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Abstract

In coded aperture imaging, one of the most important factors determining the quality of
reconstructed images is the choice of mask/aperture pattern. In many applications, uniformly
redundant arrays (URAs) are widely accepted as the optimal mask pattern. Under ideal
conditions, thin and highly opaque masks, URA patterns are mathematically constructed to
provide artifact-free reconstruction however, the number of URAs for a chosen number of mask
elements is limited and when highly penetrating particles such as fast neutrons and high-energy
gamma-rays are being imaged, the optimum is seldom achieved. In this case more robust mask
patterns that provide better reconstructed image quality may exist. Through the use of heuristic
optimization methods and maximum likelihood expectation maximization (MLEM) image
reconstruction, we show that for both point and extended neutron sources a random mask pattern
can be optimized to provide better image quality than that of a URA.

1. Introduction

In coded aperture imaging, a mask array consisting of a pattern of transparent and opaque
elements is placed in front of a position sensitive detection plane [1]. A radiation source located
somewhere within the field of view of the imager casts a shadow of the mask plane onto the
detection plane. One of the most important considerations in coded aperture imaging is the mask
design. The attainable quality of the reconstructed images is strongly dependent upon the choice
of aperture pattern. Optimally, mask patterns are designed such that the direction of the incident
radiation is uniquely encoded in the pattern projected onto the detection plane. With suitable
mask selection and reconstruction techniques, multiple sources and/or extended sources can be
resolved since the projected shadow patterns in different directions are not only unique but also
orthogonal.

A pinhole camera can be thought of as a special case of coded aperture imaging: it uses a mask
that contains one central aperture in an array of otherwise opaque elements. While pinhole
cameras are capable of high angular resolution, they tend to suffer from low efficiency due to the
single small aperture. In coded aperture imaging the modulation detected at the image plane can



be thought of as the superposition of many pinhole camera images corresponding to the various
apertures in the mask array [2]. Therefore, one major advantage of coded aperture imaging is that
it provides a greater throughput of radiation while maintaining the same aperture size and thus
angular resolution as a pinhole camera with the same aperture size.

An important design parameter of the mask array is the open fraction. The open fraction is
defined as the ratio of the area of transparent elements of the mask (apertures) to the total area of
transparent and opaque elements of the mask. There have been several approaches to calculating
the optimal open fraction of a mask array [3,4]. Within these approaches, the optimal open
fraction is a function of two characteristics of the imaging space: the fraction of the total source
counts due to the source present as a function of reconstruction position, and the ratio of the
counts at one reconstruction position due to un-modulated background to the total number of
counts due to the source. The two source arrangements of interest in this work, a point source
and an extended source, have distinct values of these characteristics and are therefore expected to
have different optimal open fractions.

Over the last three or four decades, uniformly redundant arrays (URAs) and modified uniformly
redundant arrays (MURAs) have been widely used and accepted as optimal mask patterns [5].
URAs and MURAs have different mathematical definitions, but very similar properties, and we
will use URA to refer to both families hereafter. Under ideal conditions URA masks are
mathematically guaranteed to provide artifact-free reconstruction from the modulation pattern
observed on a position sensitive detector plane. However, these patterns exist only for a certain
number of mask orders (number of elements in a pattern) and open fractions. In fact there are
very few known URAs with open fraction significantly different from 50% [6]. Random masks
are arrangements of transparent and opaque elements that are not constrained by any pre-defined
pattern, although they may be optimized for performance, as will be shown in this work. In
contrast with URA patterns, random masks can have any open fraction ranging from a single
pinhole aperture to an inverse pinhole aperture with a single mask element.

In the past, motivation for using the URA mask stemmed from the fact that matched filtering
could be employed to allow for the source distribution to be reconstructed from the coded
projection by directly correlating it with the aperture array itself [2]. Because the URA
autocorrelation function has constant sidelobes, i.e. positions misaligned with the true source
direction sum to a constant value, matched filtering was ideal because the reconstruction was not
subject to certain systematic errors that other, non-URA, arrays like random masks could display
when this reconstruction technique was employed [5]. With wider use of iterative image
reconstruction algorithms such as maximum likelihood expectation maximization (MLEM) and
computer systems capable of handle their computationally intense nature, the need for matched
filtering techniques is reduced [7].

Another important design parameter of the mask array is the mask order. The mask order is
defined as the number of elements along each dimension of the smallest repeating unit of the



mask. The choice of mask order is typically dictated by constraints such as the size and
resolution of the available detector and the desired size and resolution of the imaging space [5].
URAs exist only for mask array orders that are prime numbers. In order to have at least one full
sample of the entire URA while maintaining a field of view larger than a single direction, either
the detection plane must be larger than the URA pattern or the mask must consist of a tiling of a
several URA units. While there is no limitation to the number of times the pattern can be
repeated, frequently masks are constructed from a 2 x 2 tiling of the basic URA pattern with an
additional dividing row and column included in order to avoid intrinsic ambiguities [1].
However, random masks can be built for any mask order, do not need to be fully sampled, and
thus do not require a repeat of the pattern in order to increase the field of view.

Under ideal conditions, a URA mask provides perfect modulation and any backgrounds that may
be present uniformly populate the detection plane. If these conditions are met, then the
autocorrelation of the mask pattern is a delta function and the inherent symmetries associated
with the tiling of the mask pattern for URAs perfectly cancel [5]. For x-ray detection, near ideal
conditions can be satisfied with the use of thin, nearly perfectly opaque lead or tungsten mask
elements resulting in relatively artifact-free reconstructions. However, for fast neutron detection,
an equivalently opaque mask material does not exist. Low atomic number materials such as high-
density polyethylene are the most attenuating to fast neutrons. In order to compensate for the
highly penetrating neutrons, a mask made of high-density polyethylene must be made
appreciably thick (several cm) in order to provide sufficient modulation.

As the mask thickness becomes appreciable compared to the size of the mask elements, the
apertures become obscured at off-axis angles. This can result in the emergence of systematic
noise in the sidelobes of the autocorrelation function [8] therefore tiled URA mask patterns may
not necessarily be the optimal solution for fast neutron coded aperture imaging.

Using image reconstruction techniques other than match filtering (such as MLEM), random
mask patterns can be optimized for open fractions that are specific to the characteristics of the
source distribution under consideration. Considering an image quality figure of merit (FOM) that
takes into account the differences between the true source distribution and the reconstructed
source distribution, optimization is performed by employing a hybrid method combining
elements of simulated annealing (SA) and the great deluge algorithm (GDA) [9]. In this work we
show that this method is capable of generating random mask aperture patterns that converge to

an open fraction that is optimal for any desired source distribution and an image quality better
than URA masks.

Finally, we optimize and physically construct a random mask pattern for a selected source
distribution. A series of measurements are made using the optimized mask and a URA mask
with the same coded aperture detector system. Extended source distributions are simulated
through the use of *>*Cf test sources moved through a pattern.



2. Materials and methods

2.1. Mask arrays

Three types of mask arrays are simulated and analyzed in this investigation: a single aperture
pinhole, a 2 x 2 mosaic of an order 19 x 19 URA pattern, and an order 38 x 38 random-seeded
array. Figure 1 shows the pinhole on the left, URA mask pattern in the center, and an example of a
randomly generated mask array on the right.

17

Y Mask Elements

Y Mask Elements

Y Mask Elements
w

uﬂ 5 0 15 20 25 30 35
X Mask Elements X Mask Elements X Mask Elements

Figure 1 - (From left to right) Example of simulated pinhole, URA, and random mask design for coded aperture
imaging.

2.2. Fast neutron coded aperture imager
All simulations of the mask arrays are performed using a model for a fast neutron coded aperture
imager developed by Oak Ridge National Laboratories and Sandia National Laboratories [10].

The imaging space was chosen to be a 3 m x 3 m plane at a distance of 6 m in front of the
detection plane. This space was divided into 60 bins in the horizontal and vertical directions and
a single bin lcm wide in depth. Within the imaging space, two source distributions are
investigated. One scenario consists of a single point source, displaced from the origin, with
uniformly distributed background. The second scenario consists of an extended source
distribution, also with a uniformly distributed background. This extended source consists of a
ring, a point source and a line source. Imaging systems are frequently tested using point sources
because they reveal the inherent angular resolution of a detector system, but an extended source
was included in this investigation because many real world sources of interest are larger than the
angular resolution of the detector system [11]. Figure 2 shows the source distributions in the
imaging plane for the point source test case on the left and the extended source test case on the
right. For the point source test case, we consider a low signal to background scenario, with 1.3
detected n/s for the source, and 24.6 detected n/s for the background, both integrated over the
detector plane. For the extended source test case, the neutron source rate from each of the ring
and rectangle was chosen to be approximately equivalent to what we expect from an I[AEA
significant quantity of weapons grade plutonium (4x10° n/s). The detected neutron rate was
calculated at the given distance, accounting for the mask attenuation and assuming 70%



detection efficiency, yielding ~50 s™ from each extended source for a 50% open fraction. The
point source in the multi-source configuration was taken to emit an order of magnitude fewer
neutrons. The rate of uniform background for the multi-source configuration was 150 s
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Figure 2 — Simulated soure distributions for point source and extended source (point, ring and line) scenarios.

2.3.Image quality FOM

Many techniques are used to quantify the image quality that results from an image reconstruction
obtained using coded aperture. Previous techniques employed include using the signal-to-noise
ratio of the reconstructions and using the magnitude of the coding noise as a percentage of the
signal peak [2,12]. For this investigation, though, the image quality FOM must be robust enough
to handle both a point source and extended source test case. A x* quantity defined as

29 (i)-x())
23]

where x( ) is the reconstructed image, x( ) is the true image, and [/ is the total number of

image pixels, was chosen for this investigation. This is a technique widely employed in medical
imaging where very diffuse sources are typically imaged [13]. This quantity allows for the direct
comparison of the true and reconstructed image by examining differences pixel by pixel. By
evaluating the magnitude of this quantity, it can be determined quantitatively how much the
reconstruction diverges from the true image. Note that because this is a %°, a lower value
indicates an improvement in image quality.

It should also be noted that this FOM is only valid for the case of Monte Carlo simulations where
a true source distribution is known and can be used for the pixel-by-pixel comparison. In the case



of image reconstruction from measured data it is clear that the exact true source distribution is
not available and would need to be estimated.

Monte Carlo simulations were performed by first generating a detector response function for the
mask pattern to be simulated. This was done by estimating the average attenuation through the
mask from each source bin in the image space to each detector pixel using a ray tracing
algorithm. This attenuation map was normalized to provide a probability density (PD) over the
image plane for each source bin. The PD for a source distribution is then the normalized sum of
source bin PDs weighted by the appropriate source strength. To model an observation, a number
of random events are then generated out of this source distribution PD according to the desired
source strength and dwell time.

All reconstructions are performed using an MLEM iterative reconstruction algorithm [7]. The
number of iterations used is dependent upon the test case at hand. For the point source test case,
140 iterations was determined to be the optimum to obtain the most statistically sound image
reconstruction [ 14]. For the extended source case, the number of iterations approached 300.

2.4. Optimization methods

2.4.1 General optimization of open fraction

The random mask was first optimized for open fraction by employing a general scheme that
involved generating the image quality FOM for a variety of open fractions and observing any
trends in the resultant values. This was done by generating random masks with open fractions
between 5% and 95% in 5% increments. For each open fraction, 100 different random masks
were generated, and a high statistics FOM, designated as O, was determined as follows. For each
of'the 100 mask patterns, 50 test datasets were randomly generated—25 using one of the source
distributions in Figure 2, and 25 using a 90-degree rotation of the same distribution. An image
was reconstructed from each test dataset and the 3 comparison to the true distribution was
calculated using Eq. (1). The set of 50 % values was averaged to obtain a value designated as O*
for each mask pattern. Finally, O* values for the 100 mask patterns were averaged to arrive at
the value Q for each open fraction. The values of Q are plotted versus open fraction in Figure 6.
Curves were generated for both the point source and extended source test case.

In addition to using this scheme for random masks, a O value was generated for both a URA and
pinhole mask. Because each of these mask array types exists for a singular open fraction under
the constraints of a specific geometry, only one Q value was generated for each. These values
were added to the plot of O versus open fraction to give a better understanding of the differences
in image quality between the different mask types for a specified test case.

2.4.2 Heuristic optimization of mask pattern
For the extended source test case, the random mask was also optimized for open fraction and the
mask pattern itself by employing a heuristic optimization algorithm [8]. A hybrid algorithm was



constructed combining elements of SA and the GDA. This is illustrated graphically in Figure 3
and in pseudo-code outlining the algorithm shown below:

Generate an initial random mask configuration, M’
Choose an initial number of mask pixel flips, '
Choose an initial image quality FOM, O’
Choose a convergence speed, S
While (Number of mask pixel flips > 0)
Make new mask that is M” changed by F, M
Generate Q for M

If (0 < 0"
0"=0"-5*(0"-0)
M =M

Else
F=F-1

Stop

Random Mask

Keep this mask
and lower the
threshold

Flip n elements

Yes

Keep old mask and

decrease n by 1 Calculate image

quality factor, Q

Is Q below

threshold? ' —

Figure 3 - Illustration of the mask optimization algorithm.

No

By performing perturbations to the original mask configuration in the form of flipping mask
elements from open to close or vice versa and comparing the image quality to 0’ instead of the
image quality of the previous mask, elements of the GDA are incorporated into the algorithm. By
gradually changing the number of pixel flips until a stopping condition is met, SA elements are
incorporated into the algorithm.



The scheme used to change Q” was selected to ensure that Q” lowered quickly when the image
quality of the current mask is much lower than Q" and lowered slowly when only small decreases
in the image quality of the current mask occur. As part of this scheme, a convergence speed was
selected to allow control over how quickly the optimized mask was selected [2]. If S is selected
to be large (~ 0.1 — 1), the answer will converge quickly, but the best answer may not be
achieved. If S is much smaller (~ 10° — 107), convergence to the solution is slow but will be
closer to ideal. For the simulations performed in this investigation, an intermediate speed of 107
was used.

3. Results

3.1 Open fraction optimization results

After following the procedures outlined in the previous two sections, the Image Quality Q is
plotted as a function of open fraction. Figure 4 shows the Q values for the pinhole, URA, and
average random masks at various open fractions using a point source as the test distribution. The
red and blue curves indicate the Q values for the URA and pinhole respectively. Error bars on
the connected points indicate the one sigma spread on the Q values for the 100 masks simulated
at each open fraction.

Figure 5 is the same plot as Figure 4 but with the ring, point, and line test distribution described
previously. In both cases it is clear that mask patterns exist that outperform both the pinhole and
URA masks. It should also be noted that the optimal open fraction, indicated by the minimum
value in the curve of connected points, depends on the test distribution. For the point source
distribution, ~45% open produced the best mean Q value and for the extended source
distribution, ~30% was best.

Next, in Figure 6 we overlay the Q value vs. open fraction for all of the leading random masks
throughout the optimization process for the extended source test distribution. A 50% open mask
was used for the starting mask. It can be seen that there is a large clustering around 50% open.
This is caused by the optimization algorithm. For a large fraction of the total optimization
process a large number of mask elements were being flipped. This caused a lot of fluctuation
around the starting conditions, but after some time the algorithm drove the solution toward a
minima by decreasing the open fraction. The optimized mask found its way to the optimal open
fraction heuristically. The optimized mask pattern has a better Q value than the previously
determined 30% open fraction Q value, because that one was averaged over many truly random
mask patterns, while this pattern is a result of optimizing for the Q value.
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Figure 4 - General optimization of open fraction for point source test scenario. The pinhole Q value is indicated by
the blue triangle and blue dotted line, URA Q value by the red star and red dashed line, and the connected points
indicated the average Q values for random masks (100 masks per point).
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Figure 5 - General optimization of open fraction for extended source test scenario. The pinhole Q value is indicated
by the blue triangle and blue dotted line, URA Q value by the red star and red dashed line, and the connected points
indicated the average Q values for random masks (100 masks per point).
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Figure 6 - Heuristic optimization of open fraction for extended source test scenario. The pinhole Q value is
indicated by the blue triangle and blue dotted line, URA Q value by the red dashed line, and the connected points
indicated the average Q values for random masks (100 masks per point). Each open triangle represents a different
random mask pattern.

3.2 Source reconstructions from simulated data

Both the point source and extended source configurations outlined in Figure 2 were
reconstructed from the equivalent of 1 hour of simulated data using a pinhole, URA, un-
optimized and optimized random mask. Figure 7 shows the reconstructions using a pinhole
mask, Figure 8 the reconstructions using a URA mask, Figure 9 the reconstructions using an un-
optimized 50% open mask, and Figure 10 the reconstructions using the optimized mask
determined from the heuristic optimization algorithm for the extended source scenario. The open
fraction of the optimized mask was 30.12%.

For the point source scenario, the pinhole mask reconstructs the correct point source location but
with appreciable noise in the rest of the image that could potentially be interpreted as other point
sources. Because the URA pattern was tiled (repeated four times to achieve the full mask), the
URA mask reconstruction shows symmetrical reconstruction artifacts parallel to the true source
position in both the vertical and horizontal directions. Although the un-optimized random mask
reconstructs the point source with less background noise and artifacts than its pinhole and URA
counterparts, there is still more noise in the background when compared to the optimized random
mask. The optimized random mask reconstructs the point source with very minimal background
noise and no artifacts.



For the extended source scenario, the pinhole mask reconstructs most the simulated data where
the line source is located. Like the point source scenario, there are symmetrical reconstruction
artifacts in the extended source reconstruction with the URA mask. There is a symmetric
reconstruction of the point, ring and line source. The un-optimized random mask reconstructs
each element of the extended source but with enough background noise to eliminate the ability to
distinguish the correct location of the point source in this extended source configuration. The
optimized random mask shows the point, ring and line source without any substantial
ambiguities in the reconstruction.
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Figure 7 - Simulated reconstruction of point (left) and extended (right) source test cases outlined in Fig. 2
with pinhole mask.
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Figure 8 - Simulated reconstruction of point (left) and extended (right) source test cases outlined in Fig. 2
with URA mask.
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Figure 9 - Simulated reconstruction of point (left) and extended (right) source test cases outlined in Fig. 2
with un-optimized 50% open mask.
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Figure 10 - Simulated reconstruction of point (left) and extended (right) source test cases outlined in Fig. 2
with optimized mask (30.1247% open).

Table 1 outlines a quantitative comparison of the point and extended source reconstructions
shown in Figure 7-10. For each mask type investigated, the number of events simulated, which is
a function of the open fraction of the mask, and the image quality FOM defined in Equation 1
was tallied.

For the optimized random mask, the calculate image quality FOMs for the point and extended
source scenarios match nicely with the respective point and extended source optimization curves
shown in Figure 4 and 5 at the open fraction of 30%. Although this mask was optimized for the
extended source scenario, the point source reconstruction shown in Figure 10 demonstrates the
robustness of this optimized random mask to properly reconstruct source distributions beyond
the training set.

Point Source Extended Source
Number of Image Quality Number of Image Quality
Mask Type Events (x10°%) FOM Events (x10°%) FOM
Pinhole 0.0204 39.8 0.0806 402.25
URA 1.93 17.89 9.10 301.07
Un-optimized Random 1.93 16.51 9.07 341.31
Optimized Random 1.88 17.67 7.64 259.12

Table 1 — Quantitative comparison of point and extended source reconstructions with various mask as shown
in Figure 7-10. The optimization was performed separately for each source configuration, so the optimized
random masks are different for the point source and extended source columns.



3.3 Source reconstructions from measured data

The optimal mask pattern from the extended source simulations described above was physically
constructed and used as the mask for the coded aperture imager in a series of extended source
measurements. The mask shown in Figure (left) consists of 1,010 - 1.9cm x 1.9cm x 10.2cm high
density polyethylene (HDPE) blocks inserted into an aluminum pegboard using plastic dowels.
This was used in place of the standard HDPE URA mask in the existing coded aperture imager
(Figure right).

A set of extended sources were designed that produce a signature similar in some ways to the
simulated test configuration. This was accomplished by moving a ***Cf fission neutron source
through a three dimensional pattern and integrating the measurements throughout the entire
movement. In this way, an extended source with the strength of the ***Cf neutron source (~4x10’
n/s) is simulated.

The optimized mask was placed one meter in front of the detection plane (center to center). The
sources to be imaged were located 2.5 meters from the mask center. Figure top row shows the
reconstructed image using one extended source ~40 cm next to a second *>>Cf point source with
~1/10™ the fission rate. This best represents the test configuration that was used in the
optimization, although the line source component of that test configuration was not emulated
experimentally.

In all configurations, comparable measurements were taken with the 19x19 tiled URA with 2cm
x 2cm x 10cm mask elements. Figure shows the reconstructions for both masks using 1 hour
measurements of: one extended source and one point source (top row), two extended sources
with a large separation (2™ row), two extended sources close together (3™ row), and a point
source through 10cm of lead and 10cm of HDPE (bottom row).

Because the true source distribution is unknown, we cannot use the quantifier, Q, to evaluate
these images. However, it can be seen visually that the URA pattern seems to outperform the
optimized random pattern for most distributions with the notable exception of that found in the
top row. This distribution includes both a point source and an extended source and most
resembles the test distribution used to optimize the random mask. Though in all cases, there are
more reconstruction artifacts in the background regions of the images, the reconstruction appears
to be more accurate in the source regions of this distribution.

There are at least two possible reasons that these artifacts are produced:

1. The pegboard construction of the pseudo-random mask lacked great precision. Each
mask element was able to rotate in position and therefore were not necessarily well
aligned.

2. The optimization procedure was not defined with enough variation to ensure that source
distributions other than those found in the training set would reconstruct well. Better
performing and more robust patterns might result if the procedure were to include



transformations other than three 90 degree rotations. For instance, scaling, translation,
and arbitrary rotations may produce better results at the cost of longer computation times.

Figure 11 - Photograph of the optimized random mask (left) and the fast neutron coded aperture imager with
the optimized random mask installed (right).
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Figure 12 - Reconstruction of various source configurations from measured data for URA (right) and
optimized random mask (left).

4. Conclusions
Through a combination of Monte Carlo modeling and image reconstruction algorithms we have
demonstrated that it is possible to optimize coded aperture masks to perform at least as well as



URA patterns. An important part of the optimization is that it converges to a mask open fraction
that is optimal for a givensource distribution and signal-to-noise ratio.

To test this approach we designed, constructed, and demonstrated an optimized random mask in
a fast neutron coded aperture imager. Preliminary results are promising. However, it is likely
that our quantification of performance was not robust enough to deal with source distributions
that differ too much from the test distributions that were used for optimization. This is made
manifest by worse image reconstruction relative to a URA mask pattern for all but the
configuration most like the test distribution.

Future work will include improvements to our definition for image quality to better represent the
range of source distributions that may be of interest.
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