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Abstract

Hybrid parallelism allows high performance computing applications to better leverage the
increasing on-node parallelism of modern supercomputers. In this paper, we present a hybrid
parallel implementation of the widely used LAMMPS/ReaxC package, where the construction of
bonded and nonbonded lists and evaluation of complex ReaxFF interactions are implemented
efficiently using OpenMP parallelism. Additionally, the performance of the QEq charge equili-
bration scheme is examined and a dual-solver is implemented. We present the performance
of the resulting ReaxC-OMP package on a state-of-the-art multi-core architecture Mira, an IBM
BlueGene/Q supercomputer. For system sizes ranging from 32 thousand to 16.6 million particles,
speedups in the range of 1.5-4.5x are observed using the new ReaxC-OMP software. Sustained
performance improvements have been observed for up to 262,144 cores (1,048,576 processes)
of Mira with a weak scaling efficiency of 91.5% in larger simulations containing 16.6 million
particles.
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1 INTRODUCTION

Molecular Dynamics (MD) simulation has become an increasingly important computa-
tional tool for a range of scientific disciplines including, but certainly not limited to,
chemistry, biology, and materials science. In order to examine the microscopic properties
of atomistic systems for many nanoseconds (and possibly microseconds) and distances
spanning several nanometers, it is crucial to have a computationally cheap, yet suf-
ticiently accurate interatomic potential to facilitate the required simulations. Several
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popular molecular force fields are readily available in the literature for modeling liquids,
proteins, and materials (e.g. Charmm [1], Amber [2], and OPLS[3] to name a few). The
computational efficiency of these models can be largely attributed to defining fixed
bonding topologies within (and between) molecules, fixed partial charges, and the use
of relatively simple functions to model the interatomic potential. While appropriate for
many systems and problems, the use of fixed bonding topologies and charges prevents
one from exploring microscopic processes involving chemical reactions or responses
from environmental effects, which may be critical to properly understand the process
of interest. Instead of resorting to computationally expensive quantum mechanical al-
ternatives, which explicitly treat the electronic degrees of freedom and thereby are
appropriate to model chemical reactions, one can employ simulation methods that
include some degree of variable bond topology (e.g. multistate methods [4], [5]) or force
tields that do not define a bonding topology. One class of the latter type of force fields are
based on bond order potentials (e.g. ReaxFF [6], COMB [7], [8], AIREBO [9]). The goal of
all such reactive methodologies and force fields is to model reactive systems at time and
length scales that far surpass those currently impractical for exploration with electronic
structure methods, but at the same time complementing these more accurate quantum
mechanical methods. It is thus important to ensure that efficient implementations of a
method are available in order to best address challenging scientific questions and best
utilize available computational resources.

ReaxFF is a bond order potential that has been widely used to study chemical re-
activity in a wide-range of systems. The PuReMD software[10], [11], [12] and the
LAMMPS /ReaxC package [13], which is also based on PuReMD, provide efficient, open-
source implementations of the ReaxFF model that have been beneficial to large commu-
nities of researchers. PuReMD and LAMMPS/ReaxC incorporate novel algorithms and
data structures to achieve high performance in force computations while retaining a
small memory footprint. The ability for a large community of researchers to efficiently
carry out such simulations is becoming even more important as algorithms for the
efficient fitting of ReaxFF models are made available [14], [15], [16], [17].

Just like strategies to accurately and efficiently model a challenging problem have
evolved over time, so too has the translation of algorithms from paper to software
matured to make optimal use of high-performance computing (HPC) resources. As a
result of the physical limitations of the current chip technology, we have witnessed
the emergence of multi-core architectures over the past decade. Hybrid parallelism
(typically in the form of MPI/OpenMP) allows HPC applications to better leverage
the increasing on-node parallelism. In this paper, we present hybrid parallel algorithms
and their implementation for ReaxFF, where the construction of bonded and nonbonded
lists and evaluation of complex interactions are implemented efficiently with a suitable
choice of data structures and using thread parallelism provided by the OpenMP library.
We present detailed performance analysis of the resulting LAMMPS/ReaxC-OMP pack-
age on a state-of-the-art multi-core system Mira, an IBM BlueGene/Q supercomputer.
For system sizes ranging from 32 thousand to 16.6 million particles, speedups in the
range of 1.5-4.5x are observed using the new hybrid parallel implementation. Sustained
performance improvements have been observed for up to 1,048,576 processes in larger
simulations.



2 ALGORITHMS AND IMPLEMENTATION

Algorithms, data structures and implementation details underlying the original ReaxFF
software (PuReMD and LAMMPS/ReaxC package) with MPI parallelism are presented
in detail by Aktulga et al. [11], [10]. In this paper, we focus on enabling efficient thread-
parallelism for ReaxFF computations.

2.1 Motivation for a Hybrid Implementation

Parallel implementations based on spatial decomposition, where each MPI process is
assigned to a specific region of the simulation box, is the most commonly used approach
in MD simulations [10], [18], [19], [20]. The computation of bonded and short-ranged in-
teractions then requires the exchange of atom position information near process bound-
aries, a.k.a the ghost region. The main benefits of a hybrid MPI/OpenMP implementation
are the reduction of the number of MPI processes that must communicate, the amount
of data exchanges between these processes and redundant computations at the ghost
regions (if any). This is because nearest-neighbor communication (and related data
duplication) is proportional to the surface area of the domain owned by an MPI process
[18] and hybrid parallelization reduces the number of partitions for a given node count.
Below, we try to quantify this with a simple example where we assume a homoge-
neous (or random) distribution of atoms in a simulation box. The volume ratio of the
ghost region to the original simulation domain in an MPI-only vs. MP1/OpenMP imple-
mentation would then reflect the relative communication and computation overheads
in both schemes. For simplicity, let d denote the dimensions of the cubic region assigned
to a process, g be the thickness of the ghost region (which is typically determined by
the largest interaction cutoff distance), ¢ = ¢* be the number of threads on a node for
some integer ¢ > 1 and n be the number of nodes used. Then the total ghost volume in
MPI-only and MPI/OpenMP hybrid implementations would respectively be:

Vipi = n*((d + 9)° — d&°) = n((cd + cg)’ — (cd))?
Vinpi—omp = n((cd + 9)> — (cd)?)

Figurel shows the relative volume of the ghost region to the original simulation
domain under weak-scaling scenario with increasing number of cores ¢ and various
d/g ratios. Using MPI-only parallelization, the relative volume is constant and it is
considerably high for low values of d/g. Under MPI/OpenMP parallelization, there is a
single partition per node and therefore the relative volume of the ghost region decreases
as the number of cores increases. As we show in Figure 2, the reduction in the total ghost
region volume can be significant for modern architectures like the IBM BG/Q and Intel
Xeon Phi based systems.

It may be argued that in an MPI-only implementation, expensive inter-process com-
munications may be turned into intra-node communications by mapping the ¢* nearby
MPI processes onto the same node (i.e., using topology aware mapping techniques [21],
[22], [23]). As a result, for most classical molecular dynamics models, increased ghost
region volume would result in memory overheads, but may not incur significant compu-
tational overheads except for building the neighbor lists. In such cases, a hybrid parallel
implementation may not yield significant gains for small scale computations, but for
capability scale simulations on large supercomputers, leveraging thread parallelism will
still be very important.

(1)
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Fig. 1. Ratio of the ghost region to the actual simulation domain in MPIl-only vs. MPI-
OpenMP parallelization under the weak-scaling scenario with increasing number of cores
on a single node.
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Fig. 2. Relative ghost region volumes in MPI-only vs. MPI-OpenMP parallelized molecular
dynamics simulations with spatial decomposition. We mark the core counts for typical
multi-core and many-core processors available today.



For ReaxFF computations, hybrid MPI/OpenMP parallelization is crucial in terms
of performance for two unique reasons. First, the dynamic nature of bonds in ReaxFF
and the presence of valence and dihedral interactions that straddle long distances into
process boundaries require significant number of bonded computations to be repeated
in the ghost regions of multiple processes. Unlike most classical MD packages, compu-
tational expense of bonded interactions in ReaxFF are comparable to that of non-bonded
interactions [11]. Using the TATB benchmark example available in LAMMPS, we observe
that the ratio of the computational expenses of bonded and non-bonded interactions is
approximately 3/2 for one step, 60.77% vs. 39.23% to be exact (this ratio will show
variations depending on the cutoffs used and the specific system being simulated).
Therefore in the strong scaling limit as d gets comparable to or less than g, increased
ghost region volumes are likely to cause significant computational overheads in ReaxFF
computations.

A second reason is the inter-node communication overheads during the charge equili-
bration (QEq) procedure [24]. To determine partial charges on each atom, it is necessary
to solve a large linear system of equations at each step in a ReaxFF simulation. For
this purpose, iterative linear solvers that require a forward-backward halo-exchange of
partial charges at each iteration are used [11]. These communications become a perfor-
mance bottleneck on a large number of MPI ranks. Since hybrid parallelism will reduce
the number of MPI ranks and ghost particles involved, it is expected to reduce the onset
of communication-related performance bottlenecks.

These two limitations in current ReaxFF simulations have been our primary moti-
vation for a hybrid parallel ReaxFF implementation. As we show through extensive
tests in Section 3, we achieved significant performance improvements by leveraging the
hybrid MPI/OpenMP programming model.

2.2 General Thread Parallelization Strategy

The challenge in a shared memory parallel implementation is eliminating race conditions
and ensuring balanced workloads are distributed among threads. We may summarize
the general implementation scheme in the new ReaxC-OMP package as partitioning of
atoms among threads. To prevent race conditions, we use thread-private arrays during
force updates and OpenMP reductions for energy updates. We first discuss the rationale
for this choice and note specific implementation issues regarding each interaction later
in this section.

The general work flow in ReaxFF is to compute various atomic interaction functions
(bonds, lone pair, over-/under-coordination, valance angles, dihedrals, van der Waals
and Coulomb) to the local atomic system (including ghost particles) and then sum
various force contributions at the individual atomic level to obtain the net force on
each atom for a given time step. Potential energies are computed at the system level.
Energy and force computations, although disparate in their mathematical formulations,
are aggregated in the same global data structures, with those related to forces being
uniquely indexed for each (local and ghost) atom. The force computation functions all
share a general methodology of computing the energies and forces in an atom centered
tfashion, defining an interaction list for each atom, calculating the force between a given
atom and each of its neighbors, and then aggregating the forces on individual atoms
and the potential energy of the system. More specifically, the algorithms consist of an



outer loop over a data structure containing all atoms in the local system, and an inner
loop over the neighbors of a given atom where most of the computation takes place
(see Algorithm 1 for an example). Performance counters instrumented within each func-
tion around these loops identified them as targets for performance improvements via
OpenMP multi-threading. The ensuing tuning effort utilized these counters to precisely
measure the OpenMP speedups.

Algorithm 1 Pairwise force computation

Input: Atom list and positions
Output: Potential energy and forces (partial)
1: for (int 7 = 0; i < numAtoms; i++) do

2: nbrList[] = getNeighbors(i);

3: for (int j = 0; j < len(nbrList[]); j++) do

4: k = nbrList[/];

5: globalEnergy += computeE(atoms|:], atoms[k]);
6: fix = computeF(atoms[i], atoms[k]);

7: globalForce[:] += f;;

8: globalForce[k] -= fi;

9: end for

10: end for

Data Privitization: As outer loops of interaction functions (linel in Alg.1) were iden-
tified to be the targets for multi-threading, these loops were made OpenMP parallel by
dividing the atoms among threads, and thread privatizing certain local variables. Inter-
actions in the Reax force field are complex mathematical formulas that are expensive to
compute. Therefore all interactions (pairwise, three-body and four-body) are evaluated
once and the resulting forces are applied to all atoms involved in the interaction. In a
thread parallel computation, this situation creates race conditions on the global force
data structure, as atoms assigned to different threads may be neighbors of each other
or they may have common neighbors. Incurring thread locks via the OpenMP critical
directive within the inner loop was observed to be very inefficient due to the increasing
overhead of using the lock. This wiped out most of the performance gains in our test
systems when using more than a couple of threads. Therefore we employ a scheme
based on the thread-privitization of force arrays. Instead of a thread updating the global
force data structure directly at the inner loop level, each thread is allocated a private
force array at the start of the simulation which they update independently during force
computations. After all force computations are completed, thread-private force arrays
are aggregated (reduced) into the global force array to compute the final total force
on each atom. Despite the performance overhead of this additional reduction step, the
data-privitization methodology was much more efficient than thread locks and scaled
well with large numbers of threads (up to 16 as discussed in Section 3).

In our OpenMP implementation, system energy tallies are handled with relatively
little performance overhead via the OpenMP reduction clause at the outer loop level. Ad-
ditionally, electrostatic and virial forces need to be tallied for each pairwise interaction.
The original MPI-only implementation utilized pre-existing serial functions within the
pair-wise force field base class (Pair) in LAMMPS for this purpose. We now utilize the



threaded versions within the LAMMPS/USER-OMP package following a methodology
consistent with other threaded force field implementations that employs setup, tally and
reduction functions appropriately in place of the serial versions within the algorithms.
Thread Scheduling: In OpenMP, static scheduling is the default work partitioning
strategy among threads. In our outer loop parallelization scheme described above, static
scheduling would partition n atoms into ¢ chunks (¢t being the number of threads)
consisting of approximately n/t contiguous atoms in the list. While static scheduling
incurs minimum runtime overheads, such a partitioning may actually lead to load
imbalances because some atoms may have a significantly large number of interactions
in comparison to others in a system where atoms are not distributed homogeneously
throughout the simulation domain. Also some atoms may be involved in a large number
of 3-body, 4-body and hydrogen bond interactions, while others may have none due
to specifics of the ReaxFF model and relevant chemistry. As an illustrative example, a
plot of the assignment of candidate valence angles to atoms from the LAMMPS/FeOH3
example on a single process is shown in Figure3. In LAMMPS, atom list is reordered
based on spatial proximity to improve cache performance, and in this particular case,
the majority of valence angle interactions involve atoms appearing at the beginning of
the atoms list. In this test case, more than 80% of atoms in the system do not own
any angle interactions. As a typical simulation progresses and atoms migrate between
MPI processes, the ownership of atoms between processes or the ordering within the
atom list may change, but the imbalance of per-atom work would remain. Therefore
statically scheduling the work across threads in contiguous chunks of the atom list can
degrade performance as some (most) threads can own considerably more angles than
the average number. This example focused on valence angle interactions, but similar
workload distributions exist for other interactions due to the chemical nature of the
species simulated, making this a general issue to be mindful of.

For the majority of cases, the use of the dynamic scheduling option in OpenMP
was found to ensure a good balance of work among threads as opposed to explicitly
assigning per-thread work beforehand. However, there exists an important trade-off
regarding the chunk size. Smaller chunks are better for load balancing, but they may
incur significant runtime overheads (default chunk size for dynamic scheduling is 1).
Larger chunks reduce scheduling overheads, but with larger chunks load balancing is
harder to achieve and the number of tasks that can be executed concurrently decreases.
In the new ReaxC-OMP package, we empirically determined the scheduling granularity.
For example, comparing the performance for the 16.6 million particle benchmark on
8,192 BG/Q nodes, a chunksize of 20 atoms gives slightly better performance using 8
MPI ranks and 8 OpenMP threads per rank on each node (Figure 4). As the number
of threads per MPI rank increases (and number of MPI ranks per node decreases), a
chunksize of 25 was found to be optimal. For the chunksizes sampled in the range
10-50, a maximum deviation of 6% in performance was observed relative to the perfor-
mance with the smallest chunksize when running 64 threads per MPI rank. While this
parameter needs to be tuned for ideal performance depending on the simulated system
and the architecture, its default value is set to 20.

Memory Overheads: One potential drawback to our thread-private arrays approach
is the increased memory utilization because the force array is duplicated for each
thread. For a big local system using a simple force field, this approach might result
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Fig. 3. A) lllustrative example of how the assignment of valence angle interactions to
atoms generates an imbalanced distribution for the LAMMPS FeOH3 example. B) Fraction
of atoms with specified count of angles owned. The inset shows a magnified view of the
fraction of atoms with the majority of assigned work. This is one example where a naive
assignment of work to threads is inefficient and degrades performance when scaling to a
large number of threads.

in significant memory overheads if the number of threads is large. In ReaxFF, the
data structures that require major memory space are the neighbor, bonds, 3-body and
hydrogen bond lists. In these lists, the number of interactions per atom may range from
tens to hundreds and as we discuss below there is no duplication of these data structures
in the ReaxC-OMP package (except for the optional duplication of the neighbor list). In
comparison, the force array only stores the force on an atom in X, y, z dimensions. So
under typical simulation scenarios, the duplication of force arrays are not likely to cause
significant overheads in terms of memory usage. Also note that the main challenge for
ReaxFF simulations is to access sufficiently long timescales where interesting scientific
phenomena can be observed. Increasing the number of timesteps that can be simulated
per day requires keeping the number of atoms per MPI rank (the local system) relatively
small, therefore the memory footprint of ReaxFF simulations is typically not a major
bottleneck.

2.3 Implementation Details

In this section, we present implementation details regarding key computational kernels
and data structures in ReaxC-OMP.

Neighbor and Interaction Lists: Neighbor lists generated by LAMMPS at the request
of a force field contains only the neighboring pair information. ReaxC-OMP maintains
a separate neighbor list with more detailed information like pair distance and distance
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Fig. 4. A) Productivity as a function of number of OpenMP threads for a range of
chunksizes observed for the 16.6 million particle PETN benchmark on 8,192 BG/Q nodes.
B) The observed speedup relative to a chunksize of 10. The inset in A) shows a magnified
view for the performance of 8 and 16 threads.

vector as these quantities are needed multiple times during the construction of the bond
list and the hydrogen bond list, as well as during force computations. The neighbor list
is stored by default as a half list, i.e., for neighboring atoms i and j, only a single record
is kept. A compact adjacency list format (similar to the compressed row format in sparse
matrices) is used for storing the neighbor list.

While a half list is advantageous for reducing the computational and storage costs
of the neighbor list, it brings challenges in generating the bond and hydrogen bond
lists. Efficient on-the-fly construction of 3-body and 4-body interaction lists requires the
bond list to be a full list with both i-j and j-i bonds available. The hydrogen bond list is
generated based on the surrounding atom information of a covalently bonded H atom;
but this information would be spread throughout the neighbor list if it is stored as a
half list.

In ReaxC-OMP, bond and hydrogen bond lists are generated by making the outer loop
over the neighbor list OpenMP parallel. For efficiency, both of these lists are generated
by making a single pass over the neighbor list and, if needed, updating the bond or
hydrogen bond lists of atoms ¢ and j concurrently. As in the force computations, the
challenge is in the inner loop where race conditions may arise due to updates to the
bond or hydrogen bond lists of common neighbors. In both cases, race conditions are
prevented by introducing critical regions that can be executed by a single thread at any
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given time. For a thread which needs to update the bond or hydrogen bond list of
atom j while processing the neighbors of atom ¢, the critical region only includes the
reservation of a slot in the relevant list. Once a slot is reserved, all subsequent updates
are performed outside the critical region. In this way, performance penalties associated
with critical regions is reduced by limiting them to be very short code sequences. We have
found the combination of a half-list to store neighbors and the use of critical regions to
give good overall performance on moderate number of threads (up to 16) as discussed
in the performance evaluation section.

Pairwise Interactions: Bond order correction, bond energy and non-bonded interaction
computations (i.e. van der Waals and Coulomb interactions) constitute the pair-wise
interactions in ReaxFF. As described above, these interactions are made OpenMP parallel
at the outer loop level and race conditions are resolved through OpenMP reductions for
energies and thread-privitization of the force array. In Alg.2, we give a simple pseudo-
code description of the van der Waals and Coulomb interactions in the non-bonded
force computations to illustrate this idea.

Algorithm 2 Threaded non-bonded pairwise force computation

Input: Atom list and positions
Output: Potential energy and forces (partial)

1: #pragma omp parallel reduction (+:PotEng) {

2: tid < omp_get_thread_num();

3: PairReaxC—>evThreadSetup(tid);

4: #pragma omp for schedule(dynamic)

5. for (int i < 0; i < numAtoms; i++) do

6: nbrList[] < getNeighbors(i);

7: for (int j + 0; j < len(nbrList[]); j++) do

8: k < nbrList[j];

9: evdW, fvdW < computeVDWaals(atoms[:], atoms[k]);
10: eClmb, fClmb <— computeCoulomb(atoms|:], atoms[k]);
11: PotEng += (evdW + eClmb);

12: tprivForce[tid][i] += (fvdW +fClmb);
13: tprivForce[tid][k] -= (fvdW + fClmb);
14: PairReaxC—>evThreadTally(tid);

15: end for

16: end for

17: PairReaxC—>evThreadReduction(tid);

—_
o]

: Reduce tprivForces onto globalForce array

L)

—_
Nel

Three-body Interactions: One particular challenge in ReaxFF is the dynamic nature of
the three-body interactions list. Whether an atom contributes to a three-body valence
angle interaction depends on the molecular identity and the surrounding environment of
the atom. As such, not all atoms in a system may be involved in a three-body interaction.
Additionally, depending on the nature of the molecular species being simulated, only
a subset of atoms in the system are designated as the central atom of an angle (e.g., see
Figure 3).
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The three-body interactions are dynamically formed based on the bonds of central

atoms; and they need to be stored in a separate list because four-body interactions are
generated based on the three-body interactions present at a given time step. Storing a
three-body interaction information is expensive in terms of memory, and the number
of interactions per atom can vary significantly as shown in Figure 3. Therefore, we first
identify which angles are present at a time step without storing them. After all angles
have been identified, a per-atom prefix sum is computed. The 3-body interactions are
then computed and stored using the global array offsets to eliminate memory clashing
between threads.
QEq: The dynamic bonding in ReaxFF requires the re-distribution of partial charges at
every step. LAMMPS/ReaxC uses the the charge equilibration method (QEq) [11], [24]
which models the charge re-distribution as an energy minimization problem. Using
the method of Lagrange multipliers to solve the minimization problem, two linear
systems of equations are obtained with a common kernel H, an N x N sparse matrix
where N is the number of atoms. H denotes the coefficient matrix generated from a
truncated electrostatics interaction and well-known Krylov subspace methods (CG [25]
and GMRES [26]) can be used to solve the charge re-distribution problems[11].

An effective extrapolation scheme that we developed for obtaining good initial guesses
and a diagonally preconditioned parallel CG solver yield satisfactory performance for
charge equilibration. This QEq solver has been implemented as the fix geqg/reax
command in LAMMPS. In the new ReaxC-OMP package, we adopted a concurrent
iteration scheme [10] which combines the sparse matrix multiplication and orthogonal-
ization computations for the two linear systems involved in charge equilibration. This
concurrent iteration scheme helps reducing communication overheads.

OpenMP threading was applied to several computational loops within the QEq solver,
most significantly the sparse matrix vector multiplication and the construction of the
Hamiltonian matrix from the neighbor list. Taking advantage of the fact that the QEq
Hamiltonian is symmetric, only unique, non-zero elements of the sparse matrix are
computed and stored. Using an atom-based prefix sum, the effort to compute the Hamil-
tonian matrix is efficiently distributed across threads avoiding potential race conditions
to improve performance.

2.4 Experience with Transactional Memory

As an alternative to the thread data privitization strategy detailed previously in Sec-
tion2.2, the usage of transactional memory was also explored on Blue Gene/Q. Trans-
actional memory (TM) atomics (tm_atomic directive) are supported by the IBM XLC
compiler and allow their nesting within OpenMP parallel regions. A typical implemen-
tation consists of essentially replacing OpenMP critical directives with tm_atomic in
the application code, and passing -qtm on the command line during compilation. Blue
Gene/Q implements TM support at the hardware level within the L2-cache by tracking
memory conflicts for the atomic transaction group. If conflicts are found a rollback is
executed for the entire transaction, restoring the state of the memory, and then the
transaction is re-executed. In this fashion multiple threads can execute the code on
shared memory data concurrently without incurring the overhead of locks. However,
there are other performance factors to consider. There is some performance overhead
in generating the atomic transaction each time it executes, and significant overhead if
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a conflict is found and a rollback occurs. So the key to TM performance is to have a
significant amount of work in the transaction while avoiding frequent conflicts with
other threads. There are runtime environment variables supported by the XL compiler
that tell the application to generate reports detailing the runtime characteristics of the
transactions. These reports can give clues regarding the impact of TM on performance
and be used to guide further tuning of the code.

This approach was attempted in several of the energy and force computation functions
in ReaxC-OMP, where a tunable number of iterations in the inner-loop pairwise compu-
tations was chunked together into one transaction. However, no significant performance
improvement over the baseline OpenMP implementation, where race conditions were
resolved using critical sections, could be attained with any number of iterations. With a
small number of iterations in a chunk, there were few conflicts but a lot of transactions,
so the transaction generation overhead prevented any speedup. When the chunk size
was increased, there were larger but fewer transactions. In this case the increased
number of conflicts resulted in a significant number of rollbacks which again prevented
any speedup. In these computations, the TM conflicts arose because disparate threads
were executing pairwise computations with common neighbors based on the division of
labor occurring on the outer atomic index loop, but the atomic index has little correlation
with spatial decomposition. As a result, the ReaxC-OMP package does not use the TM
strategy.

2.5 A Tool for Molecular Species Analysis

An important need in reactive molecular simulations is the analysis of molecular species.
The conventional way for this task is to do post-processing using the trajectory output,
however, there are several disadvantages to this approach for ReaxFF simulations.
First, each snapshot is rather large; bonding information typically requires 100-1000
bytes/atom. Second, the trajectory output frequency must be higher than the fastest
reactive process in the system, even if this process only involves a small subset of all
atoms. Third, sub-sampling and time-averaging of bonding information is required in
order to distinguish persistent bonds from transient encounters due to thermal and
ballistic collisions. Lastly, post-processing software typically only operates on single
processor. Due to all these factors, even for modest systems sizes (e.g. less than 100,000
atoms and 100 cores), time spent performing I/O and post-processing chemical species
analysis greatly exceeds the time spent running the MD simulation itself.

To cope with this problem, we developed a real-time in situ molecular species analysis
capability integrated within the LAMMPS simulation, fix reax/c/species com-
mand. This command uses the same spatial decomposition parallelism taking advantage
of the distributed data layout and achieves comparable scaling performance to the MD
simulation itself. Bonds between atoms, molecules and chemical species are determined
as the simulation runs, and concise summary that contains information on the types,
numbers and locations of chemical species is written to a file at specific time steps. As a
result, users are now able to monitor the chemical species and chemical reactions in real
time during large-scale MD simulations with reactive potentials, instead of attempting
to analyze huge trajectory files after the simulations have finished. The in situ molecular
species analysis algorithm can be summarized with the following steps:
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o A pair of atoms, both with unique global IDs, are deemed to be bonded if the
bond order value between the two atoms is larger than a threshold specified for
this interaction type (default value is 0.3). A molecule ID, that is the smaller value
of the two global IDs, is assigned to the pair of atoms. This process is repeated till
every atom has been assigned a molecule ID.

o Sorting is performed for all molecule IDs and molecule IDs are reassigned from 1
to N, where N corresponds to the maximum number of molecule IDs. This number
N also indicates the number of molecules in the system.

« Unique molecular species are determined by looping through each of the molecules
and counting the number of atoms of each element. Molecules with the same
number of atoms of each element are identified as the same species. One drawback
of this algorithm is that it does not distinguish isomers.

o Finally, each distinct species and their counts are printed out in a concise summary.

In-situ analysis of physical observables such as bond order, bond lengths and molec-
ular species can be beneficial so long as the analysis time remains a small percentage
of the simulation time. In this case, one benefits from the distribution of data structures
within the simulation code to compute observables in parallel while data is still in
memory. As we show in the performance evaluation section, the analysis through the
fix reax/c/species command exhibits a similar scaling behavior as the simulation
itself and incurs only 5-25% performance overhead which is a significant improvement
over the cost of the I/O intensive post-processing method. Additionally, the physical
observables can be stored and averaged to determine bonds between atoms based
on time-averaged bond order and/or bond lengths, instead of bonding information
of specific, instantaneously sampled time steps. Such a capability is provided by the
time-averaging of per-atom vectors function (fix ave/time) in LAMMPS.

3 PERFORMANCE EVALUATION

Performance benchmarks were executed on the 48-rack IBM Blue Gene/Q Mira system
at Argonne. Each compute node on Mira contains a PowerPC A2 1.6 GHz processor
with 16 cores per node (4 hardware threads per core for a total of 64 threads per node)
and 16 GB RAM. Mira’s 49,152 compute nodes are connected with each other using a
proprietary 5D torus interconnection network to provide a peak computing speed of 10
petaflops. Calculations in this study utilized up to 16 BG/Q racks with 1024 compute
nodes per rack.

The PETN crystal benchmark available on the LAMMPS website was used in perfor-
mance evaluation studies. Replicas of the PETN system containing up to 16.6 million
particles were examined. In all benchmark tests, charge equilibration (QEq) was invoked
at every step with a convergence threshold of 10°.

Active Idling: Since the general threading scheme in ReaxC-OMP consists of several
parallel regions independently implemented across disparate functions, the execution
path of the code oscillates between threaded and non-threaded regions. The shared
memory parallel (SMP) runtime treatment of idle threads could have a significant impact
on performance. It is optimal in this case for the threads to continue spinning and
remain as active as possible in between the thread-parallel regions, so that when they
again have work to do, they can resume efficiently. In OpenMP, this is achieved by
setting the runtime environment variable OMP_WAIT POLICY to be ACTIVE, which is
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applicable on all platforms with OpenMP support. In addition, BG/Q systems provide
the BG_SMP_FAST WAKEUP environment variable to reduce the thread wake up time
which has been set to YES for performance evaluations reported in this paper.

3.1 Performance, Scalability and Validation
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Fig. 5. A) Measured productivities of original MPI-only (open circles) and newest hybrid
(solid squares) Reax/C implementations reported as millions of timesteps (MSteps) per
day for four systems sizes of a PETN crystal benchmark: 32,480 (black), 259,840 (red),
2,078,720 (blue), and 16,629,760 (orange) particles. B) Relative speedups of hybrid vs.
MPI-only implementations.

To examine the performance as a function of the number of MPI processes used per
node and OpenMP threads used per MPI process, we performed a benchmark test on the
PETN crystal replicated up to 16.6 million atoms. A range of 32 to 16,384 BG/Q nodes
(each with 16 cores and 64 hardware threads) was used to best sample a representative
range of HPC resources typically available to a user. The number of MPI processes per
node varied in powers of 2 from 1 to 64 while the number of OpenMP threads per
MPI process varied from 1 to 64/N,;p;, where Ny;p; is the number of MPI processes
(so all of the available 64 hardware threads were used). 100-2000 MD step simulations
were performed depending on system size with a standard setup, i.e., 0.1 fs time step
size and re-neighboring checked every 10 MD steps. Trajectory files are not written
(per the original benchmark available on the LAMMPS website [13]), thus, the timings
reported in this section are representative of only the computation and communication
costs of the ReaxFF simulations. With support in LAMMPS for MPI-IO and the writing



15

of trajectory files per subset of MPI ranks, the performance costs associated with I/O
are expected to be in the 1-5% for these system sizes.

3.1.1 Performance Improvements

To quantify the performance improvements achievable with the hybrid parallel ReaxC-
OMP package, the original MPI-only ReaxFF implementation in LAMMPS, i.e. USER-
ReaxC package, was used as the baseline case. Performance results for both codes on
the PETN crystal benchmark are plotted in Figure 5 with systems ranging from 32
thousand to 16.6 million particles. Each data point for the hybrid implementation in
Figure 5 represents the optimal timing observed with respect to the number of MPI
ranks and OpenMP threads per node. Optimal performance was typically observed
using 8 MPI ranks with 8 OpenMP threads each. In some cases, a configuration of 4
MPI ranks with 16 threads has given slightly better performance (see below for a more
detailed discussion). For our smallest system (32K atoms), the overall execution time
on 1,024 BG/Q nodes for the hybrid code was 4.2 times faster than the MPI-only code.
With the larger system sizes (2.08 M and 16.6 M atoms), consistent speedups of 1.5x to 3x
(Figure 5b) were observed. Note that the higher speedups achieved with smaller systems
is due to the higher communication and redundant computation to useful computation
ratio in these systems as discussed in Section2.1.

Performance numbers given in Figure 5a shows that the hybrid code also exhibits
excellent weak scaling efficiency. Taking the performance of the 32K particle system on
32 nodes as our base case, for the hybrid implementation we have observed a weak
scaling efficiency of 96% with 260K particles on 256 nodes, 93% with 2.08 M particles
on 2,048 nodes and 91.5% with on 16.6 M particles on 16,384 nodes.

Overall, the productivity (number of steps per day) gains with the original MPI-
only code remains modest even on large systems. On the other hand, we observed
that productivity with the hybrid parallel implementation continues to improve with
the usage of more resources (number of nodes). Since one of the main bottlenecks in
computational studies using MD simulations is the extremely long wall-clock times
needed to reach simulation time-scales where interesting scientific phenomena can be
observed (nanoseconds and beyond), from users’ perspective, this is a very important
capability provided by the hybrid implementation.

3.1.2 Detailed Performance Analysis

Next, we compare the speedups on a kernel basis obtained by the hybrid implementa-
tion running with the ideal number of threads over its single threaded execution. Single
threaded execution is used here as a proxy for the MPI-only version which lacks the
concurrent iteration scheme for QEq computations and indeed provides better overall
performance than the MPI-only version. In single-threaded simulations, 32 cores out of
the 64 available have been used, as we observed that 32 MPI ranks per node yielded
better overall performance in comparison to using all available cores. This is likely due
to the increased overheads on large number of MPI ranks, as well as limited cache
space available on the IBM BG/Q architectures, which has 16 KB private L1 cache per
core and 32 MB shared L2 cache. Note that limited cache space per core is a commonly
observed trend on modern multi-core and many-core systems. Simulations with the
hybrid implementation, on the other hand, used 4 MPI processes with 16 OpenMP
threads per node.
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32 Nodes 1024 Nodes
Kernel Single Hybrid Speedup | Single Hybrid Speedup
Write Lists 34.7 6.5 5.3x 19.6 2.3 8.5x
Init. Forces 29.8 12.1 2.5x 16.7 2.6 6.4x
Bond Orders 11.3 1.8 6.3x 6.3 0.53 11.9x
3-body Forces 5.4 2.0 2.7x 2.8 0.34 8.2x
4-body Forces 3.7 2.3 1.6x 1.9 0.40 4.8x
Non-Bonded For 6.9 6.7 1.03x 0.48 0.46 1.04x
Aggregate For 19.8 3.6 5.4x 11.7 1.7 6.9x
QEq 15.5 224 0.7x 12.2 12.0 1.02x
Other 0.27 0.69 0.4x 0.07 0.17 0.4x
Total time 131.3 59.3 2.2x 77.9 21.8 3.6x
TABLE 1

Timing breakdown in seconds for the single-threaded and ideal configuration executions
for the hybrid implementation on 32 and 1024 BG/Q nodes for key phases of ReaxFF
simulation with the PETN crystal benchmark containing 32 thousand particles. These

simulations have been executed for 500 steps. Single-threaded calculations used 32 MPI

ranks per node, while the ideal configuration was determined to be 4 MPI ranks per node
and 16 OpenMP threads per rank.

Table1 gives a breakdown of the timings for the key phases in the PETN crystal
benchmark containing 32 thousand particles. For this system, the thickness of the ghost
region is 10 A and the size of the simulation box is 66.4 Ax75.9 Ax69.9 A. The kernels
that involve significant redundant computations at the ghost regions are write lists,
which computes neighbor atom information and distances, init forces, which initializes
the bond and hydrogen bond lists, bond orders, 3-body forces, aggregate forces and to some
extent 4-body interactions. Note that most of these kernels are bond related computations.
With the hybrid implementation, we observe significant speedups in all these kernels as
the hybrid implementation reduces redundancies at process boundaries. On 1024 nodes,
the achieved speedups increase even further, as the ratio of ghost region to the actual
simulation domain increases considerably when using only 1 thread.

We do not observe any significant speedup for nonbonded forces, which is expected
because this kernel avoids redundant computations in ghost regions as described in
Section 2.3. Contrary to our expectations though, for the QEq kernel, our hybrid imple-
mentation has performed worse than the single-threaded execution on 32 nodes (15.5s
vs. 22.4s), and only slightly better on 1024 nodes (12.2s vs. 12.0s). The QEq kernel is an
iterative solver consisting of expensive distributed sparse matrix vector multiplications
(SpMV) in the form of Hz; = z,;1 followed by a halo exchange of partial charges
at each step. The QEq matrix H is a symmetric matrix, and the original MPI-only
implementation exploits this symmetry for efficiency. In the hybrid implementation,
we opted to continue exploiting the symmetry and resolved race conditions between
threads by using private partial result vectors for each thread. Our tests show that this
is computationally more efficient than not exploiting the symmetry at all (which would
increase SpMV time by a factor of 2), but still does not perform as well as the MPI-only
SpMV computations due to increased memory traffic and cache contentions associated
with private result arrays. This performance degradation in SpMV computations takes
away the gains from reduced communication overheads achieved with the hybrid im-
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64 Nodes 2048 Nodes
Kernel Single Hybrid Speedup | Single Hybrid Speedup
Write Lists 111 2.7 2.3 4.8 0.6 8.0
Init. Forces 9.6 6.6 1.4 4.1 0.8 5.1
Bond Orders 34 0.7 4.8 1.6 0.2 8.0
3-body Forces 1.8 0.8 2.2 0.7 0.2 3.5
4-body Forces 1.4 0.8 1.8 0.4 0.1 4.0
Non-Bonded For 5.8 43 13 0.3 0.3 1.0
Aggregate For 5.5 1.3 4.2 2.8 0.4 7.0
QEq 7.5 7.7 0.97 2.4 2.8 0.85
Other 0.18 0.34 0.53 0.01 0.06 0.17
Total time 46.4 25.5 1.8 17.7 5.7 3.1
TABLE 2

Timing breakdown in seconds for the single-threaded and ideal configuration executions
for the hybrid implementation on 64 and 2048 BG/Q nodes for key phases of ReaxFF
simulation with the PETN crystal benchmark containing 260 thousand particles. These
simulations have been executed for 100 steps. Single-threaded calculations used 32 MPI
ranks per node, while the ideal configuration was determined to be 4 MPI ranks per node
and 16 OpenMP threads per rank.

plementation. As a result, for smaller node counts, the QEq computations are carried
out more efficiently using single-threaded execution.

Note that the increased memory traffic and cache contention issues are also present in
other kernels due to the use of thread-private arrays. However, those kernels perform
several floating point operations per force or bond update, and the number of threads
in these tests have empirically been optimized for best performance. On the other hand,
in SpMV computations, only two floating point operations (multiply and add) are
needed for each non-zero matrix element. The relatively low arithmetic intensity of
the QEq kernel explains the poor performance obtained in this kernel. Our future work
on the LAMMPS/ReaxC code will focus on the development of more efficient SpMV
algorithms that eliminate the use of thread-private arrays and are customized based on
the sparsity structures of QEq matrices.

In Table 2, we present a similar breakdown for the PETN crystal benchmark with 260
thousand atoms on 64 and 2,048 BG/Q nodes. In this case, the observed speedups on a
per kernel basis are relatively lower. Note that, the simulation domain is 8 times larger
than that of the 32 thousand atom case, whereas the number of nodes used is only
doubled (from 32 nodes to 64 nodes, and 1,024 nodes to 2,048 nodes). Therefore the
ratio of the ghost region to the actual simulation domain is lower in this case, resulting
in reduced, but still significant, performance gains.

3.1.3 Number of MPI Ranks vs. Threads per Rank

Based on Figures 1 and 2, one would expect the best productivity to be achieved using
a single MPI process per node and 64 OpenMP threads per process. However, in our
tests we observed that the productivity initially increases with the number of threads,
but starts decreasing after 8 or 16 threads. A detailed examination of performance with
respect to the number of OpenMP threads for the PETN benchmark with 2.1 million
particles is shown in Figure 6. Using 4 MPI processes with 16 threads or 8 MPI processes
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with 8 OpenMP threads per node offers the best performance in the range of 512 to
8,192 nodes for this system. The improved performance between 2 and 8 threads as the
number of nodes increases is a result of the 4x fewer spatial decomposition domains
(and MPI processes) and decreased volume of MPI communication to keep all domains
synced at each step in the simulation. In general, we observed that the productivity gains
from using hybrid parallelism is more pronounced especially on larger node counts.
We believe that the main reason for the poor thread scalability of our approach is the
increased memory traffic and cache contention when using a large number of threads.
Note that in the hybrid parallel version, we are partitioning atoms to threads using
dynamic scheduling for load balancing purposes. This scheme does not necessarily
respect data locality. Therefore, each thread needs to update the force on potentially a
large number of neighbor atoms in its private force array that is used to prevent race
conditions. When using a large number of threads, there are relatively fewer MPI ranks,
and there is a higher number of atoms per such MPI domain. This situation further
increases the memory traffic and the pressure on the limited cache space. To take full
advantage of the multi-core and many-core parallelism on current and future hardware,
our future efforts will focus on improving data locality of workloads across threads. In
this regard, the spatial partitioning of the process domain to threads in a load-balanced
way, for example by using the nucleation growth algorithm presented by Kunaseth et
al. [27], is a viable route forward. Also note that unlike classical MD methods where
non-bonded computations are the dominating factor for performance, ReaxFF contains
a number of computationally expensive kernels such as bond interactions, dynamic 3-
body and 4-body lists and hydrogen bonds. To expose a high degree of parallelism and
improve thread scalability, we will explore the use of separate teams of threads that
asynchronously progress through these key phases of the ReaxFF calculation.

3.1.4 Performance and Scaling with Molecular Species Analysis

Computational expense of the real-time molecular species analysis is illustrated in
Figure 7. In this benchmark test of a PETN crystal with 9 million atoms, bond order
values between pairs of atoms are stored at every 10 MD steps. Then on the 1000th step,
stored bond order values are averaged, molecules and molecular species are determined,
and a concise output is written. On 4,096 BG/Q nodes, a simulation including the
real-time molecular species analysis is approximately 7-19% slower than the simulation
without species analysis, depending on the number of MPI processes and OpenMP
threads. On a more general note, a 5-25% reduction in productivity is typically observed
with the real-time molecular species analysis on other node counts and machines. In
comparison, post-processing a large volume of trajectory files with a serial analysis
code can be orders of magnitude more costly and time-consuming after accounting for
precious simulation time spent writing large trajectory files at high frequency. So overall,
the molecular species analysis tool introduced in this study is expected to yield further
productivity gains for the users of the LAMMPS/ReaxC-OMP package.

3.2 Validation through Science Applications

The developments in the LAMMPS/ReaxC-OMP package have been performed in close
collaboration with domain scientists at Sandia and Argonne National Laboratories. The
two science cases used for validation included the study of the effects of material defects
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function of OpenMP threads per MPI process on 512 to 8,192 BG/Q nodes for a PETN
system with 2.1 million particles. In all cases, the number of MPI processes per node

times the number of threads per MPI process is 64 which is the total thread count on a
BG/Q node.
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and heterogeneities in energetic materials, and investigation of graphene superlubric-
ity. For both cases, energies and forces computed at each step, as well as the overall
progression of molecular trajectories have been validated against the original MPI-only
implementation in LAMMPS. Further validations by comparisons to experimental re-
sults could be performed thanks to the enhanced simulation time-ranges made possible
by the new LAMMPS/ReaxC-OMP package. Below we give a brief summary of both
studies, and provide references for further information.

3.2.1 Energetic Materials

Material defects and heterogeneities in energetic materials play key roles in the on-
set of shock-induced chemical reactions and the ignition of hotspots by lowering ini-
tiation thresholds [28], [29], [30], [31], [32]. These defects and heterogeneities span
a range of length scales including dislocations, shear bands, grain boundaries, and
porosities/cavities/voids. A hot spot with increased temperature/stress and enhanced
chemical reactivity was previously observed in a micron-scale, 9-million-atom PETN
single crystal containing a 20 nm cylindrical void [33]. In that study, the PETN crystal
was shocked with a mild impact velocity (1.25 km/s) and the hot spot was formed
after 50 ps due to the collapse of the cylindrical void. To enable the study of larger
simulations required to model PETN hot spots under more realistic situations, Shan
et al. used the hybrid parallel LAMMPS/ReaxC-OMP code presented in this paper.
This study used 8,192 IBM BlueGene/Q nodes on the supercomputer Mira at Argonne
National Laboratory for a total of approximately 400 hours (approximately 50 million
core-hours). As a result of the performance and scalability improvements in the new
package, the investigation by Shan et al. were able to continue the PETN simulation
for another 450 ps, which was sufficiently long enough to estimate the hot spot growth
rate and elucidate its mechanism. Temperature plots of the shock-induced void collapse
and hot spot growth processes are illustrated in Figure 8. A manuscript discussing the
results and findings from this work is under preparation for publication.

3.2.2 Graphene Superlubricity

In a separate study, ReaxFF simulations were used to assist with obtaining atomistic-
level insight into the mechanism for macroscale superlubricity enabled by graphene
nanoscroll formation [34]. With the efficient hybrid parallel ReaxFF implementation,
exploration of large-scale systems under conditions of ambient humidity were enabled
on leadership class computing resources, i.e. the Mira supercomputer. These ReaxFF
simulations helped to shed light on and attribute superlubricity to a significant reduction
in the interfacial contact area due to the scrolling of nanoscale graphene patches and
incommensurability between graphene scroll and diamond-like carbon [34].

4 RELATED WORK

The first implementation of ReaxFF is due to van Duin et al. [35]. After the utility of
the force field was established in the context of various applications, this serial imple-
mentation was integrated into LAMMPS by Thompson et al. as the REAX package [36].
Nomura et al. have reported on the first parallel implementation of ReaxFF [37], but this
codebase remains private to date.
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Fig. 8. Temperature maps of a PETN single crystal containing a 20 nm cylindrical void
shock at 1.25 km/s impact velocity, at 0 ps (top) and 475 ps after shock (bottom). 20 nm
void turned into a hot spot with an exponential growth rate.

The widely used LAMMPS /USER-REAXC package and the new LAMMPS/REAXC-
OMP package described here are based on the PUREMD code developed by Aktulga
et al. The PUREMD codebase [12] contains 3 different packages to ensure architecture
portability: SPUREMD [11], PUREMD [10] and PUREMD-GPU [38]. SPUREMD, a serial
implementation of ReaxFF, introduced novel algorithms and numerical techniques to
achieve high performance, and a dynamic memory management scheme to minimize
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its memory footprint. Today, SPUREMD is being used as the ReaxFF backend in force
tield optimization calculations[17] where fast serial computations of small molecu-
lar systems are crucial for extending the applicability of the Reax force field to new
chemical systems. PUREMD is an MPI-based parallel implementation of ReaxFF, and
exhibits excellent scalability. It has been shown to achieve up to 5x speedup over
the LAMMPS/REAX on identical machine configurations. PuReMD code has been
integrated into LAMMPS as the USER/ReaxC package [13], which actually constitutes
the MPI-only version used for comparisons in this study.

Acceleration of ReaxFF simulations through the use of GPUs have also been ex-
plored recently. Zheng et al. also report a single GPU implementation of ReaxFF, called
GMD-Reax [39]. PUREMD-GPU, a GP-GPU implementation of ReaxFF, achieves a 16x
speedup on an Nvidia Tesla C2075 GPU over a single processing core (an Intel Xeon
E5606 core). To the best of our knowledge, PUREMD-GPU is still the only publicly
available GPU implementation of ReaxFF.

There has been a number of other efforts within LAMMPS to better leverage the
performance capabilities of multi-core architectures. The LAMMPS OMP package uses
the OpenMP interface for multi-threading, The Intel package provides improved per-
formance on Intel CPUs and Xeon Phi accelerators [40]. The Kokkos package is a
C++ library under active development to provide parallelism across different many-
core architectures (including multi-core CPU, GPGPU, and Intel Xeon Phi). The force
fields supported by these packages remain limited to simple force fields. None of these
packages support the ReaxFF force field, which has a fairly complex formulation and
therefore its hybrid parallelization has been a major challenge to this date.

5 CONCLUSIONS

We presented a hybrid MPI-OpenMP implementation of the ReaxFF method in the
LAMMPS simulation software and analysis of its performance on large-scale simula-
tions and computing resources. On Mira, a state-of-the-art multicore supercomputer,
we observed significant improvements in the computational performance and parallel
scalability with respect to the existing MPI-only implementation in LAMMPS. We also
presented the implementation and performance results of a tool for in-situ molecular
species analysis tailored for reactive simulations. While performance results obtained
using a large number of OpenMP threads (e.g. 64) have come short of expectations,
the threading model employed in this work serves as a useful starting point for ex-
tending the thread scalability even further (e.g. Intel Xeon Phi many-core architectures).
The current hybrid implementation, however, has already been invaluable in a couple
studies involving large-scale, multi-million particle simulations on leadership comput-
ing resources. It is expected that a wide community of researchers will have similar
successes in their own fields of study as a result of this effort and the performance
benefits will be improved further through our plans for future work.
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