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Abstract

Discrete-optimal model-reduction techniques such as the Gauss–Newton with Approximated Tensors
(GNAT) method have shown promise, as they have generated stable, accurate solutions for large-scale
turbulent, compressible flow problems where standard Galerkin techniques have failed. However, there has
been limited comparative analysis of the two approaches. This is due in part to difficulties arising from
the fact that Galerkin techniques perform projection at the time-continuous level, while discrete-optimal
techniques do so at the time-discrete level.

This work provides a detailed theoretical and experimental comparison of the two techniques for two
common classes of time integrators: linear multistep schemes and Runge–Kutta schemes. We present a
number of new findings, including conditions under which the discrete-optimal ROM has a time-continuous
representation, conditions under which the two techniques are equivalent, and time-discrete error bounds for
the two approaches. Perhaps most surprisingly, we demonstrate both theoretically and experimentally that
decreasing the time step does not necessarily decrease the error for the discrete-optimal ROM; instead, the
time step should be ‘matched’ to the spectral content of the reduced basis. In numerical experiments carried
out on a turbulent compressible-flow problem with over one million unknowns, we show that increasing the
time step to an intermediate value decreases both the error and the simulation time of the discrete-optimal
reduced-order model by an order of magnitude.
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1. Introduction

While modeling and simulation of parameterized systems has become an essential tool in many indus-
tries, the computational cost of executing high-fidelity simulations is infeasibly high for many time-critical
applications. For example, real-time scenarios (e.g., model predictive control) require simulations to execute
in seconds or minutes, while many-query scenarios (e.g., sampling statistical inversion) can require thousands
of simulations corresponding to different input-parameter instances of the system.

Reduced-order models (ROMs) have been developed to mitigate this computational bottleneck. First,
they execute an offline stage during which computationally expensive training tasks (e.g., evaluating the
high-fidelity model at several points in the input-parameter space) compute a representative low-dimensional
‘trial’ basis for the system state. Then, during the inexpensive online stage, these methods quickly compute
approximate solutions for arbitrary points in the input space via projection: they compute solutions in the
span of the trial basis while enforcing the high-fidelity-model residual to be orthogonal to a low-dimensional
‘test’ basis. They also introduce other approximations in the presence of general nonlinearities (i.e., nonlinear
terms that are not necessarily low-order polynomials) or non-affine parameter dependence. See Ref. [1] and
references within for a survey of current methods.
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By far the most popular model-reduction technique for nonlinear ordinary differential equations (ODEs)
is Galerkin projection [2], wherein the test basis is set to be equal to the trial basis, which is often computed
via proper orthogonal decomposition (POD) [3]. This approach can be considered continuous optimal, as
an orthogonal projection process is performed on the (time-continuous) ODE such that the approximated
velocity vector is optimal in the `2 sense. In addition, for specialized dynamical systems (e.g., Lagrangian
dynamical systems), performing Galerkin projection is necessary to preserve problem structure [4, 5, 6].
However, theoretical analysis—in the form of time-continuous error bounds [7] and stability analysis [8]—as
well as numerical experiments have shown that Galerkin projection can lead to significant problems when
applied to general nonlinear ODEs: instability [9], inaccurate long-time responses [10, 11], and no guarantee
of a priori convergence (i.e., adding basis vectors can degrade the solution) [12]. In turbulent fluid flows,
some of this poor performance can be attributed to the trial basis ‘filtering out’ small-scale modes essential
for energy dissipation.

To address these shortcomings, alternative projection techniques have been developed, particularly in
fluid dynamics. These include stabilizing inner products [13, 14, 15]; introducing dissipation via closure
models [16, 10, 17, 18, 19] or numerical dissipation [20]; performing nonlinear Galerkin projection based on
approximate inertial manifolds [21, 22, 23]; including a pressure-term representation [11, 24]; modifying the
POD basis by including many modes (such that dissipative modes are captured), changing the norm [20],
by enabling adaptivity [17], or by including basis functions that resolve a range of scales [25] or respect the
attractor’s power balance [26]; and performing Petrov–Galerkin projection [27].

Alternatively, a promising new model-reduction methodology eschews Galerkin projection in favor of
performing projection at the fully discrete level, i.e., after the ODE has been discretized in time [28]. This
discrete-optimal method computes the solution that minimizes the `2 norm of the nonlinear residual arising
at each time step; this leads to a notion of a priori convergence, as adding basis vectors guarantees monotonic
decrease in the least-squares objective function. When equipped with a gappy POD [29] approximation of
the discrete residual as a complexity-reduction mechanism, this approach is known as the Gauss–Newton
with Approximated Tensors (GNAT) method [30]. It has been demonstrated to significantly outperform
Galerkin projection on large-scale problems in turbulent, compressible fluid dynamics [31, 30].

In spite of its promise, theoretical analysis has been limited to developing consistency conditions for
snapshot collection [28, 30] and discrete-time error bounds for simple time integrators [30, 32]. In particular,
major outstanding questions include: (1) What are time-continuous and time-discrete representations of the
Galerkin and discrete-optimal ROMs for broad classes of time integrators? (2) Are there conditions under
which the two techniques are equivalent? (3) What discrete-time error bounds are available for the two
techniques for broad classes time integrators? Related to the third issue is how parameters (e.g., time step
or basis dimension) for the discrete-optimal ROM should be chosen to optimize performance. This work
aims to fill this gap by performing a number of detailed theoretical and experimental studies that compare
Galerkin and discrete-optimal ROMs for the two most important classes of time integrators: linear multistep
methods and Runge–Kutta schemes. We summarize the most important theoretical results (which map to
the three questions above) as follows:

Full-order model
ODE

Petrov–Galerkin
projection

Discrete-optimal ROM
ODE

time discretization

Galerkin
projection

Continuous-optimal ROM
ODE

time discretizationtime discretization

Full-order model
O∆E

Galerkin
projection

Continuous-optimal ROM
O∆E

Residual
minimization

Discrete-optimal ROM
O∆E

Figure 1: Relationship between Galerkin and discrete-optimal ROMs at the time-continuous and time-discrete levels. Bolded
outlines imply an optimal ROM. Dashed lines imply the relationships are valid under certain conditions (see Theorems 4.2 and
4.3).

1. Continuous and discrete representations
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• Projection and time discretization are commutative for Galerkin projection (Theorem 3.4, Figure
1).

• Discrete-optimal ROMs can be derived for Runge–Kutta schemes (Section 4.1).

• The discrete-optimal ROM has a time-continuous (i.e., ODE) representation under certain con-
ditions (Theorems 4.2 and 4.3, Figure 1). This ODE depends on the time step ∆t.

2. Equivalence conditions

• Galerkin ROMs are discrete optimal for explicit time integrators (Corollaries 5.1 and 5.2).

• Galerkin ROMs are discrete optimal in the limit of ∆t→ 0 for implicit time integrators (Theorem
5.3).

• Galerkin ROMs are discrete optimal for positive-definite residual Jacobians (Theorems 5.4 and
5.5).

3. Error analysis

• We provide discrete-time error bounds for both Galerkin and discrete-optimal ROMs for implicit
linear multistep schemes (Theorem 6.1).

• We provide discrete-time error bounds for the Galerkin ROM for Runge–Kutta schemes (Theorem
6.2).

• For the backward Euler time integrator, we show that the discrete-optimal ROM yields a lower
global state-space error bound than the Galerkin ROM because it solves a time-global optimization
problem (over a time window) rather than a time-local optimization problem (Corollary 6.4).

• For the backward Euler time integrator, we show that an intermediate time step should yield the
lowest error bound (Corollary 6.5).

• For the backward Euler time integrator, we show that a larger basis size leads to a smaller optimal
time step for the discrete-optimal ROM (Corollary 6.5).

Figure 1 summarizes time-continuous and time-discrete representations of the two techniques.
In addition to the above theoretical results, we present numerical results for a large-scale compressible

fluid-dynamics problem with turbulence model characterized by over one million degrees of freedom. These
results illustrate the practical significance of the above theoretical results. Critically, we show that employing
an intermediate time step for the discrete-optimal ROM can decrease both the error and the simulation time
by an order of magnitude, which is a highly non-intuitive result that is of immense practical significance.

The remainder of the paper is organized as follows. Section 2 formulates the full-order model, including its
representation at the time-continuous and time-discrete levels. Section 3 presents the Galerkin ROM at the
continuous and discrete levels, and Section 4 does so for the discrete-optimal ROM. In particular, we provide
conditions under which the discrete-optimal ROM has a time-continuous representation. Section 5 provides
conditions under which the Galerkin and discrete-optimal ROMs are equivalent; in particular, equivalence
holds for explicit integrators (Section 5.1), in the limit of the time step going to zero for implicit integrators
(Section 5.2), and for symmetric-positive-definite residual Jacobians (Section 5.3). Section 6 provides error
analysis for Galerkin and discrete-optimal ROMs for linear multistep schemes (Section 6.1), Runge–Kutta
schemes (Section 6.2), and a detailed analysis in the case of backward Euler (Section 6.3). Section 7 provides
detailed numerical examples that illustrate the practical importance of the analysis. Finally, Section 8
provides conclusions.

In the remainder of this paper, matrices are denoted by capitalized bold letters, vectors by lowercase
bold letters, scalars by unbolded letters. The columns of a matrix A ∈ Rm×n are denoted by ai ∈ Rm,
i ∈ N(n) with N(a) := {1, . . . , a} such that A := [a1 · · · an]. The scalar-valued matrix elements are denoted

by aij ∈ R such that aj :=
[
a1j · · · amj

]T
, j ∈ N(n). A superscript denotes the value of a variable at that

time instance, e.g., xn is the value of x at time n∆t, where ∆t is the time step.

2. Full-order model

We begin by formulating both the time-continuous (ODE) and time-discrete (O∆E) representations of
the full-order model (FOM).
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2.1. Continuous representation
In this work, we consider the full-order model (FOM) to be an initial value problem characterized by a

system of nonlinear ODEs

dx

dt
= f(x, t), x(0) = x0, (1)

where x : [0, T ] → RN denotes the (time-dependent) state, x0 ∈ RN denotes the initial condition, and
f : RN × [0, T ] → RN with (ξ, τ) 7→ f (ξ, τ). This ODE can arise, for example, from applying spatial dis-
cretization (e.g., finite element, finite volume, or finite difference) to a partial differential equation with time
dependence. We note that most model-reduction techniques are applied to parameterized systems wherein
the velocity f also depends on parametric inputs. However, we limit our presentation to unparameterized
systems for notational simplicity, as we are interested comparing Galerkin and discrete-optimal ROMs for a
given instance of the ODE.

2.2. Discrete representation
A time-discretization method is required to solve Eq. (1) numerically. We now characterize the full-order-

model O∆E, which is the time-discrete representation of the model, for two classes of time integrators: linear
multistep schemes and Runge–Kutta schemes.

2.2.1. Linear multistep schemes

A linear k-step method applied to numerically solve Eq. (1) can be expressed as

k∑
j=0

αjx
n−j = ∆t

k∑
j=0

βjf
(
xn−j , tn−j

)
, (2)

where ∆t is the time step, α0 6= 0, and
k∑
j=0

αj = 0 is necessary for consistency. In this case, the O∆E is

characterized by the following algebraic system of equations to be solved at each time instance n ∈ N(T/∆t):

rn (wn) = 0, (3)

where wn ∈ RN is the unknown variable and rn : RN → RN denotes the linear multistep residual defined as

rn (w) := α0w −∆tβ0f(w, tn) +

k∑
j=1

αjx
n−j −∆t

k∑
j=1

βjf
(
xn−j , tn−j

)
. (4)

Then, the state can be updated explicitly as

xn = wn.

Hence, the unknown is equal to the state. These methods are implicit if β0 6= 0.

2.2.2. Runge–Kutta schemes

For an s-stage Runge–Kutta scheme, the O∆E is characterized by the following algebraic system of
equations to be solved at each time step:

rni (wn
1 , . . . ,w

n
s ) = 0, i ∈ N(s). (5)

Here, the Runge–Kutta residual is defined as

rni (w1, . . . ,ws) := wi − f(xn−1 + ∆t

s∑
j=1

aijwj , t
n−1 + ci∆t), i ∈ N(s) (6)

and the state is explicitly updated as

xn = xn−1 + ∆t

s∑
i=1

biw
n
i . (7)

Here, the unknowns wn
i correspond to the velocity dx/dt at times tn−1 + ci∆t, i ∈ N(s). These methods are

implicit if aij 6= 0 for some j ≥ i.

4



3. Galerkin ROM

This section provides the time-continuous and time-discrete representations of the Galerkin ROM, as well
as key results related to optimality and commutativity of projection and time discretization.

3.1. Continuous representation
Galerkin-projection reduced-order models compute an approximate solution x̃ ≈ x with x̃ ∈ RN to

Eq. (1) by introducing two approximations. First, they restrict the approximate solution to lie in a low-
dimensional affine trial subspace x0 + range (Φ), where Φ ∈ RN×p with ΦTΦ = I denotes the given reduced
basis (in matrix form) of dimension p � N . This basis can be computed by a variety of techniques, e.g.,
eigenmode analysis, POD [3], or the reduced-basis method [33, 34, 35, 36, 37]. Then, the approximate
solution can be expressed as

x̃(t) = x0 + Φx̂(t), (8)

where x̂ : [0, T ] → Rp denotes the (time-dependent) generalized coordinates of the approximate solution.
Second, these methods substitute x ← x̃ into Eq. (1) and enforce the ODE residual to be orthogonal to
range (Φ), which results in a low-dimensional system of nonlinear ODEs

dx̂

dt
= ΦTf(x0 + Φx̂, t), x̂(0) = 0. (9)

Remark 3.1. In order to obtain computational efficiency, it is necessary to reduce the computational com-
plexity of repeatedly computing matrix–vector products of the form ΦTf . This can be done using a variety
of methods, e.g., collocation [38, 39, 40], gappy POD [29, 41, 38, 28, 30], the discrete empirical interpola-
tion method (DEIM) [42, 43, 44, 45, 46], reduced-order quadrature [47], finite-element subassembly methods
[48, 49], or reduced-basis-sparsification techniques [6]. However, in this work we limit ourselves to compar-
atively analyzing different projection techniques. For this reason, we do not perform additional analysis for
such complexity-reduction mechanisms; this is the subject of follow-on work.

We now restate the well-known result that Galerkin projection leads to a notion of optimality at the
continuous level. This is reflected in the top-right box of Figure 1, where the bolded outline indicates
optimality.

Theorem 3.2 (Galerkin: continuous optimality). The Galerkin ROM (8)–(9) is continuous optimal
in the sense that the approximated velocity minimizes the error in the velocity f over range (Φ), i.e.,

dx̃

dt
(x0 + Φx̂, t) = arg min

v∈range(Φ)
‖v − f(x0 + Φx̂, t)‖22. (10)

Proof. Because dx̃
dt = Φdx̂

dt , problem (10) can be written as

dx̂

dt
(x0 + Φx̂, t) = arg min

v̂∈Rp
g (v̂) (11)

where g (v̂) := ‖Φv̂ − f(x0 + Φx̂, t)‖22. We now assess whether Eq. (11) holds, i.e., whether dx̂
dt as defined

by Eq. (9) is the minimizer of g.
The function g can be expressed as g (v̂) = v̂TΦTΦv̂−2v̂TΦTf(x0+Φx̂, t)+f(x0+Φx̂, t)Tf(x0+Φx̂, t).

Due to the strict convexity of the function g, the global minimizer v̂? is equal to the stationary point of g,
i.e., v̂? satisfies

0 =
dg

dv̂

(
v̂?
)

= 2ΦTΦv̂? − 2ΦTf(x0 + Φx̂, t) (12)

v̂? = ΦT dx

dt
= ΦTf(x0 + Φx̂, t), (13)

where orthogonality of Φ has been used. Comparing Eqs. (13) and (9) shows dx̂
dt (x0 + Φx̂, t) = v̂?, which is

the desired result.

Remark 3.3 (Continuous a priori convergence of the Galerkin ROM). Due to optimality property
(10), the Galerkin ROM can be considered a priori convergent at the continuous level, as adding vectors to
the trial basis—which expands the trial subspace range (Φ)—results in a monotonic decrease of the objective
function in problem (10).
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3.2. Discrete representation

As before, a time-discretization method is needed to numerically solve Eq. (9). We now characterize the
O∆E for the Galerkin ROM.

3.2.1. Linear multistep schemes

A linear k-step method applied to numerically solve Eq. (9) can be expressed as

k∑
j=0

αjx̂
n−j = ∆t

k∑
j=0

βjΦ
Tf
(
x0 + Φx̂n−j , tn−j

)
.

Here, the O∆E is characterized by the following algebraic system of nonlinear equations to be solved at each
time step:

r̂n
(
ŵn) = 0. (14)

Here, the discrete residual corresponds to

r̂n (ŵ) := α0ŵ −∆tβ0Φ
Tf(x0 + Φŵ, tn) +

k∑
j=1

αjx̂
n−j −∆t

k∑
j=1

βjΦ
Tf
(
x0 + Φx̂n−j , tn−j

)
(15)

and the generalized state is explicitly updated as

x̂n = ŵn.

3.2.2. Runge–Kutta schemes

Applying an s-stage Runge–Kutta method to solve Eq. (9) leads to an O∆E characterized by the following
algebraic system of equations to be solved at each time step:

r̂ni
(
ŵn

1 , . . . , ŵ
n
s

)
= 0, i ∈ N(s). (16)

Here, the residual is defined as

r̂ni (ŵ1, . . . , ŵs) := ŵi −ΦTf(x0 + Φx̂n−1 + ∆t

s∑
j=1

aijΦŵj , t
n−1 + ci∆t), i ∈ N(s) (17)

and the generalized state is computed explicitly as

x̂n = x̂n−1 + ∆t

s∑
i=1

biŵ
n
i . (18)

We now show that projection and time discretization are commutative for Galerkin projection. This
corresponds to the rightmost part of Figure 1.

Theorem 3.4 (Galerkin: commutativity of projection and time discretization).
Performing a Galerkin projection on the governing ODE and subsequently applying time discretization yields
the same model as first applying time discretization on the governing ODE and subsequently performing
Galerkin projection.

Proof. Linear multistep schemes. Eq. (14) was derived by performing Galerkin projection on the continu-
ous representation of the FOM and subsequently applying time discretization. If instead we apply Galerkin
projection to the discrete representation of the FOM in Eq. (3), set w = x0 + Φŵ and xi = x0 + Φx̂i,

i ∈ N(n), and use
∑k
j=1 αj = 0 and ΦTΦ = I, we obtain the following O∆E to be solved at each time step:

ΦTrn (x0 + Φŵ) = 0. Comparing the definition of the linear multistep residual (4) with Eq. (15) reveals

r̂n (ŵ) = ΦTrn (x0 + Φŵ) , (19)
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which shows that the same discrete equations r̂n (ŵ) = 0 are obtained at each time step regardless of the
ordering of time discretization and Galerkin projection.
Runge–Kutta schemes. Eq. (16) was derived by performing Galerkin projection on the continuous FOM
representation and then applying time discretization. If instead we apply Galerkin projection to the discrete
FOM representation in Eq. (5), set xn−1 = x0 + Φx̂n−1, wi = Φŵi, i ∈ N(s), and use ΦTΦ = I, we obtain
the following O∆E to be solved at each time step: ΦTrni (Φŵ1, . . . ,Φŵs) = 0, i ∈ N(s). Comparing the
definition of the Runge–Kutta residual (6) with Eq. (17) reveals

r̂ni (ŵ1, . . . , ŵs) = ΦTrni (Φŵ1, . . . ,Φŵs) , i ∈ N(s), (20)

which shows that the same discrete equations r̂ni (ŵ1, . . . , ŵs) = 0, i ∈ N(s) are obtained at each time step
regardless of the ordering of time discretization and Galerkin projection.

4. Discrete-optimal ROM

Rather than perform the projection on the full-order model ODE (i.e., at the continuous level), projection
can be performed on the full-order model O∆E (i.e., at the discrete level). Doing so is useful if the associated
projection associates with an optimization problem at the discrete level. In particular, we consider residual-
minimizing projections that minimize the discrete residual(s) (in some norm) arising at each time instance.

We note that other residual-minimizing approaches have been developed in the case of steady-state
problems [40], linear dynamical systems [50], and space–time solutions [51]. In addition, a recently developed
approach [52] has suggested `1 minimization of the residual arising at each time instance for hyperbolic
problems.

4.1. Discrete representation

We begin by developing the time-discrete representation for the discrete-optimal ROM for both linear
multistep schemes and Runge–Kutta schemes. The latter is a novel contribution, as previous work has derived
discrete-optimal ROMs only for linear multistep schemes [28, 30]. Optimality of this approach corresponds
to the bolded bottom-left box of Figure 1.

4.1.1. Linear multistep schemes

As before with Galerkin projection, discrete-optimal ROMs compute solutions using two approximations.
First, they restrict the approximate solution to lie in the same low-dimensional affine trial subspace x̃ ∈
x0 + range (Φ) as Galerkin; thus, the approximate solution can be written according to Eq. (8). In the case
of linear multistep schemes, the unknown at time step n is simply the state, i.e., wn = xn, which implies
that w̃n = x0 +Φŵn. Second, the discrete-optimal ROM substitutes wn ← w̃n into the O∆E (3) and solves
a minimization problem to ensure the approximate solution is optimal in some sense at the discrete level:

w̃n = arg min
z∈x0+range(Φ)

‖A (z) rn (z) ‖22 (21)

or equivalently
ŵn = arg min

ẑ∈Rp
‖A (x0 + Φẑ) rn (x0 + Φẑ) ‖22. (22)

Here, A ∈ Rz×N with z ≤ N is a weighting matrix that enables the definition of a weighted (semi)norm.
Examples of such reduced-order models include the least-squares Petrov–Galerkin method [28, 30, 40] (A =
I) and the related GNAT method [28, 30] (A = (PΦr)

+
P with Φr a basis for the residual, the superscript

+ denoting the Moore–Penrose pseudoinverse, and P consisting of selected rows of the identity matrix).
Note that the solution to Eq. (22) corresponds to a stationary point of the objective function in Eq. (22),

i.e., it satisfies
Ψn(ŵn)Trn

(
x0 + Φŵn) = 0 (23)

where the entries of Ψn ∈ RN×p are

ψnij(ŵ) =ami(x0 + Φŵ)
∂aml(x0 + Φŵ)

∂wk
φkjr

n
` (x0 + Φŵ)+

ami(x0 + Φŵ)aml(x0 + Φŵ)
∂rn`
∂wk

(x0 + Φŵ)φkj , i ∈ N(N), j ∈ N(p),

(24)
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where a repeated index implies summation. Because Eq. (23) corresponds to a Petrov–Galerkin projection
with trial subspace range (Φ) and test subspace range (Ψ), the discrete-optimal projection is sometimes
referred to as a least-squares Petrov–Galerkin projection [30, 28].

4.1.2. Runge–Kutta schemes

Discrete-optimal ROMs for Runge–Kutta schemes also approximate the solution according to Eq. (8).
However, because the unknown at time step n and stage i is the velocity at an intermediate time point, i.e.,
wn
i = ẋ

(
tn−1 + ci∆t

)
for i ∈ N(s), we have w̃n

i = Φ ˙̂x
(
tn−1 + ci∆t

)
for this case. Then, these techniques

substitute wn ← w̃n into the O∆E (5) and solve the following minimization problem:

(w̃n
1 , . . . , w̃

n
s ) = arg min

(z1,...,z1)∈range(Φ)s

s∑
i=1

‖Ai (z1, . . . ,zs) r
n
i (z1, . . . ,zs) ‖22 (25)

or equivalently(
ŵn

1 , . . . , ŵ
n
s

)
= arg min

(ẑ1,...,ẑs)∈Rp×s

s∑
i=1

‖Ai (Φẑ1, . . . ,Φẑs) r
n
i (Φẑ1, . . . ,Φẑs) ‖22. (26)

Here, Ai ∈ Rz×N , i ∈ N(s) with z ≤ N are weighting matrices. As before, the solution to Eq. (26)
corresponds to a stationary point of the objective function, i.e., it satisfies

s∑
j=1

Ψn
ij(ŵ

n
1 , . . . , ŵ

n
s )Trnj

(
Φŵn

1 , . . . ,Φŵ
n
s

)
= 0, i = 1, . . . , s, (27)

where entries of the test bases Ψn
ij ∈ RN×p, i, j ∈ N(s) are[

Ψn
ij

]
k`

(ŵ1, . . . , ŵs) =[Ai]uk(Φŵ1, . . . ,Φŵs)
∂[Ai]um(Φŵ1, . . . ,Φŵs)

∂[wj ]n
φn`[r

n
i ]m(Φŵ1, . . . ,Φŵs)+

[Ai]uk(Φŵ1, . . . ,Φŵs)[Ai]um(Φŵ1, . . . ,Φŵs)
∂[rni ]m
∂[wj ]n

(Φŵ1, . . . ,Φŵs)φn`,

(28)

where [·]ij denotes entry (i, j) of the argument. This again leads to a least-squares Petrov–Galerkin inter-
pretation for the discrete-optimal ROM.

In the explicit case, we can consider another notion of discrete optimality. Explicit Runge–Kutta schemes
are characterized by aij = 0, ∀j ≥ i. In this case, solutions wn

i , i ∈ N(s) can be computed sequentially, i.e.,

qni (wn
i ) = 0, i ∈ N(s)

with

qni (w) := w − f(xn−1 + ∆t

i−1∑
j=1

aijw
n
j , t

n−1 + ci∆t), i ∈ N(s). (29)

We can then formulate the following sequence of optimization problems to compute discrete-optimal approx-
imations:

w̃n
i = arg min

z∈range(Φ)
‖Ai(z)qni (z)‖22, i ∈ N(s), (30)

or equivalently
ŵn
i = arg min

ẑ∈Rp
‖Ai(Φẑ)qni (Φẑ)‖22, i ∈ N(s). (31)

Here, the associated Petrov–Galerkin projection is

Ψn
i (ŵn

i )Tqni (Φŵn
i ) = 0, i ∈ N(s), (32)

with test-basis entries of

[Ψn
i ]jk (Φŵ) = [Ai]uj(Φŵ)

∂[Ai]u`(Φŵ)

∂wm
φmk[qni ]`(Φŵ) + [Ai]uj(Φŵ)[Ai]um(Φŵ)φmk, (33)

where we have used ∂qni /∂w = I.
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Remark 4.1 (Discrete a priori convergence of the discrete-optimal ROM). Due to optimality prop-
erty (21), the discrete-optimal ROM can be considered a priori convergent at the discrete level for linear
multistep schemes, as adding vectors to the trial basis—which expands the trial subspace range (Φ)—results
in a monotonic decrease in the objective function in problem (21). This result also holds for discrete-optimal
ROMs applied to Runge–Kutta schemes, as the computed solutions satisfy alternative optimality properties
in the implicit (25) and explicit (30) cases.

4.2. Continuous representation

Because the discrete-optimal ROM introduces approximations at the discrete level, it is unclear whether
it can be interpreted at the continuous level. We now show that an ODE representation of the discrete-
optimal ROM exists for both linear multistep schemes and Runge–Kutta schemes under certain conditions;
however, the ODE depends on the time step used to define the discrete-optimal ROM. This associates with
the top-left section of the relationship diagram in Figure 1.

Theorem 4.2 (Discrete-optimal ROM continuous representation: linear multistep schemes).
The discrete-optimal ROM for linear multistep integrators is equivalent to applying a Petrov–Galerkin pro-
jection to the ODE with test basis (in matrix form)

Ψ(x̂, t) = ATA

(
α0I −∆tβ0

∂f

∂ξ
(x0 + Φx̂, t)

)
Φ (34)

and subsequently applying time integration with a linear multistep scheme with time step ∆t if A is a constant
matrix and (at least) one of the following conditions holds:

1. βj = 0, j ≥ 1 (e.g., a single-step method),

2. the velocity f is linear in the state, or

3. β0 = 0 (i.e., explicit schemes).

Proof. Applying Petrov–Galerkin projection to the full-order model ODE (1) using a trial subspace x0 +
range (Φ) and test subspace range (Ψ) yields the following ODE

Ψ(x̂, t)TΦ
dx̂

dt
= Ψ(x̂, t)Tf(x0 + Φx̂, t), x̂(0) = 0, (35)

which can be written in standard form as

dx̂

dt
=
(
Ψ(x̂, t)TΦ

)−1

Ψ(x̂, t)Tf(x0 + Φx̂, t), x̂(0) = 0. (36)

Case 1 Applying a linear multistep time integrator with the stated assumption of βj = 0, j ≥ 1 to numerically
solve Eq. (36) results in the following discrete equations to be solved at each time instance:

α0ŷ
n −∆tβ0

(
Ψ(ŷn, tn)TΦ

)−1

Ψ(ŷn, tn)Tf(x0 + Φŷn, tn) +

k∑
j=1

αjx̂
n−j = 0. (37)

Pre-multiplying by Ψ(ŷn, tn)TΦ yields discrete equations r̂n
(
ŷn
)

= 0 with residual

r̂n (ŵ) := α0Ψ(ŵ, tn)TΦŵ −∆tβ0Ψ(ŵ, tn)Tf(x0 + Φŵ, tn) +

k∑
j=1

αjΨ(ŵ, tn)TΦx̂n−j . (38)

Comparing Eqs. (38) and (4) reveals r̂n (ŵ) = Ψ(ŵ, tn)Trn (x0 + Φŵ) and so the solution ŷn satisfies

Ψ(ŷn, tn)Trn
(
x0 + Φŷn

)
= 0. (39)
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Under the stated assumptions, we have ∂rn/∂w(x) = α0I −∆tβ0
∂f
∂ξ (x, tn) and so the discrete-optimal

test basis Ψn defined in Eq. (24) is equal to the test basis in Eq. (34) evaluated at time instance n, i.e.,
Ψn(ŵ) = Ψ(ŵ, tn). Therefore, the solution ŵn to the discrete-optimal O∆E (23) satisfies

Ψ(ŵn, tn)Trn
(
x0 + Φŵn) = 0. (40)

This shows that ŵn = ŷn, i.e., the solutions to the discrete-optimal O∆E and the O∆E obtained after
applying Petrov–Galerkin projection with test basis Ψ(x, t) defined by Eq. (34) to the full-order model ODE
and subsequently applying time integration are equivalent under the stated assumptions, which is the desired
result.
Case 2 In this case, the test basis is independent of the state, i.e.,

Ψ(t) = ATA

(
α0I −∆tβ0

∂f

∂ξ
(·, t)

)
Φ. (41)

Applying a linear multistep time integrator to solve Eq. (36) and subsequently pre-multiplying by the constant
matrix Ψ(tn)TΦ yields the following discrete equations arising at each time step

r̂n
(
ŷn
)

= 0, (42)

where the residual is defined as

r̂n (ŵ) :=α0Ψ(tn)TΦŵ −∆tβ0Ψ(tn)Tf(x0 + Φŵ, tn) +

k∑
j=1

αjΨ(tn)TΦx̂n−j−

∆t

k∑
j=1

βjΨ(tn)Tf
(
x0 + Φx̂n−j , tn−j

)
.

(43)

Comparing Eqs. (43) and (4) reveals r̂n (ŵ) = Ψ(tn)Trn (x0 + Φŵ) and so the solution ŷn satisfies

Ψ(tn)Trn
(
x0 + Φŷn

)
= 0. (44)

Under these assumptions, we have ∂rn/∂w = α0I −∆tβ0∂f/∂ξ(·, tn) and so the discrete-optimal test basis
Ψn defined in Eq. (24) is equal to the test basis in Eq. (41) at time instance n, i.e., Ψn(ŵ) = Ψ(tn).
Therefore, the discrete-optimal O∆E (23) can be expressed as

Ψ(tn)Trn
(
x0 + Φŵn) = 0. (45)

This shows that ŵn = ŷn, i.e., the solutions to the discrete-optimal O∆E and the O∆E obtained after
applying Petrov–Galerkin projection with test basis Ψ(t) defined by Eq. (34) to the full-order model ODE
and subsequently applying time integration are equivalent under the stated assumptions.
Case 3 The assumption β0 = 0 results in a constant test basis

Ψ = α0A
TAΦ. (46)

Applying a linear multistep time integrator to solve Eq. (36) and subsequently pre-multiplying by the constant
matrix ΨTΦ yields

r̂n
(
ŷn
)

= 0, (47)

which is to be solved at each time step with a residual defined as

r̂n (ŵ) := α0Ψ
TΦŵ−∆tβ0Ψ

Tf(x0+Φŵ, tn)+

k∑
j=1

αjΨ
TΦx̂n−j−∆t

k∑
j=1

βjΨ
Tf
(
x0 + Φx̂n−j , tn−j

)
. (48)

As in Case 2, this leads to r̂n (ŵ) = ΨTrn (x0 + Φŵ). Because ∂rn

∂w (x) = α0I, we also again have Ψn(ŵ) =
Ψ. This leads to the desired result, as the O∆Es for the discrete-optimal ROM and the ROM obtained
after applying Petrov–Galerkin projection with test basis Ψ to the full-order model ODE and subsequently
applying time integration both satisfy ΨTrn(x0 + Φŵn) = 0 under the stated assumptions.
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We now provide conditions under which the discrete-optimal ROM for Runge–Kutta schemes can be
expressed as an ODE.

Theorem 4.3 (Discrete-optimal ROM continuous representation: Runge–Kutta schemes). The
discrete-optimal ROM for linear multistep integrators is equivalent to applying a Petrov–Galerkin projection
to the ODE with test basis (in matrix form)

Ψ(x̂, t) = ATA

(
I −∆ta11

∂f

∂ξ
(x0 + Φx̂, t)

)
Φ (49)

and subsequently applying time integration if Ai = A ∀i are constant matrices and either

1. aij = 0 ∀i 6= j and aii = ajj ∀i, j, or

2. the scheme is explicit, i.e., aij = 0, ∀j ≥ i.

Proof. Case 1 Applying Petrov–Galerkin projection to Eq. (1) using a trial subspace x0 + range (Φ) and
test subspace range (Ψ) yields the following ODE (in standard form)

dx̂

dt
=
(
Ψ(x̂, t)TΦ

)−1

Ψ(x̂, t)Tf(x0 + Φx̂, t), x̂(0) = 0. (50)

Applying a Runge–Kutta time integrator with aij = 0 ∀i 6= j and aii = ajj ∀i, j to numerically solve Eq. (50)
results in the following discrete equations to be solved at each time step

ŷni −(Ψ(x̂n−1 + ∆t

s∑
j=1

aij ŷ
n
j , t

n−1 + ci∆t)
TΦ)−1Ψ(x̂n−1 + ∆t

s∑
j=1

aij ŷ
n
j , t

n−1 + ci∆t)
T

f(x0 + Φx̂n−1 + ∆t

s∑
j=1

aijΦŷ
n
j , t

n−1 + ci∆t) = 0, i ∈ N(s)

(51)

Pre-multiplying by Ψ(x̂n−1 + ∆t
∑s
j=1 aij ŷj , t

n−1 + ci∆t)
TΦ yields the following discrete equations

r̂ni
(
ŷn1 , . . . , ŷ

n
s

)
= 0, (52)

with residual

r̂ni (ŵ1, . . . , ŵs) := Ψ(x̂n−1 + ∆t

s∑
j=1

aijŵj , t
n−1 + ci∆t)

TΦŵi−

Ψ(x̂n−1 + ∆t

s∑
j=1

aijŵj , t
n−1 + ci∆t)

Tf(x0 + Φx̂n−1 + ∆t

s∑
j=1

aijΦŵj , t
n−1 + ci∆t) = 0, i ∈ N(s)

(53)

Comparing Eqs. (53) and (6) reveals

r̂ni (ŵ1, . . . , ŵs) = Ψ(x̂n−1 + ∆t

s∑
j=1

aijŵj , t
n−1 + ci∆t)

Trni (Φŵ1, . . . ,Φŵs) , i ∈ N(s)

such that the solution (ŷn1 , . . . , ŷ
n
s ) satisfies

Ψ(x̂n−1 + ∆t

s∑
j=1

aij ŷ
n
j , t

n−1 + ci∆t)
Trni

(
Φŷn1 , . . . ,Φŷ

n
s

)
= 0 (54)

Under the stated assumptions, we have

∂rni
∂wj

(u1, . . . ,us) =

{
I −∆taii

∂f
∂ξ (xn−1 + ∆t

∑s
j=1 aijuj , t

n−1 + ci∆t), i = j

0, otherwise
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such that the discrete-optimal test basis Ψn
ij defined in Eq. (28) is relates to the test basis in Eq. (49) as

follows:

Ψn
ij(ŵ1, . . . , ŵs) =

{
Ψ(x̂n−1 + ∆t

∑s
j=1 aijŵj , t

n−1 + ci∆t), i = j

0, otherwise.

Therefore, the solution (ŵn
1 , . . . , ŵ

n
s ) to the discrete-optimal O∆E (27) satisfies

Ψ(x̂n−1 + ∆t

s∑
j=1

aijŵ
n
j , t

n−1 + ci∆t)
Trni

(
Φŵn

1 , . . . ,Φŵ
n
s

)
= 0. (55)

This shows that the ŵn
i = ŷni , i ∈ N(s), i.e., the solutions to the discrete-optimal O∆E and the O∆E

obtained after applying Petrov–Galerkin projection with test basis Ψ(x, t) defined by Eq. (49) to the full-
order model ODE and subsequently applying time integration are equivalent under the stated assumptions,
which is the desired result.
Case 2 Explicit schemes are characterized by aii = 0 and therefore result in a constant test basis of

Ψ = ATAΦ.

Applying Petrov–Galerkin projection to Eq. (1) using a trial subspace x0 + range (Φ) and test subspace
range (Ψ) yields the following ODE (in standard form)

dx̂

dt
=
(
ΨTΦ

)−1

ΨTf(x0 + Φx̂, t), x̂(0) = 0. (56)

Applying an explicit Runge–Kutta time integrator and pre-multiplying the residual by the constant matrix
ΨTΦ results in the following sequence of discrete equations to be solved at each time step

q̂ni
(
ŷni
)

= 0, i ∈ N(s)

with residual

q̂ni (ŵi) := ΨTΦŵi −ΨTf(x0 + Φx̂n−1 + ∆t

i−1∑
j=1

aijΦŵ
n
j , t

n−1 + ci∆t), i ∈ N(s) (57)

Comparing Eqs. (57) and (29) reveals q̂ni (ŵi) = ΨTqni (Φŵi) , i ∈ N(s). Therefore, the solutions ŷni
satisfies

ΨTqni
(
Φŷni

)
= 0, i ∈ N(s).

Under the stated assumptions, the weighting matrices are equal and constant Ai(Φẑ) = A, ∀i and
such that the discrete-optimal test basis defined in Eq. (33) is equal to the constant test basis above, i.e.,
Ψn
i = Ψ = ATAΦ. Therefore, the solution ŵn

i to the discrete-optimal O∆E (32) satisfies

ΨTqni
(
Φŵn

i

)
= 0, i ∈ N(s).

This shows that ŵn
i = ŷni , i ∈ N(s), i.e., the solutions to the discrete-optimal O∆E and the O∆E obtained

after applying Petrov–Galerkin projection with test basis Ψ(x, t) defined by Eq. (49) to the full-order model
ODE and subsequently applying time integration are equivalent under the stated assumptions, which is the
desired result.

We now show that the discrete-optimal ROM has a time-continuous representation for all single-state Runge–
Kutta schemes.

Corollary 4.4 (Discrete-optimal ROM continuous representation: single-stage Runge–Kutta).
The discrete-optimal ROM for linear multistep integrators is equivalent to applying a Petrov–Galerkin pro-
jection to the ODE with test basis (in matrix form)

Ψ(x̂, t) = ATA

(
I −∆ta11

∂f

∂ξ
(x0 + Φx̂, t)

)
Φ

and subsequently applying time integration if Ai = A ∀i are constant matrices and a single-stage Runge–
Kutta scheme is employed.

Proof. Single-stage Runge–Kutta schemes are characterized by s = 1 and so they satisfy the conditions of
case 1 of Theorem 4.3.
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5. Equivalence conditions

This section performs theoretical analysis that highlights cases in which Galerkin and discrete-optimal
ROMs are equivalent. Section 5.1 shows that equivalence holds for explicit time integrators, Section 5.2
demonstrates equivalence in the limit of ∆t→ 0, and Section 5.3 shows equivalence in the case of symmetric-
positive-definite residual Jacobians.

5.1. Equivalence for explicit integrators

Corollary 5.1 (Galerkin discrete optimality: explicit linear multistep scheme).
Galerkin projection is discrete optimal for explicit linear multistep schemes.

Proof. In the case of explicit linear multistep schemes, β0 = 0 and so Galerkin projection corresponds to
Case 3 of Theorem 4.2 with A = 1√

α0
I, as Ψ = Φ in this case.

Corollary 5.2 (Galerkin discrete optimality: explicit Runge–Kutta scheme). Galerkin projection
is discrete optimal for explicit Runge–Kutta schemes.

Proof. In the case of explicit Runge–Kutta schemes, a11 = 0 and so Galerkin projection corresponds to a
special of Case 2 of Theorem 4.3 with A = I, as Ψ = Φ in this case.

5.2. Equivalence in the limit of ∆t→ 0

Theorem 5.3 (Limiting equivalence of Galerkin and discrete-optimal ROMs).
In the limit of ∆t→ 0, continuous-optimal Galerkin ROMs are also discrete optimal.

Proof. Linear multistep schemes. Consider solving the discrete-optimal O∆E (23) with A = 1√
α0
I. Then,

the test basis defined in Eq. (24) is simply

Ψn(ŵ) =
1

α0

∂rn

∂w
(x0 + Φŵ) Φ.

From Eq. (4), we can write the residual Jacobian as

∂rn

∂w
(u) = α0I −∆tβ0

∂f

∂ξ
(u, tn).

Therefore, we have

lim
∆t→0

Ψn(ŵ) = lim
∆t→0

1

α0

(
α0I −∆tβ0

∂f

∂ξ
(x0 + Φŵ, tn)

)
Φ = Φ

and so in the limit of ∆t→ 0, the discrete-optimal ROM solution satisfies

lim
∆t→0

Ψn(ŵ)Trn
(
x0 + Φŵn) = ΦTrn

(
x0 + Φŵn) = 0. (58)

Because the Galerkin ROM solution also satisfies Eq. (58) (see Eq. (19) of Theorem 3.4), the two techniques
are equivalent in this limit, which is the desired result.
Runge–Kutta schemes. Consider solving the discrete-optimal O∆E (27) with Ai = I, i ∈ N(s). Then, the
test basis defined in Eq. (28) is simply

Ψn
ij(ŵ1, . . . , ŵs) =

∂rni
∂wj

(Φŵ1, . . . ,Φŵs)Φ.

Now, from Eq. (6) the Jacobian can be expressed as

∂rni
∂wj

(u1, . . . ,us) = Iδij −∆taij
∂f

∂ξ
(xn−1 + ∆t

s∑
j=1

aijuj , t
n−1 + ci∆t).
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Therefore, we have

lim
∆t→0

Ψn
ij(ŵ1, . . . , ŵs) = lim

∆t→0

Iδij −∆taij
∂f

∂ξ
(xn−1 + ∆t

s∑
j=1

aijuj , t
n−1 + ci∆t)

Φ = Φδij

and so in the limit of ∆t→ 0, the discrete-optimal ROM solution satisfies

lim
∆t→0

s∑
j=1

Ψn
ij(ŵ1, . . . , ŵs)

Trnj
(
Φŵn

1 , . . . ,Φŵ
n
s

)
= ΦTrni

(
x0 + Φŵn) = 0, i ∈ N(s). (59)

Because the Galerkin ROM solution also satisfies Eq. (59) (see Eq. (20) of Theorem 3.4), the two techniques
are equivalent in this limit, which is the desired result.

5.3. Equivalence for symmetric-positive-definite residual Jacobians

Theorem 5.4 (Galerkin discrete optimality: linear multistep schemes). In the case of linear mul-
tistep schemes, Galerkin projection satisfies Eq. (21) (i.e, exhibits discrete optimality) with A (z) = U (z),
where U is the Cholesky factor1 of the residual-Jacobian inverse[

∂rn

∂w

]−1

= UTU , (60)

if ∂rn/∂w (wn, tn) = α0I −∆tβ0
∂f
∂ξ (wn, tn) is symmetric positive definite and if

∂ui`
∂wk

φkjr
n
` = 0, ∀i, k. (61)

Here, index notation has been used.

Proof. Under the stated assumptions, the discrete-optimal test basis defined in Eq. (24) is equal to the
trial basis, i.e., Ψn(ŵn) = Φ. By invoking Eq. (19), we can see that the O∆Es for the the discrete-optimal
ROM (23) and Galerkin ROM (14) both satisfy ΦTrn

(
x0 + Φŵn) = 0, which is the desired result.

Theorem 5.5 (Galerkin discrete optimality: Runge–Kutta schemes). In the case of Runge–Kutta
schemes, Galerkin projection exhibits discrete optimality if ∂r̄n/∂w̄ (w̄n, tn) is symmetric positive definite
and if

∂ūi`
∂w̄k

φ̄kj r̄
n
` = 0, ∀i, k. (62)

Here, index notation has been used and Ū is the Cholesky factor of the residual-Jacobian inverse, i.e.,[
∂r̄n

∂w̄

]−1

= Ū
T
Ū . (63)

Here,

w̄ :=


w1

...
ws

 ∈ RsN , r̄n : w̄ 7→


rn1 (w1, . . . ,ws)

...
rns (w1, . . . ,ws)

 ∈ RsN , Φ̄ :=


Φ

. . .

Φ

 ∈ RsN×sp.

1 Its derivative can be computed by solving the Lyapunov equation ∂U
∂wk

T
U + U ∂U

∂wk
= −

[
∂rn

∂w

]−1
∂2rn

∂w∂wk

[
∂rn

∂w

]−1
.
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Proof. First, note that solution (ŵn
1 , . . . , ŵ

n
s ) to the Galerkin O∆E (20) equivalently satisfies

Φ̄
T
r̄n
(
Φ̄ ˆ̄wn

)
= 0,

where

ˆ̄w :=


ŵ1

...
ŵs

 ∈ Rsp.

We are now precisely in the situation of Theorem 5.4: the Galerkin solution is the solution to the (discrete)
optimization problem

minimize
z∈range(Φ)

‖Ū (z) r̄n (z) ‖22 (64)

under the assumed conditions.

6. Error analysis

This section performs time-discrete state-space error analyses for Galerkin and discrete-optimal ROMs
applied to different time integrators.

6.1. Linear multistep schemes

Here, we perform error analysis for implicit linear multistep schemes. We will use subscripts ∗, G and
D to denote the solution to full-order model O∆E (3), Galerkin ROM O∆E (14), and the discrete-optimal
ROM O∆E (23), respectively. We also define Ψn := Ψn(x̂nD) whose entries are defined by Eq. (24).

α0x
n
∗ = β0∆tf (x0 + xn∗ , t

n) + r?

[
xn−k∗ , . . . ,xn−1

∗

]
, x0

∗ = 0 (65)

α0x̂
n
G = β0∆tΦTf

(
x0 + Φx̂nG, t

n
)

+ r̂G

[
x̂n−kG , . . . , x̂n−1

G

]
, x̂0

G = 0 (66)

α0x̂
n
D = β0∆t

(
(Ψn)TΦ

)−1

(Ψn)Tf
(
x0 + Φx̂nD, t

n
)

+ r̂nD

[
x̂n−kD , . . . , x̂n−1

D

]
, x̂0

D = 0, (67)

where

r?

[
xn−k, . . . ,xn−1

]
:=

k∑
`=1

(
β`∆tf

(
x0 + xn−`, tn−`

)
− α`xn−`

)

r̂G

[
x̂n−k, . . . , x̂n−1

]
:=

k∑
`=1

(
β`∆tΦ

Tf
(
x0 + Φx̂n−`, tn−`

)
− α`x̂n−`

)

r̂nD

[
x̂n−k, . . . , x̂n−1

]
:=

k∑
`=1

(
β`∆t

(
(Ψn)TΦ

)−1

(Ψn)Tf
(
x0 + Φx̂n−`, tn−`

)
− α`x̂n−`

)
.

(68)

We define the Galerkin and least-squares Petrov–Galerkin operators as

V := ΦΦT , and Pn := Φ
(

(Ψn)TΦ
)−1

(Ψn)T ,

respecitvely, and Galerkin and discrete-optimal state-space errors at time instance n as

δxnG := xn? −Φx̂nG, and δxnD := xn? −Φx̂nD,

respectively. As the second argument in f does not play any role in this section, will drop it for notational
convenience. Moreover, we assume Lipschitz continuity of f in the first argument:

(A1) There exist a constant κ > 0 such that for x,y ∈ RN∥∥f(x)− f(y)
∥∥ ≤ κ‖x− y‖ .
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Theorem 6.1. If (A1) holds and ∆t is such that 0 < |α0| −∆t|β0|κ, then

‖δxnG‖ ≤
∆t

h

k∑
`=0

|β`|
∥∥∥∥(I − V)f

(
x0 + Φx̂n−`G

)∥∥∥∥+
1

h

k∑
`=1

(
|β`|κ∆t+|α`|

)∥∥∥δxn−`G

∥∥∥ , (69)

‖δxnD‖ ≤
∆t

h

k∑
`=0

|β`|
∥∥∥∥(I − Pn)f

(
x0 + Φx̂n−`D

)∥∥∥∥+
1

h

k∑
`=1

(
|β`|κ∆t+|α`|

)∥∥∥δxn−`D

∥∥∥ , (70)

where h := |α0| −|β0|κ∆t.

Proof. It is enough to show bound (70), as the arguments for (69) are similar. Let n be fixed but arbitrary,
then subtracting Eq. (67) from Eq. (65) yields

|α0|‖δxnD‖ ≤|β0|∆t
∥∥∥f (x0 + xn? )− Pnf

(
x0 + Φx̂nD

)∥∥∥+
∥∥∥δrn−1

D

∥∥∥ ,
where δrn−1

D := r?
[
xn−k? , . . . ,xn−1

?

]
−Φr̂nD

[
x̂n−kD , . . . , x̂n−1

D

]
. Adding and subtracting f

(
x0 + Φx̂nD

)
and

applying the triangle inequality leads to

|α0|‖δxnD‖ ≤|β0|∆t
(∥∥∥(I − Pn)f

(
x0 + Φx̂nD

)∥∥∥+
∥∥∥f (x0 + xn? )− f

(
x0 + Φx̂nD

)∥∥∥)+
∥∥∥δrn−1

D

∥∥∥ .
Invoking (A1), and using ∆t < |α0|

|β0|κ , we deduce

‖δxnD‖ ≤
|β0|∆t
h

∥∥∥(I − Pn)f
(
x0 + Φx̂nD

)∥∥∥+
1

h

∥∥∥δrn−1
D

∥∥∥ . (71)

Next, we will estimate
∥∥∥δrn−1

D

∥∥∥. Using the definition of r?, r̂
n
D from (68) we derive

∥∥∥δrn−1
D

∥∥∥ ≤ k∑
`=1

(
|β`|∆t

∥∥∥∥f (x0 + xn−`?

)
− Pnf

(
x0 + Φx̂n−`D

)∥∥∥∥+|α`|
∥∥∥δxn−`D

∥∥∥) .
Adding and subtracting f

(
x0 + Φx̂n−`D

)
, applying the triangle inequality in conjunction with (A1) yields

∥∥∥δrn−1
D

∥∥∥ ≤ k∑
`=1

|β`|∆t
∥∥∥∥(I − Pn)f

(
x0 + Φx̂n−`D

)∥∥∥∥+

k∑
`=1

(
|β`|κ∆t+|α`|

)∥∥∥δxn−`D

∥∥∥ . (72)

Then (71) and (72) implies (70).

6.2. Runge–Kutta schemes

For simplicity, we state the error estimate only for the Galerkin ROM O∆E (17). We will use subscript
i on f to indicate dependence of f on i in the second argument. Since the second argument in f does not
play another further role, in this section, we will suppress it for notational simplicity.

We rewrite Eqs. (5) and (16) as

wn
?,i = f i

(
x0 + xn−1

? + ∆t
∑
j

aijw
n
?,j

)
, i ∈ N(s) x0

? = 0 (73)

ŵn
G,i = ΦTf i

(
x0 + Φx̂n−1

G + ∆t
∑
j

aijΦŵ
n
G,j

)
, i ∈ N(s) x0

G = 0. (74)

Theorem 6.2. If (A1) holds and ∆t is such that

(a) the matrix D ∈ Rs×s with entries dij := δij − κ∆t|aij | is invertible, and
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(b) for every x,y ≥ 0, if Dx ≤ y then x ≤D−1y,

then

‖δxnG‖ ≤ ∆t

n−1∑
`=0

(
1 + κ∆t

s∑
k=1

|bk|
s∑
i=1

[D−1]ki

)`
· (75)

( s∑
k=1

|bk|
s∑
i=1

[D−1]ki

∥∥∥(I − V)f i

(
x0 + Φx̂n−`−1

G + ∆t

s∑
j=1

aijΦŵ
n−`
G,j

)∥∥∥). (76)

Proof. Subtracting (74) from (73) and applying the triangle inequality yields

‖δwn
G,i‖ ≤

∥∥∥f i(x0 + xn−1
? + ∆t

s∑
j=1

aijw
n
?,j

)
− Vf i

(
x0 + Φx̂n−1

G + ∆t

s∑
j=1

aijΦŵ
n
G,j

)∥∥∥, i ∈ N(s),

where δwn
G,i := wn

?,i−Φŵn
G,i. Adding and subtracting f i

(
x0 + Φx̂n−1

G + ∆t
∑s
j=1 aijΦŵ

n
G,j

)
and invoking

assumption (A1), we deduce

‖δwn
G,i‖ − κ∆t

s∑
j=1

|aij |‖δwn
G,j‖ ≤

∥∥∥(I −V)f i

(
x0 + Φx̂n−1

G + ∆t

s∑
j=1

aijΦŵ
n
G,j

)∥∥∥+ κ‖δxn−1
G ‖, i ∈ N(s).

Selecting ∆t small enough such that (a) and (b) hold yields

η := ‖δwn
G,k‖ ≤

s∑
i=1

[D−1]ki

∥∥∥(I − V)f i

(
x0 + Φx̂n−1

G + ∆t

s∑
j=1

aijΦŵ
n
G,j

)∥∥∥+ κ‖δxn−1
G ‖

s∑
i=1

[D−1]ki,

where [·]ij denotes entry (i, j) of the argument. From explicit state updates (7) and (18), we obtain

‖δxnG‖ ≤ ‖δxn−1
G ‖+ ∆t

s∑
k=1

|bk|‖δwn
G,k‖.

Using the upper bound for η yields

‖δxnG‖ ≤ ∆t

s∑
k=1

|bk|
s∑
i=1

[D−1]ki

∥∥∥(I − V)f i

(
x0 + Φx̂n−1

G + ∆t

s∑
j=1

aijΦŵ
n
G,j

)∥∥∥
+
(

1 + κ∆t

s∑
k=1

|bk|
s∑
i=1

[D−1]ki

)
‖δxn−1

G ‖.

Finally, an induction argument produces the desired result.

6.3. Backward Euler

We now derive error bounds and comparative results for the backward Euler scheme.

Corollary 6.3 (Backward Euler). Under the assumptions of Theorem 6.1, for Backward Euler we obtain

‖δxnG‖ ≤ ∆t

n−1∑
j=0

1

(h)j+1

∥∥∥∥(I − V)f
(
x0 + Φx̂n−jG

)∥∥∥∥ (77)

‖δxnD‖ ≤ ∆t

n−1∑
j=0

1

(h)j+1

∥∥∥∥(I − Pn−j
)
f
(
x0 + Φx̂n−jD

)∥∥∥∥ . (78)

where h := 1− κ∆t.
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Proof. Backward Euler is a single-step method that can be characterized by Eq. (2) with k = 1, α0 = 1,
α1 = −1, β0 = 1, and β1 = 0. Substituting these values into error bound (70) yields

‖δxnD‖ ≤
∆t

h

∥∥∥(I − Pn)f
(
x0 + Φx̂nD

)∥∥∥+
1

h

∥∥∥δxn−1
D

∥∥∥ (79)

≤ ∆t

n−1∑
j=0

1

(h)j+1

∥∥∥∥(I − Pn−j
)
f
(
x0 + Φx̂n−jD

)∥∥∥∥ , (80)

where we have used δx0
D = 0. Thus, we obtain bound (78). Derivation of bound (77) is identical and is thus

omitted.

It is not clear how to directly compare the Galerkin and the discrete optimal error bounds (69) and
(70). However, our numerical experiments in Section 7, which use the three-point backward-difference
scheme, suggest that discrete optimal ROM uniformly outperforms the Galerkin ROM. We will provide
further theoretical justification for these numerical observations for the backward Euler scheme, i.e., we will
compare bounds (77) and (78) for

∥∥δxnG∥∥ and
∥∥δxnD∥∥. Similar arguments can be applied to the more general

schemes.
Towards this end, for j = 0, . . . , n− 1, it is sufficient to compare

∆t

∥∥∥∥(I − V)f
(
x0 + Φx̂n−jG

)∥∥∥∥ and ∆t

∥∥∥∥(I − Pn)f
(
x0 + Φx̂n−jD

)∥∥∥∥ .
Invoking Eq. (66), we can rewrite the first term as

∆t

∥∥∥∥(I − V)f
(
x0 + Φx̂n−jG

)∥∥∥∥ =

∥∥∥∥Φx̂n−jG −∆tf
(
x0 + Φx̂n−j−1

G

)
−Φx̂n−j−1

G

∥∥∥∥ . (81)

Similarly, using Eq. (67) and the optimality property of x̂n−jD , we deduce

∆t

∥∥∥∥(I − Pn−j
)
f
(
x0 + Φx̂n−jD

)∥∥∥∥ =

∥∥∥∥Φx̂n−jD −∆tf
(
x0 + Φx̂n−jD

)
−Φx̂n−j−1

D

∥∥∥∥ (82)

= min
y

∥∥∥Φy −∆tf (x0 + Φy)−Φx̂n−j−1
D

∥∥∥ .
For the same previous state x̂n−j−1

D = x̂n−j−1
G , a direct comparison of Eqs. (81) and (82) yields that (82)

will always be less than (81). We state this result below.

Corollary 6.4. If x̂jD = x̂jG, j ∈ N(n − 1), then under the assumptions of Theorem 6.1, the upper bound

for ‖δx̂kD‖ in Eq. (78) will be less than the upper bound for ‖δx̂kG‖ in Eq. (77) for k ∈ N(n).

Corollary 6.5. If x̄ solves the auxiliary problem centered on the discrete-optimal ROM trajectory

x̄j = ∆tf
(
x0 + x̄j

)
+ Φx̂j−1

D , j ∈ N(n), (83)

then the following holds:

‖δxnD‖ ≤ (1 + κ∆t)

n−1∑
j=0

µn−j

(h)j+1
(84)

= ∆t(1 + κ∆t)

n−1∑
j=0

µ̄n−j

(h)j+1
‖f(x̄n−j)‖. (85)

Here, µj :=
∥∥∥Φ∆x̂jD −∆x̄j

∥∥∥ denotes the difference in solution increments at time instance j, where ∆x̂jD :=

x̂jD − x̂
j−1
D and ∆x̄j := x̄j − Φx̂j−1

D . We denote the relative solution increment at time instance j by
µ̄j := µj/‖∆x̄j‖.
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Proof. Eq. (78) in conjunction with (82) implies

‖δxnD‖ ≤
n−1∑
j=0

1

(h)j+1

∥∥∥∥Φ∆x̂n−jD −∆tf
(
x0 + Φx̂n−jD

)∥∥∥∥ . (86)

We can also write the auxiliary equation (83) as ∆x̄j = ∆tf
(
x̄j
)
, j ∈ N(n), which allows us to rewrite

bound (86) as

‖δxnD‖ ≤
n−1∑
j=0

1

(h)j+1
·
∥∥∥(Φ∆x̂n−jD −∆x̄n−j

)
−

∆t

(
f
(
x0 + Φ∆x̂n−jD + Φx̂n−j−1

D

)
− f

(
x0 + ∆x̄n−j + Φx̂n−j−1

D

))∥∥∥.
Lipschitz continuity of f leads to the bound (84). To obtain Eq. (85), we multiply and divide by ‖∆x̄n−j‖
for each term in the summation and use ∆x̄n−j = ∆tf

(
x̄n−j

)
.

Remark 6.6. The time step ∆t in the error bound (85) for the discrete-optimal ROM solution plays an
important role. In particular, decreasing the time step produces both beneficial effects (bound decrease) and
deleterious effects (bound increase), which we denote by ‘+’ and ‘-’, respectively as follows:

+ The time-discretization error decreases (this does not appear in the time-discrete error analysis above).

- The number of overall time steps n increases, so there are more terms in the summation.

+ The terms ∆t(1 + κ∆t) and 1/(h)j+1 decrease.

? The term µ̄n−j may increase or decrease, depending on the spectral content of the basis Φ.

We now discuss this final ambiguous effect. The term µ̄n can be interpreted as the relative error in solution
increment over

[
(n− 1)∆t, n∆t

]
. Clearly, the ability of the discrete-optimal ROM to make µ̄n small depends

on the spectral content of the basis Φ: if the basis only captures modes that evolve over long time scales, then
µ̄n will be large (i.e., close to one), as the basis does not contain the ‘fast evolving’ solution components that
change over a single time step. This suggests that the time step should be ‘matched’ to the spectral content of
the reduced basis Φ. In Section 7.5 of the experiments, we explore this issue numerically, and demonstrate
that the error bound is minimized for an intermediate value of the time step ∆t.

We note that the above arguments do not hold for the Galerkin ROM, which is simply an ODE that does
not depend on the time step. Instead, decreasing the time step should increase accuracy, as it has the effect
of reducing the time-discretization error.

7. Numerical experiments

This section compares the performance of Galerkin and discrete-optimal ROMs on a CFD application
using a basis constructed by proper orthogonal decomposition. These experiments highlight the impor-
tance of the previous analyses, in particular the limiting equivalence of Galerkin and discrete-optimal ROMs
(Theorem 5.3), superior accuracy of the discrete-optimal ROM compared with the Galerkin ROM (Corol-
lary 6.4), and performance improvement of the discrete-optimal ROM when an intermediate time step is
selected (Corollary 6.5 and Remark 6.6).

7.1. Problem description

The Galerkin and discrete-optimal ROMs are implemented in AERO-F [53, 54], a massively parallel
compressible-flow solver. AERO-F solves the steady or unsteady compressible Navier–Stokes equations with
various closure models available for turbulent flow, and employs a second-order node-centered finite-volume
scheme. For model-reduction algorithms, all linear least-squares problems and singular value decompositions
are computed in parallel using the ScaLAPACK library [55].

19



The full-order model corresponds to an unsteady Navier–Stokes simulation of a two-dimensional open
cavity using AERO-F’s DES turbulence model (based on the Spalart–Almaras one-equation model) and a
wall-function boundary condition applied on solid surface boundaries. The fluid domain is discretized by a
mesh with 192,816 nodes and 573,840 tetrahedra (Figure 2). The two-dimensional geometry is discretized
in three dimensions by considering a slab of thin, but finite thickness, in the z-direction. The viscosity is
assumed to be constant, and the Reynolds number based on cavity length is 6.30×106, while the free-stream
Mach number is 0.6. Due to the turbulence model and three-dimensional domain, the number of conservation
equations per node is 6, and therefore the dimension of the CFD model is N = 1, 156, 896. Roe’s scheme is
employed to discretize the convective fluxes, and a linear variation of the solution is assumed within each
control volume, which leads to a second-order space-accurate scheme. We employ a low-numerical-dissipation
scheme that gives fifth-order formal order of accuracy on inviscid, one-dimensional problems.

(a) Full domain

(b) Detail around cavity

Figure 2: Computational mesh: x− y plane cut.

Flow simulations are performed within a time interval t ∈ [0, T ] with T = 12.5 seconds. We employ the
second-order accurate implicit three-point backward difference scheme, which is a linear multistep scheme
characterized by k = 2, α0 = 1, α1 = −4/3, α2 = 1/3, β0 = 2/3, β1 = β2 = 0, for time integration. The
O∆E (3) arising at each time step is solved by a Newton–Krylov method, where GMRES is employed as the
iterative linear solver with a restrictive additive Schwarz preconditioner (with no fill in) and the previous
50 Krylov vectors are employed for orthogonalization. Convergence is declared when the residual norm is
reduced to a factor of 10−3 of its starting value. All flow computations are performed in a non-dimensional
setting.

The initial condition x0 is provided by first computing a steady-state solution, and using that solution
as an initial guess for an unsteady ‘transient’ simulation (which captures the initial transient before the flow
reaches a quasi-periodic state) of 7.5 seconds. The state at the end of the unsteady transient simulation is
then used as the initial condition for the subsequent simulations. The steady-state calculation is characterized
by the same parameters as above, except that it employs local time stepping with a maximum CFL number
of 100, it uses the first-order implicit backward Euler time integration scheme, it assumes a linear variation
of the solution within each control volume, it employs a Spalart–Allmaras turbulence model, and it employs
only one Newton iteration per (pseudo) time step.

The output of interest is the pressure at location (0.0001,-0.0508,0.0025), which is shown in the bottom
row of Figure 4. All errors are reported as the `2 relative error in this quantity, i.e.,

ε(p, p?) =

√∑T/∆t?
n=1

(
P?(p)(n∆t?)− p?(n∆t?)

)2√∑T/∆t
n=1 p?(n∆t?)2
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where p : N(T/∆t) → R is the pressure for the model of interest, p? : N(T/∆t?) → R is this pressure
response of the designated ‘truth’ model (typically the full-order model), and P? is a linear interpolation of
the pressure response onto the grid based on the truth-model time step ∆t?.

All computations are performed in double-precision arithmetic on a parallel Linux cluster2 using 48 cores
across 6 nodes.

7.2. Time-step verification

Because this paper considers the time step to be an important parameter in model reduction, we first
perform a time-step verification study to ensure we employ an appropriate ‘nominal’ time step. Figure
3 reports these results using a time-step refinement factor of two. A time step of ∆t? = 0.0015 seconds
yields observed convergence rates in both the instantaneous drag force on the lower wall and instantaneous
pressure at t = T that are close to the asymptotic rate of convergence (2.0) of three-point BDF2 scheme.
Further, this value also leads to sub-2% errors in both quantities, which we deem to be sufficient for this set
of experiments.
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(a) Drag: ∆t? = 0.0015 yields an approximate rate of convergence of 1.94 and an estimated
error in the output quantity (computed via Richardson extrapolation) of 1.26× 10−2. The
rightmost plot shows the time-dependent response for all tested time steps.
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(b) Pressure: ∆t? = 0.0015 yields an approximate rate of convergence of 1.83 and an
estimated error in the output quantity (computed via Richardson extrapolation) of 7.68×
10−4. The rightmost plot shows the time-dependent response for all tested time steps.

Figure 3: Time-step verification study. Note that the approximated convergence rates are close to the asymptotic value of 2.0
for the BDF2 scheme.

Figure 4 shows several instantaneous snapshots of the vorticity field and corresponding pressure field

2The cluster contains 8-core compute nodes that each contain a 2.93 GHz dual socket/quad core Nehalem X5570 processor
with 12 GB of memory. The interconnect is a 3D torus InfiniBand.
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generated by the high-fidelity CFD model. The flow within the cavity is quasi-periodic; during one cycle,
vorticity is shed from the leading edge of the cavity, convects downstream, and impinges on the aft edge of
the cavity. Upon impingement, an acoustic disturbance is generated which propagates upstream and scatters
on the leading edge of the cavity, generating a new vortical disturbance to initiate the next oscillation cycle.
The pressure fields in the bottom row of Figure 4 reveal regions of low pressure (blue contours) associated
with vortices, as well as acoustic disturbances both within the cavity and radiating outside the cavity. This
complex flow is governed by the interactions of several nonlinear processes, including roll-up of the shear
layer vortices, impingement of the vortices on the aft wall resulting in sound generation, propagation of
nonlinear acoustic waves, and interaction of these waves with the shear layer vorticity.

(a) time = 2.10 (b) time = 2.61 (c) time = 3.12 (d) time = 3.63

(e) time = 2.10 (f) time = 2.61 (g) time = 3.12 (h) time = 3.63

Figure 4: Instantaneous CFD vorticity field (top) and pressure field (bottom) during one oscillation cycle. The dot on the
forward wall of the cavity indicates the location of the pressure signal output.

7.3. Reduced-order models

To construct both the Galerkin and discrete-optimal ROMs, we employ the proper orthogonal de-
composition (POD) technique. In particular, we set Φ ← Φ (X , ν), where Φ is computed via Algo-
rithm 1 of the appendix with snapshots consisting of the initial-condition-centered full-order model states
X = {x?(k∆t?) − x0}8334

k=1 , where x? denotes the FOM response computed for a time step of ∆t?. Three
values of the energy criterion ν ∈ [0, 1] are used during the experiments: ν = 1−10−4 (p = 204), ν = 1−10−5

(p = 368), and ν = 1− 10−6 (p = 564). Figure 5 shows a selection of the energy component of the computed
POD modes. Note that as the mode number increases, the modes capture finer spatial-scale behavior, which
we expect to be associated with finer time-scale behavior; this will be verified in Section 7.5.1.

We first repeat the time-step verification study, but we do so for the reduced-order models in the time
interval 0 ≤ t ≤ 0.55, as all Galerkin ROMs remain stable in this time interval. Figure 6 reports these
results. First, we note that the Galerkin ROM converges an approximated rate of 2.0, which is what we
expect given that the Galerkin ROM simply associates with a time-step-independent ODE (9). However, the
discrete-optimal ROM does not exhibit this behavior; in fact the error convergence is not even monotonic.
This is due to the fact that the method does not associate with a time-step-independent ODE.

We next perform simulations for both reduced-order models for all tested basis dimensions and time steps;
Figure 7 reports the time-dependent responses. When a response stops before the end of the time interval,
this indicates that a negative pressure was encountered, which causes AERO-F to exit the simulation. We
interpret this phenomenon as a non-physical instability.

First, note that the Galerkin ROMs become unstable (i.e., generate a negative pressure) for all time steps
and all basis dimensions. This is consistent with previously reported results [31, 30, 28, 56] that indicate
Galerkin projection almost always leads to inaccurate responses for compressible fluid-dynamics problems.
In contrast, the discrete-optimal ROM results in many stable, accurate responses for all basis dimensions.
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(a) mode 1 (b) mode 21 (c) mode 101

(d) mode 201 (e) mode 401

Figure 5: Visualization of the energy component of the POD modes.

Further, discrete-optimal responses exhibit a clear dependence on the time step ∆t. Subsequent sections
provide a deeper analysis of this dependence.

7.4. Limiting case: comparison

We next compare the responses of the Galerkin and discrete-optimal ROMs for small time windows (when
the Galerkin responses remain stable) and small time steps. Figure 8 reports ε(pdiscrete opt., pGal?)—which
is the difference between the discrete-optimal ROM pressure response and the Galerkin pressure response
for ∆t = 1.875× 10−4 (the smallest tested time step)—as a function of the time step for two different time
windows. These responses support an important conclusion (see Theorem 5.3): the Galerkin and discrete-
optimal ROMs are equal in the limit of ∆t → 0. This has significant consequences for the discrete-optimal
ROM, as decreasing the time step leads to the same unstable response as Galerkin; larger time steps are
needed to ensure the discrete-optimal ROM is stable for the entire time interval.

Figure 9 reports ε(pdiscrete opt., pFOM?
) and ε(pGal., pFOM?

)—which are the differences between the two
ROM-generated pressure responses and the full-order model pressure response for ∆t = 1.875 × 10−4— as
a function of the time step for all three basis dimensions and three time intervals. These results highlight
a critical observation: the discrete-optimal ROM is more accurate for an intermediate time step. This not
only supports the result of Corollary 6.5, but provides an interesting insight: taking a larger time step not
only leads to better speedups (i.e., the end of the time interval is reached in fewer time steps), but it also
decreases the error, sometimes significantly. This is further explored in the next section.

7.5. Time-step selection

Recall from Corollary 6.5 and Remark 6.6 that decreasing the time step ∆t has a non-obvious effect on
the error bound for the discrete-optimal ROM. We now assess these effects for the current problem.

7.5.1. Spectral content of POD basis

In our interpretation of the error bound (85) for the discrete-optimal ROM applied to the backward Euler
scheme, we noted that the time step should be ‘matched’ to the spectral content of the trial basis Φ. This
is of practical importance, as selecting an appropriate time step for the ROM should take into account the
relevant temporal dynamics associated with the basis. For example, a time step may be too small if the
basis has filtered out modes with a time scale matching that of the time step. If we assume that the basis
Φ is computed via POD, then we would expect the vectors to be naturally ordered such that lower mode
numbers are associated with lower temporal frequencies. Then, including additional modes has the effect of
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Figure 6: Time-step verification study for Galerkin and discrete-optimal reduced-order models for p = 368 and 0 ≤ t ≤ 0.55 .
While the approximated convergence rate for the Galerkin reduced-order model is close to the asymptotic value of 2.0 for the
BDF2 scheme, this is not observed for the discrete-optimal reduced-order model.
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Figure 7: Responses generated by Galerkin and discrete optimal reduced-order models for different basis sizes p and timesteps
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Figure 8: Error between Galerkin and discrete-optimal reduced-order models ε(pdiscrete opt., pGal? ) for different timesteps in
0 ≤ t ≤ 1.1. This demonstrates convergence of the discrete-optimal ROM to Galerkin as ∆t→ 0.

encoding information at higher frequencies. It follows that the time step should be decreased as additional
modes are retained in construction of the ROM.

Here we investigate the validity of this assumption by examining the spectral content of the POD basis
vectors for the current cavity-flow problem. We compute the time histories of the generalized coordinates by
projecting the FOM solution onto the POD basis as x̂?(k∆t?) := ΦT (x?(k∆t?)−x0), k ∈ N(8334). We then
compute power spectral densities of the generalized coordinates x̂?(t). Figure 10(a) shows sample spectra,
normalized by the total energy in each signal,3 for several of the POD modes. The figure shows that energy
shifts to higher frequencies as the POD mode number increases, confirming our assumption for this example.
This is further quantified by calculating a characteristic time-scale τ95 associated with each mode; we define
this time scale as the inverse of the frequency below which 95 percent of the energy is captured for that
mode. Figure 10(b) plots this time scale versus the mode number, showing a clear trend of decreasing time
scale with increasing mode number.

Thus, at least for the present application problem, we expect the optimal time step for the discrete-
optimal ROM to decrease as modes are added to the POD basis (this will be verified by Figure 12). Note
that systematic calibration could be performed to attempt to automate selection of the ROM time step as
a function of basis dimension. We do not attempt this exercise here, but note that nonlinear interactions
between modes may complicate such an effort.

7.5.2. Error bound behavior

Having verified that higher POD mode numbers correspond to smaller wavelengths, we now numerically
assess quantities related to the error bound (85). First, Figure 11(a) reports the dependence of the maximum
relative projection error maxk µ̄

k
?(Φ,∆t) on the time step ∆t and the basis dimension, where

µ̄k?(Φ,∆t) :=
‖(I −ΦΦT )(x?(k∆t)− x?((k − 1)∆t))‖

‖x?(k∆t)− x?((k − 1)∆t)‖

Note that µ̄k? is closely related to µ̄k from error bound (85), as they are equal if x0 + Φx̂D(t) = x(t) and the
discrete-optimal ROM computes x̂kD such that µ̄k is minimized.

These results confirm that adding basis vectors—which we know has the effect of encoding higher fre-
quency content—significantly reduces the projection error for small time steps ∆t, but has less of an effect on
larger time steps, as retaining the first POD vectors already enables dynamics at that scale to be captured.

Next, Figure 11(b) plots the error bound (85) for a value of κ = 1 and with µ̄k = µ̄k?. This highlights
an important result: selecting an intermediate time step ∆t leads to the lowest error bound, regardless of
the basis dimension. Even though this result corresponds to the backward Euler integrator, we expect a

3The energy in a time series within some frequency range is obtained by integrating the power spectral density over that
range.
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(f) 0 ≤ t ≤ 1.65, p = 368
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Figure 9: Galerkin errors ε(pdiscrete opt., pFOM? ) and Petrov–Galerkin errors ε(pGal., pFOM? ) over different time intervals, time
steps, and basis dimensions.
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Figure 10: Spectral content of the POD basis.

similar trend to hold for the present experiment, which uses the BDF2 scheme. The next section assesses
the performance of the discrete-optimal ROM, including its dependence on the time step.
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Figure 11: Assessment of quantities appearing in error bound (85). This analysis suggests that an intermediate time step ∆t
can reduce errors for the discrete-optimal ROM.

7.6. Discrete optimality ROM performance

We now compare the accuracy and walltime performance of the discrete-optimal ROM as the dimension
of the basis, time step, and time interval change. The most salient result from Figure 12 is that choosing
an intermediate time step leads to both better accuracy and faster simulation times. This shows that our
theoretical analysis of the error bound performed in Section 7.5.2 leads to an actual observed performance
improvement. For example, consider the p = 564 case over the time interval 0 ≤ t ≤ 2.5. In this case, a time
step of ∆t = 1.875× 10−4 leads to a relative error of 0.0140 and a simulation time of 289 hours; increasing
this value to ∆t = 1.5×10−3 reduces the relative error to 9.46×10−4 and the simulation time to 35.8 hours,
which constitutes roughly an order of magnitude improvement in both quantities. Again, this supports the
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theoretical results of Corollary 6.5 and highlights the critical importance of the time step for discrete-optimal
reduced-order models.

In addition, Figure 12 shows that as the basis dimension increases, the optimal time step decreases; this
was anticipated from the spectral analysis performed in Section 7.5.1. In addition, adding POD basis vectors
does not improve accuracy for large time steps. We interpret this effect as follows: for larger time steps,
the first few POD modes accurately capture ‘coarse’ phenomena on the scale of the time step. Therefore,
accuracy improvement is not achieved by adding modes that encode dynamics that evolve on a time scale
finer than the time step itself.

Further, Figure 12(g) highlights that as the basis dimension increases, the error generally decreases,
which is an artifact of a priori convergence achieved by the discrete-optimal ROM (Remark 4.1). Finally,
the figure shows that as the time interval grows, the optimal time step generally increases.

7.7. GNAT: ROM with complexity reduction

In this section, we perform a similar study, but equip the discrete-optimal ROM with complexity reduction
in order to achieve computational savings. In particular, we employ the GNAT method [28, 31, 30], which
solves Eq. (21) with A = (PΦr)

+
P , where Φr is a basis for the residual and P consisting of selected rows

of the identity matrix.
The problem is identical to that described in Section 7.1 except that we take T = 5.5 seconds and employ

a second-order space-accurate dissipation scheme wherein a linear variation of the solution is assumed within
each control volume.4 For this simulation, the full-order model consumes 5.0 hours on 48 cores across six
compute nodes.

To construct the trial basis Φ and basis for the residual Φr for the GNAT models, we again employ POD.
In particular, we set Φ← Φ (X , ν), where Φ is computed via Algorithm 1 with snapshots consisting of the
centered full-order model states X = {x?(k∆t?)−x0}3668

k=1 . An energy criterion of ν = 1− 10−5 (p = 179) is
used during the experiments. For the residual, we employ Φr ← Φ (Xr, νr) via Algorithm 1 with snapshots

Xr = {rn(x0 + Φŵn(k)), k ∈ N(K(n)), n ∈ N(2228)} and ŵn(k) corresponding to the discrete-optimal
ROM solution at Gauss–Newton iteration k within time step n using a time step of ∆t = 6 × 10−3. Here,
K(n) denotes the number of Newton iterations required for convergence of at time instance n. An energy
criterion of νr = 1.0 is employed. In addition, the GNAT model sets the Jacobian basis equal to residual
basis ΦJ = Φr and employs ns = 743 sample nodes that define P , which leads to 4458 rows in P as there
are six conservation equations per node due to the turbulence model (see Ref. [30] for definitions).

The GNAT implementation in AERO-F is characterized by the sample-mesh concept [30]. Figure 13
depicts the sample mesh for this problem, which was constructed using nc = 2228 working columns [30,
Algorithm 3], and includes two layers of nodes around the sample nodes (to enable the residual to be
computed at the sample nodes). It is characterized by 7,974 total nodes (4.1% of the original mesh) and
17,070 total volumes (3.0% of the original mesh). Due to the small footprint of the sample mesh, the GNAT
simulations are run using only 2 cores on a single compute node.

Figure 14 reports the results obtained with the GNAT ROM using different time steps. Critically, note
that the GNAT ROM also exhibits a ‘dip’ in the optimal time step, with a time step of 6.0× 10−3 yielding
the lowest error. In fact, increasing the time step from 1.5 × 10−3 to 6.0 × 10−3 decreases the error from
3.32% to 2.25% and also significantly increases the computational savings relative to the full-order model
(as measured in core–hours) from 14.9 to 55.7. This highlights that the analysis is also relevant to ROMs
equipped with complexity reduction.

7.8. Summary of experimental results

We now briefly summarize the main experimental results:

• Galerkin ROMs are unstable for long time intervals (Figure 7).

• Discrete-optimal ROMs are only unstable for small time steps (Figure 7).

• Galerkin and discrete-optimal ROMs are equivalent as ∆t→ 0 (Figure 8).

4This is done to ensure the sample mesh requires two layers of neighboring nodes for each sample node.
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Figure 13: Sample mesh (red) embedded within original mesh.
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• Discrete-optimal ROMs are more accurate than Galerkin ROMs over small time windows where
Galerkin is stable (Figure 9).

• Discrete-optimal ROMs are most accurate for an intermediate time step (Figure 9).

• Adding POD modes has the effect of including higher-frequency response components (Figure 10).

• The theoretical error bound for the discrete-optimal ROM exhibits the same time step ‘dip’ as the
experimentally observed error (Figure 11).

• The optimal time step for the discrete-optimal ROM decreases as modes are added to the POD basis
(Figure 12).

• Adding modes to the POD basis has little effect on discrete-optimal ROM accuracy for large time steps
(Figure 12).

• The optimal time step for the discrete-optimal ROM tends to increase as the time interval increases
(Figure 12(g)).

• The GNAT ROM, which is discrete optimal and is equipped with complexity reduction, also produces
minimal error for an intermediate time step (Figure 14).

8. Conclusions

This work has performed a comparative theoretical and experimental analysis of Galerkin and discrete-
optimal reduced-order models for linear multistep schemes and Runge–Kutta schemes. We have demon-
strated a number of new findings that have important practical implications, including conditions under
which the discrete-optimal ROM has a time-continuous representation, conditions under which the two
techniques are equivalent, and time-discrete error bounds for the two approaches.

Perhaps most surprisingly, we demonstrated that decreasing the time step does not necessarily decrease
the error for the discrete-optimal ROM. This phenomenon arose in both the theoretical analysis and in
numerical experiments. In particular, our results suggest that the time step should be ‘matched’ to the
spectral content of the reduced basis. In the experiments, we showed that increasing the time step to an
intermediate value decreased both the error and the simulation time by an order of magnitude in certain
cases. Alternatively, decreasing the time step cause the discrete-optimal ROM to become unstable for longer
time intervals. This highlights the critical importance of time-step selection for discrete-optimal ROMs.
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Input: Set of snapshots X ≡ {wi}nw
i=1 ⊂ RN , energy criterion ν ∈ [0, 1]

Output: Φ (X , ν)
1: Compute thin singular value decomposition W = UΣV T , where W ≡

[
w1/‖w1‖ · · · wnw/‖wnw‖

]
.

2: Choose dimension of truncated basis p = ne(ν), where

ne(ν) ≡ arg min
i∈V(ν)

i

V(ν) ≡ {n ∈ {1, . . . , nw} |
n∑
i=1

σ2
i /

nw∑
i=1

≥ ν},

and Σ ≡ diag (σi).
3: Φ (X , ν) =

[
u1 · · · up

]
, where U ≡

[
u1 · · · unw

]
.

Algorithm 1: Proper-orthogonal-decomposition basis computation (normalized snapshots)

Appendix

Algorithm 1 reports the algorithm for computing a POD basis using normalized snapshots.
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