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Abstract
In coded aperture imaging, one of the most important factors determining the quality of 

reconstructed images is the choice of mask/aperture pattern. In many applications, uniformly 

redundant arrays (URAs) are widely accepted as the optimal mask pattern. Under ideal 

conditions, thin and highly opaque masks, URA patterns are mathematically constructed to 

provide artifact-free reconstruction however, the number of URAs for a chosen number of mask 

elements is limited and when highly penetrating particles such as fast neutrons and high-energy 

gamma-rays are being imaged, the optimum is seldom achieved. In this case more robust mask 

patterns that provide better reconstructed image quality may exist. Through the use of heuristic 

optimization methods and maximum likelihood expectation maximization (MLEM) image 

reconstruction, we show that for both point and extended neutron sources a random mask pattern 

can be optimized to provide better image quality than that of a URA.

1. Introduction
In coded aperture imaging, a mask array consisting of a pattern of transparent and opaque 

elements is placed in front of a position sensitive detection plane [1]. A radiation source located 

somewhere within the field of view of the imager casts a shadow of the mask plane onto the 

detection plane. One of the most important considerations in coded aperture imaging is the mask 

design. The attainable quality of the reconstructed images is strongly dependent upon the choice 

of aperture pattern. Optimally, mask patterns are designed such that the direction of the incident 

radiation is uniquely encoded in the pattern projected onto the detection plane. With suitable 

mask selection and reconstruction techniques, multiple sources and/or extended sources can be 

resolved since the projected shadow patterns in different directions are not only unique but also 

orthogonal.

A pinhole camera can be thought of as a special case of coded aperture imaging: it uses a mask 

that contains one central aperture in an array of otherwise opaque elements. While pinhole 

cameras are capable of high angular resolution, they tend to suffer from low efficiency due to the 

single small aperture. In coded aperture imaging the modulation detected at the image plane can 

SAND2015-4109J



be thought of as the superposition of many pinhole camera images corresponding to the various 

apertures in the mask array [2]. Therefore, one major advantage of coded aperture imaging is that 

it provides a greater throughput of radiation while maintaining the same aperture size and thus

angular resolution as a pinhole camera with the same aperture size.

An important design parameter of the mask array is the open fraction. The open fraction is 

defined as the ratio of the area of transparent elements of the mask (apertures) to the total area of 

transparent and opaque elements of the mask. There have been several approaches to calculating

the optimal open fraction of a mask array [3,4]. Within these approaches, the optimal open 

fraction is a function of two characteristics of the imaging space: the fraction of the total source 

counts due to the source present as a function of reconstruction position, and the ratio of the 

counts at one reconstruction position due to un-modulated background to the total number of 

counts due to the source. The two source arrangements of interest in this work, a point source 

and an extended source, have distinct values of these characteristics and are therefore expected to 

have different optimal open fractions.

Over the last three or four decades, uniformly redundant arrays (URAs) and modified uniformly 

redundant arrays (MURAs) have been widely used and accepted as optimal mask patterns [5]. 

URAs and MURAs have different mathematical definitions, but very similar properties, and we 

will use URA to refer to both families hereafter. Under ideal conditions URA masks are 

mathematically guaranteed to provide artifact-free reconstruction from the modulation pattern 

observed on a position sensitive detector plane. However, these patterns exist only for a certain 

number of mask orders (number of elements in a pattern) and open fractions. In fact there are 

very few known URAs with open fraction significantly different from 50% [6]. Random masks

are arrangements of transparent and opaque elements that are not constrained by any pre-defined 

pattern, although they may be optimized for performance, as will be shown in this work. In 

contrast with URA patterns, random masks can have any open fraction ranging from a single 

pinhole aperture to an inverse pinhole aperture with a single mask element.

In the past, motivation for using the URA mask stemmed from the fact that matched filtering 

could be employed to allow for the source distribution to be reconstructed from the coded 

projection by directly correlating it with the aperture array itself [2]. Because the URA 

autocorrelation function has constant sidelobes, i.e. positions misaligned with the true source 

direction sum to a constant value, matched filtering was ideal because the reconstruction was not 

subject to certain systematic errors that other, non-URA, arrays like random masks could display 

when this reconstruction technique was employed [5]. With wider use of iterative image 

reconstruction algorithms such as maximum likelihood expectation maximization (MLEM) and 

computer systems capable of handle their computationally intense nature, the need for matched 

filtering techniques is reduced [7].

Another important design parameter of the mask array is the mask order. The mask order is 

defined as the number of elements along each dimension of the smallest repeating unit of the 



mask. The choice of mask order is typically dictated by constraints such as the size and 

resolution of the available detector and the desired size and resolution of the imaging space [5].

URAs exist only for mask array orders that are prime numbers. In order to have at least one full 

sample of the entire URA while maintaining a field of view larger than a single direction, either 

the detection plane must be larger than the URA pattern or the mask must consist of a tiling of a 

several URA units. While there is no limitation to the number of times the pattern can be 

repeated, frequently masks are constructed from a 2 x 2 tiling of the basic URA pattern with an 

additional dividing row and column included in order to avoid intrinsic ambiguities [1]. 

However, random masks can be built for any mask order, do not need to be fully sampled, and 

thus do not require a repeat of the pattern in order to increase the field of view.

Under ideal conditions, a URA mask provides perfect modulation and any backgrounds that may 

be present uniformly populate the detection plane.  If these conditions are met, then the 

autocorrelation of the mask pattern is a delta function and the inherent symmetries associated 

with the tiling of the mask pattern for URAs perfectly cancel [5]. For x-ray detection, near ideal 

conditions can be satisfied with the use of thin, nearly perfectly opaque lead or tungsten mask 

elements resulting in relatively artifact-free reconstructions. However, for fast neutron detection, 

an equivalently opaque mask material does not exist. Low atomic number materials such as high-

density polyethylene are the most attenuating to fast neutrons. In order to compensate for the 

highly penetrating neutrons, a mask made of high-density polyethylene must be made 

appreciably thick (several cm) in order to provide sufficient modulation.

As the mask thickness becomes appreciable compared to the size of the mask elements, the 

apertures become obscured at off-axis angles. This can result in the emergence of systematic 

noise in the sidelobes of the autocorrelation function [8] therefore tiled URA mask patterns may 

not necessarily be the optimal solution for fast neutron coded aperture imaging.

Using image reconstruction techniques other than match filtering (such as MLEM), random 

mask patterns can be optimized for open fractions that are specific to the characteristics of the 

source distribution under consideration. Considering an image quality figure of merit (FOM) that 

takes into account the differences between the true source distribution and the reconstructed 

source distribution, optimization is performed by employing a hybrid method combining 

elements of simulated annealing (SA) and the great deluge algorithm (GDA) [9]. In this work we 

show that this method is capable of generating random mask aperture patterns that converge to 

an open fraction that is optimal for any desired source distribution and an image quality better 

than URA masks.

Finally, we optimize and physically construct a random mask pattern for a selected source 

distribution.  A series of measurements are made using the optimized mask and a URA mask 

with the same coded aperture detector system.  Extended source distributions are simulated 

through the use of 252Cf test sources moved through a pattern.



2.	Materials	and	methods

2.1.	Mask	arrays
Three types of mask arrays are simulated and analyzed in this investigation: a single aperture 

pinhole, a 2 x 2 mosaic of an order 19 x 19 URA pattern, and an order 38 x 38 random-seeded

array. Figure 1 shows the pinhole on the left, URA mask pattern in the center, and an example of a

randomly generated mask array on the right.

Figure 1 - (From left to right) Example of simulated pinhole, URA, and random mask design for coded aperture 
imaging.

2.2.	Fast	neutron	coded	aperture	imager
All simulations of the mask arrays are performed using a model for a fast neutron coded aperture

imager developed by Oak Ridge National Laboratories and Sandia National Laboratories [10].

The imaging space was chosen to be a 3 m x 3 m plane at a distance of 6 m in front of the 

detection plane. This space was divided into 60 bins in the horizontal and vertical directions and 

a single bin 1cm wide in depth. Within the imaging space, two source distributions are

investigated. One scenario consists of a single point source, displaced from the origin, with 

uniformly distributed background. The second scenario consists of an extended source 

distribution, also with a uniformly distributed background. This extended source consists of a 

ring, a point source and a line source. Imaging systems are frequently tested using point sources 

because they reveal the inherent angular resolution of a detector system, but an extended source 

was included in this investigation because many real world sources of interest are larger than the 

angular resolution of the detector system [11]. Figure 2 shows the source distributions in the 

imaging plane for the point source test case on the left and the extended source test case on the 

right.  For the point source test case, we consider a low signal to background scenario, with 1.3 

detected n/s for the source, and 24.6 detected n/s for the background, both integrated over the 

detector plane. For the extended source test case, the neutron source rate from each of the ring 

and rectangle was chosen to be approximately equivalent to what we expect from an IAEA 

significant quantity of weapons grade plutonium (4x105 n/s). The detected neutron rate was 

calculated at the given distance, accounting for the mask attenuation and assuming 70% 



detection efficiency, yielding ~50 s-1 from each extended source for a 50% open fraction. The

point source in the multi-source configuration was taken to emit an order of magnitude fewer 

neutrons. The rate of uniform background for the multi-source configuration was 150 s-1.

Figure 2 – Simulated soure distributions for point source and extended source (point, ring and line) scenarios.

2.3.	Image	quality	FOM
Many techniques are used to quantify the image quality that results from an image reconstruction

obtained using coded aperture. Previous techniques employed include using the signal-to-noise 

ratio of the reconstructions and using the magnitude of the coding noise as a percentage of the 

signal peak [2,12]. For this investigation, though, the image quality FOM must be robust enough 

to handle both a point source and extended source test case. A 2 quantity defined as

 2 
2

I

x i  x i  
2

x i  x i i1

I

 , (1)

where x i  is the reconstructed image, x i  is the true image, and I is the total number of 

image pixels, was chosen for this investigation. This is a technique widely employed in medical 

imaging where very diffuse sources are typically imaged [13]. This quantity allows for the direct 

comparison of the true and reconstructed image by examining differences pixel by pixel. By 

evaluating the magnitude of this quantity, it can be determined quantitatively how much the 

reconstruction diverges from the true image. Note that because this is a 2, a lower value 

indicates an improvement in image quality. 

It should also be noted that this FOM is only valid for the case of Monte Carlo simulations where 

a true source distribution is known and can be used for the pixel-by-pixel comparison. In the case 



of image reconstruction from measured data it is clear that the exact true source distribution is 

not available and would need to be estimated.

Monte Carlo simulations were performed by first generating a detector response function for the 

mask pattern to be simulated.  This was done by estimating the average attenuation through the 

mask from each source bin in the image space to each detector pixel using a ray tracing 

algorithm.  This attenuation map was normalized to provide a probability density (PD) over the 

image plane for each source bin.  The PD for a source distribution is then the normalized sum of 

source bin PDs weighted by the appropriate source strength.  To model an observation, a number 

of random events are then generated out of this source distribution PD according to the desired 

source strength and dwell time.

All reconstructions are performed using an MLEM iterative reconstruction algorithm [7]. The 

number of iterations used is dependent upon the test case at hand. For the point source test case, 

140 iterations was determined to be the optimum to obtain the most statistically sound image 

reconstruction [14]. For the extended source case, the number of iterations approached 300.

2.4.	Optimization	methods

2.4.1	General	optimization	of	open	fraction

The random mask was first optimized for open fraction by employing a general scheme that 

involved generating the image quality FOM for a variety of open fractions and observing any 

trends in the resultant values. This was done by generating random masks with open fractions

between 5% and 95% in 5% increments. For each open fraction, 100 different random masks 

were generated, and a high statistics FOM, designated as Q, was determined as follows. For each 

of the 100 mask patterns, 50 test datasets were randomly generated—25 using one of the source 

distributions in Figure 2, and 25 using a 90-degree rotation of the same distribution. An image 

was reconstructed from each test dataset and the 2 comparison to the true distribution was 

calculated using Eq. (1). The set of 50 2 values was averaged to obtain a value designated as Q*

for each mask pattern. Finally, Q* values for the 100 mask patterns were averaged to arrive at 

the value Q for each open fraction. The values of Q are plotted versus open fraction in Figure 6.

Curves were generated for both the point source and extended source test case.

In addition to using this scheme for random masks, a Q value was generated for both a URA and 

pinhole mask. Because each of these mask array types exists for a singular open fraction under 

the constraints of a specific geometry, only one Q value was generated for each. These values 

were added to the plot of Q versus open fraction to give a better understanding of the differences 

in image quality between the different mask types for a specified test case. 

2.4.2	Heuristic	optimization	of	mask	pattern

For the extended source test case, the random mask was also optimized for open fraction and the 

mask pattern itself by employing a heuristic optimization algorithm [8]. A hybrid algorithm was 



constructed combining elements of SA and the GDA. This is illustrated graphically in Figure 3

and in pseudo-code outlining the algorithm shown below:

Generate an initial random mask configuration, M0

Choose an initial number of mask pixel flips, F

Choose an initial image quality FOM, Q0

Choose a convergence speed, S

While (Number of mask pixel flips > 0)

Make new mask that is M0 changed by F, M

Generate Q for M

If (Q < Q0)

Q0 = Q0 – S * (Q0 – Q)

M0 = M

Else

F = F – 1

Stop

Figure 3 - Illustration of the mask optimization algorithm.

By performing perturbations to the original mask configuration in the form of  flipping mask 

elements from open to close or vice versa and comparing the image quality to Q0 instead of the 

image quality of the previous mask, elements of the GDA are incorporated into the algorithm. By 

gradually changing the number of pixel flips until a stopping condition is met, SA elements are 

incorporated into the algorithm. 



The scheme used to change Q0 was selected to ensure that Q0 lowered quickly when the image

quality of the current mask is much lower than Q0 and lowered slowly when only small decreases 

in the image quality of the current mask occur. As part of this scheme, a convergence speed was 

selected to allow control over how quickly the optimized mask was selected [2]. If S is selected 

to be large (~ 0.1 – 1), the answer will converge quickly, but the best answer may not be 

achieved. If S is much smaller (~ 10-5 – 10-3), convergence to the solution is slow but will be 

closer to ideal. For the simulations performed in this investigation, an intermediate speed of 10-2

was used. 

3.	Results

3.1 Open	fraction	optimization	results
After following the procedures outlined in the previous two sections, the Image Quality Q is

plotted as a function of open fraction.  Figure 4 shows the Q values for the pinhole, URA, and 

average random masks at various open fractions using a point source as the test distribution.  The 

red and blue curves indicate the Q values for the URA and pinhole respectively.  Error bars on 

the connected points indicate the one sigma spread on the Q values for the 100 masks simulated 

at each open fraction.

Figure 5 is the same plot as Figure 4 but with the ring, point, and line test distribution described 

previously.  In both cases it is clear that mask patterns exist that outperform both the pinhole and 

URA masks.  It should also be noted that the optimal open fraction, indicated by the minimum 

value in the curve of connected points, depends on the test distribution.  For the point source 

distribution, ~45% open produced the best mean Q value and for the extended source 

distribution, ~30% was best.

Next, in Figure 6 we overlay the Q value vs. open fraction for all of the leading random masks 

throughout the optimization process for the extended source test distribution.  A 50% open mask 

was used for the starting mask.  It can be seen that there is a large clustering around 50% open.  

This is caused by the optimization algorithm.  For a large fraction of the total optimization 

process a large number of mask elements were being flipped.  This caused a lot of fluctuation 

around the starting conditions, but after some time the algorithm drove the solution toward a 

minima by decreasing the open fraction.  The optimized mask found its way to the optimal open 

fraction heuristically. The optimized mask pattern has a better Q value than the previously 

determined 30% open fraction Q value, because that one was averaged over many truly random 

mask patterns, while this pattern is a result of optimizing for the Q value.



Figure 4 - General optimization of open fraction for point source test scenario.  The pinhole Q value is indicated by 
the blue triangle and blue dotted line, URA Q value by the red star and red dashed line, and the connected points 
indicated the average Q values for random masks (100 masks per point).

Figure 5 - General optimization of open fraction for extended source test scenario.  The pinhole Q value is indicated 
by the blue triangle and blue dotted line, URA Q value by the red star and red dashed line, and the connected points 
indicated the average Q values for random masks (100 masks per point).



Figure 6 - Heuristic optimization of open fraction for extended source test scenario. The pinhole Q value is 
indicated by the blue triangle and blue dotted line, URA Q value by the red dashed line, and the connected points 
indicated the average Q values for random masks (100 masks per point).  Each open triangle represents a different 
random mask pattern.

3.2 Source	reconstructions from	simulated	data
Both the point source and extended source configurations outlined in Figure 2 were 

reconstructed from the equivalent of 1 hour of simulated data using a pinhole, URA, un-

optimized and optimized random mask. Figure 7 shows the reconstructions using a pinhole 

mask, Figure 8 the reconstructions using a URA mask, Figure 9 the reconstructions using an un-

optimized 50% open mask, and Figure 10 the reconstructions using the optimized mask

determined from the heuristic optimization algorithm for the extended source scenario. The open 

fraction of the optimized mask was 30.12%. 

For the point source scenario, the pinhole mask reconstructs the correct point source location but 

with appreciable noise in the rest of the image that could potentially be interpreted as other point 

sources. Because the URA pattern was tiled (repeated four times to achieve the full mask), the 

URA mask reconstruction shows symmetrical reconstruction artifacts parallel to the true source 

position in both the vertical and horizontal directions. Although the un-optimized random mask 

reconstructs the point source with less background noise and artifacts than its pinhole and URA 

counterparts, there is still more noise in the background when compared to the optimized random 

mask. The optimized random mask reconstructs the point source with very minimal background 

noise and no artifacts.



For the extended source scenario, the pinhole mask reconstructs most the simulated data where 

the line source is located. Like the point source scenario, there are symmetrical reconstruction 

artifacts in the extended source reconstruction with the URA mask. There is a symmetric 

reconstruction of the point, ring and line source. The un-optimized random mask reconstructs 

each element of the extended source but with enough background noise to eliminate the ability to 

distinguish the correct location of the point source in this extended source configuration. The 

optimized random mask shows the point, ring and line source without any substantial 

ambiguities in the reconstruction.

Figure 7 - Simulated reconstruction of point (left) and extended (right) source test cases outlined in Fig. 2 
with pinhole mask.



Figure 8 - Simulated reconstruction of point (left) and extended (right) source test cases outlined in Fig. 2 
with URA mask.

Figure 9 - Simulated reconstruction of point (left) and extended (right) source test cases outlined in Fig. 2 
with un-optimized 50% open mask.



Figure 10 - Simulated reconstruction of point (left) and extended (right) source test cases outlined in Fig. 2 
with optimized mask (30.1247% open).

Table 1 outlines a quantitative comparison of the point and extended source reconstructions 

shown in Figure 7-10. For each mask type investigated, the number of events simulated, which is 

a function of the open fraction of the mask, and the image quality FOM defined in Equation 1

was tallied.

For the optimized random mask, the calculate image quality FOMs for the point and extended 

source scenarios match nicely with the respective point and extended source optimization curves

shown in Figure 4 and 5 at the open fraction of 30%. Although this mask was optimized for the 

extended source scenario, the point source reconstruction shown in Figure 10 demonstrates the 

robustness of this optimized random mask to properly reconstruct source distributions beyond 

the training set.

Point Source Extended Source

Mask Type
Number of 

Events (x105)
Image Quality 

FOM
Number of 

Events (x105)
Image Quality 

FOM
Pinhole 0.0204 39.8 0.0806 402.25
URA 1.93 17.89 9.10 301.07
Un-optimized Random 1.93 16.51 9.07 341.31
Optimized Random 1.88 17.67 7.64 259.12

Table 1 – Quantitative comparison of point and extended source reconstructions with various mask as shown 
in Figure 7-10. The optimization was performed separately for each source configuration, so the optimized 
random masks are different for the point source and extended source columns.



3.3 Source	reconstructions from	measured	data
The optimal mask pattern from the extended source simulations described above was physically 

constructed and used as the mask for the coded aperture imager in a series of extended source 

measurements.  The mask shown in Figure (left) consists of 1,010 - 1.9cm x 1.9cm x 10.2cm high 

density polyethylene (HDPE) blocks inserted into an aluminum pegboard using plastic dowels.  

This was used in place of the standard HDPE URA mask in the existing coded aperture imager

(Figure right).

A set of extended sources were designed that produce a signature similar in some ways to the 

simulated test configuration.  This was accomplished by moving a 252Cf fission neutron source 

through a three dimensional pattern and integrating the measurements throughout the entire 

movement.  In this way, an extended source with the strength of the 252Cf neutron source (~4x105

n/s) is simulated.

The optimized mask was placed one meter in front of the detection plane (center to center).  The 

sources to be imaged were located 2.5 meters from the mask center.  Figure top row shows the 

reconstructed image using one extended source ~40 cm next to a second 252Cf point source with 

~1/10th the fission rate.  This best represents the test configuration that was used in the 

optimization, although the line source component of that test configuration was not emulated 

experimentally.

In all configurations, comparable measurements were taken with the 19x19 tiled URA with 2cm 

x 2cm x 10cm mask elements.  Figure shows the reconstructions for both masks using 1 hour 

measurements of:  one extended source and one point source (top row), two extended sources 

with a large separation (2nd row), two extended sources close together (3rd row), and a point 

source through 10cm of lead and 10cm of HDPE (bottom row).

Because the true source distribution is unknown, we cannot use the quantifier, Q, to evaluate 

these images.  However, it can be seen visually that the URA pattern seems to outperform the 

optimized random pattern for most distributions with the notable exception of that found in the 

top row. This distribution includes both a point source and an extended source and most 

resembles the test distribution used to optimize the random mask. Though in all cases, there are 

more reconstruction artifacts in the background regions of the images, the reconstruction appears 

to be more accurate in the source regions of this distribution.  

There are at least two possible reasons that these artifacts are produced:

1. The pegboard construction of the pseudo-random mask lacked great precision.  Each 

mask element was able to rotate in position and therefore were not necessarily well 

aligned.

2. The optimization procedure was not defined with enough variation to ensure that source 

distributions other than those found in the training set would reconstruct well.  Better 

performing and more robust patterns might result if the procedure were to include 



transformations other than three 90 degree rotations.  For instance, scaling, translation, 

and arbitrary rotations may produce better results at the cost of longer computation times.

Figure 11 - Photograph of the optimized random mask (left) and the fast neutron coded aperture imager with 
the optimized random mask installed (right).



Figure 12 - Reconstruction of various source configurations from measured data for URA (right) and 
optimized random mask (left).

4.	Conclusions
Through a combination of Monte Carlo modeling and image reconstruction algorithms we have 

demonstrated that it is possible to optimize coded aperture masks to perform at least as well as 



URA patterns. An important part of the optimization is that it converges to a mask open fraction

that is optimal for a givensource distribution and signal-to-noise ratio.

To test this approach we designed, constructed, and demonstrated an optimized random mask in 

a fast neutron coded aperture imager.  Preliminary results are promising.  However, it is likely 

that our quantification of performance was not robust enough to deal with source distributions 

that differ too much from the test distributions that were used for optimization.  This is made 

manifest by worse image reconstruction relative to a URA mask pattern for all but the 

configuration most like the test distribution.

Future work will include improvements to our definition for image quality to better represent the 

range of source distributions that may be of interest.
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