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Abstract

Except in the most extreme conditions, Synthetic aperture radar (SAR) is a remote 
sensing technology that can operate day or night. A SAR can provide surveillance over a 
long time period by making multiple passes over a wide area. For object-based 
intelligence it is convenient to segment and classify the SAR images into objects that 
identify various terrains and man-made structures that we call “static features.” In this 
paper we introduce a novel SAR image product that captures how different regions 
decorrelate at different rates. Using superpixels and their first two moments we develop a 
series of one-class classification algorithms using a goodness-of-fit metric. P-value 
fusion is used to combine the results from different classes. We also show how to combine 
multiple one-class classifiers to get a confidence about a classification. This can be used 
by downstream algorithms such as a conditional random field to enforce spatial 
constraints.

1 Introduction

Synthetic aperture radar (SAR) [28] is an airborne sensing technology that can operate at 

all times of the day. It’s an all-weather system that has a long standoff and can image 

either day or night, except in the most extreme conditions. A high resolution image of an 

area is created by combining multiple results from different viewing angles. SAR is also 

a coherent imager that measures both the phase and magnitude of the return in the area it 
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is illuminating. For two registered images taken at different times, one can use coherent 

change detection (CCD) [28] to detect minute changes from one collection to the next.

By making multiple passes over a wide area, a SAR can provide surveillance over a 

long time period. One research area of interest is exploiting this large amount of imagery 

to learn about activities in the surveillance area. For this type of object based intelligence, 

one approach uses a geospatial-temporal semantic graph [5]. Here nodes of the graph 

represent fundamental objects in the image data such as buildings, road, water, etc., and 

the edges represent their spatial and temporal relationships. Image searches, such as “find 

all of the buildings at least 200m from a paved road,” can be accomplished using the 

graph framework. 

Before a geospatial-temporal semantic graph can ingest this large amount of data, it is 

necessary to segment and classify the SAR images into objects that identify the various 

terrains and man-made structures. Here, we refer to these objects as static-features.

In this paper we concentrate on single-pol SAR imagery. While fully-polarimetric SAR 

can be decomposed into scattering mechanisms [9][10][13][38][40][57][67] and is very 

helpful in static feature extraction, many current SAR systems only have a single 

polarization. If multiple polarizations are available, our approach can be extended to 

incorporate the additional polarimetric information. Due to the complexity of registering 

multiple image sources, we also concentrate on using a single imaging modality. For 

example, optical imagery could be used as a complementary source of information in 

determining terrain classes.



2 Previous work on terrain classification using single-

pol SAR

Terrain classification for SAR is a very important topic of research.  With such a vast 

amount of data being generated that covers large areas of land, it can be difficult to comb 

through all of the raw data.  In order to aid analysts and scientist in interpretation of this 

data it can be important to classify the images’ terrain.  The terrain classification problem

is different depending on if the data is single-pol or multi-pol SAR data.  Multi-pol SAR 

has many advantages in terrain classification because there is more available information. 

This extra information can be exploited to determine the scattering mechanisms in an 

image.  With the knowledge of the scattering mechanisms, terrain types that appear the 

same in single-pol SAR will look unique in multi-pol SAR.  However, obtaining multi-

pol SAR data requires a more complex platform and is not always available.  Since the 

technique presented here is focused on terrain classification utilizing only single-pol 

SAR, this literature review excludes multi-pol SAR techniques. Utilizing SAR

backscatter imagery for classification can be complicated due to the coherent speckle 

inherent to the SAR imaging modality.  Speckle filtering [11][21][22][34][37] is often 

employed as a preprocessor to segmentation.  Without the filtering, the speckle can make 

it difficult to extract features such as edges, which can be exploited to perform 

segmentation.

  For example, Chamundeeswari et al. [6] use an adaptive Lee filter [36] [43], and

Yang et al. [69] used the Maximum Homogenous Region filter.  Deng et al. [16] used 

multilook to reduce speckle.  Another approach could perform superpixel segmentation 

on the raw data, [45] [66] and then perform speckle filtering on the superpixel.  



Superpixel segmentation also has the benefits of reducing the complexity of the 

calculations and minimizing redundant information by grouping homogeneous pixels.

In order to classify the content within SAR images, the images first must be split 

into small windows or superpixels, as in the case of Xiang et al. [66].  Superpixels have 

an advantage over arbitrary rectangular windows because the superpixels group together 

like features and preserve the borders between regions.  From these smaller segments a 

variety of different features can be calculated to perform classification.  These features 

are either based on the texture or the distribution of intensities of the pixels in the small 

segments and include: co-occurrence probabilities, Gabor filter [8] [66] [69], Markov 

Random Fields [8], mean [6], [47], variance [6] [47], semi-variogram [47], lacunarity 

[47], wavelet components [47], histogram of oriented gradients [69], and aspect models 

[68].  These different calculations allow different intensity and texture features to be 

measured.   Combinations of the above metrics can be utilized to achieve an increase in 

classification performance, assuming the metrics are not highly correlated [6] [8] [47].  

For example, Chamundeeswari et al. fused the features using fusion based on principal 

component anaylsis [6].

Several different techniques can be used with the above features to perform the 

classification.  Yang et al. [69] utilized the Extremely Randomized Clustering Forest 

(ERF) to cluster the features into classes.  Following the ERF a Markov Random Field 

was used to smooth the results at the pixel level.  Tison et al. [60] exploited a Bayesian 

classifier with a Markovian frame work to include spatial context information.  In [68], a 

Hierarchical Markov Model was used with aspect models. Hierarchical Markov Models 

allow the classification to be guided by adjacent and multiscale features.  Superpixels 



were exploited with a support vector machine to perform classifications in [66], while a 

K-means classifier was used in [6].  The type of classifier is less important in [6], [66]

because the improvement of PCA fused features [6] and the improvements from 

superpixels [66] were being highlighted.  Clasui performs classification using feature

vectors, created from Fisher linear discriminant, with the Fisher criterion [8].  Maillard et 

al. also utilizes the Fisher criterion, but also uses the Mahalonobis distance and the 

Kolmogorov – Smirnov test [47].

In contrast to the above methods, our approach additionally uses temporal coherence 

statistics from multi-pass, high resolution SAR products taken over a long time period. A 

novel SAR product is developed called a long-term CCD (LCCD) image. Here, we 

assume man-made objects decorrelate slowly over time in comparison to natural features.  

Combining the LCCD with a time-averaged backscatter product provides high-

confidence terrain classification.  Following an offline training phase, our approach is 

fully-automated with high probability of correct detection.  

Our approach is unique in that it not only makes use of higher-resolution and multiple 

SAR products, but takes advantage of the fact that man-made objects tend to decorrelate 

slowly over time. The classification algorithm is based on probabilistic fusion that 

produces a goodness-of-fit test statistic, which creates closed decision boundaries that 

surround classes-of-interest represented by the training set. It also excludes samples 

dissimilar to anything in the training set by declaring them as an “unknown” class. The 

input to the fusion algorithm is based on a Z-test for central tendency. This test captures 

the essence of the various SAR products while allowing for increased generalization to 

similar superpixels with similar statistics, but not necessarily matching distributions. Up 



to now the classification is made using just the pixels covered by the superpixel. There is 

also contextual information where adjacent superpixels tend to have the same label. We 

enforce these spatial constraints using a conditional random field.

3 Overall Approach

Figure 1 shows a block diagram for our approach. The input is based on what we call 

SAR image products. These products result from combining SAR images from multiple 

passes. Here we assume the images have been calibrated and are collected at 

approximately the same aspect and grazing angles. For example by registering multiple 

SAR images of the same area collected at different times, one can smooth out the image 

texture and reduce speckle [20], and reduce Doppler streaks by using the median value 

of each pixel across the time dimension. This produces cleaner images while maintaining 

spatial resolution.

Next a superpixel [1] segmentation algorithm is used to group pixels into statistically 

homogeneous regions. For each superpixel, feature extraction involves identifying the 

corresponding pixels in each SAR product. The classification stage has an array of 

statistical models. The rows represent the image products and the columns represent the

feature vectors. The feature vectors are then combined using probabilistic fusion is used 

to combine the results across image products or for each column of the statistical models. 

4 Multipass SAR image products

By exploiting temporal and spatial statistics, it is possible to derive a number of SAR 

image products designed to reduce speckle or enhance terrain features, some of which 

reduce the effective spatial resolution and some which do not.



4.1 Subaperture multilook

As suggested by the work of Lee [39] we create a subaperture multilook image [28]

which is used by the superpixel oversegmentation algorithm. Note other products are 

used later in the classification process. Forming a subaperture multilook image requires

Fourier transforming a complex-valued SAR image into its corresponding two-

dimensional wavenumber / spatial-spectrum domain, partitioning the spectrum into non-

overlapping 2D pieces, inverse Fourier transforming each sub-spectrum into its 

corresponding complex image, taking the magnitude, and non-coherently averaging the 

images formed from each piece of the spectrum [28] Even though the subaperture 

multilook image has the same pixel spacing, the result has an effective coarser spatial 

resolution (than a SAR backscatter magnitude image formed from the complete phase 

history), but also has reduced speckle. See Figure 2b for a four-look subaperture 

multilook and Figure 2a for the corresponding SAR image.

4.2 Mean and median images

We can use multiple passes of SAR images collected from the same scene to 

compute image statistics for speckle reduction. We calibrate each radar cross section 

(RCS) image and, from a stack of co-registered RCS images of the same scene, compute 

a median image to form the median-RCS image, which is a temporal multilook product. 

Figure 3a shows an example of an median RCS image.

Using a stack of CCD images co-registered to each other we can compute a 

temporal mean CCD. Figure 3b shows an example of a mean CCD image.



4.3 Long term CCD image

We define a long-term CCD (LCCD) image as a CCD image where the time elapsed 

between the first SAR image and the second SAR image is greater than a single day. In 

order to understand the overall decorrelation as time increases, LCCDs were generated 

for increasing time delta's from 14 to1t days. For each time delta, multiple LCCDs 

are possible. For example, a t 2 LCCD can be generated for SAR images collected on 

March 1st and March 3rd. A t 2 LCCD could also be generated for SAR images 

collected on March 2nd and March 4th.

Once LCCDs are generated for a specific t , the resulting LCCDs are co-registered 

into an image stack. The median LCCD is then calculated for a t by finding the median 

value for each pixel from all corresponding pixels in the stack. The result is a single 

median-LCCD image for the given time delta. The median helps remove Doppler streaks 

that can appear in SAR images because of moving vehicles and minor weather 

disturbances such as motion of vegetation during and between wind events. Figure 3c 

shows an example of a median LCCD image.

To analyze the behavior of the LCCD for different static features, analysts selected 

representative superpixels for each statistic feature. These results were verified using site 

visits or overhead optical imagery. The plots in Figure 4 show the result of taking the 

mean of the median-LCCD values for these superpixels and plotting how the mean 

changes with t . Figure 4 shows that at t 1 day, there are basically three ranges of 

LCCD values: high, medium, and low. High LCCD is around 0.9 and occurs for paved-

roads, gravel, and desert static-features. Low LCCD is below 0.5 and occurs for shadows 

and trees. Here the pixels for t 1 are essentially decorrelated. Medium LCCD occurs 



between 0.8 and 0.6. The static-features in this range are man-made, cement, and soil. As  

t increases soil and desert decorrelate at a high rate whereas paved, man-made, gravel 

and cement decorrelate at a much slower rate. This type of feature is very powerful in 

discriminating paved-road from hard packed soil. Here both have similar RCS, but the 

soil decorrelates faster.

5 SAR segmentation

Image segmentation is the process of dividing an image into homogeneous regions. 

Instead of classifying individual pixels or using sliding-window-processing of pixels, we 

oversegment the image into superpixels. A wide body of research has been developed for, 

and has applied superpixel algorithms to optical imagery [1][19][41][50]. In our work 

these superpixels form groups of approximately 500 pixels that have similar location and 

intensity. They facilitate statistical characterization of classes by providing self-similar 

regions, reducing computation complexity, and following natural boundaries instead of 

introducing artifacts as sliding window approaches often do.

Recent works [23][45][59][65][66][70] have allowed application of superpixel 

segmentation to SAR imagery, as well, in spite of SAR speckle. We follow the approach 

of [45] and use the Simple Linear Iterative Clustering (SLIC) algorithm. The SLIC 

algorithm implements a localized k-means algorithm [17][42] with a Euclidean distance 

metric that depends on both spatial and intensity differences. When applying SLIC to an 

RCS domain such as subaperture multilook, we use the log-magnitude domain.  Here, 

Euclidean distance in the log-magnitude domain is equivalent to a ratio-intensity distance 

in the magnitude domain, as proposed by Xiang et. al [66]. Achanta, et.al. [1] use the 

LAB color space channels, with equal weights when applying SLIC to optical color 



imagery. We may select one, two or three of the coregistered SAR image products as 

input channels for the SLIC segmentation. If we had reason to believe that any channel(s) 

were more important than other(s), we could weight the images accordingly.  Figure 5

shows an example of a superpixel segmentation using the subaperture multilook SAR 

image in Figure 2b.

6 Classification

Figure 6 shows the classification approach in more detail. The core of the approach is 

what we call a match matrix. Each row of the match matrix represents a superpixel from 

a SAR image product. Each column represents models for a static-feature of interest. 

Each entry in the match matrix represents the score of matching the appropriate model to 

the superpixel corresponding to the correct SAR image product. Sensor fusion then 

combines the scores together and the classification module selects the best score from the 

different fusion algorithms.

6.1 One-class classifiers

We use a one-class classifier to match terrain models to features from a superpixel. A 

popular assumption in most pattern recognition approaches is the “closed-world” 

assumption [14]. For example, in computer vision, all the objects are assumed to be 

known. This allows the use of “key features” to distinguish objects [14] and machine 

learning algorithms [7][12][26][49][51][64] to search for differences between objects. 

Unfortunately, this approach does not work in unconstrained environments where 

potentially any object can appear in a scene.



For unconstrained environments, a one-class classifier is an appropriate choice [44].

For this paper, we use the term target to describe the class the classifier is designed for 

and nontarget for the other classes. For one-class classifiers, we are interested in one 

specific target 1 represented by the alternative hypothesis 1H , and the null hypothesis

0H represents the nontarget 1 class. While this might seem like an oversimplification, 

one could argue that for a multi-class problem with other targets of interest N ,...,2 one

would design a one-class classifier for each of them. For the 1 one-class classifier we 

can further divide the nontargets into two groups: the other targets of interest N ,...,2

and the unknown class 0 . This allows us to further distinguish between two types of 

false alarm errors: between-class and out-of-class. Between-class errors occur when 

alarming on another target N ,...,2 by calling it the target 1 . Out-of-class errors occur 

when alarming on an unknown signature 0 by calling it the target 1 . In making any 

decision, we want to control two types of errors: missed detection errors and false alarm

errors. Missed detection errors result from missing a target signature by calling it a 

nontarget, and false alarm errors result from alarming on a nontarget signature by calling 

it a target.

For example, suppose we are interested in classifying regions in SAR images into 

classes such as road or scrub-desert or unknown. Here, 1 would represent the road and

2 the scrub-desert class. The unknown class 0 would represent all regions not in 1 or 

2 . This could be other regions such as shadow, soil, gravel, etc.. These unknown 

regions, a possible source of the out-of-class errors, are a significant problem in real-

world pattern recognition problems in unconstrained environments. A Bayesian classifier 



approach designed for the road vs. scrub-desert problem, while minimizing the between-

class errors, would require models of all the possible objects that could be imaged by the 

sensor to control the out-of-class errors. Otherwise it would classify a shadow or soil 

regions as road or scrub-desert. Modeling “the whole world” of possible objects is 

untenable for most realistic systems deployed in unconstrained environments. Instead, we 

use a goodness of fit (GOF) classifier to control the out-of-class errors, and power 

analysis [48] to model the unknown class.

Whereas Bayesian classifiers minimize the between-class error, they do nothing to 

control the out-of-class errors. Figure 7 illustrates this potential problem. The Figure 

shows a two-dimensional feature space, with samples from two targets: Target A

represented by stars and Target B represented by filled circles. Assuming normal 

distributions and equal covariance matrices for the targets, the Bayes decision boundary 

has a linear form, Figure 7a. Whereas the Bayes classifier minimizes the between-class 

errors of the A and the B targets, it does not control the out-of-class errors caused by 

unknown objects represented by “x” symbols. Depending on which side of the boundary 

the nontarget falls, the classifier will assign the unknown to one of the known classes and 

make an out-of-class error. Figure 7b shows a GOF classifier that tries to surround the 

target class. Here, the unknown objects, that have widely differing features from the 

target class (“x” symbols), will be classified correctly. In general, the GOF classifier has

improved out-of-class errors, but the between-class errors will increase, since it is not 

necessarily an optimal Bayes classifier. 



6.2 The one class problem and requirements

Assume we have a template iT for the class i and a set of sensor observations U . Let 

id be the GOF between U and iT , i.e. ),( ii TUfd  . We call id miniphilic if id is small 

for when between U and iT are close in some distance metric space and maxiphilic for 

id large when U and iT are similar. For this paper we will assume miniphilic unless 

specifically stated. Let },...,,{ 10 N be the set of possible classes, where i is any 

class that isn’t i , i.e. }{ ii   . Let )|( iidp  and )|( iidp  represent the 

probability density function (PDF) of the GOF id , given the class i and the  i , 

respectively. The PDF’s can be discrete or continuous and can be determined through 

theoretical means or empirical modeling.

The PDF )|( iidp  is usually straightforward to determine, since one has knowledge of 

the target of interest  The PDF )|( iidp  is usually more problematic. One approach for 

modeling the nontarget class uses statistical power analysis [48] to model the worst case 

nontarget. The approach has some similarities to that taken by [25] for modeling 

composite hypotheses by determining the least favorable choice. Power analysis assumes 

the tested effect is linear and the measured effect size (small, medium or large) is known. 

Typically, power analysis allows the statistician to determine if enough samples were 

collected to give the test a high power. 

While the exact form of )|( iidp  depends on )|( iidp  , we show an example from 

[30] where )|( iidp  is )1,0(N . This is convenient in problems where the central limit 

theorem can be applied or for when )|( iidp  is a heavy tailed distribution such as 



Rayleigh, Chi-Square, or Gamma and a square or cube root transform can approximate 

normal distribution. For example if ,rX is a random variable with a Gamma distribution 

with a shape and scale of r and  then 3/1
,rX is approximately normal [46] and using the 

Wilson-Hilferty transform [63] has mean and standard deviation:

23/223/1 )(/)3/2(   and   )(/)3/1( whwhwh rrrr   (1)

In [30], it was shown that the worst case )|( iidp  PDF is )1,~(N . Here the 

location parameter ~ represents the smallest acceptable effective difference between 

class i and class i .

6.3 Multiclass confidence for one class classifiers

It is often desirable to estimate the confidence of a decision given the GOF id , which 

would be inversely proportional to the uncertainty of a decision. This is useful when a 

human analyst needs to interpret the results or for further processing, such as generating

the unary terms in a conditional random field (CRF). For the binary problem, with 

},{ 10  , one can use Bayes rule and the law of total probability to get
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Here 1 is equivalent to the unknown class 0 and we call )|( 1 xp  the confidence of our 

decision that the model iM matches the sensor observations U . Dividing the numerator 

and denominator by )|())(1( 111  dpp , equation (2) becomes:
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where ))(1/()()(/)( 11110  pppp  is the prior odds ratio for class 1 and 
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d  is the likelihood ratio. A 1)(  x corresponds to an GOF id where 

the class 1 is more likely. As  )(x , )|( 11 dp  goes to one, indicating high 

confidence for class 1 . As 0)(  x , )|( 11 dp  goes to zero, indicating low confidence 

for class 1 . For the special case of 1)(0  x , )|( 11 dp  is ½ indicating we no 

evidence either way for class 1 .

To extend the binary problem to a multiclass problem },...,,{ 10 n we use 

the Dempster Shafer theory of evidence. The Dempster Shafer (DS) theory [54] is a 

mathematical theory of evidence that allows combining evidence from different sources 

to arrive at a degree of belief. It models uncertainty by not requiring one to assign all of 

one’s belief to a single proposition.

The main assumption we make is that evidence is consonant. This allows us to use the 

probabilistic framework that we established in section 6.2. Shafer defines consonant 

evidence as evidence that points in a single direction and only varies in the precision of 

focus [54]. This fits well with the GOF metric. The GOF describes the difference 

between stored knowledge, for example a template of the target, and the measured data. 

Thus it points only in the direction and focus of the hypothesis represented by the stored 

knowledge.

For the multiclass problem the frame of discernment or set of possible outcomes is the 

power set 2 . For the two class problem the power set is },,,{ 10  , where 

represents the empty set. From [54] the support function for class k is 
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and the support for the nontarget k is
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where  m represents the DS basic probability assignment (BPA) function and )(m

represents the amount of uncertainty in the GOF kd . Using the approach in [29], one can 

combine evidence additively by converting the BPA’s to weights of evidence.

Two BPA’s can be combined using Dempster’s rule [15]:
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Unfortunately, for N classes the number of resulting BPA’s is N2 . This can get 

unwieldly as N gets much over say 10. Thus, as the number of classes increases the size 

of the frame of discernment  increases exponentially. This requires computing and 

storing a BPA for every possible subset. To overcome this problem we use the Bayesian 

approximation algorithm [3][62]. This approach reduces the number of focal elements 

(subsets of  ) while retaining the essence of the information they represent. The 

Bayesian approximation reduces the BPA to a probability distribution where only 



singletons subsets of a frame are allowed to be focal points. Given a BPA  m the 

Bayesian approximation  m̂ is given as
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Thus for the consonant evidence (4) and (5) and for class k the Bayesian approximation 

is:
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where

)1)(()()(  NmNmmL kk  (9)

Here )(m is spread equally over the N classes plus the unknown class and )( km  is 

spread equally over the all the classes except for class k . We use )(ˆ
im  for )|( ii dp  ,

and for 2N , it’s straightforward to show that )|()(ˆ
111 dpm   in equation (3) for 

10  .

Table 1 shows some examples for a three class problem. To save space we don’t 

show the uncertainty )(m for each class’s GOF BPA, since the sum of the BPA should 

sum to one, e.g. )()(1)( kk mmm   and also all the shown BPA’s are multiplied by 

100.

The first row in the table shows the case where the GOF fails for all three classes 

and there is a high BPA )( km  for 3,2,1k .  Note due to the assumption of consonant 

evidence if 0)( km  then 0)( km  or vice versa. This translates into combined 



confidence of the unknown class )(ˆ
0m as 0.87.  The other three classes have very low 

confidence. The second row shows an example where the goodness of fit is very good for 

class 1 and poor for the other classes. After combination the majority of confidence is 

placed on )(ˆ
1m . In row 3 the GOF increase for class 2, but remains the same for class 1. 

This is reflected in the confidence calculation with )(ˆ
1m decreasing and )(ˆ 2m

increasing. In row 4 the GOF further decreases for class 1. This results in a confidence 

between )(ˆ
1m and )(ˆ 2m being very similar and also an increase in the unknown class 

)(ˆ
0m .

7 P-value fusion

We use p-value fusion [56] for not only fusing matching scores in the match matrix 

(Figure 6), but also to combine different statistical features (such as the 1st and 2nd

moments) from the superpixels. For this section we will use the word “score” to not only 

mean GOF scores from the match matrix, but also statistical features that we extract from 

a superpixel. The important steps in the fusion process are to normalize the scores so they 

can be easily combined and to account for any dependence between the scores. 

For ease of presentation we drop the index indicating class and assume without loss 

of generality that there is just one class. Let it , qi ,,1 , represent the scores to fuse. 

For the null distribution, let )|( itf represent the probability density function (PDF) of 

it conditioned on class  and )|( itF represent the corresponding cumulative 

distribution function (CDF). Then )|(1 itF is the p-value and is uniformly distributed 

[27]. It follows that



))|(1log( ii tFY  (10)

is exponentially distributed [18]. It is expected that iY will be large for scores that violate 

the null hypothesis. This process normalizes the scores so that they can be combined by 

addition:





q

i
iY

1

F (11)

where F is the fused score. The distribution of F is approximated as a gamma for the 

null distribution with parameters

Cq

q

Cq

q
r





     ˆ  and  ,ˆ

2

 (12)

where r̂ and ̂ are the shape and scale parameters of the gamma distribution 

respectively, and


 


q

i ij
ijC 

1

̂ (13)

Here, ij̂ represents the estimated correlation between iY and jY . The correlation 

coefficients ij̂ are estimated from labeled training data. See [56] for more details.

Intuitively, the parameter C accounts for the amount of redundant information.

Because each iY is expected to be large for scores that violate the null hypothesis, it is 

sensible to make the corresponding static feature identification decisions by setting a 

threshold on the value of F . Fused scores at or below the chosen threshold are classified 

as the corresponding class, while those with scores above the threshold are classified as 

the unknown class.



8 GOF for SAR segmentation

For this section we assume we have access to a set of superpixels that have been assigned 

to a specific terrain class. We divide each class into three sets, one used for training, one 

for testing and one for validation. The training set is used to select the GOF classifier 

parameters, while the test set is used to select thresholds and features, and the validation 

set is used to create receiver operating characteristic (ROC) curves that measure feature 

performance.

SAR speckle is an artifact of coherent imaging. In the magnitude domain, speckle 

for a region with constant backscatter is typically modeled with a Rayleigh distribution 

[61]. The Rayleigh distribution is a good model for SAR backscatter from homogenous 

clutter regions such as bare ground, dense forest canopies, and snow covered ground [61]. 

For nonhomgenous regions other models have been proposed.  For example, the 

lognormal or Weibull distributions have been used for sea ice [61]. Salazar proposed 

using the beta prime distribution as a unified model for describing homogeneous and 

heterogeneous clutter and extremely heterogeneous (man-made) areas [52][53]. The beta 

prime model is completely characterized by two parameters, which dictate the shape and 

scale of the SAR data. Unfortunately, estimating shape and scale parameters doesn’t have 

a closed form solution. In [24] Gao gives a summary of the 40 year history of SAR 

modeling and gives more than a 100 references on the subject.

For road finding in SAR images, Koch et al. [31] use the nonparameteric two 

sample Kolmogorov-Smirnov (KS) test [33][49][58]. This approach could easily be 

extended to multiple classes by designing a KS model for each combination of class and 

image product. The KS test compares the CDF of pixels within a test superpixel against 



each trained model CDF and produces a match statistic for each. This allows the 

algorithm to adapt to any distribution for a given static-feature and SAR image-product.

One concern is that the KS test is too sensitive and does not generalize well to similar 

terrains.

In our approach we use the 1st and 2nd moments, 1 and 2 , of the superpixel

pixel intensities, respectively. These features are descriptive enough to describe the 

distribution of different terrain pixels in a superpixel, but not as sensitive as the CDF used 

by the KS test. By the central limit theorem, the probability density function for these 

moments is normal with mean and variance of i and 2
i ( 2,1i ), respectively. This is 

conditioned on the knowledge of class  from the training data. Using the training data 

and the leave-one-out technique we estimate i̂ and 2ˆ
i given  .

The goodness of fit test is built on the two-tailed Z test for both  1 and 2 and 

combining their Z test p-values using p-value fusion. For the Z test, the null hypothesis 

0H is that i is ),( 2
iiN  or belongs to class  and the alternative hypothesis is that i

is not ),( 2
iiN  or belongs to  . The test statistic is 

iiiiz  /)ˆ(  (14)

and the two-tail p-value is

|)(|2|))(|1(2 ii zz  (15)

where (.) represents the )1,0(N CDF. Using p-value fusion we can combine the p-

values to get

|))(|2log(|))(|2log( 21 zzz  (16)



The fused score z has a gamma distribution with parameters )ˆ,ˆ( r given by (12). We 

assume 1}E{ 2 ji xx for ji  , so 1C for equation (12). Since 2q , the gamma 

shape and scale parameters become 2ˆ r and 1ˆ  .  The p-value for the combined GOF 

test is

)ˆ,ˆ|(1 rz (17)

where (.) is gamma CDF. This can be used in the p-value fusion when fusing GOF tests 

from multiple products.

Figure 8 shows the CDF of the p-values (17) for two different classes and 

products. The theoretical distribution for the p-values is uniform so the CDF is a ramp 

with a slope of one. The dotted lines in Figure 8 show the theoretical distribution, while 

the solid lines show the actual distribution of p-values. Figure 8a shows the p-values for 

the tree class using the median RCS product. The p-values are estimated using a leave-

one-out technique using the tree-class training superpixels. For K superpixels, 1K are 

used to estimate i and 2
i ( 2,1i ) and the one left out is used to compute a p-value 

(17). This is done K times leaving a different superpixel out each time. The resulting 

CDFs are shown in Figure 8.  There is a reasonable match between the actual and the 

theoretical distributions. Figure 8b shows the p-value CDF’s for the tree class, but for the 

mean CCD product. Figure 8c and Figure 8d show the bright man-made class for 

products median RCS and 21 day LCCD, respectively.

To create performance curves we hand pick superpixels belonging to the classes 

of interest. The truth of the data is verified using optical imagery and site visits. Figure 9

show performance curves for two of the classes and differing products. The metric for 

measuring performance is the receiver operating characteristic (ROC) curves. The test 



superpixels were used to create these curves that plot the probability of false alarm vs. the 

probability of detection at different operating thresholds. There are two types of curves in 

Figure 9. One shows the performance for a single product score and the other shows the 

performance for the results for multiple products. For the single product result the ROC

curve is obtained by applying a threshold to the combine moment score (16) and 

estimating correct detections and false alarms. For the multiple products ROC curve the 

threshold is applied to the fused score (11). Figure 9a and Figure 9b show the ROC 

curves for the tree class using the single products median RCS and the mean CCD, 

respectively. Figure 9c shows the fused result which is much better than either product by 

itself. Figure 9d and Figure 9e show the ROC curves for the bright man-made class using 

the single products median RCS and 21 day LCCD. Figure 9c shows the fused result 

which improves the PD at high false alarm rate, but not low false alarm rate. The man-

made class is the most difficult probably due to the superpixel algorithm including other 

classes, besides the man-made class, in a group with it and layover from man-made 

structures mixing with the background.

9 Conditional random field

To enforce spatial consistency we represent the labeling of the superpixels as a 

conditional random field (CRF) [35] and infer the most likely labeling by maximize the 

posterior probability of the random field. Graph cuts with alpha expansion are used for 

this multilabel optimization problem [2]. CRF’s are a special case of a Markov random 

filed (MRF). An MRF describes the ),Pr( SA using a graphical model. Here,

},...,{ 1 MssS  represents the pixel values underneath the M superpixels. Each ks



represents the data in a contiguous group of pixel locations in the product images. The 

variable },...,{ 1 MaaA  represents the set of class assignments. Where ka is the label for 

superpixel ks . Thus each ka is a number between 0 and M , where 0 represents the 

unknown class. The MRF can be used as generative or inferential model. The problem is 

that is and features derived from is can be highly correlated and/or redundant and an 

MRF is poor at describing these correlations and requires a densely connected graph.

The CRF is an MRF conditioned on the data: )|Pr( SA [35]. This removes the 

correlations and redundancies in S , since S is now assumed given. The model is no 

longer generative, but that is not a problem, since we want to do inference.

Typically the CRF objective function is represented as ))|log(Pr( SA and is called 

the energy function. Thus, instead of maximizing the posterior probability we want to 

find the labeling that minimizes the energy function. The second order energy function 

for a CRF is given as:





iNjVi

jiij
Vi

ii aaaAE
,

),()()(  (18)

Here V corresponds to the set of superpixel indicies and the neighbor set iN corresponds 

to the set of superpixel indices that are adjacent to superpixel i . The term )( ii a

describes the energy of assigning superpixel i the label ka and is call the unary term. 

The pairwise term ),( jiij aa represents the energy of the similarity between superpixels

i and j .  A low energy for ji aa  would favor the two superpixels to have the same 

label. 



9.1 Unary term

For each superpixel Mj ,...,1 and terrain class Nk ,...,1 the unary term we want to 

compute is ))|(log( jkkp F . To accomplish that, we first find )|( kjkp F and )|( kjkp F . 

From the construction of the p-value fusion algorithm )|( kjkp F is gamma with 

parameters )ˆ,ˆ( r (12). Using (1)  and applying the transform:

whwhjkjk (  /)ˆ 3/1  FF (19)

)|ˆ( jjkp F is approximately )10( ,N . From section 6.2 )|ˆ( kjkp F is )1~( ,N k . Where the 

location parameter k
~ represents the smallest acceptable effective difference between 

class k   and class k . This can be determined by knowledge of the power of the test or 

empirically using training and testing data. Using (4) and (5) followed by (8) and then (6)

we can get  )ˆ|(ˆ
jkkm F for each superpixel which can be used as )ˆ|( jkkp F in the unary 

function, ))|(log( jkkp F .

9.2 Pairwise term

The pairwise terms takes the form of a contrast sensitive Pott’s model [32]



 


Otherwise),(

if0
),(

jig

aa
aa ji

jiij (20)

where ),( jig is a contrast feature based on the ratio of the average median RCS between 

two adjacent superpixels. Typically it is defined as 

)),(exp(),( jicjig bvp   (21)



Here, we define )/,/min(),( ijjijic  where i is the average RCS value in the 

magnitude domain, and )},({VAR2 jicb  [55]. The variables p and v are selected to 

give the correct tradeoff between the unary and pairwise terms.

10 Results

Using just the unary term, Figure 11 shows a labeled image of the SAR image in 

Figure 10, which contains data from the validation set. The labeling is done by selecting 

the class with highest confidence after combining all the GOF class results. The black 

labeled superpixels indicate regions where none of the GOF models fit very well and 

after Dempster/Shafer combination (6) the confidence )(ˆ
0m is greater than all the other 

confidences, )(ˆ
km  Nk ,...,1 . There are some obvious false alarms where the 

hardpacked dirt is misclassified as paved and cement. Also, some of the returns from 

power lines (below the road) get misclassified as tree or gravel.

Using graph cuts and alpha expansion, Figure 12 shows the labeling from 

minimizing the CRF energy function (18). The result is an image with more spatial 

consistency. A large number of isolated unknown superpixels where switched over to the 

neighboring class majority for those areas with low contrast, but the false alarms in the 

unary terms still exist. To improve those one would need higher order constraints that 

incorporate shape and context.

11 Conclusion

Diversity in SAR imagery is very important for classification. Since we don’t have 

polarimetric or frequency diversity we use temporal diversity. With the availability of a 



large amount of high resolution surveillance data collected at different times we have a 

unique opportunity to build on current approaches and find new ways to segment SAR 

images, specifically automatically identifying classes such as paved, shadow, desert, soil, 

etc. in SAR imagery. The phenomenon of SAR speckle requires careful consideration on 

using standard optical approaches for image segmentation. With the availability of a long 

time history of SAR imagery for a specific area, we have introduced a new SAR-

derivative product based on a long term CCD.  Usually the time separation between 

successive SAR collections for a CCD creation is on the order of hours, but we have 

investigated how different regions decorrelate over many days. We have found that the 

type of terrain often determines the rate of decorrelation. For example, the paved-road 

static feature maintains a high degree of coherence even after many days. However, an

LCCD image by itself fails to provide sufficient discrimination between certain high 

desert areas, man-made objects and paved roads. Instead, if we apply probabilistic fusion 

to combine multiple data sources, LCCD and SAR RCS for this case, significantly 

reduces between-class confusion.  Because p-value fusion models the class of interest and 

tests for fidelity to the model, it allows an unknown class, which is difficult or impossible

with many machine learning approaches [7][12][26][49]. We show how to combine the 

output of many one-class classifiers to get a confidence for each class and the unknown 

class. This is important for follow-on algorithms such as a CRF.

For features, we use the first two moments of the superpixel. These features are 

descriptive enough to describe the distribution of different terrain pixels in a superpixel, 

but not as sensitive as a CDF used by the KS test. To get the combined p-value for these 

moment based features, we use the Z-test and p-value fusion. From these p-values, for a 



single class and single image product, we can fuse multiple products to get a confidence 

for the class of that superpixel.

To enforce spatial consistency constraints we use a CRF. A labeling is achieved by 

minimizing the CRF energy function using graph-cuts and alpha-expansion. The energy 

function is created using the multilabel confidences from the combination of one-class 

classifiers and contrast function based on the ratio of the average intensity for adjacent 

superpixels. 

12 Future Work

While we investigated temporal diversity in SAR imagery, it would of interest to 

look at other types of diversity. The coherence values are dependent on the geometry and 

material. For example, at shallow grazing angles, paved roads or metal roofs may scatter 

all their energy away from the sensor, resulting in low coherence. On the other hand, 

terrain like shrubs, might give more consistent returns, as the scattering mechanism

volumetric. Thus the multi-passes at different grazing angle might add another layer of 

diversity to the SAR terrain classification problem.

One problem with an approach using single-pol SAR is the variation of the 

backscatter with local grazing angle. Elevation changes can create deviations from the 

idealized planar surface. This causes the backscatter of the same terrain class to vary for

other surfaces such ridges, ravines, peaks, and valleys. One approach is to use the local 

grazing angle to compensate for these elevation changes. To estimate the local grazing 

angle one needs an elevation map. Interferometric SAR (InSAR) is one approach, but the 

multiple SAR collections need to be planned with InSAR in mind. Another idea is to use 

lidar to get the elevation information.



Another area for future work is the selection of superpixels for training. It’s difficult 

for an analyst to know what types of terrain are discriminated by a sensor and which are 

confused. Therefore unsupervised segmentation of SAR images is important even though 

the ultimate goal maybe a result with classes identified. One problem with supervised 

segmentation is the scale of the approach. Specific parameter selection and techniques 

tend to be very good at finding large or small regions, but not both. An attractive 

approach is to combine segmentations based on different parameters and algorithms to 

get a single overall best segmentation [4].
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Figure 1: Block diagram of SAR terrain classification approach.

(a) (b)

Figure 2: Example SAR and multilook images. (a) Calibrated SAR image. (b) Four look 

subaperture multilook.

(a) (b) (c)

Figure 3: Example SAR product images. (a) Median RCS (b) Mean CCD for t =1 day. 
(c) Median-LCCD for t =14 days.
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Figure 4: Mean LCCD for 14 to1t days and different types of static-features (best 

viewed in color).

Figure 5: Example superpixel image.
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Figure 6: Classification approach.

Figure 7: Comparison of Bayes and goodness of fit (GOF) classifiers. (a) Bayes 

classifier. (b) GOF classifier.
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Table 1. Example one-class combination to get multiclass confidence.

Class 1 Class 2 Class 3 Confidence

)( 1m )( 1m )( 2m )( 2m )( 3m )( 3m )(ˆ
0m )(ˆ

1m )(ˆ
2m )(ˆ

3m

1 0 91 0 99 0 95 87 8 1 4

2 85 0 0 90 0 85 13 84 1 2

3 85 0 50 0 0 99 10 69 21 0

4 60 0 50 0 0 99 18 45 36 0
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(a) (b)

(c) (d)
Figure 8. CDF of GOF p-values for different classes and products. Blue line shows the 

actual CDF and the dotted black line shows the theoretical uniform distribution. (a) and 

(b) tree class. (c) and (d) man-made bright class. (a) and (c) median RCS. (b) mean CCD. 

(d) 21 day LCCD.
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(a) (b) (c)

(d) (e) (f)

Figure 9. ROC curves for different classes and products. (a)-(c) is for the tree class with 

(a) the median RCS, (b) the mean CCD, an (c) the fusion of the two products from (a) 

and (b). (d)-(f) is the for the man-made class. (d) the median RCS, (e) the 21 day LCCD 

and (f) the fusion of the two products from (d) and (e).
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Figure 10. Example SAR image
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Figure 11. Labeling before applying the CRF (best viewed in color)
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Figure 12. After applying CRF (best viewed in color).


