can be 
used directly and explicitly to compute arithmetic functions between the variables with 
arbitrarily complex dependencies.   

It is important for an analyst to be able to model dependencies (rather than 
merely correlations) because complex dependencies routinely appear among variables 
in risk assessments and these dependencies can have profound impacts on the numerical 
results of risk calculations.  Complex dependencies are certainly not rare.  They are 
perhaps as common as nonlinearity generally in physical systems.  Vesely et al. (1981) 
argued that dependencies may often dominate system performance.  Hickman et al. 
(1983, their section 3.7) discuss a variety of reasons that dependencies can arise in 
nuclear power plants, including common-cause initiating events, functional 
dependencies, shared-equipment dependencies, physical interactions, human-interaction 
dependencies, and inter-component dependencies.  Hart et al. (2004) discuss a variety 
of mechanisms that lead to complex dependencies.   

Although there is a vast literature in risk analysis and uncertainty modeling on 
selecting marginal distributions (see Haimes et al. 1994; Morgan and Henrion 1990; 
Cullen and Frey 1999; inter alia), there has been considerably less consideration of how 
an analyst should select and implement models of dependence (but see Cooke 2002; 
Haas 1999; Hutchinson and Lai 1990).  How would a risk analyst make use of detailed 
information about dependence in an assessment?  How can we make use of our 
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knowledge about the constraints that prohibit or favor certain combinations of variable 
values in order to obtain better calculations and reduce our uncertainty about them?  It 
turns out that it is relatively easy to do these things by making fuller use of the theory of 
copulas.  The rest of this section gives a sketch of this theory. 

Given marginal distributions FX and FY characterizing random variables X and Y 
respectively, the Lesbesgue-Steiltjes integral 
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(which always exists) gives the distribution of the sum Z = X+Y in terms of the 
dependence (copula) function C(u,v) between X and Y.  If the variables are independent, 
so that C(u,v)=uv, and the integral for the distribution function of Z reduces to 
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There are very similar formulas for the distribution of differences, products, quotients, 
etc., where the plus sign in the condition specifying the integral is replaced by a minus, 
multiplication sign, division sign, etc.  We mention these formulas only in passing.  In 
practice, they are very rarely actually used in risk assessments or other applications of 
probabilistic modeling, except in a few very simple cases (simulation methods are used 
instead).  We mention these formulas only to say that their assumption of independence 
makes them far less useful for general problems than might be supposed. 

The probability that a random variable is within a closed region can be estimated 
by integrating its probability density function over that region.  In many cases, however, 
it can be far easier to compute it directly from the joint distribution function at the 
corners of the region.  For example, the probability associated with the region x1 � X � 
x2, y1 � Y � y2 can be computed as the diagonal difference 
 

H(x1, y1) � H(x1, y2) � H(x2, y1) + H(x2, y2), 
 
where H is the cumulative bivariate joint distribution function for X and Y.  Figure 19 
shows how this diagonal difference finds the mass associated with a rectangle.  The 
masses that are added together are depicted with hatching that slants upward;  masses 
that are subtracted have hatching that slants downward.  Because H is the joint 
cumulative distribution, the result is the cumulative mass that is associated with the 
rectangle marked b, that is, the rectangle limited by x1 � X � x2, y1 � Y � y2.  Using this 
fact, the probability distribution function for Z = g(X, Y), for some function g, can be 
estimated by the discretization 
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The summation is needed because there could be several combinations of X and Y that 
produce the same value of Z, so the probability of each should be added together.  
Sklar’s (1959) theorem tells us how to compute the joint distribution function H(x, y) 
from specified marginal distributions and a dependence function represented by a 
copula.  For any (univariate) distribution functions FX and FY and any copula C, the 
function  
 

H(x, y) = C(FX(x), FY(y)) 
 
is a two-dimensional distribution function having marginals FX and FY.  If FX and FY are 
continuous, then C is unique.  This decomposition of a joint distribution into its 
marginals and the copula that knits them together is a very general approach.  The 
marginal distributions can be specified arbitrarily.  The discretization can be made 
arbitrarily fine to achieve any desired precision.  Sklar’s theorem generalizes to 
dimensions higher than two (Nelsen 1999; Cossette et al. 2001; cf. Bernat et al. 2004). 
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Figure 19:  Diagonal difference estimate of the mass associated with a rectangle. 
 
 Hutchinson and Lai (1990) and Haas (1999) give accessible introductions to 
copulas and their use in modeling dependence in risk and uncertainty modeling.  A 
copula is simply the dependence function between random variables.  Figure 20 depicts 
the copulas corresponding to three special cases of dependence.  Irrespective of what 
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the marginal distributions are, every perfectly dependent pair of random variables has 
the dependence function represented by the copula M(u, v) = min(u, v).  Moreover, any 
pair of random variables characterized by given marginals can be made to be perfectly 
dependent on one another by combining their marginal distribution with the copula M 
as specified by Sklar’s theorem.  This function is shown on the left graph of Figure 20.  
Similar statements are possible with opposite dependence and the copula W(u, v) = 
max(u + v � 1, 0), which is depicted in the right graph.  Finally, the middle graph, 
depicting the product copula �(u, v) = uv, has the same intimate connection with 
independence.  Fréchet (1951) and Hoeffding (1940) showed that, in fact, all 
dependencies between any two variables correspond to a copula between M and W, that 
is, for any copula C, 
 

W(u,v) � C(u,v) � M(u,v) 
 
(see Whitt 1976).  These special cases are called the Fréchet-Hoeffding limits, or 
simply, the Fréchet limits. 
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Figure 20:  Three special cases of dependence functions. 
 

Nelsen (1999) reviews many copula families that have been proposed.  A family 
of copulas is a model of the dependence between random variables.  A copula family 
that includes the special cases of perfect dependence, opposite dependence and 
independence is called comprehensive.  There are several families that have this 
property.  For example, the Frank family of copulas (Frank 1979; Nelsen 1999), which 
is defined by 
 

� �)1/()1)(1(1log),( sFrank ����� sssvuC vu  
 
where 0 � s.  Perfect dependence arises in the limit as s tends to zero.  Opposite 
dependence arises when s goes to infinity, and independence corresponds to an s of one.  
The Clayton family is  
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where �1 � *.  Perfect dependence corresponds to * = �.  Setting * to �1 yields 
opposite dependence, and zero corresponds to independence.  The Mardia family is 
defined as a linear combination of the three special cases  
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where the functions M, � and W are the functions defined above.  Clemen and Reilly 
(1999) argued that the normal copula is especially useful.  It is the dependence between 
variables that are multivariately normal.  The normal copula is  
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and (�1 is the quantile function of the standard univariate normal distribution function, 
and �r is the joint cumulative distribution function for the standard bivariate normal 
distribution with Pearson correlation r, 0 < r < 1. 

Not all copula families are comprehensive.  Indeed, most of the families 
described by Nelsen (1999) that have arisen in the statistical and engineering literature 
do not include all three special cases of perfect dependence, opposite dependence and 
independence.  Elliptic copulas, which were recommended by Kurowicka et al. (2001), 
include all correlations between �1 and +1, but, interestingly, they do not include the 
independent copula � when the correlation is zero. 

As we discussed in Section 3.6.2, there are several measures of correlation that 
could be used to index the strength of dependence.  Hutchinson and Lai (1990) describe 
a host of possible measures of correlation/dependence, including not only Pearson, 
Spearman and Kendall, but also medial correlation, maximal (sup) correlation, 
monotone correlation indices, and several indices of concordance, such as Blomqvist’s 
(1950) quadrant measure.  These various measures are scales that summarize 
dependence in different ways (comparable in this sense to the mph scale and kph scales 
on a speedometer, or perhaps to linear and log scales describing the same phenomenon).  
In principal, one could match a copula family with one of these measures, which would 
specify how to select a particular copula from the family. 

The literature about dependence has exploded over the last two decades.  Many 
disparate ideas and approaches have been proposed about how to measure and model 
dependence.  Future research in this area may witness some pruning or weeding among 
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the many ideas that have developed to select a few that are most generally useful.  At 
least for the foreseeable future, however, none of the copula families is likely to emerge 
as “the” family to use for all applications.  Like the various measures of correlation, the 
different families are useful in different circumstances to represent different sorts of 
phenomena.  This methodological embarrassment of riches need not, however, lead to 
confusion or anxiety among risk analysts.  The algorithmic tools described in this and 
the following sections to compute convolutions can be used with essentially all of the 
copula families irrespective of their origin or complexity, so long as they admit the 
numerical specification of the dependence function.  This means that, even though it 
may not always be clear which copula family or correlation measure we should be 
using, we will always be able to compute convolutions with our choices. 

Examples:  Figure 21 shows how the distribution of a sum of random variables 
X ~ normal(5,1) and Y ~ uniform(2,5) can vary with the choice of copula family and 
correlation measure that are used to model the dependence between X  and Y.  The top 
graph represents the Frank copula family, parameterized by the medial correlation 
coefficient.  The middle graph represents the Mardia family parameterized by Kendall 
correlation, and the bottom graph represents the Clayton copula family (which specifies 
its own index of correlation).  Each of the three graphs shows six distributions, 
corresponding to the correlations +1, +0.6, +0.2, �0.2, �0.6 and –1.  The correlation of 
+1 represents perfect dependence and it produces the shallowest distribution function 
for the sum.  The correlation of �1 likewise represents opposite dependence, which 
produces the steepest distribution function for the sum.  These two distributions are 
identical among the three graphs.  The other correlations yield distributions that are 
intermediate in slope to these two extreme cases.  These intermediate distributions vary 
markedly in shape across the three graphs.  Notice, for instance that all the distributions 
produced by the Frank copula go through a single point at the median.  The distributions 
from the Mardia copula, on the other hand, share even greater commonality.  They 
variously trace along a common set of percentiles in the middle of the distributions.  
The distributions from the Clayton copula don’t have any common points for all 
correlations except at the extreme tails. 
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Figure 21:  Variation in the distribution of a sum of correlated variables where 

correlation is interpreted according to three copula families. 
 

3.7.1 Using copulas with Dempster-Shafer structures 
The computational approach using a parametric copula that was described in 
Section 3.7 for computing convolutions among random variables characterized by 
probability distributions extends immediately to Dempster-Shafer structures so long as 
these structures have a natural order for their focal elements.  In this case, as before, the 
probability associated with a closed region is computed directly from the joint 
distribution function at the corners of the region as the diagonal difference.   
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The first step of the calculation is to compute the focal elements.  Suppose the 
first Dempster-Shafer structure has elements {([a1, b1], p1), ([a2, b2], p2), …, ([an, bn], 
pn)} where a1 � a2 � …  � an and b1 � b2 � … � bn, and the second has the elements 
{([c1, d1], q1), ([c2, d2], q2), …, ([cm, dm], qm)}where c1 � c2 � …  � cm and d1 � d2 � … � 
dm, and we wish to combine these two Dempster-Shafer structures with the binary 
function f.  The (i, j)th elements in Yager’s (1986) Cartesian product is f ([ai, bi], [cj, dj]). 
 The second step in the calculation is to compute the masses associated with each 
of the focal elements.  The probability mass associated with any closed region x1 � X � 
x2, y1 � Y � y2 can be computed from the joint distribution H as the diagonal difference 
 

H(x1, y1) � H(x1, y2) � H(x2, y1) + H(x2, y2), 
 
where each of these H’s can be evaluated in terms of the copula applied to the marginal 
cumulative probabilities H(x,y) = C(F(x), G( y)).  This means that the mass associated 
with the (i, j)th focal element is 
 

C(Pi, Qj) � C(Pi�1, Qj) � C(Pi, Qj�1) + C(Pi�1, Qj�1) 
 
where Pi and Qj are the cumulative masses 
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Whenever the focal elements have a natural order, these cumulative masses have the 
interpretation as the probability that the underlying variable is smaller than the indicated 
focal element.  The last step is to sum the masses for any elements of the Cartesian 
product that happen to be identical.  The sum of all of the probability masses in the 
Cartesian product will be one (except for possible discretization error). 

Example:  Suppose we want to use the Frank family of copulas parameterized 
by Spearman correlation to compute the sum of X+Y.  Further suppose that X is 
characterized by the Dempster-Shafer structure {([1,6], 0.25), ([5,9], 0.5), ([7,10], 
0.25)} and that Y is characterized by the Dempster-Shafer structure {([2,4], 0.5), ([3,5], 
0.5)}, and their Spearman correlation is 0.6.  The cumulative plausibility and belief 
functions for these two inputs are shown in the left and middle graphs of Figure 22.  
The focal elements for the answer can be obtained as the Cartesian product of the input 
focal elements, so, for instance, the first focal element is just [1,6]+[2,4] = [3,10].  The 
focal elements are thus 
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 j = 1 j = 2 
i = 1 [3,10] [4,11] 
i = 2 [7,13] [8,14] 
i = 3 [9,14] [10,15] 

 
where i indexes the elements of the X structure, and j indexes the elements from the Y 
structure.  The mass to be associated with the i,j focal element in the Cartesian product 
is the diagonal difference 
 

C(Pi, Qj) � C(Pi�1, Qj) � C(Pi, Qj�1) + C(Pi�1, Qj�1) 
 
where C is the dependence function, Pi is the cumulated probability for the ith focal 
element of X, and Qj is the cumulated probability for the jth focal element of Y.  The 
value of P1 is 0.25; the value P2 is 0.75; the value of P3 is 1.  The value of Q1 is 0.5, and 
the value of Q2 is 1.  (P0 and Q0 are of course zero.)  For the dependence function we 
are using the Frank copula family 
 

C(u, v) = logs(1 + (su � 1) (sv � 1) / (s � 1)) 
 
where the parameter s is chosen to yield the correct Spearman correlation.  From a table 
given by Nelsen (1986, table I*), the value of the Frank parameter s corresponding to a 
Spearman correlation of 0.6 is about 0.01.  The matrix of the copula values is  
 

 j = 1 j = 2 
i = 1 0.211 0.25 
i = 2 0.461 0.75 
i = 3 0.5 1.0. 

 
The mass for each focal element is obtained from the diagonal difference, so, for 
instance, the mass for the focal element when i=2 and j=1 is just 
 

C(P2, Q1) � C(P1, Q1) � C(P2, Q0) + C(P1, Q0), 
 
which is 0.461 � 0.211 � 0 � 0 = 0.25.  Other elements are evaluated similarly.  The 
matrix of masses to be associated with the focal elements is therefore 
 

 j = 1 j = 2 
i = 1 0.211 0.039 
i = 2 0.25 0.25 
i = 3 0.039  0.211. 

 
Consequently, the Dempster-Shafer structure associated with the sum X+Y assuming X 
and Y are correlated according to a Frank copula with correlation 0.6 is {([3,10], 0.211), 
                                                 
*s = exp(�exp(�z)), where z is Nelsen’s tabled value. 
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([4,11], 0.039),([7,13], 0.25), ([8,14], 0.25), ([9,14], 0.039), ([10,15], 0.211)}.  The 
cumulative plausibility and belief functions for this structure are displayed on the right-
most graph of Figure 22. 
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Figure 22:  Convolution between Dempster-Shafer structures with a specified 
copula (Frank family, parameterized by Spearman correlation). 

 
Examples:  If the elements of a Dempster-Shafer structure do not have the 

convenient ordering, then the Dempster-Shafer structure should first be transformed to a 
related structure that is so ordered.  For instance, if X were characterized by {([5,9], 
0.5), ([1,6], 0.25), ([7,10], 0.25)}, it would first be rewritten as {([1,6], 0.25), ([5,9], 
0.5), ([7,10], 0.25)}.  This is merely a reordering of the focal elements, so it does not 
alter the Dempster-Shafer structure at all.  If, on the other hand, X were characterized by 
{([1,6], 0.25), ([5,10], 0.5), ([7,9], 0.25)}, it would first be replaced by the related 
Dempster-Shafer structure {([1,6], 0.25), ([5,9], 0.25), ([5,10], 0.25), ([7,10], 0.25)}.  
This is necessary because [7,9] is inside [5,10] so there can be no convenient ordering 
of the focal elements.  This might seem like a substantial change because it alters the 
number of focal elements from 3 to 4, but it does not change the cumulative plausibility 
and belief functions.  Once both input structures have the requisite ordering, then they 
may be convolved using the method outlined in the previous example. 

3.7.2 Using copulas with p-boxes 
Using the machinery developed for Dempster-Shafer structures in the previous section, 
it is straightforward to calculate convolutions between p-boxes under the assumption 
that the variables represented by the p-boxes are dependent and their dependence is 
expressed by some parametric copula.  The p-boxes are first discretized into Dempster-
Shafer structures.  The calculation then proceeds exactly as it did for Dempster-Shafer 
structures.  In the case of p-boxes, however, the requisite natural ordering of the focal 
elements is always present because of the way the discretization is done.  The resulting 
Dempster-Shafer structure is then reassembled into a p-box. 
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Discretization of p-boxes is described by Ferson et al. (2003, their section 2.3).  
If a p-box is specified by the bounding functions F(x) and )(xF  such that )()( xFxF � , 
then the discretization will be have focal elements [ )(1 pF � , F�1(p)] where the 
superscript denotes the inverse function (or some quasi-inverse if the function is not 
strictly invertible), and 0 � p � 1, for as many levels of p as are required to make an 
adequate discretization.  The mass associated with the focal elements is )p, which can 
be made arbitrarily fine.  When the bounds of the p-box are step functions, the 
discretization can be exact; when they are curves, the discretization will be an 
approximation to the p-box. 

Example:  Suppose we want to compute the product XY, where the random 
variable X is a proportion whose median is no larger than 0.1 and whose 95th percentile 
is no larger than 0.3, and the random variable Y is a proportion with a mean of 0.2.  
These two marginal inputs are depicted in as the left and middle graphs of Figure 23.  
Suppose that the dependence between X and Y is to be modeled with a normal copula 
with a Kendall correlation of �0.5.  As Clemen and Reilly (1999) explain, this Kendall 
correlation corresponds to a Pearson correlation of 2 sin(�(�0.5)/6) = �0.51764 for a 
normal copula.  The discretization for X is the Dempster-Shafer structure {([0,0.1],0.5), 
([0,0.3],0.45), ([0,1],0.05)}.  The Dempster-Shafer structure for Y is only approximate 
because its bounds are not step functions.  With 100 discretization levels, it is {([0, 
0.202], 0.01), ([0, 0.204], 0.01),..., ([0.192, 1], 0.01)}.  The 300 focal elements in the 
Cartesian product between X and Y consequently are the intervals {[0, 0.0202], [0, 
0.0204],..., [0, 0.1],..., [0, 0.0606], [0, 0.0612],..., [0, 0.3],..., [0, 0.202], [0, 0.204],..., [0, 
1]}.  The associated mass for each of these intervals is computed using the diagonal 
difference with C = Cnormal, the normal copula with r = �0.51764.  The cumulated 
masses for X are P1 = 0.5, P2 = 0.95, and P3 = 1.  The cumulated masses for Y are Q1 = 
0.01, Q2 = 0.02, …, and Q99 = 0.99 and Q100 = 1.  The calculated Dempster-Shafer 
structure is then reintegrated to obtain the p-box shown in the right graph of Figure 23. 
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Figure 23:  Convolution between p-boxes under a particular dependence function 

(normal copula, parameterized by Kendall correlation). 
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It is worth noting that the approach based on parameterized copulas developed 
here is compatible with, and provides a unifying justification for, the approaches used in 
Section 3.5.1 and 3.5.2 to convolve probability boxes or Dempster-Shafer structures 
under perfect or opposite dependence.  We can conveniently illustrate this for the case 
of perfect dependence, for which the copula is M(u,v) = min(u,v).  In this case, the joint 
distribution is 

 
H(x, y) = M(F(x), G( y)) = min(F(x), G( y)), 

 
where F(x) and G( y) are the cumulative masses associated with values x and y 
respectively.  Consider two uncertain numbers X and Y that have been discretized into n 
equiprobable levels.  The cumulative mass associated with the ith slice of the 
discretization is i/n.  Such discretizations therefore imply that a particular diagonal 
difference 

 
H(x, y) � H(x, y + )y) � H(x + )x, y) + H(x + )x, y + )y) 

 
would be evaluated under perfect dependence as 
 

+
,
-

.
/
0 ��

�+
,
-

.
/
0 �

�+
,
-

.
/
0 �

�+
,
-

.
/
0

n
j

n
i

n
j

n
i

n
j

n
i

n
j

n
i 1,1min,1min1,min,min  

 
for some i and j.  Across the Cartesian product, there are three situations.  If i < j, then 
i+1 � j, and the diagonal difference would simplify to 
 

� � .0)1()1(1
������ iiii

n
 

 
If, on the other hand, j < i, then j+1 � i, and the diagonal difference simplifies to 
 

� � .0)1()1(1
������ jjjj

n
 

 
The quantity is nonzero only when i = j, in which case it is  
 

� � .1)1(1
n

ijii
n

�����  

 
This is why only the diagonal elements in the Cartesian product get mass when 
dependence is perfect.  A similar argument can be constructed from the copula W(u,v) = 
max(u+v�1, 0) that shows why it is the anti-diagonal elements that get the mass when 
the dependence is opposite. 
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3.7.3 Caveat: incompleteness of correlation 
As will be evident to the reader, modeling dependence between variables with a scalar 
measure of the strength of correlation is likely to be a superficial description of their 
relationship.  Any model that characterizes dependence well enough to, say, allow the 
generation of sample variates is employing some particular dependence function 
(copula), although its details may be implicit and not obvious to the analyst.  The set of 
such dependence functions parameterized by the correlation constitutes a copula family 
which is a model of the dependence.  When such characterizations are used in risk 
assessments, analysts are relying on the assumption that this copula family is an 
appropriate one, and that it is faithful to the true dependence resulting from the 
mathematical or physical relationship between the variables both in terms of its 
summary correlation and its consequences for whatever arithmetic functions involving 
the dependent variables are to be computed.  Sections 3.8 and 3.9 review the use of 
copulas that are not members of parametrically prescribed families.  Section 4 considers 
methods that will be useful when little or no information is available to select the 
dependence function. 

3.8 Empirical copulas 
An empirical copula, also known as an empirical dependence function (Deheuvels 
1979; Nelsen 1999), is a characterization of the dependence function between variables 
based on observational data.  It is the analog of the empirical distribution function for 
the question of dependence.  (In fact, if the marginal distributions are first transformed 
to standard uniforms, the empirical copula is just the empirical distribution function for 
the joint distribution.)  An empirical copula can be computed from bivariate sample data 
(xi, yi), i = 1,…, n, with 
 

� �
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where # denotes the cardinality of a set, and x(j) and y(k) , for 1�j, k � n, denote order 
statistics from the sample.  The numerator is just the number of points in a scattergram 
of the data that are lower and to the left of the point (x(j), y(k)), where x(j) is the jth 
smallest value of the sample x’s and y(k) is the kth smallest value of the sample y’s.   

Example:  The leftmost graph in Figure 24 is the scattergram of 300 
hypothetical data points exhibiting an interesting nonlinear dependence between its 
variables X and Y.  The marginal distribution for X was uniform over the unit interval.  
Y was a randomized function of X.  Its values were computed as  
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where W and Z  were independent random uniform deviates also from [0,1].  This 
formula results in a distribution for Y that is close to (but not exactly) uniform over the 
unit interval.  The 300 X- and Y-values were sorted independently.  At each of 300�300 
evenly spaced points in the unit square [0,1]�[0,1], the number of data points were 
tallied that were smaller (in the X direction) than the ith sorted X-value and 
simultaneously smaller (in the Y direction) than the jth sorted Y-value.  These tallies 
were all normalized by dividing by 300.  Plots of these normalized tallies are shown in 
the middle and right graphs of Figure 24.  The function is the empirical copula 
associated with the scattergram.  The vertical axis of the middle graph is the value 
C(u,v) for the empirical copula at given values for u and v.  The rightmost graph shows 
the same function, in a contour plot with gray shading. 
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Figure 24:  Empirical copula (middle and right graphs) from observational data 

(left graph). 
 

By construction, the copula is zero along the u- and v-axes.  It is intersects with 
the forty-five degree line in the v,C-plane at u = 1, and similarly in the u,C-plane at v = 
1.  All copulas have these characteristics;  copulas differ only in the internal details of 
the 2-increasing function that connects these edges together.  The observed scattergram 
creates, and is captured by, the wrinkles in the surface of the copula. 

Empirical copulas may be used in the algorithms described in Section 3.7 and its 
subsections to make arithmetic calculations with probability distributions, Dempster-
Shafer structures and probability boxes.  This use is completely straightforward.  The 
empirical copula simply replaces the C’s (the parameterized copula) previously used.  
For any pair of values from the unit interval, the empirical copula returns another value 
from the unit interval.  Rather than computing the copula from some parameterized 
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expression, its value is simply read from the (discretized) table storing the normalized 
tallies.   

Some analysts find it hard to understand why one would bother with an 
empirical compula if computing it implies one already has empirical data for a joint 
distribution from which the model could be constructed directly.  Does not this joint 
information allow one to sidestep the question of modeling dependence altogether?  If 
the data are abundant and reliable, the answer might be yes.  But in many cases, the 
empirical information is sparse, or based on imperfect samples, or associated with 
surrogate variables similar not identical to those of interest.  In such situations, an 
analyst might prefer to build a model of the dependence that makes use the available 
data, but that can go beyond those data.  It is important to understand that the 
calculations or simulations based on an empirical copula are not simply reconstructing 
the precise details* of the scattergram on which the copula is based.  Instead, what is 
reconstructed is the overall statistical pattern of the dependence in the joint distribution.  
This is the sense in which the empirical copula goes beyond the joint data.  It means that 
one can easly apply the dependence observed for one set of marginal distributions to 
another set of marginal distributions for which no joint data may even be available. 

One important caveat in this use of empirical copulas is that they can only 
reflect the variation exhibited in the data sets used to construct them.  Just as an analyst 
who uses an empirical distribution function (EDF) to model some univariate marginal 
distribution takes a risk that the available data may not reflect the entire range of 
possible values for that variable, the analyst who employs an empirical copula to model 
the bivariate dependence takes a risk the combinations observed in the available data 
may not reflect the full variety of combinations that are actually possible.  These risks 
grow very large when empirical data are sparse, but, for reasons of dimension, they are 
likely to be much worse for empirical copulas than for (univariate) empirical 
distribution functions. 

3.9 Constructed arbitrary copulas 
Nelsen (1999) considers the problem of constructing copulas to suit one’s modeling 
purposes.  One application of constructed copulas might be to reflect hypothetical or 
planned constraints in the dependencies among variables.  For instance, if a new safety 
release system is designed to activate when two variables become jointly extreme, then 
such conditions would not, in principle, be able to propagate through the system.  The 
resulting dependence pattern would permit large values for both variables but wouldn’t 
allow them to be simultaneously large.  How could this dependence pattern be modeled 
and represented in calculations?  One way to obtain a copula that respects such 
constraints is to manually edit an observed scattergram.  This editing would consist of 
removing all or a proportion of the points in disallowed regions.  In the absence of 
paired empirical observations, a bivariate scattergram developed using independent 
                                                 
*To reconstruct the precise locations of the data in the scattergram, one could employ a 
permutation or randomization strategy such as bootstrapping. 
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uniform marginals could be edited.  The resulting “empirical” copula obtained from this 
edited scattergram would express the nonlinear dependence represented by the 
constraints.  Another use of constructed copulas might be to posit the potential existence 
of combinations of variable values that have never been observed but are thought to be 
possible.  This might be effected by adding points in underpopulated regions of the 
scattergram.  The resulting edited scattergram could then be used to compute an 
empirical copula using the formula just discussed in Section 3.8 and incorporated into 
calculations using the methods described in Sections 3.7, 3.7.1, and 3.7.2. 
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4 Accounting for incertitude about dependence 
Empirical information about dependencies among variables in an assessment is often 
sparse.  In multivariate problems, it is commonly not practical to specify the entire 
variance-covariance matrix (Cooke 1997), much less the full multidimensional 
character of the dependence among the variables.  In such an environment, analysts 
sometimes express a desire to relax some of the independence assumptions in their 
assessments.  By this, what they may often mean is to alter those assumptions away 
from independence to some other precisely specified dependence assumption.  But they 
may also actually intend to relax the assumption in the sense of making fewer or no 
assumptions about the dependence.  The methods described in this section allow 
analysts to do this.  The study of how assumptions about dependence affect the 
quantitative results of an assessment might be called dependency bounds analysis 
(Williamson and Downs 1990; Ferson 1994; Ferson and Long 1995). 

4.1 Sensitivity analyses and dispersive Monte Carlo 
In some situations, it may be reasonable to assume that some or all of the statistical 
relationships among the variables are simple* and do not harbor cryptic nonlinearities 
so that they can be adequately characterized by correlation coefficients.  Even with such 
an assumption, the magnitude of the correlations may be unknown, or the correlation 
coefficients may be known only to within intervals because empirical information 
relating the variables is sparse.  In these cases, straightforward sensitivity studies that 
vary correlations or some more integrated approach would be useful. 
 Whitt (1976) described a scheme to simulate bivariate distributions from 
specified marginals with the largest (or smallest) possible correlation. This technique 
has often been used in Monte Carlo simulations to estimate random quantities with 
minimal variance (see Bratley et al. 1983).  The approach can be extended to the 
multivariate case to compute conservative estimates of risks.  Suppose that X and Y are 
random variables with marginal distributions F and G respectively.  The distribution 
with greatest dispersion that could arise as the sum X+Y is that obtained when the 
variables have the largest possible correlation between them. This is because the 
variance of a sum is the sum of the variances of the addends plus twice their covariance, 
which depends directly on their correlation (Mood et al. 1975).  The exact opposite is 
true for subtraction.  The greatest dispersion in a distribution of differences comes from 
                                                 
*As might by now be apparent to the reader, there is no simple definition of what a simple 
dependence is.  Simplicity might be characterized by linearity or ellipticity, symmetry, an 
absence of unexpected constraints or interactions, or any of several other qualitative features.  A 
person’s definition of simplicity is perhaps clear until he views real data with their 
idiosyncrasies and subtleties.  All it means in this context is that a scalar correlation coefficient 
is a robust and appropriate descriptor for the pattern of dependence. 
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the case in which the correlation between the subtrahend and the minuend is most 
negative.  Similar statements can be made about multiplication and division of numbers 
whose distributions are non-negative. 

The following scheme allows one to sample Monte Carlo variates from specified 
distributions such that they exhibit the greatest possible correlation.  Sample variates 
X~F and Y~G by randomly and repeatedly selecting u from a uniform random 
distribution between 0 and 1 and mapping the value through the inverse functions 
X=F��(u) and Y=G��(u).  The resulting set of variate pairs has the maximal correlation 
possible subject to the specified marginal distributions F and G.  To obtain the smallest 
(maximally negative) correlation possible between the variates, the mapping should be 
X=F��(u) and Y=G��(1�u).  Since the most dispersed distribution arising from the 
addition of two random variables occurs when their correlation is maximal (Müller 
1997; Goovaerts et al. 2000), a conservative estimate of the extreme values of the 
distribution of the sum X+Y might be estimated with the quantity F��(u) + G��(u) where 
u is sampled from a uniform distribution on [0,1].  This can be referred to as the (u,u) 
strategy.  The most dispersed distribution arising from subtraction of two random 
variables is that obtained when there is minimal (that is, most negative) correlation 
between them.  This can be estimated by F��(u) � G��(1�u), which can be called the 
(u,1�u) strategy.  So long as the distributions are of like sign, then the dispersive 
sampling strategy for multiplication is like that for addition, and the one for division is 
like that for subtraction.  That is, the products F��(u)G��(u) form the most dispersed 
distribution that can result from multiplication of random variables having marginals F 
and G.  Likewise, F��(u)/G��(1�u) represents the most dispersed distribution that could 
result from division. 
 To compute conservative estimates of a distribution resulting from more 
complex arithmetic combinations of positive random numbers, one can use the (u,u) 
strategy among variables that are added or multiplied together and the (u,1�u) strategy 
when they are subtracted or divided.  A mixed expression such as A/(1�B) requires, 
again, the (u,u) strategy, and in arbitrary mathematical expression involving multiple 
variables, assigning u and 1�u will necessitate a symbolic analysis of the mathematical 
expression.  This approach will work in situations where the original distributions and 
intermediate results are strictly positive, and it could be generalized in a software 
implementation for general distributions. It is compatible with ordinary Monte Carlo 
analyses that assume independence or a particular correlation structure among other 
variables.  This approach can be called dispersive Monte Carlo sampling because it 
yields simulated distributions with extremal dispersion, i.e., the largest possible 
variance, given the specified marginals. Note however that there is no mathematical 
guarantee that the tail probabilities computed will be upper bounds irrespective of the 
dependencies among the variables.  However, in many situations the maximally 
dispersed result is likely to be an appropriately conservative estimate that may be useful 
for risk analysis for practical cases (Burgman et al. 1993, page 154; Ferson 1994; 
Bukowski et al. 1995; Müller 1997; Vyncke et al. 2000; Goovaerts et al. 2000; Kaas et 
al. 2000). 
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 Example:  Suppose that we need to estimate the distribution of V=WX/(Y�Z), 
where W~ normal(5,1), X ~ lognormal(1.2,0.3), Y ~ uniform(2,14), and Z ~ beta(2,3), 
and we want to use dispersive Monte Carlo sampling to conservatively account for 
ignorance about the magnitude of the correlations among the variables.  In a Microsoft 
Excel spreadsheet, this simulation could be implemented with the expression  
=(NORMINV(U,5,1)*LOGINV(U,1.2,0.3))/(((1�U)*12+2)�BETAINV(U,2,3)) where 
U is (a single value of) a uniformly distributed random variate between zero and one.  
Figure 25 shows the distribution function (estimated from 1000 random samples) of V 
resulting from the dispersive Monte Carlo sampling as a black curve.  The gray curve is 
the corresponding distribution of V assuming that all of the inputs were mutually 
independent.  The differences between the two curves are striking.  The observed mean 
of the distribution obtained from dispersive sampling was 4.9 and the observed standard 
deviation was 7.7.  The observed mean of the distribution obtained from ordinary 
Monte Carlo sampling assuming independence was 3.1 and the observed standard 
deviation was 2.4.  The tail weights are considerably greater for the dispersive 
distribution.  For instance, the 90th percentile of the independent distribution is about 6.  
The 90th percentile of the dispersive distribution is more than twice that value. It is also 
clear that the left-tail percentiles for the dispersive distribution are lower than for the 
independent distribution. 
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Figure 25:  Arithmetic function of random variables estimated by dispersive 

Monte Carlo sampling (black) and ordinary Monte Carlo sampling 
assuming independence (gray) 
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 A modification of the dispersive Monte Carlo approach is to make the 
correlations as large as plausible, rather than as large as possible.  For instance, one 
might know that the correlation between two variables could not be larger than some 
degree, and feel it improper to assume counterfactually that the correlation is bigger 
than this maximum.  In this approach, any pair of variables that would have been treated 
with the (u,u) strategy would now be assigned the largest reasonable correlation.  And 
any pair of variables that would have been treated with the (u,1�u) strategy would now 
be assigned the smallest (most negative) plausible correlation.  The simulation would 
then employ the methods discussed in Section 3.6 to generate variables correlated as 
prescribed. 

Example:  This example merely illustrates the monotonicity of the influence of 
correlation on a convolution.  Figure 26 shows the variation in the distributions of 
products XY where X ~ normal(5,1) and Y ~ normal(10,2) and X and Y are correlated to 
various degrees as computed in a Monte Carlo simulation involving 1000 replications 
using the method of Scheuer and Stoller (1962).  There are nine distributions depicted, 
corresponding to Pearson correlations of �1, �0.75, �0.5, �0.25, 0, 0.25, 0.5, 0.75 and 1.  
The correlation of �1 yields the steepest distribution, and the correlation of +1 yields 
the shallowest.  Intermediate correlations yield distributions intermediate in slope.  The 
effect on the tails of the product distribution can be seen in the figure.  The effect on the 
mean of the distribution is fairly minor and ranges roughly linearly from 48 to 52 as 
correlation increases.  The effect on the standard deviation, on the other hand, is more 
substantial.  For the correlation of �1, the standard deviation is 2.88, but for the 
correlation of +1, it is 20.5.  Figure 27 depicts the effects on these parameters. 
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Figure 26:  Distributions of products of normal factors under varying correlations. 
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Figure 27:  Effect of correlation on parameters of the product distributions. 
 

There are some significant caveats associated with dispersive Monte Carlo 
sampling.  The most important caveat is that it is incomplete.  It cannot assess the 
possible consequences of nonlinear dependencies.  Some authors (e.g., Burgman et al. 
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1993; Goovaerts et al. 2000; Kaas et al. 2000) seem to suggest that the dispersive 
answer is an “upper bound” on the unknown true distribution, but this is certainly not 
the case, as we shall discuss in Section 4.2.  If an analyst uses this approach, it should 
be with a full understanding of the nature of the assumption that excludes so many 
potential dependencies.  Another disadvantage of this approach is that it usually cannot 
be used to estimate the how narrow the final probability distribution might be.  
Although it can find the most dispersed (i.e., the widest) distribution, it cannot be used 
to get the least dispersed (narrowest) one.  This is apparent as soon as one tries to 
estimate the narrowest distribution for the sum A+B+C.  If u is assigned to A and 1�u to 
B, there isn’t anything that can be assigned to C.  (Assuming independence certainly 
does not yield the narrowest distribution.  This is clear in the very simplest case.  For 
instance, if A and B are uniformly distributed on [0,1], an assumption of independence 
yields the triangular distribution [0,1,2].  The narrowest possible distribution, of course, 
is the invariant distribution at 1.)    

4.2 Fréchet bounds 
When empirical information is lacking so that an analyst cannot be confident about the 
nature of the dependencies among the variables, it may often be useful to compute 
bounds on the risk result without making any assumption at all about one, some or all of 
the dependencies.  Dependency bounds analysis (Makarov 1981; Frank et al. 1987; 
Williamson 1989; Williamson and Downs 1990; Ferson and Long 1995) produces such 
bounds, which are often also mathematically best possible in the sense of being as tight 
as possible given the stated information.  This strategy generalizes the assumption of 
multivariate linearity of the relationships described in Section 4.1.  Dependency bounds 
are sure to enclose the result, no matter what correlation or nonlinear dependency may 
exist between or among any of the variables.  Thus, the results of a dependency bounds 
analysis are generally bounds on a cumulative distribution function, rather than an 
approximation of one such as might be given by Monte Carlo simulation.  The strategy 
is flexible enough to model independence among some variables while making no 
assumption about the dependencies among others.   
 Kolmogorov posed the question: what are bounds on the distribution function of 
a sum given fixed marginal distributions?  Only quite recently did Makarov (1981) 
solve Kolmogorov’s problem by finding the best possible bounds for the distribution.  
Frank et al. (1987) showed that the solution to the Kolmogorov problem is a special 
case of a simple inequality and generalized the result to arbitrary functions increasing in 
each place such as multiplication of positive variables.  Williamson and Downs (1990) 
articulated the strategies for how these bounding formulas could be used in practice, 
extended the proof of the best possible nature of the bounds, and described software 
code to implement the calculations.  Here we briefly describe the main result of this 
body of work and give a numerical example to illustrate the calculation. 

Let us start with the main theorem of Frank et al. (1987).  Let X and Y be 
random variables on �+ with distribution functions F and G respectively.  For the 
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distribution function of Z = L(X, Y) where L is a binary operation onto �+ that is non-
decreasing in each place and continuous (except possibly at infinity), �W,L(F, G) is an 
upper bound and �W,L(F, G) is a lower bound.  These are pointwise best possible 
bounds.   

The bounds �W,L(F, G) and �W,L(F, G) mentioned in the theorem are the 
supremal and infimal convolutions respectively, which are defined by 
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where Cd(u, v) = u + v � C(u, v), as applied to the copula W(u, v) = max(u + v � 1, 0), 
which is the lower Fréchet-Hoeffding limit on all copulas.  It is interesting that the 
lower copula bound determines both the lower and the upper bound on the distribution 
function of Z.  The upper bound has no role in the calculation. 

Setting L(X, Y) to addition (which is increasing in each place) and simplifying, 
the upper and lower bounds on the distribution of Z=X+Y are  
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respectively.  Actually, these bounds are valid for all real values because addition is 
monotonic over all �.  Comparable bounds on the product Z=XY are almost identical 
except that the + in the conditions for the supremum and infimum is replaced with �.  
These bounds are valid so long as X and Y are almost surely* positive.  Transformations 
may be employed to extend the approach to multiplication between distributions that are 
either entirely non-negative or entirely non-positive, but distributions that straddle zero 
remain problematic in this approach. 

Because subtraction is not increasing in each place, we require a substitution 
replacing Y with its image �Y, whose distribution is just 1�G(�y).  Thus, the upper and 
lower bounds for the difference Z=X�Y =X+(�Y) are  
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respectively.  With a similar substitution, the bounds for quotients of positive numbers 
can also be obtained. 
                                                 
*The phrase “almost surely” means “except possibly for a set of measure zero”. 
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 Note that the bounds obtained rigorously contain the distribution for Z no matter 
what the correlation or dependency between X and Y.  They are also the pointwise best 
possible such bounds, which means they could not be any tighter without excluding 
some possible distributions.  Note also that these bounds are often considerably wider 
that those obtained by wiggling the correlation coefficient in a sensitivity study. 
 Example:  Suppose that X ~ weibull(1.5,3.5) and Y ~ uniform(2, 9).  These input 
distributions are depicted on the left and middle graphs of Figure 28.  (The Weibull 
distribution is truncated at the 99.5th percentile for convenience.)  The best possible 
bounds on the distribution of the quotient without making any assumption about the 
dependence between X and Y are shown in the rightmost graph.  The distribution 
resulting from convolution under an independence assumption is also shown on the 
same graph in gray for comparison. 
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Figure 28:  Dependency bounds for the quotient of random variables. 
 
 

4.2.1 Fréchet bounds with Dempster-Shafer structures 
This section explains how one can project Dempster-Shafer structures through 
arithmetic operations such as addition, multiplication, etc., without making any 
assumption about the dependence between the operands.  We will first try to extend the 
approach we’ve used in previous sections but will discover that it does not produce 
good results.  We will then introduce two methods that work well which are based on 
entirely different approaches. 

The computational approach based on the Cartesian product described by Yager 
(1986; Ferson et al. 2003) apparently does not readily generalize to this case.  To see 
why, consider the following numerical example.  Suppose that X is the Dempster-Shafer 
structure {([0,1], 1/4), ([0,2], 1/4), ([2,3], 1/4), ([3,4], 1/4)} and that Y is the Dempster-
Shafer structure {([2,5], 1/3), ([4,9], 1/3), ([8,9], 1/3)}. And suppose that we want to 
compute the Dempster-Shafer structure that characterizes the quotient X/Y without 
making any assumption about the dependence between the two quantities.  One 
approach is to fashion the Cartesian product: 
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X / Y                 

X 
      Y 

 
[0,1] 
1/4 

 
[0,2] 
1/4 

 
[2,3] 
1/4 

 
[3,4] 
1/4 

   [2,5] 
   1/3 

[0, 0.5] 
[0,0.25] 

[0,1] 
[0,0.25] 

[0.4,1.5] 
[0,0.25] 

[0.6,2] 
[0,0.25] 

   [4,9] 
   1/3 

[0,0.25] 
[0,0.25] 

[0,0.5] 
[0,0.25] 

[0.222,0.75] 
[0,0.25] 

[0.333,1] 
[0,0.25] 

   [8,9] 
   1/3 

[0,0.125] 
[0,0.25] 

[0,0.25] 
[0,0.25] 

[0.222,0.375] 
[0,0.25] 

[0.333,0.5] 
[0,0.25] 

 
where the elements of X are along the top row and the elements of Y are down the 
leftmost column.  The first lines in the cells of the Cartesian product are the focal 
elements of the quotient.  They are obtained by division of the marginal intervals, i.e., 
the focal elements of X and Y using standard interval arithmetic (Moore 1966).  (Note, 
for instance, that [2,3] / [4,9] is [0.222,0.75] and not [0.5,0.333].)  The second line in 
each cell is supposed to be the probability mass associated with that focal element.  In 
this situation where we make no assumption about dependence between X and Y, this 
probability mass must be given as an interval.  Following the rules described in 
Section 2.3 for computing probabilities of events when their dependence is unknown, 
the bounds of each interval are obtained from the Fréchet inequalities on the 
conjunction of two events:  (i) the numerator is in that column’s marginal focal element, 
and (ii) the denominator is in that row’s marginal focal element.  The operation is 
conjunction because we want the probability that X is in its focal element and that Y is 
in its focal element.  In this case, andFréchet(1/3, 1/4) = [0, 0.25] for each cell.   

This Cartesian product is unlike that suggested by Yager (1986) or the one 
considered in Section 3.5.2, because the probability masses do not seem to sum to unity.  
The sum of the twelve interval probability masses is [0, 3], which includes but does not 
equal 1.  Note that it would be clearly wrong to arbitrarily assign equal masses to each 
focal element or scale them so that they sum to one.  The only correct interpretation of 
this Cartesian product is that each cell could have as little as zero or as much as one 
quarter of the mass.  Because we are making no assumption about dependence, we’re 
not sure exactly where the mass might go.  Figure 29 depicts the focal elements 
associated with the quotient that were computed in the Cartesian product.  (In this 
graph, the vertical scale is not meaningful;  the intervals are simply arranged in an 
arbitrary vertical order so that their horizontal locations will be clear).  Note that the 
expression ‘focal elements’ for these intervals could be considered an abuse of 
terminology because their masses don’t strictly sum to one.  The cumulative plausibility 
function of a Dempster-Shafer structure characterizes the most leftward disposition of 
mass consistent with that structure.  For the array shown in Figure 29, the cumulative 
plausibility function computed by this approach based on the Cartesian product must be 
the unit step function at zero H0(x/y).  It would have to be there because 6 of the focal 
elements have left endpoints at zero.  Any four of them could be such that all of the 
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mass is assigned to this value.  The cumulative belief function, on the other hand, 
reflects the most rightward disposition of mass.  If each focal element contains at most a 
quarter of the mass, we need only examine the largest four right endpoints.  These are 2, 
1.5, 1 and 1.  Thus, the cumulative belief function computed by this approach is a 
discrete distribution with half its mass at 1, a quarter of its mass at 1.5 and the 
remaining quarter of its mass at 2.  See the gray step functions in Figure 30. 
 

0 1 2
X/Y

0 1 2
X/Y

 
Figure 29:  ‘Focal elements’ from the Cartesian product for the quotient X/Y 

under no dependence assumptions (only the horizontal position is 
meaningful). 

 
Although the computational approach based on the Cartesian product respects 

the constraint that probabilities have to sum to unity, it does not take a full proper 
account of this fact to obtain the best possible bounds on the quotient.  The probability 
interval given for each cell in the Cartesian product represents the best possible bounds 
on the mass associated with that interval, but there are necessary relationships between 
the elements that are not captured in this computational approach.  For instance, notice 
that the focal elements in 6 cells of the Cartesian product overlap zero.  According to 
the mass calculations in these 6 cells, the total mass that could be at zero must be 
between 0 and 1.5.  Of course, we know that the mass cannot possibly be more than 1!  
Indeed, we can see by inspection that, at most, only half of the mass for X could be at 
the value zero because two columns have focal elements containing zero, and each has a 
probability mass of ¼ according to the top margin. 

Berleant and Goodman-Strauss (1998; Berleant and Cheng 1998; Berleant and 
Zhang 2004a; 2004b) described a mathematical programming approach to the 
computation that produces a substantially better answer because it takes account of the 
information and constraints in a fully comprehensive way.  Their approach maximizes 
the probability represented by the cumulative plausibility function (or left bound of a p-
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box) for every value of the abscissa, subject to the constraints that the masses in each 
row must add up to 1/3, and the masses in each column must add up to 1/4, and all 
masses must be non-negative.  The approach likewise minimizes the probability 
represented by the cumulative belief function at every value of the abscissa subject to 
the same constraints.  More generally, a linear program is formulated for each abscissa 
value for each bound that takes as constraints the fact that the probability masses in the 
cells of each interior (non-marginal) row must sum to the marginal probability of that 
row, and likewise for each interior column.  This approach neatly sidesteps the problem 
of determining exact joint distributions of probability masses and finds the maximum 
(or minimum) value of the p-box bounds given the set of all joint probability mass 
distributions satisfying the constraints.  The output from these mathematical 
programming exercises yields the best-possible cumulative plausibility and belief 
functions for arithmetic operations and other binary functions that are monotonic in all 
directions (including diagonally;  see Section 8 for an example of a function that s not 
monotonic in the diagonal direction) over the range of the input arguments.  Because 
linear programming is required to implement this approach, they must generally be 
done by computer, even for fairly simple problems. 

Example:  Consider again the numerical example with which this section began.  
Evaluate the quotient X/Y without making any dependence assumption, where X is the 
Dempster-Shafer structure {([0,1], 1/4), ([0,2], 1/4), ([2,3], 1/4), ([3,4], 1/4)} and that Y 
is the Dempster-Shafer structure {([2,5], 1/3), ([4,9], 1/3), ([8,9], 1/3)}.  The cumulative 
plausibility and believe functions for the two inputs are shown in the left two graphs of 
Figure 30.  The calculations implied by the Berleant-Goodman-Strauss algorithm are 
too complex to show, but they yield the Dempster-Shafer structure ([0, 0.375], 0.08), 
([0, 0.5], 0.25), ([0, 0.75], 0.09), ([0, 1], 0.11), ([0.222, 1], 0.14), ([0.222, 1.5], 0.09), 
([0.222, 2], 0.01), ([0.333, 2], 0.25)}.  The cumulative plausibility and belief functions 
for this structure are displayed as black bounds on the right-most graph of Figure 30.  
For contrast, the analogous functions that would have been obtained from the approach 
based on the Cartesian product are displayed as the gray bounds.  As expected, the 
black bounds are considerably tighter than the gray bounds.  The optimal bounds 
produced by the this calculation involving linear programming are identical to the 
results that would be obtained from the approach that will be described next in 
Section 4.2.2. 
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Figure 30:  Quotient of Dempster-Shafer structures without any dependence 

assumptions. 
 

4.2.2 Fréchet bounds with p-boxes 
Williamson (1989; Williamson and Downs 1990, page 112) explained how the Fréchet 
bounds could be used with probability boxes.  If the p-box for the quantity X is 

],[ XX FF  and the p-box for the quantity Y is ],[ YY FF , then the p-box for the quantity 

X+Y computed without dependence assumptions is ],[ YXYX FF
��  where 
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In contrast, the analogous formulas for the p-box of the difference X�Y are 
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Note that in these formulas, the upper bound is combined with the lower bound and the 
lower bound is combined with the upper bound.  This is reminiscent of interval 
subtraction (Moore 1966).  The formulas for multiplication and division of p-boxes 
characterizing non-negative quantities are very similar to the formulas for addition and 
subtraction respectively.  The only differences are in the conditions for the supremums 
and infimums (z=x+y becomes z=xy for multiplication and z=x�y becomes z=x/y for 
division).  Although the formulas given here are rather simple, they are not well suited 
to calculation via computer because they involve finding the largest and smallest values 
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over an infinite number of cases, but Williamson and Downs (1990) gave explicit 
algorithms that are convenient for such calculations. 

Example:  Suppose that X ~ weibull([1,2], [3,4]) and Y ~ uniform([2,5], [8,9]).  
(This means that X is distributed as a Weibull distribution characteristic life between 1 
and 2, and shape parameter between 3 and 4, and Y is uniformly distributed but we are 
unsure about what the endpoints of this distribution are.  See Ferson et al. 2003 for 
details about how p-boxes are generated from such specifications.)  These inputs, along 
with the resulting p-box for the quotient X/Y are depicted in Figure 31. The result was 
computed without appealing to any assumption about the dependence between X and Y.  
It was obtained using the Williamson and Downs (1990) formulations described above.  
For instance, the upper bound on the distribution of the quotient was computed as  
 

� �0),()(mininf1)(
/

/ yFxFzF YX
yxz

YX ���
�

 

 
where )(xF X  is the left bound on the X (which is the s-shaped curve from 0 to about 
1.5) and FY(y) is the right bound of Y (which is the straight line going from 5 to 9).  This 
operation to obtain the upper bound on the quotient is itself a convolution because the 
value of the bound at any value z is computed from all possible values of x and all 
possible values of y that combine to give that z = x / y. 
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Figure 31:  Quotient of probability boxes without dependence assumptions. 
 

4.2.3 Dependence may not always matter 
It is certainly true that the dependencies between random variables can often make a 
substantial difference to the results of risk assessments that depend on them.  In such 
cases, knowing the dependency may provide considerable improvement (tightening) of 
the p-box or Dempster-Shafer structure that characterizes the answer.  But there are 
situations involving epistemic uncertainty when knowing the dependence between 
random variables is irrelevant to the risk result that depends jointly on these variables.  
In particular, suppose a random variable X is characterized only by the interval [x1, x2].  
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(This interval is equivalent to the degenerate Dempster-Shafer structure {([x1, x2], 1)}.  
It is also equivalent to the degenerate probability box (Hx1(x), Hx2(x)), consisting of 
spike bounds at the endpoints of the range.)  Then, under many practical conditions, 
convolutions between X and any other probability distribution, Dempster-Shafer 
structure or p-box under the Fréchet assumption will yield the same result as the 
convolution under an independence assumption, or, indeed, any assumption about 
correlation or dependence between X and Y.  We might write this as  
 

),,(),,(\\// CYXconvolverYXconvolveYXYXYXYX ���������  
where + denotes addition under no assumption about the dependence between X and Y, 
|+| denotes addition under independence, /+/ denotes addition under perfect dependence, 
\+\ denotes addition under opposite dependence, r is any correlation and C is any 
copula.  Similar equivalences can hold for subtraction, multiplication, etc.  This means 
that, if one of the operands is an interval or something equivalent to an interval, the 
knowing the dependence does not allow one to tighten or improve the estimate of a 
convolution involving it.  In this sense, having only an interval estimate for a quantity 
means that the analyst is freed from any concern about its dependence with other 
variables with which it is to be combined in the assessment.  Fetz and 
Oberguggenberger (2004) review the conditions under which these equivalences hold. 

There are two caveats about this.  The first caveat is that this applies only to 
convolutions of distributions.  Dependence will generally still be relevant and important 
for tightening the result from the Fréchet case if the interval represents a probability of 
an event.  The second caveat is that there are exceptions to this even for convolutions of 
distributions.  For instance, suppose we want to compute the product XY where X is the 
interval [�1, +1] and Y is the Dempster-Shafer structure {([�1, 0], 0.5), ([0, 1], 0.5)}.  
The convolution via Yager’s (1986) Cartesian product, which assumes random-set 
independence, produces the same answer as the Fréchet case, but it is not* best possible 
if X and Y are strongly dependent (see Section 3.1.3). 

4.3 Using partial information about the dependency 
The algorithms of Yager (1986), Williamson (1989; Williamson and Downs 1990) and 
Berleant (1993; 1996; Berleant and Goodman-Strauss 1998) provide bounds for 
convolutions (i) under an assumption of independence, and (ii) in the Fréchet case with 
no assumption at all about dependence between the variables.  The bounds for the 
Fréchet case are generally much wider than for they are for independence.  It would be 
helpful to be able to tighten the bounds when partial information is available about 
dependencies among the input variables.  Ideally, for instance, an analyst might like to 
be able to translate an empirical statement like “the correlation coefficient is between 
0.5 and 0.6” into bounds on the convolution.  It might likewise be desirable to account 
for the qualitative information about dependency to tighten the uncertainty in a risk 

                                                 
*It is worth understanding why it isn’t because it highlights a difference between random-set 
independence and strong independence.  See Section 8 for the explanation and proofs. 
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assessment.  The result would be a tightening over the Fréchet case but a relaxation of 
the result based on a precise dependency model. 

The algorithms currently used to compute convolutions between dependent 
variables, or between variables with unknown dependence, are of two distinct kinds.  
The first approach is fundamentally mathematical programming (e.g., Berleant and 
Zhang 2003; Berleant and Goodman-Strauss 1998).  The second way is an analytical 
approach based on sets of copulas (e.g., Williamson and Downs 1990).  Consequently, 
there are two avenues on which to seek ways to use partial information about 
dependencies. 

4.3.1 Lower bound on copula 
This section describes a general way that the copula approach of Williamson and 
Downs (1990) can be made to produce tighter bound on convolutions from partial 
knowledge about the dependency between the variables involved. 

The Fréchet bounds (Section 4.2) limit the distributions of convolutions of 
variables when their dependence is totally unknown.  The computation of these bounds 
depends on the marginal distributions of the variables, which operation (+, �, �, 2) 
characterizes the convolution, and the Fréchet-Hoeffding lower limit W, which is the 
lower bound on all copulas.  The bounds on the distribution functions could be tighter if 
the copulas could be restricted to a smaller set than “all possible dependencies”.  For 
instance, if C is a different lower bound on the copula connecting random variables X 
and Y with distribution functions F and G respectively, then �C,+(F, G) is the pointwise 
best possible upper bound and �C,+(F, G) is the pointwise best possible lower bound on 
the distribution of Z=X+Y, where  
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where Cd(u, v) = u + v � C(u, v).  The lower bound on the copulas need not be described 
parametrically or even have a closed-form expression.  It could, for instance, be 
represented in a lookup table which could be computationally efficient. 
 There are some situations in which partial knowledge about the dependence 
could be used to obtain substantially tighter bounds on convolutions.  For instance, 
knowing the value of the copula at one or more points allows us to improve the Fréchet-
Hoeffding bounds (Nelsen 1999, page 62).  (Such points should be in the interior of the 
unit square, because all the points on its edge are already specified for any copula.)  
Suppose the value of the copula at the point (a, b) is *.  This value must of course be in 
the interval [max(a+b�1, 0), min(a, b)], which is the elementary Fréchet limit.  Then the 
lower bound on the copula is the function 
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Knowing multiple points allow one to create a synthetic bound as the maximum at each 
point (u,v) of all these functions.  A similar upper bound can be specified for the copula, 
but our interest focuses on the lower bound because it determines both upper and lower 
bounds on convolutions. 

Nelsen et al. (2001; 2004) studied the problem of bounding copulas.  Cossette et 
al. (2001) also reviewed ways to improve the Fréchet bounds given partial information 
about correlation and covariance among the inputs. 

4.3.2 Sign of dependence 
A promising approach to tighten risk calculations is to make use of information about 
the sign of the dependence between the variables.  There are several notions of sign 
dependence.  In this section, we consider the most important and common one. 

Two random variables are “positive quadrant dependent” (PQD, Lehmann 1966; 
Hutchinson and Lai 1990; Nelsen 1991; 1995) if the probability that the random 
variables are both small (or large) together is at least as great as if they were 
independent.  For random variables, X ~ F(x) and Y ~ G(y) whose joint distribution is H 
and whose copula is C, the following definitions of positive quadrant dependence are 
equivalent in the context of precise probabilities: 
 

i) P(X � x, Y � y) 	 P(X � x) P(Y � y) for all x and y, 
ii) H(x, y) 	 F(x) G(y) for all x and y, 
iii) C(u,v) 	 uv for all u and v, and 
iv) P(Y � y | X � x) 	 P(Y � y). 

 
Thus, random variables are PQD if their joint distribution function is no smaller than 
the product of their respective marginal distribution functions at every point in the space 
of the two variables.  There are several conditions that imply variables will be PQD, 
including when each is a stochastically increasing function of the other, i.e., P(Y>y | 
X=x) is a non-decreasing function of x for all y, and P(X>x | Y=y) is a non-decreasing 
function of y for all x.  Positive quadrant dependence implies non-negative Pearson, 
Spearman and Kendall correlations.  However, the observation that a correlation is 
positive does not imply the variables are PQD.  Even knowing a measure of correlation 
is 0.999 is not enough to conclude that two variables are positively quadrant dependent.  
This notion of dependence is quite a bit stronger than that measured by the traditional 
coefficients.  Nevertheless, it seems that is often still a plausible one that may 
reasonably be expected to hold in nature in many circumstances.  This idea has been 
used in many statistical and engineering settings (see the references in Hutchinson and 
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Lai 1990; Nelsen 1999), and seems to capture one sense analysts have in mind when 
they use the phrase ‘positively depends’. 

In the context of imprecise probabilities, however, it seems clear that, like the 
concept of independence (Section 3.1.3), the concept of positive quadrant dependence 
will furcate into multiple notions (Peter Walley, pers. comm.) so that the various 
definitions above could lead to different properties.  Numerical discrepancies in 
calculations arising from the different possible definitions have not yet, however, been 
observed in practice. 

Bounds on the convolution of PQD variables can be computed by extending the 
theorem of Frank et al. (1987) simply by replacing the lower copula bound W with � 
(see Section 4.3.1 and 4.2).  For example, bounds for a sum of PQD variables whose 
marginals F and G are 
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Note that these formulas give bounds that are not the same as an envelope of the perfect 
and independent convolutions (which would be narrower and pinch to a point that may 
be untenable; see Figure 41).  The differences in the formulas for the other arithmetic 
operations are similar to those for the original Fréchet bounds.  Straightforward 
derivations allow these formulas to be extended to p-boxes.  There is no known 
analogous algorithm based on mathematical programming for Dempster-Shafer 
structures, but they can be handled by first converting them to probability boxes (Ferson 
et al. 2003). 

There is of course a complementary notion of negative quadrant dependence.  
Random variables X and Y are negative quadrant dependent (NQD) if and only if X and 
�Y are positively quadrant dependent.  Convolutions with NQD variables can be 
calculated similarly. The intersection of the convolution bounds for positive and 
negative quadrant dependencies is not the same as the bounds obtained under 
independence.   

One significant caveat about using qualitative information about signs of 
dependencies is that the feasibility checks (Section 3.6.1) cannot be used to check the 
reasonableness of an analyst’s specifications.  Because there is no analog of the positive 
semi-definiteness constraint on correlation matrices for sign information about 
dependencies, analysts are free to specify almost any pattern of intervariable 
dependencies.  This means that there are very few consistency checks that can be used 
by reviewers or automatically applied by software to help to ensure that the assessment 
is reasonable.  One can, however, infer from the fact that X and Y are PQD that X and 
�Y are NQD, and that �X and �Y are PQD. 

Figure 32 shows the lattice of dependencies arranged by sign considerations.  It 
characterizes the relationship between the qualitative sign dependencies considered in 
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this section and the quantitative correlation constraints considered in Section 4.3.3.  
Going up on the lattice relaxes a dependence assumption.  This would tend to widen the 
uncertainty of the output of an analysis.  Going down on the lattice specifies a 
dependence more fully, and would generally result in tighter results.  The figure 
visually emphasizes that positive quadrant dependence and negative quadrant 
dependence are subsets, respectively, of positive and negative correlations.  Each node 
of this lattice contains any lower node in its conceptual definition of dependency.  It 
also ‘contains’ the lower node in the sense that a convolution based on the lower node’s 
dependency will always be tighter than a convolution based on the higher node’s 
dependency. 
 

NQD PQD

r � 0

r = 0

0 � r

opposite, W independence, � perfect, M

Fréchet

NQD PQD

r � 0

r = 0

0 � r

opposite, W independence, � perfect, M

Fréchet

 
Figure 32:  Lattice of sign dependencies. 
 

Example:  Consider two discrete random variables, X and Y, identically and 
uniformly distributed on the integers 1, …, 25.  The Fréchet bounds for the convolution 
of these random variables are displayed on Figure 33 as gray step functions.  If the 
variables are held to be PQD, these bounds contract to those shown in black on the 
figure.  Note that, although there is a noticeable tightening of uncertainty, it is weakest 
at the tails.  In assessments where focal interest is in extremal values of the output, the 
advantage of using knowledge about sign of the dependence may be less than might 
have otherwise been expected.  The quantitative effects of using such knowledge will 
vary from problem to problem and it would premature to dismiss it without careful 
specific study. 
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Figure 33:  Convolution of positive quadrant dependent random variables (black) 

compared to the Fréchet bounds for the same variables (gray). 
 

Example:  The leftmost graph of Figure 34 depicts a p-box for a variable X that 
we know to be unimodal and to have as its minimum, maximum and modal values, 0, 1 
and 0.2, respectively.  The middle graph depicts the p-box for a variable Y which we 
know to have uniform distribution but only know the intervals [1,2] and [3,4] for its 
minimum and maximum respectively.  Suppose that we wish to compute the bounds on 
the distribution of the sum X+Y under the assumption that X and Y are positive quadrant 
dependent.  According to the formulas described above, the upper and lower bounds on 
the distribution of the sum z are  
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where ))2.0/,1min(,0max()( xxF �  is the left bound of X (which is the increasing 
straight line from 0 to 0.2), ))2/)1(,1min(,0max()( �� yyG is the left bound for Y (the 
increasing straight line from 1 to 3), ))8.0/)2.0(,1min(,0max()( �� xxF  is the right 
bound of X (the straight line from 0.2 to 1), and ))2/)2(,1min(,0max()( �� yyG  (the 
straight line from 2 to 4).  To evaluate the supremum and infimums, the calculations 
require convolutions that consider all possible combinations of x and y that sum to the 
given z.  The result in this case is very broadly uncertain.  The uncertainty is almost as 
wide as the Fréchet case where we make no assumption whatever about dependence 
between X and Y.  Knowing that the variables X and Y are positively dependent only 
reduces uncertainty by shaving a part off the lower right corner of the output p-box (and 
a much smaller part off the upper left corner).   
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Figure 34:  Convolution of positive quadrant dependent probability boxes. 
 

4.3.3 Specified correlation coefficient 
As already mentioned, it would be desirable to be able use quantitative information 
about dependencies among the input variables to improve the risk estimates.  For 
instance, an analyst might like to be able to translate a statement like “the correlation 
coefficient is between 0.5 and 0.6” into improved bounds on the convolution.  This 
section shows some example calculations that suggest that such information is not likely 
to be nearly as important as might have otherwise been thought. 
 Example:  Suppose X and Y are both integers uniformly distributed between 1 
and 4.  What are bounds on the distribution function for X+Y given that X and Y are 
uncorrelated, i.e., their Pearson correlation is zero?  There is no known copula-based 
approach to solve this question (but see Nelsen et al. 2001; 2004).  The question can, 
however, be framed and solved as a mathematical programming problem similar to 
those addressed in Berleant and Goodman-Strauss (1998) with the additional constraint 
that correlation is zero (Berleant and Zhang 2003a; 2003b).  The result of this numerical 
exercise is shown in Figure 35.  The gray cumulative plausibility and belief functions 
circumscribe the sum X+Y given their uniform marginals and their lack of correlation.  
Also shown on the same figure in black are the bounds for the Fréchet case in which no 
assumption at all was made about dependence between X and Y.  The surprising finding 
of this exercise is that most of the Fréchet case’s incertitude already exists in the 
uncorrelated case.  This means that the analyst’s knowing the variables are uncorrelated 
does not help much to tighten the uncertainty of the result.  We see that assessments in 
which an analyst has interpreted an empirical correlation near to zero as evidence of 
independence between the variables without ancillary evidence or argument are actually 
extremely weak and unreliable analyses. 
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Figure 35:  Bounds on convolution assuming inputs are uncorrelated compared to 

bounds under the Fréchet case for X,Y ~ discreteuniform(1,4) 
 

Example:  To dispel the notion that this finding could be due to having so few 
possible values in the marginal distribution, we repeated the exercise but allowed more 
values in the marginals.  Suppose now that X and Y are integers, each uniformly 
distributed over the integers 1 to 25.  The bounds on the convolution X+Y in the Fréchet 
case for which no assumption is made about the dependence between X and Y are 
shown as black step functions in Figure 36  The bounds on the same convolution 
assuming that the variables have zero correlation are shown as gray step functions.  
Clearly, it is still the case that almost all of the uncertainty of the Fréchet case remains 
even when we add the information that the variables are uncorrelated.  Of special 
interest are the distribution tails, where knowing the correlation is zero allows no 
improvement at all over the Fréchet case. 
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Figure 36:  Bounds on convolution assuming inputs are uncorrelated compared to 

bounds under the Fréchet case for X,Y ~ discreteuniform(1,25) 
 
Example:  We extend the previous example by specifying the correlation as 0.5 

rather than zero.  Again, mathematical programming is used to compute the bounds on 
the distribution (Berleant and Zhang 2003a; 2003b).  The result shows fairly wide 
bounds on the sum X+Y, which is shown as the gray step functions in Figure 37.  These 
bounds are slightly tighter overall than the comparable bounds for the case when 
correlation is zero shown in the previous figure, but they are still virtually as wide as the 
bounds for the Fréchet case in the tails where interest is usually focused. 
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Figure 37:  Bounds on convolution assuming inputs have correlation 0.5 (gray) 

compared to bounds for the Fréchet case (black). 
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We saw in Section 3.1.1 that uncorrelatedness does not imply independence, and 
that the variety of dependencies each yielding a correlation of zero could lead to wide 
variation in the resulting convolutions.  The last example shows that, to a large extent, 
the same is true for other magnitudes of correlation.  So what does quantitative 
information correlation tell us about convolutions?  It turns out that the answer is, often, 
not very much.  The reason for this is that many* copulas produce the same correlation.  
This is especially true of correlation near zero.  Uncorrelatedness, when correlation is 
zero, entails very few constraints on the copula and therefore there is more freedom for 
the distribution of the convolution.  There are very many ways a joint distribution can 
have zero correlation.  The consequence of this is that, the closer a correlation gets to 
zero, the less it says about a dependency.  This is an important fact that may seem 
counterintuitive.  Although independence is a very strong assumption, uncorrelatedness 
is a very weak assumption, at least with respect to the bounds it implies for 
convolutions.  It is interesting to note that saying a correlation is, say, 0.8, tells more 
about the convolution result than saying the correlation is exactly 0.  As the specified 
correlation gets stronger and stronger (whether positively or negatively), in fact, it 
constrains the convolution more and more, until the extremal correlation is reached 
which corresponds to perfect or opposite dependence. 

It is unlikely that this idea of using quantitative information about dependence 
can be rescued by switching to a different measure of correlation.  The fact that 
Kendall’s � is 0, for instance, implies no nontrivial constraints on a copula at all.  If 
Spearman’s � is 0, there may be some weak constraints, but it is not entirely clear how 
to make use of this fact to tighten the bounds on the resulting distribution (but see 
Nelsen et al. 1999).  The Pearson product moment correlation coefficient is itself not a 
function solely of the copula, but also depends on the marginals as well.  Basically, the 
central problem is that these single scalar measures of dependency are averages over a 
two-dimensional function characterizing the interaction (the copula).  But the extreme 
behaviors of the convolution function depend on local features of the copula.  Thus, 
even if general constraint relationships could be found they are likely to be rather weak, 
so that knowing any of the correlation coefficients would not substantially improve or 
tighten the uncertainty about a calculation. 

Despite the modestness of its quantitative effect on calculations, it would be 
misguided for analysts to neglect the accounting of all available information about 
correlations or dependencies in their assessments and uncertainty models.  Making use 
of all such information, whether it be qualitative or quantitative, enhances the credibility 
of the resulting analysis.  It is often very important to risk managers, decision makers 
and other consumers of uncertainty analyses that this information is incorporated and 
properly accounted for in the analysis, especially if the information was hard won by 
special empirical effort.  Without assurances that the available information has been 

                                                 
*Recall that Figure 7 showed ten disparate dependence patterns associated with the same 
marginal distributions.  Flury (1986) also gave examples of different copulas associated with the 
same marginals. 
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included in the analysis, they will find it easier to reject or ignore its conclusions.  In 
situations when an analytical result can be shown to be best possible in the sense that it 
has the smallest uncertainty given the uncertainty present, the force of the conclusions 
becomes considerably stronger.  
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5 Myths about correlations and dependencies 
This section summarizes several of the most pervasive and pernicious myths in risk 
analysis about correlations and dependencies.  It addresses again many ideas that have 
already been introduced elsewhere in this report, but structures them in terms of the 
myths that interfere with conducting good assessments.  Some of these myths are 
obvious and widely recognized but still often perpetuated for the sake of mathematical 
convenience.  Other myths are more subtle or even rather esoteric and may not be 
widely appreciated by risk analysts.  Several of the myths about correlations and 
dependencies outlined here can lead to profound errors in risk assessments.  
 

Myth 1 

All variables are mutually independent. 
Many variables in complex natural and engineered systems are, in fact, correlated or 
have some nonlinear interdependence.  Although most risk analysts recognized that it is 
improper to assume that variables are independent in the face of evidence that they are 
not, many do so anyway as a shortcut or mathematical convenience.  In some cases, 
these counterfactual assumptions are laughable, as in the case of assuming mass of 
some component and its surface area are independent.  In some cases, assuming a 
perfect or opposite dependence would be a better default assumption than 
independence.  In general, it is incumbent on the analyst to model the dependence if 
only approximately. 

There is also impropriety in cases where independence is routinely assumed 
when there are no observations or other evidence available about the dependence 
between variables one way or the other.  The lack of evidence about dependence does 
not by itself justify an assumption of independence, although many analysts argue as 
though it does.  Fact:  wishing variables were independent so the analysis is easier 
doesn’t make them so.  In cases when the dependence is partially or completely 
unknown, appropriate methods to account for this epistemic uncertainty such as those 
described in Section 4 should be employed. 
 

Myth 2 

If X and Y are independent and Y and Z are independent, then X and Z are too. 
Mutual independence between X and Y and between and Y and Z doesn’t guarantee that 
X and Z are also independent.  In other words, independence is not transitive.  This fact 
should perhaps be obvious to risk analysts.  We have nevertheless observed the 
corresponding faulty reasoning applied in actual risk assessments.  Fact:  independence 
between X and Y and between and Y and Z implies nothing at all about the dependence 
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between X and Z.  Consider the following very simple example.  Let (X, Y, Z) be a 
discrete distribution consisting of the four points (1,1,1), (1,2,1), (3,2,3) and (3,1,3), 
each with probability ¼.  As depicted in Figure 38, plotting the three bivariate 
scattergrams (X versus Y, Y versus Z, and X versus Z) reveals that X and Y are 
independent, as are Y and Z, but that X and Z are (perfectly) positively dependent on 
each other.  If the four equiprobable points of the discrete distribution are instead 
(1,1,3), (1,2,3), (3,2,1) and (3,1,1), then the first two graphs are unchanged, but the third 
graph would show an oppositely dependent relationship between X and Z.   
 

 

Figure 38.  Discrete example of non-transitivity of independence. 
 

Myth 3 

Variables X and Y are independent if and only if they are uncorrelated. 
Whenever correlation is introduced in beginning statistics courses, a counterexample to 
this myth such as that shown in Figure 39 is immediately presented.  The variables X 
and Y in this graph are uncorrelated, i.e., they have a Pearson correlation of zero.  
However, they are clearly not independent.  Despite widespread attempts to disabuse 
students of the difference between uncorrelatedness and independence, this myth or the 
consequences of the myth nevertheless pervade risk assessment.  Uncorrelatedness does 
not generally* imply independence.  Fact:  independence implies that the correlation 
will be zero, but not vice versa. 

                                                 
*There are exceptions where uncorrelatedness actually does imply independence.  One 
exception, for instance, is when X and Y both have Bernoulli distributions such that P(X = 0) = 
P(X = 1) = 0.5 and P(Y = 0) = P(Y = 1) = 0.5.  Let h(x, y) denote the joint mass function for X 
and Y.  Let a = h(0,0), b = h(0,1), c = h(1,0), d = h(1,1), so 0 � a,b,c,d � 1 and a+b+c+d = 1.  
Because the marginals are Bernoulli distributions, we know that a+b = c+d = a+c = b+d = 
0.5.  If X and Y are uncorrelated, then r = E(XY) = E(X) E(Y)) / sqrt(V(X) V(Y)) = 0, which 
implies E(XY) = E(X) E(Y).  But E(XY) = � x y h(x,y) = 0�0�a + 0�1�b + 1�0�c + 1�1�d = d.  
At the same time, E(X) E(Y) = 0.5 � 0.5 = 0.25, so d = 0.25.  But this means that b has to also 
equal 0.25 (because b+d = 0.5), and, in fact, the Bernoulli constraints cascade so that a = b = c 
= d = 0.25, which means that h is necessarily the independence copula.  Thus, in this 
exceptional case, uncorrelatedness implies independence. 
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Sometimes the myth appears as “If two variables are normally distributed, then a 
zero correlation between them implies independence.”  Actually, normality of the 
marginal distributions is not sufficient.  Melnick and Tenenbein (1982) provides 
counterexamples (see also Flury 1986; Kowalski 1973).  Fact:  if variables are 
bivariately normal, then zero correlation implies independence. 
 

 
Figure 39.  Variables that are uncorrelated but obviously dependent. 
 

Myth 4 

Zero correlation between X and Y means there’s no relationship between X and Y. 
This myth is closely related to the previous one.  The phrase “no relationship” is really 
just another way of saying that knowing the value of either variable doesn’t help in any 
way to establish the value of the other variable.  (For precise probabilities, this is 
equivalent to saying the variables are independent; see Section 3.1.3.)  Figure 39 also 
provides a counterexample to this myth.  Fact:  uncorrelatedness does not imply there is 
no relationship between the variables.  X and Y are uncorrelated, but they clearly have a 
very strong relationship.  Knowing that X is 3 tells us that Y is around 12.  Knowing that 
X is 5 tells us that Y is around 15.  Knowing that Y is 8 tells us that X is either around 2 
or around 7.5.  There is an immense amount of information embodied in the relationship 
between the two variables even though they have zero correlation.  There are examples 
known in which random variables are uncorrelated yet are mutually completely 
dependent, that is, each is a function of the other. 
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Myth 5 

Small correlations imply weak dependence. 
Figure 39 also disproves this myth, which is closely related to the previous two myths.  
The falsity of this one is just as obvious, and yet it appears surprisingly often in 
multivariate data analyses and risk assessments. 
 

Myth 6 

Small correlations can be “safely ignored” in risk assessments. 
In an important paper, Smith et al. (1992) suggested that small-magnitude correlations 
could be “safely ignored” in risk assessments seeking estimates of means of linear 
arithmetic functions of random variables.  This is possible because means of sums and 
products are often similar to means for the independent case if a simple dependence 
with small correlation is introduced between the inputs.  In the real world, however, 
there are three complications that prevent us from ignoring dependence among 
variables.  First, many of the functions we need to evaluate are nonlinear.  Second, the 
dependencies involved are more complicated than can be captured with simple 
correlation coefficients.  Third, and probably most important, risk analysts are usually 
more concerned about the distributions’ tails rather than their means.  As has been 
illustrated several times in this report, tail risks can be radically influenced by 
dependencies even if correlation is zero.  The Smith et al. (1992) paper has been widely 
overextended and abused, and risk analysts should generally try to account for all 
dependencies that relate their input variables to one another even if they might happen 
to yield correlations of small magnitude. 
 

Myth 7 

Different measures of correlation are similar. 
Some risk analysts suggest that it doesn’t make much difference which measure of 
correlation is employed and that the various measures are pretty much interchangeable.  
This view is false, however, as even cursory inspection of examples will easily reveal.  
There are many different measures of correlation that are in common use and many 
more that have been proposed.  The most commonly used measures are Pearson’s 
product moment correlation and Spearman’s rank correlation, but there are a host of 
other measures that also arise in various engineering contexts, including Kendall’s rank 
correlation, concordance, Blomqvist’s coefficient, etc.  Hutchinson and Lai (1990) 
review many of these.  The choice of the measure can strongly influence the numerical 
characterization of a scattergram.  Figure 40 shows a variety of bivariate relationships 
as scattergrams.  Note that the units of the abscissa and ordinate are not shown because 
they are irrelevant and do not affect the magnitudes of the correlations.  Each of the six 
scattergrams displayed has the same Spearman rank correlation, which is one, 
corresponding to perfect dependence or comonotonicity.  But the scattergrams have 
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widely different Pearson correlation coefficients.  For instance, the Pearson correlation 
for the scattergram in the upper, left-hand graph is one, but the Pearson correlation for 
the scattergram below it in the lower, left-hand graph is about 0.6.  Fact:  the various 
measures of correlation are sensitive to different features of the scattergram. 
 

 

Figure 40.  Different bivariate relationships with the same Spearman rank 
correlation (unity) but widely different Pearson correlation coefficients. 

 

Myth 8 

A correlation coefficient specifies the dependence between two random variables. 
In fact, it takes a copula (dependence function) to fully specify the dependence between 
two random variables.  A correlation coefficient is often a very poor summary of the 
dependence;  it generally does not specify or determine the dependence.  Instead, it 
determines only a class of such dependencies.  In other words, many dependence 
functions have the same correlation.  See Section 3.7 for an introduction to copulas. 

Despite all appearances, Figure 40 is actually not an illustration of the fact that 
many dependence functions have the same correlation.  All of the scattergrams in this 
figure have exactly the same dependence function (which is the copula M associated 
with perfect or comonotonic dependence).  The differences among the scattergrams in 
Figure 40 are due entirely to the differences in the marginal distributions for the 
abscissa and ordinate variables. 
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In the assertion above that the correlation does not generally specify the 
dependence, the adverb “generally” was necessary because there some exceptions when 
the correlation does completely determine the dependence.  One exception is when the 
correlation is extreme, that is, when the dependence is perfect or opposite.  In this case, 
the Spearman rank correlation and Kendall correlation are either +1 or �1 (and the 
Pearson correlation is as large or as small as it can get given the marginal distributions).  
When one of these correlation measures is �1, the dependence function is determined to 
be M or W respectively (see Section 3.7).  Interestingly, as the correlation gets closer to 
zero, the family of dependence functions having that correlation gets larger and larger in 
its diversity.  (This fact tends to explain why Myth 6 is not true.)  See Figure 7 for 
examples of scattergrams corresponding to fixed marginal distributions with different 
dependence functions that all have the same Pearson correlation. 
 

Myth 9 

Pearson correlation varies between �1 and +1. 
By convention, most measures of correlation are scaled so that they range in the interval 
[�1, �1].  Some measures, such as Spearman correlation, can always range over this 
entire interval.  But not all correlation coefficients can vary across this range for 
arbitrary marginal distributions.  The Pearson correlation, in particular, often cannot 
achieve either �1 or �1.  For instance, if X is uniformly distributed over the unit interval 
[0,1] and Y is a lognormal distribution with underlying 
 = 0 and � = 1, then the 
correlation between X and Y cannot be any larger than about 0.7.  Depending on the 
marginal distributions involved, the largest possible Pearson correlation could in fact be 
arbitrarily close to zero.  Fact:  the Pearson correlation coefficient ranges within [�1, 
�1], but it may not reach all possible values in the interval for some marginal 
distributions. 
 

Myth 10 

Any patterns of correlations can be specified between multiple input variables. 
This myth is unrelated to the previous one, where constraints arose because of 
marginals.  Here we consider constraints on correlation that are irrespective of 
marginals.  If variable X is strongly correlated to both variables Y and Z, then it may not 
be possible that Y and Z are strongly negatively correlated to each other.  Fact: the 
pairwise correlations for a set of variables must satisfy certain feasibility constraints, so 
not all sets of correlations that one might specify are possible.  These constraints are 
rather complicated, but can be summarized by saying that a correlation matrix must be 
positive semi-definite (see Section 3.6.1).  Early versions of the software package 
@Risk (Palisade Corporation 1996; Salmento et al. 1989; Barton 1989; Metzger et al. 
1998) did not account for this constraint, and consequently would have produced 
nonsensical results whenever users would specify an infeasible set of correlations. 



 108 

 

Myth 11 

Perfect dependencies between X and Y and between X and Z imply perfect 
dependence between Y and Z. 
Extending the ideas discussed above about constraints on the correlation matrix, one 
might have expected that if a variable X is maximally correlated to variable Y, and 
variable Y is maximally correlated to variable Z, then we might be able to conclude that 
and X and Z are also maximally correlated.  Expressed in other terms, comonotonicity 
between both X and Y and between Y and Z would seem to imply there should likewise 
be comonotonicty between X and Z.  Furthermore, one might expect that if X and Y are 
maximally correlated (comonotonic) and Y and Z are minimally correlated 
(countermonotonic) then X and Z should be minimally correlated (countermonotonic) 
too. 

Let // denote perfect dependence, i.e., maximal correlation and comonotonicity, 
and let \\ denote opposite dependence, i.e., minimal correlation and 
countermonotonicity.  Below are facts that correct some of the mistaken ideas: 
 

Fact:  X // Y, and Y // Z  do not generally imply X // Z. 
Fact:  X // Y, and Y \\ Z  do not generally imply X \\ Z. 
Fact:  X \\ Y, and Y \\ Z  do not generally imply X // Z. 

 
Perhaps even more surprising is that X // Y and Y // Z together don’t even imply that X 
and Z can’t be independent.  A counterexample is easy to construct.  Let (X, Y, Z) be 
discrete, taking on of the four values (1,1,1), (1,2,3), (3,2,1), and (3,3,3), each with 
probability ¼.  Sketching the three bivariate plots reveals that X // Y and Y // Z, but X 
and Z are independent.  It is possible to conclude from perfect dependence between X 
and Y and between Y and Z that X and Z cannot be oppositely dependent, but that is a 
fantastically weaker conclusion that will rarely matter in a practical risk assessment. 

If Y and Z are independent, then f(Y) and g(Z) are also independent, where f and 
g are arbitrary measurable functions (Roussas 1997, page 166).  One might expect this 
fact could be extended to comonotonic or countermonotonic variables, but this is not the 
case.  Let 3 denote independence.   
 

Fact:  X // Y, and Y 3 Z  do not imply X 3 Z. 
Fact:  X \\ Y, and Y 3 Z  do not imply X 3 Z. 

 
The combination of perfect dependence with independence is subtle, and the mistakes 
that analysts make are understandable.  In fact, however, assuming perfect or opposite 
dependence between X and Y and independence between Y and Z doesn’t allow any 
conclusion at all about the dependence between X and Z.  Any relationship between 
them is possible.  One example would be where (X, Y, Z) take on the four values (1,1,3), 
(2,1,1), (2,3,3) and (3,3,1), each with probability ¼.  Bivariate sketches show that X // Y 
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and Y 3 Z, but X \\ Z.  If the equiprobable points were instead (1,1,1), (2,1,3), (2,3,1) 
and (3,3,3), then still X // Y and Y 3 Z, but now X // Z. 

This flexibility about dependencies might be surprising because it seems to 
contradict the strictures on correlations mentioned in the discussion of the previous 
myth.  In fact, the constraint of positive semi-definiteness that correlations must observe 
does not generalize to the case of dependencies, even in the extreme cases where 
correlations are minimal or maximal.  However, this flexibility disappears if the analyst 
makes the assumption that the random variables have continuous distributions.  In this 
case, X // Y, and Y // Z  does imply that X // Z, and similarly for the other displayed facts 
on the previous page.  This highlights the strength of assumptions about the continuity 
of distributions, which themselves would need specific justification. 
 

Myth 12 

Monte Carlo simulations can account for dependencies between variables. 
Cullen and Frey (1999, page 202) complain that critics of Monte Carlo simulation 
unfairly accuse it of “ignoring correlations”.  They point out that restricted pairing 
methods developed by Iman and his colleagues allow analysts to construct deviates in 
Monte Carlo simulations that have a prescribed correlation (Section 3.6; Iman and 
Conover 1982; Helton 1993; Helton and Davis 2002; 2003).  However, what Cullen and 
Frey don’t mention is that these algorithms pick a particular dependency function with 
the prescribed correlation, and that this is only one of infinitely many possible 
dependencies having this correlation.  Fact:  Monte Carlo methods can simulate 
correlations, but they do so by making unstated assumptions about the nature of the 
copula representing the dependence function.  Monte Carlo methods cannot truly 
account for correlations in the sense of computing how low or high risks might be 
without making such assumptions.  As discussed in Section 3.1.1, the effect on 
numerical results of these different dependence functions can be substantial, even 
though they may all have the same correlation coefficient.   

The origin of Myth 7 discussed above seems to be due to the mistaken 
impression that Monte Carlo simulation can account for correlations.  Given a 
magnitude of the correlation, one observes scattergrams from Monte Carlo simulations 
that are fairly similar to one another whichever measure of correlation is used.  For 
instance, it may be hard to distinguish scattergrams generated in simulations using thei 
different measures.  Their similarity, however, may mostly be a consequence of the very 
myopic selection of the copulas used in Monte Carlo simulations to generate correlated 
deviates.  There are generally other possible choices for the dependence function that 
have the same correlation and yet produce substantially different scattergrams and result 
in considerably different answers. 
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Myth 13 

Varying correlation coefficients constitutes a sensitivity analysis for uncertainty 
about dependence. 
Fact:  varying correlations is insufficient to explore the possible nonlinear dependencies 
between variables.  For this reason, a sensitivity analysis based on varying correlation 
gives an incomplete picture of uncertainty that is far too tight, even if we vary 
correlation between �1 and +1.  As an example, consider the problem of estimating the 
distribution of the sum A+B, where A and B are both uniform random numbers over the 
interval [2,13] but the dependence between A and B is unknown.  The range of 
distributions that would be seen in Monte Carlo simulations by varying the correlation 
between A and B over its possible range of [�1, �1] is shown in Figure 41 as a gray 
slanted hourglass.  The simulation strategies that could be used to obtain the hourglass 
are described in Section 3.6 and, in particular, in Section 4.1.  This hourglass can be 
compared with the best possible limits on these distributions with no assumptions about 
dependence.  These limits form a black parallelogram underneath the hourglass shape.  
The limits can be computed using the methods of Frank et al. (1987; Williamson and 
Downs 1990; Berleant and Goodman Strauss 1998) described in Section 4.2.  The black 
parallelogram is substantially larger than the gray hourglass, and, although the bulk of 
the difference is about the central parts of the distribution rather than the extreme tails, 
the potential tails risks are underestimated by the Monte Carlo sensitivity analysis 
strategy. 
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Figure 41.  The envelope of distributions of sums A+B obtainable from Monte 
Carlo simulations varying the A,B correlation between �1 and �1 (gray 
slanted hourglass) and best possible limits on these distributions 
making no assumptions about dependence (black parallelogram). 
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Myth 14 

A model should be expressed in terms of independent variables only. 
The idea behind this myth is discussed in Section 3.2.  Strictly speaking, it might better 
be labeled an “opinion” rather than a “myth”, but the idea is so clearly unworkable in 
general that it seems fair to list it here with other ideas that are impediments to 
conducting good risk assessments.  The essential problem is that modeling all the 
underlying sources of the dependencies will often quickly become unwieldy and may be 
recursively complex.  For instance, it would probably be unrealistic to ask a dam safety 
engineer to deconstruct his model’s dependence on rainfall patterns in terms of 
independent variables (because even meteorologists can’t do this).  Fact:  a statistical 
approach may be needed to handle dependencies in risk assessment models. 
 

Myth 15 

You have to know the dependence to model it. 
Recent algorithmic advances allow the calculation of bounds on risks (1) under only 
partially specified dependence functions, or even (2) without any assumption whatever 
about dependence.  As explained in Section 4.2, even if there is no information at all 
available about the dependence function relating variable X and Y for which we know 
the respective marginal distributions F and G, it is still possible to compute upper and 
lower bounds on the distribution function for Z = X+Y as 
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These limits are bounds on the distribution function of the sum for every possible value 
z it might take.  The limits are based on the classical Fréchet-Hoeffding limits for the 
dependence (copula) function.  There are similar formulas for the distribution of 
differences, products, quotients, etc.  Similar methods can be applied to probability 
boxes and Dempster-Shafer structures. 

When there is partial information about the dependence function, such as that 
the relationship between X and Y is certainly positive (positive-quadrant dependent), 
then bounds on the distribution for Z can be computed with a formula like 
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There are similar formulas for differences, etc., and for dependence functions that are 
surely negative.  Similar methods can be applied to probability boxes and Dempster-
Shafer structures.  See Section 4.3 for a full discussion of these formulas. 
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Myth 16 

The notion of independence generalizes to imprecise probabilities. 
In fact, there are several distinct concepts that might deserve to be called independence 
in the context of imprecise probabilities (Couso et al 1999).  These concepts are not 
equivalent to one another and they can lead to numerical differences in convolution 
results (Fetz and Oberguggenberger 2004).  The issue is discussed in Section 3.1.3. 
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6 Choosing a strategy for modeling dependence 
Figure 42 depicts the relationships among the various possible dependence assumptions 
that have been described in this report.  It illustrates the fundamental tradeoff in 
modeling dependencies.  One can have a result that makes few or no assumptions about 
dependence, but this result will be wider than it could be if the analyst had made use of 
available knowledge about dependence, or one can have a result that will be narrower 
but makes strong and perhaps unjustifiable assumptions about dependence.   
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Figure 42:  Relationships among dependency assumptions. 
 

What is not emphasized in the figure is that, once one abandons the notion that 
the dependence function is known completely (i.e., that the particular copula can be 
specified precisely), then the resulting breadth of uncertainty in subsequent 
convolutions can be fairly large compared to the total possible breadth obtained in the 
Fréchet case.  The uncertainty is often not greatly diminished even with additional 
qualitative information such as the sign of dependence or even with quantitative 
information such as the magnitude of the correlation coefficient.  Consequently, once 
one admits uncertainty about the precise nature of the dependency function, there may 
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be little difference between the best possible bounds that account for what is known and 
the Fréchet bounds which make no assumption whatever about dependence.  Further 
research is needed to discover the circumstances when partial information about 
intervariable dependencies can have a significant effect on the results of a calculation.  
In any case, however, such issues can be localized to considerations of particular pairs 
of variables or to small groups of variables;  using the Fréchet case for some variables 
does not necessitate its use for other variables.  The Fréchet case can be used in the 
same model with the independent case and, indeed, other assumptions about 
dependence. 

The traditional approach to modeling dependencies in probabilistic assessments 
has been to start with the default assumption of independence and then consider 
evidence or scenarios that suggest some correlation or perhaps a functional dependence.  
Essentially, an analyst would start on the left side of the middle line of the diagram in 
Figure 42 at independence and move either up or down.  We believe that a more 
appropriate strategy for risk analysts is to start with no assumptions, at the Fréchet case 
at the far right of the figure.  As information in the form of empirical evidence or 
theoretical arguments is considered, one moves leftward.  This difference of what 
assumptions are made by default can have a tremendous impact on the resulting 
assessments.  If results are seen to be too uncertain to support decisions of concern there 
would be impetus to review more evidence, collect new data, and devote more 
empirical and theoretical attention to the matter.  We view such an outcome as salutary 
for the discipline.  The present state of affairs is too often one in which a risk analysis 
based on convenient assumptions is simply a regurgitation of preconceptions that adds 
little to the assessment process. 

The following list is a synopsis of the various assumptions and modeling 
strategies that one could employ to account for dependence among random variables.  
Relevant sections in this report are given for each in parentheses. 

 
Imprecise dependence 

Fréchet case (no assumption about dependence) (Section 4.2) 
Known or interval-bounded correlation (Section 4.3.3) 
Sign of dependence (Section 4.3.2) 

Positive dependence (Section 4.3.2) 
Negative dependence (Section 4.3.2) 

Linear dependence 
Known correlation (Section 3.6) 
Interval-bounded correlation (Section 4.1) 

Precise dependence 
Specified dependence model (copula family) and correlation (Section 3.7) 
Known dependence function (copula) (Section 3.7) 
Empirical dependence function (Section 3.8) 
Perfect dependence (Section 3.5) 
Opposite dependence (Section 3.5) 
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Independence (Section 3.1) 
Random-set independence (Sections 3.1, 3.1.3) 
Epistemic independence (Section 3.1.3) 
Strong independence (Section 3.1.3) 
Repetition independence (Section 3.1.3) 

Functional modeling 
Known functional relationship (Section 3.2) 
Stratification (Section 3.3) 
Conditioning (Section 3.4) 

 

6.1 Modeling dependence through a black box 
Many of the techniques outlined in this report can be applied to real-world risk 
assessment or uncertainty modeling problems in which the evaluated function is a black 
box that cannot be decomposed into a sequence of binary arithmetic operations.  In 
particular, any method that can be implemented via a sampling strategy can be used.  
This includes models that specify a dependence model (copula family) and correlation 
(Section 3.7) or an empirical copula (Section 3.8).  Also amenable to sampling 
strategies are models of known functional relationships (Section 3.2), stratification 
approaches (Section 3.3), models assuming independence, or perfect or opposite 
dependence based onWhitt’s sampling strategy (Section 3.5). 
 When dependence is not well parameterized, then it may be possible to use 
dispersive sampling within a black box assessment.  Such use would require the analyst 
to specify the slope of the partial gradient with respect to each input variable through 
some sort of prior sensitivity analysis of the black box function.  In fact, if the black box 
function is known to be monotonic in each input, then, in principle, the methods to 
account for the Fréchet case (making no assumption about dependence) (Section 4.2), or 
sign of dependence (Section 4.3.2) could be theoretically employed on the black box 
itself, although doing so would require enough samples to evaluate the required infimal 
and supremal convolutions.  In most cases, it would probably be more reasonable to 
model the black box with a computationally simpler function such as a response 
surface.  When the response surface is simple and decomposable, the dependency 
methods can be applied to it directly.  If it too cannot be decomposed but it is 
monotonic, then an intensive sampling strategy to evaluate the infimal and supremal 
convolutions could be employed.  As an alternative strategy, it might also be useful to 
use constructed copulas (Section 3.9) to study the putative response of the function to 
especially important features of the dependence. 
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7 Conclusions and future research 
We make six major conclusions. 

i) Dependence considerations and special strategies to model dependence are 
not necessarily needed for each and every operation in a risk analysis.  
There are many situations in which independence is clearly warranted.  There 
are other situations in which dependence is irrelevant (such as for unary 
operations negation, square root, log, etc.).  And there are cases in which the 
dependence between variables is moot because knowing the dependence has no 
effect on the result of the analysis.  For instance, it is typically the case that if 
one of the operands is an interval (or a Dempster-Shafer structure or a p-box 
equivalent to an interval) knowing dependence will not allow one to reduce the 
uncertainty in the result compared to that obtained without making any 
assumption about dependence.  Similarly, if one of the operands is a point value, 
then there can be no dependency between it and any variables with which it 
might be combined. 

ii) A sensitivity study in which correlation coefficients are varied among 
possible values to represent incertitude about inter-variable dependence is 
generally insufficient to reveal the true breadth of uncertainty.  If the 
dependence between variables can include subtle nonlinearities, then 
convolutions between these variables can yield tail risks that are more extreme 
at some percentile than the cases represented by perfect or opposite dependence.  
It is, however, possible to compute rigorous bounds on the convolution 
irrespective of the dependence between the inputs, and these bounds will also be 
best possible in many cases.  Several convenient computational methods are 
currently available that can be used to calculate appropriate bounds on the 
distribution tails whenever there is partial or even complete ignorance about 
correlation and dependency among the variables.  Dispersive Monte Carlo 
simulation is based on variance maximization/minimization.   It is compatible 
with existing Monte Carlo methods, but it accounts only for linear dependencies.  
Dependency bounds analysis, based on Fréchet bounds, guarantees conservative 
estimates of tail probabilities no matter what dependence structure exists among 
the variables in the analysis. 

iii) Feasibility checks can be helpful.  When correlations are simulated, an analyst 
should ensure that the matrix of planned correlation coefficients is feasible by 
checking that it is positive semi-definite (Section 3.6.1).  If the matrix is positive 
semi-definite, then it is a possible correlation matrix.  If it is not positive semi-
definite, then it cannot be a correlation matrix in the first place.  It would be a 
mistake akin to specifying a negative variance and certainly should not be used 
in modeling dependencies in a risk analysis.  It may even be possible and useful 
to employ this constraint on correlation matrices to tighten some interval 
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estimate of correlation.  For instance, knowing the correlations between X and Y 
and between X and Z may constrain the correlation between Y and Z to an 
interval smaller than [�1, +1]. 

iv) Using unjustified or false independence assumptions can be dangerous.  
Extreme-event probabilities (i.e., the tails) of a statistical distribution resulting 
from probabilistic risk analysis can depend strongly on dependencies among the 
variables involved in the calculation.  Ignoring dependencies that are present can 
result in substantial underestimate of tail risks (Section 3.1.2).  Although well 
known techniques exist for incorporating correlation into analyses, unfortunately 
in practice they are often neglected on account of a paucity of information about 
joint distributions.   Furthermore, certain forms of dependency that are not 
adequately measured by simple correlation must by necessity be omitted from 
such assessments.   

v) Knowing only that some correlation is zero is hardly better than knowing 
nothing at all about the dependence.  The bounds on convolutions between 
distributions, p-boxes or Dempster-Shafer structures that enclose all 
dependencies that create a correlation of a particular magnitude are surprisingly 
wide and, in the tails, essentially indistinguishable from the Fréchet bounds 
(Section 4.3.3). 

vi) Dependence is considerably more complicated in the context of imprecise 
probabilities than it is in classical probability theory.  For instance, the 
unique notion of independence in probability degenerates into many distinct 
notions when Dempster-Shafer structures, p-boxes or comparable structures are 
employed in an analysis (Section 3.1.3).  Nevertheless, using random-set 
independence as implemented in the calculations with the Cartesian product will 
provide a conservative approach that never underestimates uncertainty about the 
result.  If it is important to account for a more delicate notion of independence to 
reduce the uncertainty in the results, special ad hoc analysis may be required. 

7.1 Future research 
Once an analyst switches from a precise model of independence (in which the 
dependence function is completely specified) to an imprecise model of dependence 
(e.g., Fréchet or a sign dependence), there is often a marked increase in the overall 
uncertainty of the resulting convolution.  As mentioned in Section 4.3, research is 
needed to develop intuition about when and under what circumstances partial 
information about dependencies between variables can be helpful in significantly 
reducing the uncertainty about the calculations in an analysis.  Research is also needed 
on other ways to decrease the uncertainty about convolutions based on further empirical 
information or reasonable assumptions about dependence.  Having a variety of 
approaches and arguments for reducing uncertainty would make the technology more 
flexible and appealing to analysts and modelers. 

Another avenue of potentially useful research would be the development of 
methods to constrain copulas to reflect features of empirical joint distribution functions.  
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Even if they are not entirely reliable as descriptions of dependence because they are 
based on sparse information and data that were measured with error, such structures can 
suggest models of dependence for analysis.  For instance, if the patterns in a scattergram 
of a joint distribution tend to suggest that a certain region is impossible by an absence of 
data points there, it could be useful to be able to reflect the impossibility of such 
variable pairings in specifying the family of copulas and thus the resulting bounds on 
convolutions.  In particular, it would be useful to be able to construct copulas that 
embody several disparate features that are observed separately. 
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8 Appendix:  an exceptional case 
This appendix describes a numerical example that is of interest because it 

i) illustrates a practical difference between random-set independence and strong 
independence (Section 3.1.3), 

ii) constitutes an exception to the typical situation in which the convolution of 
uncertain numbers A and B is not affected by dependence assumptions if at least 
one of them is an interval (Section 4.2.3), and 

iii) tempers the claim about the best-possible nature of the simple convolutions with 
probability boxes and Dempster-Shafer structures (see Ferson et al. 2003). 

Suppose X is the interval [�1, +1] and Y is the Dempster-Shafer structure {([�1, 0], 0.5), 
([0, 1], 0.5)}.  The cumulative plausibility and belief functions for X are shown on the 
top, left graph in Figure 43.  The same functions for Y are shown on the top, middle 
graph.  What can be said about the product Z = XY assuming X and Y are independent?  
What can be said without any assumption about their dependence? 
 Let us address the second question first.  We cannot use the methods of Frank et 
al. (1987) or Williamson and Downs (1990) to obtain the bounds on Z = XY for the 
Fréchet case in which we make no assumption about dependence because the problem 
involves multiplication between distributions that have both positive and negative 
values.  The method doesn’t work for this case.  But we can obtain the best possible 
bounds for the Fréchet case by ad hoc analysis.  First, interval analysis tells us that the 
product is Z = XY is totally constrained to the interval [�1, +1].  So we know that, 
whatever else is true, this interval forms a probability box about the product.  Denote by 
B the discrete distribution with half its mass at �1 and half at +1.  The Dempster-Shafer 
structure for B is {(�1, 0.5), (+1, 0.5)}.  B is also depicted in the top, right graph of 
Figure 43.  B is clearly consistent with X because it lies entirely within the range [�1, 
+1].  It is also consistent with Y because the locations for the point masses of B are 
within the two focal elements of Y and consistent with its partition of mass.  Now 
suppose that the distributions for X and Y are both identical to B, and that they are 
perfectly dependent so that when X is –1, Y is too, and when X is +1, Y is too.  In such a 
case, all the mass of Z will concentrate at the value +1.  In that case, the cumulative 
belief and plausibility functions for Z are coincident spikes at +1.  If, on the other hand, 
X and Y are oppositely dependent, then X and Y always have opposite signs and all the 
mass of Z concentrates at –1, and there is a spike at �1.  Note that these two spikes are 
at the edges of the permissible range for Z as obtained by interval analysis.  Therefore, 
the best possible p-box for the Fréchet case of the product Z = XY is identical to the 
interval [–1, +1] and the corresponding Dempster-Shafer structure is {[�1, +1], 1}. 
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Figure 43:  Inputs and outputs for the counterexample.  
 

Now let us consider the problem of characterizing the product XY assuming that 
X and Y are independent.  If we interpret the problem to be saying that X and Y have 
random-set independence, then we can compute the result with a convolution via 
Yager’s (1986) Cartesian product with two rows and one column 
 

XY                 
X 

      Y 

 
[�1, +1] 
1 

   [�1, 0] 
   0.5 

[�1, +1] 
0.5 

   [0, +1] 
   0.5 

[�1, +1] 
0.5 

 
where X is given in the right cell of the top row, and Y is given in the lower two cells of 
the first column.  The variable X has only a single focal element;  the variable Y has 
two.  Each cell of the Cartesian product consists of an interval focal element on the first 
line and a probability mass on the second line.  The interior of the Cartesian product has 
just two focal elements.  They are the lower two cells in the right column.  Because the 
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two intervals produced in the Cartesian product are the same, they are combined to 
produce a Dempster-Shafer structure with one focal element, {([�1, +1], 1)}, which is 
equivalent to the interval [�1, +1].  The algorithms given by Williamson and Downs 
(1990) and Berleant (1993) are equivalent to that of Yager for this problem and give the 
same answer. 
 So far so good, because the Fréchet case and the random-set-independent case 
have both given the answer as the interval [�1, +1].  But is this answer best possible if X 
and Y are independent?  An easy argument shows that it is not.  The mean of a product 
of independent random variables is the product of their means (Mood et al. 1974, page 
180).  The bounds on the mean of X are itself, that is, the interval [�1, +1].  The mean of 
Y is somewhere in the interval [�0.5, +0.5].  Interval analysis tells us that the product of 
these is just [�0.5, +0.5].  Therefore, Z = XY where X and Y are independent has a range 
of [�1, +1] and a mean of [�0.5, +0.5].  But probability bounds analysis tell us that the 
distribution functions for any random variable with such a range and mean is 
constrained by the probability box shown in the bottom, middle graph of Figure 43 
(Ferson et al. 2003).  Clearly the interval shown on the bottom, left graph cannot be best 
possible if all distributions must lie inside the bounds in the bottom, middle graph.  The 
discrepancy arises from the fact that we have used random-set independence when 
computing the earlier result but were interpreting the assertion that X and Y were 
independent to mean that they were strongly independent (Section 3.1.3). 
 So what are the best possible bounds on Z = XY in case X and Y are strongly 
independent?  The distribution for Z is a mixture of four cases:  (i) when X and Y are 
both positive, (ii) when X is positive and Y is negative, (iii) when X is negative and Y is 
positive, and (iv) when both X and Y are negative.  The probability that Z is positive 
comes only from the cases (i) and (iv).  If we let PX = P(0 � X) and PY = P(0 � Y), then 
P(0 � Z) = PX PY + (1 � PX) (1 � PY).  Because PY = 1/2 by construction, this simplifies 
to P(0 � Z) = PX /2 + (1 � PX)/2 = 1/2.  This proves, then, that the median for Z is a 
pinch point at zero.  Because the scalar zero is a possible value for X, the bounds on the 
product Z = XY must include the scalar zero too.  Because the scalar value one is a 
possible realization for X, and B is a possible realization for Y, the bounds on the 
product Z = XY must also include the distribution B as well.  Since both the scalar value 
zero and B are solutions under strong independence, their envelope (which is the largest 
p-box on the permissible interval with a medial pinch point at zero) is the best possible 
p-box on Z=XY under strong independence between X and Y.  This result is also 
depicted as the bottom, right graph in Figure 43. 
 This example shows that the convolution via Yager’s (1986) Cartesian product, 
which assumes random-set independence, produces the same answer as the Fréchet 
case, but it is not best possible if X and Y are strongly independent.  Further research is 
needed to fully understand the conditions under which the straightforward calculation 
involving the Cartesian product will be best possible and when it will at least be 
conservative in the sense of not underestimating uncertainty.  Analysts must learn when 
it is reasonable to assume strong independence, and when it is not. 
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9  Glossary 
2-increasing  The property of a bivariate function Z such that Z(a2, b2) � Z(a1, b2) � 

Z(a2, b1) + Z(a1, b1) 	 0 whenever a1�a2 and b1�b2.  This property is distinct 
from and neither implies nor is implied by monotonicity.  Copulas (q.v.) are 2-
increasing functions. 

aleatory uncertainty  The kind of uncertainty resulting from randomness or 
unpredictability due to stochasticity.  Aleatory uncertainty is also known as 
variability, stochastic uncertainty, Type I or Type A uncertainty, irreducible 
uncertainty, or objective uncertainty. 

almost surely  A property holds almost surely if it holds always except possibly for a 
set of measure zero. 

best possible  An upper bound is best possible if it is the smallest such bound possible.  
A lower bound best possible if it is the largest lower bound possible. 

bound  An upper bound of a set of real numbers is a real number that is greater than or 
equal to every number in the set.  A lower bound is a number less than or equal 
to every number in the set.  In this report, we also consider bounds on functions.  
These are not bounds on the range of the function, but rather bounds on the 
function for every function input.  For instance, an upper bound on a function 
F(x) is another function B(x) such that B(x) 	 F(x) for all values of x.  B(x) is a 
lower bound on the function if the inequality is reversed.  If an upper bound 
cannot be any smaller, or a lower bound cannot be any larger, it is called a best 
possible bound. 

CDF  Cumulative distribution function (see distribution function). 
comprehensive  A family of copulas is called comprehensive if it includes the special 

cases of perfect dependence, opposite dependence and independence. 
comonotonicity  Perfect dependence (q.v.) between random variables. 
conjunction  The truth-functional operation that yields true if all of its arguments are 

true and false otherwise. 
convolution  The mathematical operation which finds the distribution of a sum of 

random variables from the distributions of its addends.  The term can be 
generalized to refer to differences, products, quotients, etc.  It can also be 
generalized to refer to intervals, p-boxes and Dempster-Shafer structures as well 
as distributions.  

copula  A joint distribution function, each of the marginal distributions for which is 
uniform over the interval [0,1].  In the bivariate case, a copula is a function 
C:[0,1]�[0,1]�[0,1] such that C(0, a) = C(a, 0) = 0 and C(1, a) = C(a, 1) = a for 
all a � [0,1], and C(a2, b2)�C(a1, b2)�C(a2, b1)+C(a1, b1) 	 0 for all 
a1,a2,b1,b2�[0,1], whenever a1�a2 and b1�b2.  A copula is the function that 
expresses the dependence between variables and knits together their respective 
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marginal distribution functions to form their joint distribution function.  For 
instance, the copula of continuous random variables X ~ F(x) and Y ~ G(y) is the 
joint distribution of (F(X), G(Y)).  Every joint distribution can be decomposed 
into, and reconstructed from, its marginal distributions and a copula.  Every 
possible dependence among random variables, even including functional 
relationships, is expressed by some copula.  For any copula C, max(a+b�0) � 
C(a, b) � min(a, b). 

correlation  The tendency of two paired variables to vary in the same direction.  
Correlation can be measured by several coefficients, conventionally constrained 
to the interval [�1, +1], such as Pearson correlation, Spearman correlation, 
Kendall correlation, among others.  If used without qualification, correlation 
usually refers to Pearson correlation. 

countermonotonicity  Opposite dependence (q.v.) between random variables. 
covariance  The first product moment of two variables about their means.  For random 

variable X and Y, their covariance is cov(X, Y) = E((X – E(X)) (Y – E(Y))) = 
E(XY) � E(X) E(Y). 

cumulative distribution function  A distribution function (q.v.). 
Dempster-Shafer structure  A set of focal elements (in this report, closed intervals of 

the real line), each of which is associated with a non-negative value m such that 
the sum of all the m’s is one. 

Dempster-Shafer theory  A variant of probability theory in which the elements of the 
probability space to which nonzero mass is attributed, called focal elements, are 
not singletons but rather sets which represent the indistinguishability of 
alternatives within bodies of evidence.  Dempster-Shafer theory is sometimes 
called evidence theory. 

dependence  The relationship between events or between random variables.  If one 
event (random variable) is unrelated to another event (random number), they are 
said to be independent.  Otherwise, they are said to be dependent.  Hutchinson 
and Lai (1990; section 11.4) review sets of axioms for a measure of dependence.  
Interestingly, the traditional measure, Pearson correlation, does not satisfy many 
of them. 

disjunction  The truth-functional operation that yields true if any of its arguments is 
true and false if they are all false. 

dispersive Monte Carlo simulation  A Monte Carlo simulation in which unknown 
correlations are set to their most extreme plausible values in order to obtain 
results that conservatively estimate variances and tail probabilities. 

distribution function  The function F, associated with a random variable X, that 
describes the probability F(x) that X will take on a value not greater than x, 
which is often denoted as Prob(X � x).  If the random variable takes on only a 
finite set of values, then F(x) is the sum of the probabilities of the values less 
than or equal to x.  Also known as a cumulative distribution function. 

epistemic independence  The property that an analyst’s uncertainty about either of two 
outcomes of a random experiment does not change when some information 
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about the outcome of one of them becomes known.  For random variables X and 
Y, X and Y are epistemically independent if the conditional probability of each 
given the other is equal to its unconditional probability, 

P(X|Y) = P(X), 
P(Y|X) = P(Y). 

In the context of imprecise probabilities, epistemic independence is defined in 
terms of lower bounds on expectations such that E(f(X)|Y) = E(f(X)) and 
E(f(Y)|X) = E(f(Y)) for all functions f where E(Z) denotes the infimum of all 
expectations of Z over all possible probability distributions that could 
characterize Z.  Epistemic independence does not imply strong independence. 

epistemic uncertainty  The kind of uncertainty arising from imperfect knowledge.  
Epistemic uncertainty is also known as incertitude, ignorance, subjective 
uncertainty, Type II or Type B uncertainty, reducible uncertainty, and state-of-
knowledge uncertainty. 

event  A subset of the sample space, which is the set of all possible outcomes of a 
random experiment.  If the outcome of the random experiment is a member of 
an event, then the event is said to have occurred.  In probability theory, an event 
is a collection of outcomes for which a probability has been assigned. 

focal element  A set (in this report, a closed interval of the real line) associated with a 
nonzero mass as a part of a Dempster-Shafer structure. 

Fréchet case  The strategy of making no assumption about dependence. 
Fréchet bounds  Bounds on a joint distribution H(x,y), specified by having marginal 

distributions F(x) and G(y), given by  
� � � �)(),(min),(0,1)()(max yGxFyxHyGxF ���� . 

These bounds are also known as the Fréchet-Hoeffding limits (Fréchet 1951; 
Hoeffding 1940).  They are the distributional analogs of the bounds in the 
Fréchet inequalities. 

Fréchet inequalities  Inequalities due to Fréchet (1935) on the probabilities of 
conjunctions and disjunctions of events Ai given by  

         max(0, a1 + a2+…+ an –(n�1)) � P(A1& A2 & … & An) � min(a1, a2,…, an), 
      max(a1, a2,…, an) � P(A1
 A2 
 … 
 An) � min(1, a1 + a2+…+ an), 

where ai = P(Ai). 
imprecise probabilities  The subject of any of several theories involving models of 

uncertainty that do not assume a unique underlying probability distribution, but 
instead correspond to a set of probability distributions (Couso et al. 2000).  The 
lower probability P(A) for event A is the maximum rate one would be willing to 
pay for a gamble that pays 1 unit of utility if A occurs and nothing otherwise.  
The upper probability )(P A for event A is 1�P(not A), i.e., one minus the lower 
probability of A not occurring.  An imprecise probability arises when one’s 
lower probability for an event is strictly smaller than one’s upper probability for 
the same event (Walley 1991).  Theories of imprecise probabilities are often 
expressed in terms of a lower probability measure giving the lower probability 
for every possible event from some universal set, or in terms of closed convex 
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sets of probability distributions.  Interval probabilities, Dempster-Shafer 
structures and probability boxes can be regarded as special-cases of imprecise 
probabilities. 

incertitude  The kind of uncertainty arising from imperfect knowledge.  Incertitude is 
also known as epistemic uncertainty, ignorance, subjective uncertainty, Type II 
or Type B uncertainty, reducible uncertainty, and state-of-knowledge 
uncertainty. 

independence  The unrelatedness between events or between random variables.  In the 
context of probability theory, the concept of independence is unique for events 
and unique for random variables.  Events are said to be independent (in the 
probabilistic sense) if the probability that both occur is the product of the 
probability of either occurring.  Random variables X and Y are said to be 
independent if their joint distribution function H is equal to the product of their 
respective marginal distributions, in the bivariate case, H(x, y) = F(x) G(y).  In 
the context of imprecise probabilities, however, there are several concepts that 
could be called independence.  See epistemic independence, random-set 
independence, repetition independence and strong independence. 

infimum  The greatest lower bound of a set of values.  When the set consists of a finite 
collection of closed intervals, the infimum value is the same as the minimum 
value. 

interval  The set of all real numbers lying between two fixed numbers called the 
endpoints of the interval.  In this report, intervals are always closed so that the 
endpoints are considered part of the set. 

inverse function  For a function y = F(x), an inverse function F�1 takes y-values in the 
range of the function F to x-values in the domain of F in such a way that 
F�1(F(x)) = x and F(F�1(y)) = y.  For instance, if F(x) is the distribution function 
for a random variable X giving the probability associated with the event X�x, 
then the inverse function F�1(p) is the value of x associated with any value p.  
An inverse function does not necessarily exist for any function, but any one-to-
one function will have an inverse.  

joint distribution  A distribution function in two (or more) variables.  In the bivariate 
case, a joint distribution H(x, y) gives the probability that X � x and, jointly, Y � 
y.  A joint distribution can be decomposed into, and reconstructed from its 
marginal distributions and a copula that characterizes the dependence between 
the variables. 

Kendall correlation  The index named for M.G. Kendall (Huchinson and Lai 1990; 
Nelsen 1999) that measures the strength of the association between two 
variables X and Y.  It is defined by  

� = P[0 < (X1 � X2)(Y1 � Y2)] � P[(X1 � X2)(Y1 � Y2) < 0] 
where (X1,Y1) and (X2,Y2) are independent realizations from a joint distribution.  
It can also be expressed as � = cov(sgn(X1�X2), sgn(Y1�Y2)).  The Kendall 
correlation coefficient measures monotonicity of the relationship between X and 
Y by considering the preponderance of pairs of bivariate data points (Xi, Yi) and 
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(Xj, Yj) that are concordant in the sense that Yj is larger than Yi is if Xj is larger 
than Xi.  Unlike the Pearson correlation, any value in [�1, +1] is a possible 
Kendall correlation between any pair of marginal distributions.  Independence 
between X and Y produces a value of zero for �, although �=0 does not 
conversely imply independence.  Perfect correlation leads to a value of +1; 
opposite correlation leads to a value of �1. 

Lucas correlation  A measure of association between two events given by the Pearson 
correlation between the indicator functions of the events.  See Section 2.2. 

marginal distribution (or margin)  Given two random variables X and Y and their 
(bivariate) joint cumulative distribution H(x,y), F(x,�), which is the limit of 
F(x,y) as y approaches infinity, is marginal distribution for X, and F(�, y) is the 
marginal distribution for Y.  The marginal distribution gives the unconditional 
probability for one of the variables, so F(xi) = Prob(Xi � xi), irrespective of the 
other variable and ignoring any information about it.  Marginal distributions 
may also be defined in terms of more than one of the random variables.  There 
are in general many joint distributions having specified marginal distributions. 

Monte Carlo simulation  A method of calculating functions of probability distributions 
by repeatedly sampling random values from those distributions and forming an 
empirical distribution function of the results. 

negation  The truth-functional operation that yields true if its argument is false and 
false if its argument is true.  Extended to probabilities of events, the probability 
of a negation of an event is one minus the probability of the event. 

negative quadrant dependence  A pattern of dependence between random variables X 
and Y such that P(X � x, Y � y) � P(X � x) P(Y � y).  In this case, X and Y have 
non-positive (Spearman and Kendall and Pearson) correlations.  The copula 
associated with this pattern of dependence is everywhere smaller than the copula 
associated with independence.  Variables having negative quadrant dependence 
are said to be negatively quadrant dependent or NQD. 

NQD  Negatively quadrant dependent. 
opposite dependence  A pattern of dependence between events A and B such that 

P(A & B) = max(0, P(A) + P(B) � 1), or between random variables X and Y such 
that P(X � x, Y � y) = max(0, P(X � x) + P(Y � y) � 1).  In the case of random 
variables, opposite dependence is also called countermonotonicity and the 
related variables said to be countermonotone.  In this case, X and Y have 
Spearman and Kendall correlations equal to �1 and the smallest Pearson 
correlation they could possibly have given their marginal distributions (Whitt 
1976).  If X and Y are oppositely dependent, then X is almost surely a non-
increasing function of Y, and vice versa, and the graph of the support of the joint 
distribution function is non-increasing in the plane (Nelsen 1999, page 27). 

p-box  A probability box (q.v.). 
Pearson correlation  The statistic due to Karl Pearson that measures the strength of the 

association between two variables X and Y.  It is defined by  
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where cov denotes the covariance of random variables, and V and E denote the 
variance and expectation (mean) of a random variable, respectively.  The 
Pearson correlation measures the similarity of the association between X and Y 
with a straight line.  It is only one of several measures of correlation that have 
been proposed.  Independence between X and Y produces a value of zero for r.  
Perfect correlation leads to the largest possible value for r given the marginal 
distributions, although this value may be less than +1.  Likewise, opposite 
correlation leads to the smallest possible value of r for the marginal 
distributions, but this may sometimes be greater than �1.  Pearson correlation is 
also called product-moment correlation, and sometimes simply linear 
correlation. 

perfect dependence  A pattern of dependence between events A and B such that 
P(A & B) = min(P(A), P(B)), or between random variables X and Y such that 
P(X � x, Y � y) = min(P(X � x), P(Y � y)).  In the case of random variables, 
perfect dependence is also called comonotonicity and the related variables said 
to be comonotone or comonotonous.  In this case, X and Y have Spearman and 
Kendall correlations equal to +1 and the largest correlation they could possibly 
have given their marginal distributions (Whitt 1976).  If X and Y are perfectly 
dependent, then X is almost surely a non-decreasing function of Y, and vice 
versa, and the graph of the support of the joint distribution function is non-
decreasing in the plane (Nelsen 1999, page 27).   

positive quadrant dependence  A pattern of dependence between random variables X 
and Y such that P(X � x) P(Y � y) � P(X � x, Y � y).  In this case, X and Y have 
non-negative (Spearman and Kendall and Pearson) correlations.  The copula 
associated with this pattern of dependence is everywhere larger than the copula 
associated with independence.  Variables having positive quadrant dependence 
are said to be positively quadrant dependent or PQD. 

positive semi-definiteness  Property of a matrix A by which A is symmetric and 0 � 
xTAx for all x, and by which all the principal minors of A are non-negative, and 
by which there exists a matrix C of rank r such that A = CTC. 

PQD  Positively quadrant dependent. 
probability bounds analysis  An analysis or calculation involving interval probabilities 

or probability boxes. 
probability box  A class of distribution functions F(x) specified by a bounding pair of 

distribution functions F(x) and )(xF  such that )()()( xFxFxF ��  for all x 
values. 

quadrant dependence  Dependence that is either positive quadrant dependence or 
negative quadrant dependence. 

quantile  A number that divides the range of  a set of data or a distribution such that a 
specified fraction of the data or distribution lies below this number. 
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random-set independence  The dependence between Dempster-Shafer structures X and 
Y, which have mass functions mX and mY  respectively, such that the Dempster-
Shafer structure for the joint distribution has mass function m(A1�A2) = mX (A1) 
mY (A2) when A1 is a focal element of X and A2 is a focal element of Y, with 
m(A)=0 for all subsets not of the form A = A1 � A2.  This is the weakest 
definition of independence in the context of imprecise probabilities (cf. Couso et 
al. 2000).  It therefore leads to the broadest uncertainty in results compared to 
other definitions of independence such as strong independence or epistemic 
independence. 

random variable  A variable quantity whose values are distributed according to a 
probability distribution.  If the potential values of the random variable are a 
finite or countable set, the random variable is said to be discrete.  For a discrete 
random variable, each potential value has an associated probability between zero 
and one, and the sum of all of these probabilities is one.  If the random variable 
can take on any value in some interval of the real line (or any rational value 
within some interval), it is called a continuous random variable. 

rank correlation  Any measure of correlation based on the (within-variable) ranks of 
random variables rather than their absolute magnitudes.  An unqualified 
reference to rank correlation usually refers to Spearman’s rank correlation. 

real number  A real number is an element from the real line consisting of positive and 
negative integers, rational numbers, irrationals and transcendental numbers.  A 
real number is a rational number or the limit of a sequence of rational numbers.  
Real numbers are sometimes called scalars. 

repetition independence  Independence between random variables that are identically 
distributed, although their distribution may be imprecisely known.  Repetition 
independence is the analog in the context of imprecise probabilities of the 
constraint in probability theory that variables are independent and identically 
distributed (iid).  Repetition independence implies a class of joint distribution 
functions that is smaller than from assuming strong independence, but repetition 
independence does not imply strong independence because the marginal 
distributions, whatever they are, must be identical, which precludes all other 
combinations of possible marginal distributions.  This kind of independence 
corresponds to the smallest set of joint distribution functions of all the 
definitions of independence identified by Couso et al. (2000). 

rigorous  Exact or sure, as opposed to merely approximate.  Usually said of bounds 
which can be rigorous without being best possible. 

Sklar’s theorem  A result in the study of probabilistic metric spaces due to Sklar 
(1959) that states, if H(x,y) is a joint distribution function with marginal 
distribution functions F and G, then there exists a copula C such that  

H(x, y) = C(F(x), G(y)). 
Conversely, for any univariate distribution functions F and G and any copula C, 
the function H is a two-dimensional distribution function having marginals F 
and G.  If F and G are continuous, then C is unique; otherwise it can be uniquely 
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determined on the product of the ranges of F and G.  The theorem generalizes to 
dimensions higher than two. 

Spearman correlation  The nonparametric index due to Spearman (1904; Hutchinson 
and Lai 1990; Nelsen 1999) that measures the strength of the association 
between two variables X and Y.  It is defined by  

� = P(X1 < X2, Y1 < Y3) + P(X2 < X1, Y3 < Y1) 
which can also be expressed as � = cov(sgn(X2�X1), sgn(Y3�Y1)).  Note that this 
formulation compares a vector (X1,Y1) with another vector (X2,Y3) with the same 
margins, but whose elements are independent.  The Spearman correlation is 
identical to the Pearson correlation computed between the ranks of X and Y, or 
between their grades F(X) and G(Y), where X ~ F and Y ~ G.  The Spearman 
correlation measures the monotone association between the variables and is 
often considered a more appropriate measure of correlation for nonlinear 
relationships or non-normal variables than the traditional Pearson correlation.  
Unlike the Pearson correlation, any value in [�1, +1] is a possible Spearman 
correlation between any pair of marginal distributions.  Independence between X 
and Y produces a value of zero for �, although the fact that � = 0 does not imply 
independence.  Perfect correlation leads to a value of +1; opposite correlation 
leads to a value of �1.  The Spearman correlation is sometimes known as the 
grade correlation. 

strong independence  The complete absence of any relationship between variables.  
Variables X and Y are strongly independent if (i) X and Y result from random 
experiments, each governed a unique but possibly unknown probability 
distribution, (ii) the random experiments are stochastically independent (in the 
traditional sense), and (iii) there is no known relationship between the variables 
that would preclude some possible combinations of the possible marginal 
distributions.  Variables X and Y are strongly independent if the set of possible 
joint distributions is the largest set such that each joint distribution H(x, y) = 
F(x) G(y), where F is one of the possible distribution functions characterizing X 
and G is one of the possible distribution functions characterizing Y.  Strong 
independence implies epistemic independence of the marginal experiments. 

support  The subset of the domain of a distribution function over which the function is 
neither perfectly zero nor perfectly one. 

supremum  The least upper bound of a set of values.  When the set consists of a finite 
collection of closed intervals, the supremum value is the same as the maximum 
value. 

total probability  The probability of a single event. 
two-dimensional Monte Carlo  A kind of nested Monte Carlo simulation in which 

distributions representing both incertitude and variability are combined together.  
Typically, the outer loop selects random values for the parameters specifying the 
distributions used in an inner loop to represent variability.  This approach is also 
called second-order Monte Carlo simulation. 
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uncertainty  The absence of perfectly detailed knowledge.  Uncertainty includes 
incertitude (the exact value is not known) and variability (the value is changing).  
Uncertainty may also include other forms such as vagueness, ambiguity and 
fuzziness (in the sense of border-line cases). 

uncorrelated  Having a (Pearson) correlation of zero magnitude.  Uncorrelatedness 
does not imply independence. 

variability  The fluctuation or variation due to randomness or stochasticity.  Variability 
is also associated with aleatory uncertainty, stochastic uncertainty, Type I or 
Type A uncertainty, irreducible uncertainty, objective uncertainty. 
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