
SUBMISSION TO IEEE TRANSACTIONS ON RELIABILITY - SPECIAL SECTION ON SOFTWARE QUALITY 1

Java Source Code Analysis for Library Migration to
Embedded Systems

Victor Winter1, James A. McCoy2, Jonathan Guerrero1, Carl Reinke2, and James T. Perry2

1Department Of Computer Science, University of Nebraska at Omaha, Omaha, NE 68182 USA
2Sandia National Laboratories, Albuquerque, NM

Abstract

Embedded systems form an integral part of our technological infrastructure and oftentimes play a complex and
critical role within larger systems. From the perspective of reliability, security, and safety, strong arguments can
be made favoring the use of Java over C in such systems. In part, this argument is based on the assumption that
suitable subsets of Java’s APIs and extension libraries are available to embedded software developers. In practice,
a number of Java-based embedded processors do not support the full features of the JVM. For such processors,
source code migration is a mechanism by which key abstractions offered by APIs and extension libraries can made
available to embedded software developers.

The analysis required for Java source code-level library migration is based on the ability to correctly resolve
element references to their corresponding element declarations. A key challenge in this setting is how to perform
analysis for incomplete source-code bases (e.g., subsets of libraries) from which types and packages have been
omitted. This article formalizes an approach that can be used to extend code bases targeted for migration in such
a manner that the threats associated the analysis of incomplete code bases are eliminated.

Index Terms

source code analysis, Java, JVM, embedded system, Library migration

Manuscript received September 1, 2014. Corresponding author: V. Winter (email: vwinter@unomaha.edu).

SAND2015-0701J

SUBMISSION TO IEEE TRANSACTIONS ON RELIABILITY - SPECIAL SECTION ON SOFTWARE QUALITY 2

CONTENTS

I Introduction 3
I-A Context of Our Research . 3
I-B Assumptions Upon Which This Research Rests . 4
I-C Contribution . 5

II Class files versus Source Code 6

III Related Work 7
III-A Evolution, Change, and Propagation . 7
III-B Reduction . 8

IV Platform 10
IV-A Rationale and History of the SCore . 10
IV-B The Scalable Core . 12

IV-B1 The SCore Classloader . 12

V Core Analysis 13
V-A Resolution . 14
V-B Local Variables and Generic Type Parameters . 16
V-C Restriction to Top-level Types . 16
V-D Primary versus Secondary Resolvents . 16
V-E Unresolvable References . 17

VI The Preparation Stage 18
VI-A External Reference Sources . 19
VI-B Code Skeletons . 19
VI-C The Supertype Closure Property . 20
VI-D The Package Closure Property . 20
VI-E The On-demand Closure Property . 20
VI-F The Prepared Code Base . 21
VI-G A Summary of Monarch’s Resolution Analysis 22
VI-H An Operational Perspective . 25

VII Conclusion 26

Appendix 27
A A Listing of the Files Included in Migration . 27

References 28

Biographies 31
Victor Winter . 31
James A. McCoy . 31
Jonathan Guerrero . 31
Carl Reinke . 31
James T. Perry . 31

SUBMISSION TO IEEE TRANSACTIONS ON RELIABILITY - SPECIAL SECTION ON SOFTWARE QUALITY 3

I. INTRODUCTION

Embedded systems form an integral [42] and often critical part of our technological infrastructure.
Their use spans a growing number of application domains many of which operate in environments having
significant requirements relating to reliability, security, and safety. Typical examples of domains having
such requirements include: military, medical, energy, aerospace, and automotive.

In addition to their increased use, the complexity of embedded systems is also on the rise. As a result,
there is a growing need to provide ecosystems, encompassing software, hardware and tool chains, capable
of leveraging state-of-the-art practices in embedded system design and development. Ritzdorf has reported
that for medical devices embedded platforms are very often “single-purpose, proprietary systems, built
from the ground up with little to no dependence on common programming frameworks or operating
systems” [38]. In a somewhat similar vein, a compilation of data [6] from subscribers to Embedded
Systems Design during the time period 1997–2012 revealed the following:
• The favorite tools are compilers, oscilloscopes, and debuggers.
• The dominant language is C.
• Approximately 60-70% of the efforts is spent writing code.
• Java is used very little.
The fact that the compilation of the Embedded System Design subscriber data revealed such little use of

Java is somewhat ironic since Java was originally intended for use in embedded systems [40]. From the
perspective of reliability, security, and safety, strong arguments can be made favoring Java over C [37].
These arguments include: (1) platform independence, (2) type safety, (3) object orientation, (4) memory
management, and (5) the abstractions offered by Java’s APIs and extension libraries. On the other hand,
the raw speed and low-level control (e.g., pointers) provided by C make C attractive for a variety of
embedded systems – especially those with heavy real-time constraints.

For complex high-consequence embedded systems Java is (and should be) an attractive language. This
is especially true in environments where changes in the underlying hardware are expected. Objections
to the use of Java in embedded systems typically involve concerns over its memory footprint, execution
speed, and the nondeterministic temporal properties of its garbage collection. However, significant inroads
to addressing such concerns are being made as the result of advances in hardware as well as increased
capabilities regarding how Java programs can be compiled for use in embedded systems [2][22][36].

Reddy [36] identifies Java’s “very rich set of APIs and extension libraries” as one of the “great strengths”
of Java. From the perspective of embedded systems, the problem with APIs and extension libraries is the
memory footprint they entail. Reddy goes on to identify two approaches that can be used to mitigate this
memory footprint problem: (1) profiles – which are subsets of Java APIs developed for specific application
domains, and (2) smart linking – which strips from an API those classes, fields, and methods that are not
used by the application.

A. Context of Our Research
Monarch [49] is a Java source code migration tool that is being developed at UNO to assist in migrating

Java Core Libraries to the SCore platform, a hardware implementation of a subset of the JVM [24] being
designed at Sandia National Laboratories. Figure 1 shows how applications, whose initial development
takes place on a desktop, are compiled and translated into a file called a ROM image suitable for execution
on the SCore.

The decision to develop the capability of migrating libraries rather than pursuing a ground-up imple-
mentation of the functionality found in the library has several benefits: (1) libraries that are in widespread
use, such as the Java Core Libraries, have effectively been subjected to extensive “testing” and as a
result are generally considered to be more reliable and mature than one-of-a-kind implementations that,
by comparison, have been minimally tested, (2) an approach involving library migration can stay current
with updates associated with the library, and (3) a source-code migration tool can be reused to migrate
other libraries. That being said, it is important to note that library migration shifts the reliability burden

SUBMISSION TO IEEE TRANSACTIONS ON RELIABILITY - SPECIAL SECTION ON SOFTWARE QUALITY 4

Desktop Library Application

Monarch

Migrated
Library

Java
Compiler

Class files Interlude ROM Image

SCore

Figure 1. Software development for the SCore.

from the ground-up one-of-a-kind implementation of the library functionality to a general migration process
and tool. As a result, providing high-assurance that the migration process and tool are correct is essential.

At this time, the primary code base targeted for migration to the SCore platform is a set of Core Libraries
belonging to the Standard Edition (SE) of the Java Platform. A detailed description of the targeted code
base is given in Appendix A. Further discussion on the subject of incorporating libraries to the SCore can
be found in [52]

In its totality, Monarch migration is comprised of the following three stages.
1) Re-implementation Stage – In this stage, the target code base is manually inspected and function-

ality essential for a given SCore application is identified. If necessary, this essential functionality
is re-implemented so that the resulting code is suitable for execution on the SCore. In practice, re-
implementation is different from the ground-up customized library implementation in the following
ways: (1) the functionality designated for re-implementation should be minimal comprising only a
small percentage of the total migrated code base, and (2) re-implementation should only involve
simple modifications to the existing code and thus present no significant assurance threats. The re-
sulting re-implementations are then encoded as program transformations which can be automatically
applied during the course of Monarch migration. In this article, we assume the target code base
we are working with has passed through the re-implementation stage.

2) Preparation Stage – The purpose of this semi-automated stage, discussed in Section VI, is to obtain
a prepared code base that is amenable to static analysis. For example, type declarations may be
added to the code base for the purposes of completing subtype hierarchies.

3) Removal Stage – This is a fully-automated stage in which source-code unsuitable for execution on
the SCore is stripped from the code base. The specification of such removals are in the form of
conditional rewrite rules. A noteworthy feature of these rules is that their (application) conditions
can make use of semantic properties of the Java source-code base[48].

B. Assumptions Upon Which This Research Rests
Fundamental to static analysis is the ability to determine the mapping between element references

and element declarations. In this article, we use the term resolution when referring to this function. We
assume that when given a complete code base, Monarch can correctly perform resolution [47]. Section
II discusses how resolution information is obtained by a variety of static analysis systems and also gives
a rational for Monarch’s decision to implement a source code-level resolution function.

SUBMISSION TO IEEE TRANSACTIONS ON RELIABILITY - SPECIAL SECTION ON SOFTWARE QUALITY 5

C. Contribution
The focus of this article is on identifying and addressing additional challenges to resolution arising

from the consideration of incomplete code bases from which top level types as well as entire packages
may have been removed. The Java Language Specification [18] defines a top level type as a top level class
(Chapter 8) or a top level interface (Chapter 9). The descriptor top level implies that the type declaration
is not nested within another type. Unless accompanied by addition removals, the removal of a top level
type can cause resolution to produce incorrect results. For example, a reference that resolves to the type
p1.T in the original (i.e., complete) code base could resolve to the type p2.T in the incomplete code
base.

In practice, an incomplete code base, which we also call a target code base, is the source-code of
a subset of a library that has been selected for migration to the SCore. Furthermore, the constraints
surrounding code migration for the SCore are such that library migration must deal with such incomplete
code bases (for more on this see Section V-E) so this issue cannot be side-stepped.

The key threat posed by incomplete code bases is that the absence of declarations can create condi-
tions where the resolution of references within an incomplete code base will differ from corresponding
resolutions within the complete code base. Our investigation identifies a number of closure properties that
a code base must satisfy in order for Monarch’s resolution function to yield correct results. Supertype
closure is an example of one such property. For a code base to satisfy the supertype closure property it
must be the case that if a type is in the code base, then its supertype must also be in the code base. It
should be noted that in order to satisfy a closure property, the target code base must be extended (i.e., its
size increased).

Due to practical limitations, closure properties cannot be used to eliminate all resolution problems
associated with a target code base. The major problem here is that closures increase the target code base
to which closures must again be applied. The only source-code base that is truly safe for analysis is
one where closures have been exhaustively applied (i.e., until the fixed point is reached). In practice,
such code bases are extremely large, and the SCore prohibits their consideration for migration. The Java
compiler sidesteps this issue through a resolution function whose search capabilities are extensive and
exotic. Its search for a resolvent can extend far beyond the code currently being compiled and includes
the consideration of class files and jar files residing on the desktop and beyond. In contrast, Monarch’s
resolution function, for assurance purposes, is strictly limited to the source-code to which it is applied,
and thus the problem of obtaining a code base suitable for analysis whose size is somehow proportional
to the original target code base is an issue that must be confronted. In Monarch we address this issue
through a novel concept called a code skeleton which extends the domain of the resolution function to
source code outside of the target code base in a limited fashion. The key idea is that declarations in a
skeleton can be searched by Monarch’s resolution function, but the code within a skeleton will not be
subjected to further analysis. Code skeletons, which are not migrated, thereby effectively limit the size
of the code base that must be subjected to analysis. And finally, code skeletons can be automatically
produced by Monarch through a set of program transformations and thus require little effort to create.

The combination of closure properties and code skeletons represent modifications to the target code
base that must be performed in the preparation stage (i.e., stage 2) of migration in order to assure the
correctness of resolution. We refer to a code base that has been modified in this fashion as a prepared
code base. The goal of this article is to provide strong evidence that performing resolution on a prepared
code base will yield correct resolution results for that code base.

The remainder of this article is as follows: Section III discusses related work. Section IV-B gives an
overview of the SCore platform. Section V describes resolution. Section VI, describes how a target code
base C, that is incomplete, can be prepared to assure the correctness of Monarch’s resolution function,
and Section VII concludes.

SUBMISSION TO IEEE TRANSACTIONS ON RELIABILITY - SPECIAL SECTION ON SOFTWARE QUALITY 6

II. CLASS FILES VERSUS SOURCE CODE

The implementation of a function capable of performing resolution by directly analyzing source-code
is a major undertaking. As a result, an alternative taken by a number of Java static analysis tools, such
as FindBugs [21], JLint [23] and Clousot [16], is to perform static analysis on Java class files. In this
approach, information provided by the Java compiler forms the basis for certain kinds of analysis. An
additional challenge for such frameworks is to map (or project) information mined from class files onto
the Java source-code from which the class files were derived. It is at the source-code level that analysis
results are typically communicated to the tool user.

Unfortunately, class files do not capture all the information present in source code. In [26] the pros and
cons associated with the analysis of low-level (e.g., bytecode) versus program source code are discussed.
Rutar et al. [39] investigate the effectiveness of a Bandera, ESC/Java, FindBugs, JLint, and PMD at
finding various classes of bugs. In practice, information missing from class files can provide valuable
insight into programmer intent which can improve both the false positive and false negative rates of
static analysis. In recognition of the limitations of class file analysis, a growing number of static analysis
tools, including Coverity SAVE [11][20][5], DMS [4][13][14], and ESC [17][9][10] are developing static
analysis infrastructures that are predominantly centered on the analysis of source code. To be concise,
even though the analysis performed by these tools is predominantly at the source-code level, these tools
still interact with class files in order to obtain name and type information produced by the compiler’s
resolution function. Some theorem prover-based tools, such as Cibai [25], perform analysis exclusively
[8] at the source-code level.
Monarch falls into the general category of static analysis (and manipulation) tools. However,Monarch’s

purpose is distinctly different from the tools mentioned in the previous paragraphs. Monarch migration
centers around a dependency analysis-based removal of field, method and constructor declarations as well
as analyzing the consequences of such removals. Furthermore, the scope and nature of the applications to
which the SCore platform was being considered drove the need to develop general and completely unre-
stricted resolution analysis capabilities. Such analysis includes consideration of visibility issues relating
to shadowing, overwriting, and overloading. A key question that Monarch’s analysis must be able to
answer can be stated as follows:

For a given context, does the removal of a declaration expose (to this
context) a secondary declaration that was previously not visible?

One key concern driving the Monarch analysis, described in this article, involves the set of public
and protected declarations in code bases (e.g., subsets of libraries) targeted for migration. Specifically,
it is references to this set that are available to embedded applications using these migrated libraries. A
restriction placed on Monarch is that embedded applications, interacting with migrated library compo-
nents, cannot themselves be subjected to analysis [50]. For this reason,Monarch must make conservative
approximations with respect to removal. The analysis needed to answer such questions is predicated on
the ability to perform resolution in an environment whose declarations change over time and thus cannot
be realistically guided by (static) name and type information obtained from class files. Because of these
issues and considerations (lesser issues exist as well), Monarch does not mine class files for resolution-
based information. And for reasons resonating with what was mentioned in the previous paragraphs that
Monarch analysis is performed on Java source code rather than on class files.

Assuming that a resolution function is correct is a fairly major assumption. We acknowledge that in
practice most references can be resolved using a simple resolution algorithm [51]. However, in theory
references can be created whose resolution is extremely complex. Such references tend to exercise the full
capabilities of Java’s resolution function and/or involve special cases. While it is true that such references
are unlikely to occur in normal operating environments, such assumptions should not be made in high-
consequence domains where abnormal or malicious behavior must be taken into account. In [33] a number
of examples are given that reveal bugs in the resolution algorithms used by common Java editors and

SUBMISSION TO IEEE TRANSACTIONS ON RELIABILITY - SPECIAL SECTION ON SOFTWARE QUALITY 7

1 package stackoverflow;
2 import static stackoverflow.A00.*;
3 public class A00 extends B00
4 {
5 public static class B00{}
6 }

Figure 2. A small program causing a stack overflow in the Java 1.6.0_26 compiler[47].

refactoring tools.
To mitigate concerns regarding the correctness of in-house developed resolution capabilities, we have

created a test set which we use to automatically certify Monarch’s resolution function [47]. Our test set
contains references that are incorrectly resolved by the Eclipse, Netbeans, and IntelliJ editors and their
refactoring tools. We even include tests that have given the Java compiler difficulties. Figure 2 shows
a program that when compiled using javac 1.6.0_26, will result in a stack overflow1. We present this
evidence, not as a critique of existing tools, but rather to underscore the complex nature of resolution.
Specifically, we believe that when dealing with high-consequence applications, paying close attention to
issues surrounding the correctness of resolution is justified.

III. RELATED WORK

Research related toMonarch migration falls into several areas. One area of research focuses on changes
to APIs and libraries as well as the propagation of these changes to client applications which use them.
A second area of research focuses on streamlining or reducing runtime attributes of applications such as
memory footprints and performance. It should be noted that Monarch migration is removal-based and
thus a reduction in size of the source code of a migrated code base is a byproduct and not a goal of
migration. That being said, the SCore classloader does perform specific optimizations on class files aimed
at reducing the size of the executable code, and thus advances in reduction are of interest and relevant to
SCore applications.

A. Evolution, Change, and Propagation
Bartolomei et al. [45] consider challenges relating to API migration. Whereas Monarch migration is

removal-based and involves migrating source code implementations of class libraries to a specific platform,
the API migration studied by Bartolomei et al. concerns itself with implementing the functionality provided
by one API, called the source API, in terms of the functionality provided by another API, the target
API. Under ideal circumstances, the interface of the source API would remain unchanged and only its
implementation would shift. In practice achieving such a complete migration is not easy. In [45] the API
migrations SwingWT and SWTSwing are considered. Five abstracted design patterns are identified as
beneficial to API migration. A related work [3] explores API migration between the conceptually simpler
and more similar XML APIs JDOM and XOM.

Tip et al. [43] describe how type constraints [32] can be used to correctly perform the EXTRACT
INTERFACE refactoring, a kind of generalization. The goal of the EXTRACT INTERFACE refactoring,
is to generalize an existing class by lifting an abstracted subset of the class to a newly created interface. The
challenge then is to use this new interface type, in a maximal way, in the code base under consideration.
Basic transformations involve substituting the type of a declaration with the interface type. Their work,
implemented in Eclipse, performs source code analysis on a target code base. As is typically done in
refactoring, the source code base being refactored is expected to satisfy the closed world assumption,
meaning the refactoring tool has access to the program’s full source code. In this context, type constraints
are used to obtain the maximal set of program elements to be refactored.

1This bug has been fixed in Java 1.7.0_03.

SUBMISSION TO IEEE TRANSACTIONS ON RELIABILITY - SPECIAL SECTION ON SOFTWARE QUALITY 8

Chow and Notkin [7] describe a transformation-based approach for maintaining compatibility between
a library and its client applications. Their approach requires that changes to a library be captured, by
library maintainer, in the form of annotations. Using information stored in these annotations, standard
compiler technology can then be used by the application maintainer to generate transformations that make
a given target application compatible with the new version of the library. It is noteworthy that application
of transformations appears to rely heavily on syntactic properties and thus the complexity associated with
semantic analysis is side-stepped. Conceptually, this form of transformation shares similarities with API
migration. However, one distinction is that client applications are the subjects of modification. In contrast,
Monarch migration is prohibited from modifying or even analyzing application code.

Dig and Johnson [15] have studied the role played by refactoring in API evolution. They explore
incompatibilities that arise between an application and an API as a result of evolutionary changes to the
API. The authors analyze four case studies and report that around 80% of API changes are refactorings
that change the code structure of the API but do not change its behavior. These changes they classify as
“non-breaking changes”. In contrast, “breaking changes” are those that result in client code that fails to
compile, or has altered behavior. They suggest that a refactoring-based migration tool could be used to
perform most of the non-breaking changes needed to bring an application up to date with an evolving
API upon which it depends. The remaining changes would need to be performed manually.

Henkel and Diwan [19] have developed a tool called CATCHUP! that has the ability to semi-automatically
capture and replay refactorings. The purpose of the tool, whose prototype is implemented in Eclipse, is
to capture refactoring-based changes that are applied to a library (i.e., a reusable software component)
when it undergoes an evolutionary change and to then automatically replay the captured refactorings on
application code bases that are dependent on the library. The authors mention that their tool is lightweight
and their approach cost effective, though they also note that not all incompatibilities between a library
and an application can be resolved through this mechanism.

Balaban et al. [1] explore the idea of class-to-class migration as a way to incrementally bring an
application up to date with a new version of a library upon which it depends. The general approach
assumes a one-to-one correspondence between legacy classes and replacement classes. Given such a
correspondence, a set of rewrite rules can be manually created defining how references to the legacy
class and its members are to be rewritten to corresponding references in the replacement class. Type
constraints, such as those used in refactoring, are used to control the application of a given set of rewrite
rules. Migrations from Vector to ArrayList, Hashtable to HashMap, and Enumeration to
Iterator are used to illustrate their approach.

B. Reduction
The implementations of Java container classes are often targeted towards large use cases. For exam-

ple, Vector and Hashtable are coded to have desirable performance properties in situations (i.e.,
operational profiles) in which the objects they store are heavily accessed. When this is not the case,
these classes can be inefficient both in their execution speed and their memory footprint. Sutter et al.
[41] investigate how profile information can justify the creation of custom classes whose functional
behavior is an acceptable substitute for the original classes they replace. The purpose of customization
is to reduce the memory footprint and improve execution speed of the application. The approach they
present is fully automated and assumes type information about expressions and declarations is provided
by the Java compiler. The remaining analysis is performed using Gnosis, a whole-program analysis and
transformation tool developed at IBM. Within this framework, type-correctness constraints and interface-
correctness constraints are expressed in rule-based format and provide information about requirements
custom classes must satisfy (e.g., what declared elements they must contain) and where they can be used.
The authors report that on the applications they considered, such customization resulted (on average)
in a 22% speedup and 12% reduction of memory footprint. In contrast, Monarch migration involves
a slightly different set of problems. First, our impression is that the nature and scope of customization

SUBMISSION TO IEEE TRANSACTIONS ON RELIABILITY - SPECIAL SECTION ON SOFTWARE QUALITY 9

would present an unacceptable reliability risk. Second, Monarch cannot base its migration strategy on
assumptions about the operational profile of application code. Third, the removal of code duringMonarch
migration is driven in part by “what if” type analysis whose information cannot be obtained from the
compiler in a direct manner.

Mitchell et al. [28] analyze negative consequences of reuse and OO programming on large-scale Java
applications. The authors use the term runtime bloat to refer to unnecessary time/space overheads accrued
as a result of fairly standard development practices. The effects of runtime bloat become more pronounced
when considering large-scale applications. In one instance cited, an application required 1 gigabyte of heap
to service 500-1000 users – a level of resource usage whose scale to millions of users is prohibitive. In
[29] the metric (t − d)/t is developed, by Mitchel and Sevitsky, to measure the memory bloat factor
associated with storing application data. In this formula t denotes the total number of bytes of live objects
and d is the number of bytes corresponding to actual application data. Using this metric, Mitchell and
Sevitsky report discover that a number of typical applications have a 60% to 80% memory overhead. A
significant contributor to runtime bloat stems from reuse, which generally leads to increased programmer
productivity with little consideration given to its impact on performance. Solutions proposed to prevent or
limit runtime bloat include: (1) integration of suitable performance considerations into the design process,
(2) development of tools capable of analyzing runtime bloat, (3) automated recognition and optimization
of common bloat patterns, and (4) extension of the Java language to enable finer control over storage.

Tip et al. [44] explore the problem of reducing the size of applications that are distributed over the
internet or used in embedded systems. Reduction techniques employed include cleanup-based “extraction
techniques” that remove unreachable methods and redundant fields as well as transformations that perform
method inlining, identifier compression, and class hierarchy compression. On average, applications were
reduced to 37.5% of their original size. Jax is used to implement extraction and transformation techniques.
The approach presented assumes, at least conceptually, that complete code base is available for analysis.
When a complete code base is not available, assumptions falling outside the scope of static analysis can
be expressed in the form of assertions using a modular extraction language (MEL). Different extraction
scenarios are considered including those that create an extracted version of a library independently from
any specific application. The core of the approach appears to center on the removal of elements from a
class that are unreachable with respect to a given set of assumptions.

Rayside and Kontogiannis [35] describe how subsets of Java libraries can be extracted for use in
embedded systems. The idea is to analyze how an application uses a library and to then filter out from the
library all classes, methods, and fields that are not used by the application. This subset, they refer to as the
“space optimized subset” of the library. Variations of this subset are also explored. Specifically, a “partial
space optimized subset” can be constructed by strictly performing filtering at the level of compilation
units (i.e., class files). The authors note that such subsets can only be guaranteed to function correctly
for VMs that use lazy resolution. A “space reduced” subset is also presented suitable for VMs whose
evaluation is strict. In contrast, Monarch cannot perform the filtering optimizations described in [35]
because it is prohibited from accessing application code. However, the SCore processor uses a special
classloader that performs various optimizations, including filtering out all methods from a library that are
not used by the application. So in our framework, such filtering is a post-migration issue.

Pugh [34] explores how Java class files can be compressed in a wire-format in order to decrease
the time it takes to transmit class files across, possibly slow, communication links. The assumption
is that communication time is the dominating concern and class compression/decompression time is
secondary. The wire-format compression techniques described result in files that are 1/2 to 1/5 the size of
corresponding compressed jar files and roughly 1/4 to 1/10 the size of the original class files. Compression
techniques include removal of high-level information found in LineNumberAttribute, LocalVariableTable,
and SourceFile. However, these removals are not counted towards the final compression improvements.
Main ideas in the compression that are counted include: (1) sharing Utf8 entries across class files (such
entries often constitute the majority of the size of a class file), (2) partitioning of the constant pool
into smaller “typed” constant pools (e.g., a separate pool just for method references, etc.) allowing pool

SUBMISSION TO IEEE TRANSACTIONS ON RELIABILITY - SPECIAL SECTION ON SOFTWARE QUALITY 10

indexing to be reduced from 2 bytes to 1 byte in many cases, and (5) encoding strings.

IV. PLATFORM

The Java Micro Edition (ME)[31] platform primarily targets devices belonging to the Internet of
things. These devices, which include mobile phones and televisions, have varying degrees of internet
connectivity. Through configurations Java runtime environments can be created satisfying a variety of
criteria including memory footprints and processing power. In this context, a configuration consists of
a VM and a set of class libraries. The Java ME supports two broad configuration types: (1) Connected
Limited Device Configuration (CLDC), and (2) Connected Device Configuration (CDC). Through profiles
(a set of higher-level APIs) and optional packages, the functionality of a configuration can be further
customized to specific device categories. Connectivity implies that Java ME platforms must provide class
loading, linking, and (simplified) bytecode verification capabilities. The Java ME platform also supports
the full set of bytecodes. This makes the platform considerably larger (and more capable) than the Java
Card platform.

The Java Card[30] platform encompasses a VM, a standard Java compiler, a converter (performing
class loading, linking, and bytecode verification) and a defined set of APIs. Vendors can build their
own smart card (hardware) implementing the VM of a Java Card platform – it is this hardware that is
targeted by the converter. The hardware must also support/implement necessary functionality of the Java
Card platform’s APIs as well as any card-specific OS functionality. The result is an instance of the Java
Card platform – programmers can now write Java Card programs (a subset of the Java Language) to be
executed on this platform. A key domain targeted by the Java Card platform is one where a Java Card
interacts with its environment through a card reader. Notable restrictions of the Java Card Language and
Java Card VM include: no support for native methods, multidimensional arrays, char, long, and floating
point operations. Bytecodes are also encoded differently than on the JVM in order to compress their size.

The SCore platform is a Java platform, developed at Sandia National Laboratories. This platform
consists of a SCore-based VM, a standard Java compiler, a converter we will call interlude, and a (possibly
evolving or customizable) subset of the Java SE APIs. In the SCore-VM the functionality of the selected
SE APIs is obtained not through direct implementation but by migrating the source code implementations
of the SE APIs to the SCore platform. This migration is accomplished using a transformation-based
migration tool called Monarch.

A. Rationale and History of the SCore
It should be noted that the initial development efforts of the SCore predated the Java ME as well as

any viable version of the Java Card. Initial investigations, which ultimately lead to the decision to develop
the SCore, involved thorough review of publicly available information about Sun Java Card technology
as well as in-depth meetings with well-known Java experts such as Bill Venners.

Although the SCore is suitable for use as a general purpose processor it’s primary intent is for use
in high consequence systems where programming errors could be catastrophic and where the security of
the system is dependent upon knowing that there are no holes or back doors lurking in the shadows that
could be exploited maliciously, or accidentally in the case of a fault somewhere else in the system. On the
surface the SCore may appear to be a redundant implementation of technology available from commercial
vendors. However, the SCore is in large part a product of the requirements placed on the systems for
which it is intended and therefore, although it takes advantage of as much publicly available information as
possible, many of those requirements make it extremely difficult to simply apply commercially available
technology products in place of the SCore.

In order to eliminate the introduction of security holes, traps, or back doors through programming errors
or by malicious programmers, unlimited access to ALL source and design information, both hardware
and software, pertaining to the implementation must be available for analysis and inspection. In addition,
personnel with a mastery of that information must be available to exhaustively evaluate and, if necessary,

SUBMISSION TO IEEE TRANSACTIONS ON RELIABILITY - SPECIAL SECTION ON SOFTWARE QUALITY 11

to modify and/or correct any part of the implementation found to be incorrect or not fully supporting the
security mandate of the system. Basically, any implementation must be explicitly shown to prevent either
intended or unintended execution of a program fragment that circumvents implemented security measures
or that violates the security barriers of the system in which the implementation resides. This includes
any mechanisms that could cause data and/or program code to be accessed or modified in a manner not
specifically required for the correct functioning of that implementation.

Some common examples of programming errors that can enable a security breach are unchecked buffer
boundaries that provide a mechanism for overrunning said buffers, and pointer manipulation errors that
allow data to be written or read from supposedly protected areas of memory. If the hardware doesn’t
preclude these breaches by design in a clear and understandable way that is provable by inspection by
knowledgable, but Independent reviewers (or through other more rigorous methods), then the entire imple-
mentation must be analyzed, inspected, and reviewed in depth to ensure that no part of the implementation
contains any intended or unintended avenues to circumvent the security of the system.

If, for example, the Java Micro Edition were to be run on a commercial microprocessor system that had
previously been vetted and was deemed to meet the requirements of the intended system2, one would still
need to acquire and exhaustively inspect the Java Micro Edition source code, possibly for several different
versions if one version was determined to contain faults that were fixed in a subsequent version, to ensure
there were no hidden “holes” or “back doors” waiting to be exploited either accidentally or intentionally.
In third party implementations like commercial microprocessors and software runtime environments like
the Java Micro Edition, obtaining proprietary source code can be very expensive and nearly impossible
to achieve in a timely manner, and finding and training personnel in the details of those implementations
such that they can decisively determine the integrity of them is even more expensive in both time and
money.

In contrast to that type of implementation, the SCore processor was designed from the ground up to
exclude the kinds of errors described above and to prevent them from occurring. This protection is coded
directly in the microcode of the processor and is easily analyzed and verified by knowledgable personnel3.
The protection mechanisms run at hardware speeds increasing the overall performance of the system for
a given set of environmental and power requirements, and, once these mechanisms have been verified,
the security driven programming burden on the software developers is significantly reduced4.

An important part of the justification for selecting a processor for use in a system application is how
well it is supported with powerful and easy to use development and testing tools. Of the many capabilities
the SCore development environment offers a development team two fundamentally important ones are the
ability to quickly and easily model and simulate the desired system at varying levels of fidelity as the
requirements and design are developed, implemented, and refined, and the ability to quickly and easily
design and test custom I/O modules.

Simulation models of the SCore exist at various levels of fidelity, including a clock cycle accurate
model that executes the exact same binary microcode and binary application code that the synthesize-

2Security, as well as power, environmental, etc. Environmental requirements could include things like radiation if the system was intended
for space or nuclear applications.

3The SCore microcode is written in a high-level C-like syntax that is easily learned and can be mastered by any competent software engineer
or programmer. Because it is a "hardware" language there are some restrictions and differences from traditional programming languages
that must be understood and adhered to. Once these restrictions and differences are understood, reading and inspecting the microcode can
proceed at a reasonable pace comparable to any other programming language. Because the microcode is designed and written in a high
level language modern software development techniques are used to encapsulate the checking algorithms, and to reuse them for similar
instruction implementations, making the analysis and inspection of these security measures easier. Instructions with common behaviors are
grouped together so that the commonalities can be encapsulated to minimize cut-and-paste type errors as well, with mechanisms included
in the language to allow inlining of the sequences of microcode instructions during translation for performance purposes where necessary.

4It should be noted that once any other JVM based implementation has been verified much of the same reduction in programming burden
will be realized. However the SCore architecture goes further in protecting against programming errors and malicious programming than the
traditional JVM. One example of this is the complete separation of address spaces (Program, Stack, and Heap/IO spaces), preventing the
access of an illegal address space, either intentionally or inadvertently, during the execution of an application program.

SUBMISSION TO IEEE TRANSACTIONS ON RELIABILITY - SPECIAL SECTION ON SOFTWARE QUALITY 12

able HDL5 model executes. These models run on a Java based simulation environment that is used to
model and simulate large, multi system designs where different elements in the system are modeled at
differing levels of fidelity as their respective designs are refined and implemented. The SCore and it’s
array of available core I/O modules are included as built-in models with the simulation environment. The
simulation environment, called Orchestra, has been used to model several large systems and is capable of
modeling purely behavioral, as well as detailed logic designs like the SCore and it’s I/O.

Besides system level modeling available in Orchestra, the SCore also includes fully functional Bus
Functional Models (BFMs) to assist with SCore based I/O module design and testing, allowing the designer
to concentrate on the I/O module design without having to build a complete SCore system and write Java
code to test their design until the module is ready for certification and release. Identical BFM models
exist for both Orchestra and for HDL simulation, and both BFMs execute the same script written in a
Bus Functional Language (BFL) that is compiled into an internal structure providing a more efficient
execution within the respective simulators. The BFMs provide a clock cycle accurate representation of the
bus transactions on the SCore’s Heap Bus for the custom Object Oriented I/O instructions of the SCore.
The BFMs also provide an unlimited number of outputs and inputs that can be used to stimulate the I/O
module-under-development’s inputs and record it’s outputs, respectively. The BFL also contains elements
to help the developer document the functionality and the testing of a module.

B. The Scalable Core
The Scalable Core (SCore) platform [27][46] is a hardware implementation of the JVM [24] being

designed at Sandia National Laboratories for use in resource-constrained embedded applications. The
SCore has the following restrictions:

1) prohibited use of floating point arithmetic – Hardware implementations of floating point arithmetic
are extremely complex and pose a serious threat to reliability.

2) prohibited use of threading – Concurrency based on multi-threading requires resources and creates
the potential for a variety of failures resulting from deadlock, starvation, and race conditions.
Furthermore, such failures can be hard to discover.

3) limited support of native methods – Java provides a mechanism, called the Java Native Interface
(JNI), that enables non-Java methods to be referenced within a Java program. In the SCore, native
methods can be implemented in microcode. However, due to resource constraints only a small
number of such methods have been implemented.

4) prohibited use of reflection – Reflection requires information contained in class files, and utlizes
native methods that are not supported on the SCore. The decision to not support reflection enables
the SCore classloader to reduce the size of class files by excluding reflection-specific information.

An overview of the restrictions of the SCore processor is shown in Table I.
1) The SCore Classloader
As shown in Figure 1, development for the SCore begins on a standard desktop, running on a standard

JVM. Embedded application developers may only use an agreed upon subset of the Java Core Libraries
in their implementation. After the initial stage of development, the application is moved to a SCore-
base discrete-event simulator, called Orchestra (not shown in the figure) [52], in which the system under
development can be modeled. When development in the simulation stage is completed the application is
then ready for execution on the SCore. Migration to a SCore-based environment involves (1) migration
of the agreed upon subset of the Java Core Libraries, (2) compilation of the application code and the
code of the migrated Libraries, and (3) translation of the resulting class files into a ROM image by a
classloader-like program called Interlude. Using techniques similar to the smart linking mentioned by
Reddy [36], and space optimization described by Rayside et al. [35], Interlude combines all class files
into a single significantly reduced file format called a ROM image. It is this ROM image that is executed
by the SCore platform.

5Hardware Description Language. Currently the SCore exists as synthesize-able VHDL.

SUBMISSION TO IEEE TRANSACTIONS ON RELIABILITY - SPECIAL SECTION ON SOFTWARE QUALITY 13

Java Language Restrictions
Feature Keywords Level of Support
floating point arithmetic float, double, strictfp not supported
threading synchronized, volatile not supported
serialization transient not supported
assertions assert not supported
multi-dimensional arrays not supported

VM Restrictions
Feature Keywords Level of Support
reflection not supported
native methods native limited
garbage collection limited
class loading not supported

Table I
RESTRICTIONS OF THE SCORE PROCESSOR

Interlude enforces the requirement that an application only interacts with the migrated portion of the
Java Core Libraries. If an embedded application contains references to elements (e.g., packages, types,
methods, or fields) external to the portion of the Libraries migrated to the SCore, then Interlude will
not generate a ROM image. This property is relied upon by Monarch[50] to assure the correctness of
its migration.

V. CORE ANALYSIS

A Java code base consists of a set of packages, a package consists of a set of compilation units, and a
compilation unit consists of an optional set of import statements and a set of top-level types. One thing
to note is that in Java there are no special scoping rules for what might appear to be a sub-package. That
being said, Java code is typically arranged in file hierarchies in a manner that might suggest otherwise.
For example, java.lang.annotation is not a sub-package of java.lang.

In our discussion, we eliminate the structural aspects of Java code and model source-code as flat set
whose elements are the structural names of top-level types. In our model, the structural name of a type
has the form:

p · cu · t

where (1) p denotes the package in which the type resides, (2) cu denotes the compilation unit in which the
type resides, and (3) t denotes the unqualified name (i.e., simple identifier) of the type. From the perspective
of resolution, compilation units contain critical information. Primarily, compilation units contain import
statements which allow references to elements declared in other packages. However, that is not all. Java’s
resolution algorithm requires that, within a compilation unit, types imported using single-type import
statements take precedence over types, having the same name, that are declared in another compilation
unit belonging to the package in which the compilation unit resides.

Aside from minor syntactic differences, the only difference between a structural name and a canonical
name, as defined by Java, is the presence of the name of compilation unit.

p · cu · t to canonical name−−−−−−−−−→ p.t

The reason for modeling a code base in terms of the structural names of its top-level types is that
it enables the standard semantics to be given to set operations (e.g., membership, subset, union and set
difference) on code bases. Furthermore, given the mapping from structural to canonical names we extend
set operations on code bases to include canonical names when the information provided by compilation
units is not important. For example, let r denote the canonical name of a type and let N = {s1, . . . , sn}
denote a set of structural names. The expression r ∈ N can be evaluated by mapping all elements in

SUBMISSION TO IEEE TRANSACTIONS ON RELIABILITY - SPECIAL SECTION ON SOFTWARE QUALITY 14

N to their canonical names and comparing results using the syntactic equality operation. The following
table defines the functions packages and canonical which can be used to extract the set of packages and
canonical names of top-level types from a code base.

packages(N) = {p | ∃p · cu · t ∈ N}
canonical(N) = {p.t | ∃p · cu · t ∈ N}
packageContents(P,N) = {p · cu · t | ∃p, cu, t : p ∈ P ∧ p · cu · t ∈ N}

Definition 1. The symbol CU denotes a target code base derived from a well-formed and complete code
base U . Specifically, if CU is derived from U , then CU ⊆ U holds.

In the discussions that follow, we use the term well-formed to refer to code bases that are legal Java
(e.g., they can be compiled into class files and executed). We use the term complete to capture the notion
that a code base has not been altered from its original form/intent. For example, it is possible to remove
some pieces of code from a well-formed and complete code base and obtain a well-formed code base.
However, this new code base is not complete.

Note that, as a result of removals, CU may contain references to elements whose declarations are in
U but are external to CU . To emphasize this distinction, we refer to U as a complete code base and a
derived code base CU as an incomplete code base or a target code base. Also note that, if given the actual
source code corresponding to U the reification of CU is unambiguous and straightforward. And finally,
in practice a target code base represents the subset of a Library that embedded software developers wish
to use.

The goal of the removal stage of Monarch migration is broadly stated as follows.

Migration Policy: From the target code base, remove all fields, methods,
and constructors having direct or indirect dependencies on (1) features that
are not supported by the SCore, or (2) external references.

Unfortunately, when the analysis is exclusively limited to the target code base, a literal application of the
above stated policy is not correctness-preserving for reasons that will be discussed in upcoming sections.
This section lays the groundwork for such a discussion by introducing resolution which constitutes the
foundation of the dependency analysis needed for removal.

It is important to know that, for assurance purposes (e.g., to facilitate manual code review and traceability
of migration),Monarch operates exclusively on Java source code. In particular,Monarch may not extend
its analysis to class files or jar files.

A. Resolution
We define a reference as a source-code expression (i.e., valid Java syntax) referring to a declared

element. A reference is the mechanism by which types, arrays, fields, methods, constructors, can be
denoted within Java source code. Such denotations can be in relative terms, in indirect terms (also known
as aliases), and in absolute terms (also known as canonical forms). See Section 6.7 of the Java Language
Specification for a discussion fully qualified and canonical names[18]. For reasons discussed shortly, we
omit local variables and formal parameters from consideration.

On a conceptual level, a reference can be modeled as a (dot-separated) sequence consisting of one
or more atoms, where an atom is either (1) a simple identifier denoting a package, type, generic type
parameter, or field, or (2) an array reference, a method call, or a constructor call. This understanding of
references as sequences of atoms leads to an incremental atom-based understanding of resolution. Atom
sequences are resolved one atom at a time from left to right. We write ref 1..n to denote a reference
consisting of n atoms.

In this article, the term resolution is used to refer to a static analysis function that, relative to a code
base C, maps element references to the canonical names of the declared elements to which they refer. We

SUBMISSION TO IEEE TRANSACTIONS ON RELIABILITY - SPECIAL SECTION ON SOFTWARE QUALITY 15

use the term resolvent to denote to the result (i.e., the canonical name) produced by a resolution function.
Let ref denote a reference and let t denote a canonical name of the type in which ref occurs. We formally
express the resolution of (t, ref) relative to the code base C as follows.

resolutionC(t, ref) = resolvent (1)

In this article, we restrict the domain of the resolution function under discussion so that resolvents
produced (i.e., the range of the function) are the canonical names of types, arrays, fields, methods, or
constructors. We use the terms context when referring to the source code location where a reference
resides. As done in the Java Language Specification 6.5 [18], the term context allows us to make a finer
distinction of the difference in perspective between references and declarations. A declaration has a scope
(see 6.3 in [18]) and a reference occurs in a context. The goal of resolution is to determine in which
declaration scope a reference falls. As stated in Section I-B, we also assume that Monarch’s resolution
function is correct in an ideal setting.

Axiom 1. Let U denote a well-formed code base containing no external references. For such a code base,
we assume resolutionU is correct.

On a more technical level, the resolution of a reference (t1, ref 1 ..n) consisting of n atoms and occurring
in the context type t1 will, as shown below, involve n− 1 resolution steps and n context types, t1, . . . , tn.

(t1, atom1)
step
==⇒ (t2, atom2)

step−−→ · · · step−−→ (tn, atomn) (2)

In practice, some minor adjustments need to be made in cases where the prefix of ref 1 ..n denotes a
package, but these details are unimportant for our discussion and the overall concept remains the same.
The important points to keep in mind are (1) resolution of a reference consists of a sequence of resolution
steps involving individual atoms, (2) the resolution of the first atom in a sequence uses a much broader
search to find a resolvent than do subsequent resolution steps, (3) each resolution step has a corresponding
context type, and (3) a context type is the canonical name of a type, which is obtained by full resolution
of a type reference.

In figure 3, the resolution of reference B.C.myD.myE.x occurring in the context type p1.A involves
the following context types:

p1.A, p1.B, p1.B.C, p1.D, p1.E

1 package p1;
2
3 public class A {
4 int x = B.C.myD.myE.x; // consider the reference: (p1.A, B.C.myD.myE.x)
5 }
6
7 class B {
8 static class C {
9 static D myD;

10 }
11 }
12
13 class SuperD { E myE; }
14 class D extends SuperD {}
15 class E { int x; }

Figure 3. Example of a resolution sequence.

SUBMISSION TO IEEE TRANSACTIONS ON RELIABILITY - SPECIAL SECTION ON SOFTWARE QUALITY 16

B. Local Variables and Generic Type Parameters
When viewed in its entirety, resolution must encompass references to local variables and generic type

parameters. However, given the nature of the difference between complete and incomplete code bases
we can, without loss of generality, restrict our discussion of resolution to contexts t denoting types. The
reason for this is that the designation of a code base as being an complete code base or an incomplete
code base does not effect how local variables or type variables are resolved. Therefore, we abstract away
from our discussion resolution contexts associated with methods and constructors.

C. Restriction to Top-level Types
Without loss of generality, we restrict our discussion of resolution to references occurring in the context

of top-level types. Note that target code bases CU are (exclusively) obtained from complete code bases
U by removing top-level types. No other kind of removal is considered or permitted. As a result, the
contents of top-level types (e.g., member classes) are intact and any impact that information local to a
top-level type (e.g., inner classes) has on resolution remains unaffected regardless of whether resolution
is considered in the context of CU or U .

D. Primary versus Secondary Resolvents
For the purposes of our analysis we will, when necessary, use the terms primary resolvent and sec-

ondary resolvent to make finer distinctions between resolvents. Such distinctions are relevant because the
complexity of Java allows for the creation of code structures in which certain declarations are hidden
(e.g., shadowed, overridden, or overloaded) from the context t in which the reference occurs. For a
more detailed discussion of these scoping issues see the Java Language Specification [18] Section 6.4
(shadowing), Section 8.4.0 (method overloading), Section 8.4.8 (overriding and hiding), and Section 8.8.8
(constructor overloading). When they exist, we refer to such hidden declarations as secondary resolvents
of the reference. Declarations that are not hidden are called primary resolvents.

A reference (t, ref) can have at most one primary resolvent. We designate the constant <unresolved>
as the value that should be returned when an attempt is made to resolve a reference that does not have
a primary resolvent (e.g., an external reference). We do not classify <unresolved> as a secondary
resolvent.

A central concern is whether the migration process, when seen as a whole, creates conditions for the
reclassification, during compilation, of a secondary resolvent as the (new) primary resolvent for a given
reference. If such reclassification occurs, then migration is not correctness preserving. It should be noted
that the incompleteness of target code bases as well as the removal of declarations that can occur during
migration give rise to this threat.

A simple example highlighting a reclassification resulting from a removal is shown in Figure 4. It should
be noted that, if the code in Figure 4 was selected for migration, Monarch would remove the both field
declarations B.x and B.y so no reclassified references would exist in the migrated code. Nevertheless,
the code shown in Figure 4 gives clear example of what is meant by reclassification.

1 package p;
2 class A { int x = 0; }
3
4 class B extends A {
5 double w = 2.0;
6 int x = (int) w; // this field will be removed during migration
7 int y = 5 / x; // after removing p.B.x, the reference x will be resolved to p.A.x
8 }

Figure 4. Reclassification as a result of removal.

SUBMISSION TO IEEE TRANSACTIONS ON RELIABILITY - SPECIAL SECTION ON SOFTWARE QUALITY 17

Within the context of Monarch migration, the removal of a declared element can occur in one of two
ways, through tacit omission and explicit removal.

1) Pre-migration: Targeting a subset of a Library for migration can result in code bases for which
there is a tacit omission of top-level type declarations. The goal of the preparation stage is to modify
the target code base in order to eliminate the threats resulting from such tacit omissions.

2) Migration: If done incorrectly, the explicit removal of member declarations during migration can
give rise to migrated code bases in which secondary resolvents are reclassified as primary resolvents.
A discussion of how to eliminate this threat lies beyond the scope of this article, but is discussed
in [50].

E. Unresolvable References
The element declarations that a Java code base can reference, either directly or indirectly, can be

extensive. For example, let C denote a simple “hello world” program. Executing C via the command
java -verbose:class reveals that this tiny program loads (i.e., has dependencies on) over 400
classes. What this means from the perspective of Monarch migration, is that if such a program is
selected for migration the target code base6 will either be (1) unreasonably large, or (2) contain external
references. We call a reference an external reference if the element declaration to which it revolves lies
outside of the code base C under consideration. Given the space limitations of the SCore, code bases
targeted for migration always contain external references.

1 // ==
2 package p3; // a subset of this package belongs to target code base
3 public class D {
4 public int x1 = p4.E.x; // p4.E.x is an external reference
5 public int x2 = p4.E.myD.y; // p4.E.myD.y is an alias for p3.D.y
6 // whose prefix p4.E is an external reference
7 static int y = 1;
8 F myF2; // F should resolve to p3.F
9 }

10
11 // class F{} // suppose this top-level type is excluded from the target code base
12 // ==
13 package p4; // this entire package is excluded from target code base
14
15 public class E {
16 public static int x = 0;
17 public static p3.D myD;
18 }
19
20 // ==
21 package p5; // this package belongs to target code base
22 public class F {}

Figure 5. Some of the external references that need to be considered.

As defined in Chapter 6 of The Java Language Specification[18], Java’s resolution algorithm involves
a search of various artifacts and locations for resolvents to references. These artifacts include class files
and jar files that can be located a various places on the desktop as well as URLs. The Java program is
ill-formed if it contains a reference that cannot be resolved. In a well-formed code base, the failure to
find a resolvent in one location initiates a search in another location. This continues until a resolvent is
found. Noteworthy is the fact that failure to find a resolvent in one location (e.g., in a subtype hierarchy)
does not imply a reference cannot be resolved.

6Recall Monarch only considers source code.

SUBMISSION TO IEEE TRANSACTIONS ON RELIABILITY - SPECIAL SECTION ON SOFTWARE QUALITY 18

In contrast, when considering incomplete code bases, the failure to find a resolvent in one location
means either (1) the resolvent resides in another location and the search should continue, or (2) as a result
of a tacit omission, the resolvent is external to the code base being considered and the search should
terminate. Therefore, when considering incomplete code bases, it is essential for a resolution function to
be able to distinguish between these two possibilities. The complexity of resolution is such that care must
be taken when making such a judgement. This is discussed in more detail in Section VI.

Let U denote a complete code base, and let CU an incomplete code base derived from U . When
resolving (t, ref 1..n) ∈ CU , if ref 1..n has a prefix that lies outside of the target code base CU , then
(t, ref 1..n) is classified as an external reference. The determination of whether a reference is external is
formally defined by the predicate in Equation 3. Without loss of generality, the definition assumes that
references (t, ref 1..n) explicitly incorporate the information from import statements – thereby eliminating
the need for their consideration. For example, if the reference (p1.A,B) resolves to a type that is imported
via the single-type import statement p2.B, then the reference (p1.A,B) is rewritten to (p1.A, p2.B).

∀(t, ref 1..n) ∈ C : externalReferenceC,U(t, ref 1..n) ≡ ∃i : 1 ≤ i ≤ n
∧
resolutionU(t, ref 1..i) = resolvent
∧
resolvent 6∈ C

(3)

Figure 5 highlights some of the issues that must be considered when resolving references in target code
bases. We close this section with an axiom stating a property of correct resolution within a complete code
base U .

Axiom 2. Let U denote a complete code base. The function resolutionU never returns <unresolved>.

∀(t, ref) ∈ U : resolutionU (t , ref) 6= <unresolved>

VI. THE PREPARATION STAGE

We begin this section by introducing the definition of code composition and the two properties that
drive preparation.

Definition 2. The expression C1 ◦C2 denotes the composition of the code base C1 with the code base C2.

C1 ◦ C2
def
= C1 ∪ (C1 − C2)

The reason for not defining ◦ as the simple union of two code bases has to do with how such
compositions are to be performed. Specifically, in such compositions types declared in C1 should be
given preference over same named types declared in C2.

Completeness Property 1. Given the code bases CU and U . The function resolutionCU◦S is complete if
the following holds.

∀(t, ref) ∈ CU : ¬externalReferenceCU ,U (t , ref)
→
resolutionCU◦S(t, ref) 6= <unresolved>

Consistency Property 1. Given the code bases C1, C2, and C3. The function resolutionC1◦C2 is consistent
with resolutionC3 if the following holds.

∀(t, ref) ∈ C1 : resolutionC1◦C2(t, ref) 6= resolutionC3(t, ref)
→
resolutionC1◦C2(t, ref) = <unresolved>

SUBMISSION TO IEEE TRANSACTIONS ON RELIABILITY - SPECIAL SECTION ON SOFTWARE QUALITY 19

On-demand
import

Single-type
import

Absolute
reference

Excluded
Code

external ref

U

CU

Figure 6. Sources of external references in CU .

The goal of the preparation stage is to create a composition CU ◦S, called a prepared code base, such
that (1) resolutionCU◦S is complete, and (2) resolutionCU◦S is consistent with resolutionU . If these two
properties are satisfied, the correctness of resolutionC◦S follows immediately from the correctness of
resolutionU (see axiom 1).

A. External Reference Sources
Let U denote a complete code base. As shown (in no particular order) in Figure 6, there are only four

sources of external references in a derived code base CU : (1) the reference refers to a declaration that has
been excluded from a package belonging to CU , (2) the resolution algorithm reaches a point where the
reference is successfully matched with an on-demand import (static or non-static) statement that refers to
a declaration that has been excluded from CU , (3) the reference is an absolute reference to a declaration
that lies outside CU , or (4) the resolution algorithm reaches a point where the reference successfully
matches a single-type import (static or non-static) statement occurring in a compilation unit in CU that
refers to a declaration excluded from CU . In order for the resolution of references in CU to be correct, it
is necessary map such external references to the constant <unresolved>.

B. Code Skeletons
A skeleton is a code base in which bodies have been removed from methods and constructors, and

initializations have been removed from fields. Note that skeleton types are similar to abstract types. A
compilation unit is in skeletal form if all its types are in skeletal form.

Definition 3. We use the symbol SC to denote a skeleton constructed from the (entire) contents of the
code base C.

Though abstract, it is important to note that from the perspective of resolution, the declarations found
in SC are equivalent to the declarations found in C. For example, if a type t is declared in C then it is
also declared in SC . If a field f is declared in C it is also declared in SC , as is the case for method and
constructor declarations.

Theorem 1. Let C denote a code base whose declared elements have unique names (i.e., unique simple
identifiers). Let t1 denote a type declared within C.

∀(t1, ref 1..n) ∈ C : resolutionC(t1, ref 1 ..n) = resolutionSC
(t1 , ref 1 ..n)

Proof. (by contradiction) Let ref 1 ..i denote the smallest prefix ref 1 ..n such that resolutionC(t1, ref 1 ..i) 6=
resolutionSC

(t1 , ref 1 ..i) . In this case, resolutionSC
(t1, ref 1 ..i) = <unresolved>. This must be the

case because SC does not add any declarations to C and because the elements declared in C have unique

SUBMISSION TO IEEE TRANSACTIONS ON RELIABILITY - SPECIAL SECTION ON SOFTWARE QUALITY 20

names, so no reclassification of secondary resolvents is possible. However for this inequality to hold, it
must be the case that the resolution in C of the reference (ti, atomi) found an element declaration (i.e.,
a resolvent) whereas the same resolution in SC failed to find a corresponding element declaration. By
definition of the construction of SC this is not possible.

Corollary 1. Let C denote a code base and let t denote a type declared within C.

∀(t, ref 1 ..n) ∈ C : resolutionC (t , ref 1 ..n) = resolutionSC
(t , ref 1 ..n)

C. The Supertype Closure Property
A significant portion of Java’s resolution algorithm involves searching subtype hierarchies. To assure

correctness,Monarch assumes that the target code base (not the prepared code base) is supertype closed.
By this we mean that if a type t belongs to the target code base, then super type of t and all interfaces
implemented by t must also belong to the target code base. Attempts to migrate a target code base that is
not supertype closed will severely impact migration, and in the worst case will causeMonarch to produce
an empty code base. There are several reasons for this. First, classes whose supertype definitions are not
available are ill-formed and cannot be compiled. Second, resolution analysis frequently involves searching
up subtype hierarchies. In high assurance settings, resolution must make conservative approximations
when encountering a missing supertype. Such approximations lead to additional removals which can have
cascading effects.

Property 1. A target code base C is supertype closed if and only if it satisfies the following property.

t2 ∈ C t2 <: t1 supertype closed
t1 ∈ C

(4)

D. The Package Closure Property
Packages may only be subjected to analysis in an all-or-nothing fashion. If only part of a package is

targeted for migration, then this targeted code base must be composed with a skeleton containing the
remainder of the package.

Property 2. Let CU denote a code base derived from the complete code base U . Let PCU
=

packageContents(packages(CU), U). The target code base CU is package closed if and only if it satisfies
the following property.

t ∈ PCU package closed
t ∈ CU

(5)

The code shown in Figure 7 illustrates the need for package closure. Specifically, consider the situation
where: (1) the class p1.B is omitted from the target code base, and (2) the class p2.B is included in
the target code base. Under these conditions the resolution of the type of field p1.A.B will produce the
(secondary) resolvent p2.B (instead of p1.B).

E. The On-demand Closure Property
Monarch has the the ability to automatically extract all on-demand import statements from a target

code base. Given such a list, we assume that we can obtain the source code of all packages referenced
by the extracted on-demand import statements.

Definition 4. Let ICU
be a package closed code base denoting the set of packages whose contents are

accessible to the code base CU via on-demand import declarations.

SUBMISSION TO IEEE TRANSACTIONS ON RELIABILITY - SPECIAL SECTION ON SOFTWARE QUALITY 21

1 // ==
2 package p1;
3 import p2.*; // on-demand import of p2.B and p2.C
4 public class A {
5 B myB; // primary resolvent is p1.B
6 C myC; // primary resolvent is p2.C
7 }
8 // ==
9 package p1;

10 public class B {} // consider what happens if this
11 // type declaration is omitted
12 // ==
13 package p2;
14 public class B {}
15 // ==
16 package p2;
17 public class C {}

Figure 7. The need for package closure.

Property 3. Let CU denote a code base derived from the complete code base U . The composition CU ◦SICU

results in a code base that is on-demand closed with respect to CU .

It is important to note that java.lang will always belong to ICU
, for convenience the on-demand

import import java.lang.* is (tacitly) added by the compiler to all compilation units. The code
shown in Figure 8 illustrates the need for on-demand closure. Specifically, consider the situation where:
(1) the class p2.B is omitted from the target code base, and (2) the class p1.MyC is included in the
target code base. Under these conditions the resolution of the MyC will produce the (secondary) resolvent
p1.MyC (instead of p2.B.MyC).

1 // ==
2 package p1;
3 import static p2.B.*; // resolvent changes if this line is omitted
4 public class A {
5 int x = MyC.x; // primary resolvent of MyC is p2.B.MyC
6 // secondary resolvent of MyC is p1.MyC
7 }
8 // ==
9 package p1;

10 public class MyC { public static int x = 2; }
11 // ==
12 package p1;
13 public class C { public static int x = 1; }
14 // ==
15 package p2;
16 // consider what happens if this type declaration is omitted
17 public class B { public static p1.C MyC; }

Figure 8. The need for on-demand closure.

F. The Prepared Code Base
Let CU denote a code base derived from the complete code base U , that has been selected for migration

to the SCore and is supertype closed. Let PCU
denote the packages in CU , and let SPCU

denote the skeletal
form of PCU

. Let ICU
denote the set of packages whose contents are accessible to CU via on-demand

import declarations, and let SICU
denote the skeleton of ICU

.

SUBMISSION TO IEEE TRANSACTIONS ON RELIABILITY - SPECIAL SECTION ON SOFTWARE QUALITY 22

Definition 5. The prepared code base corresponding to CU is defined as follows.

PrepCU
= CU ◦ SPCU

◦ SICU

On an operational level, it needs to be mentioned thatMonarch adds special skeleton annotations to all
element declarations within code skeletons. These annotations are retained during analysis. We introduce
a function called resolution′ that is equivalent to resolution with the following exceptions: (1) whenever
a resolution sequence (as described in Section V-A) encounters a declared element that has a skeleton
annotation, the function resolution′ terminates and returns <unresolved>, and (2) whenever an attempt
is made to resolve a reference whose prefix is to a package external to the code base under consideration
(e.g., the prepared code base), the function resolution′ terminates and returns <unresolved>. The
following axioms formalize these assumptions.

Axiom 3. Let U denote a complete code base, let CU denote a code base derived from U , and let S
denote a code skeleton corresponding to some subset of U .

∀(t, ref) ∈ CU :
externalReferenceCU ,U(t, ref) ∧ ¬externalReferenceCU ◦S ,U (t , ref)
→
resolution′CU◦S(t, ref) = <unresolved>

Axiom 4. Let U denote a complete code base, and let CU denote a code base derived from U .

∀(t, ref) ∈ CU :
¬externalReferenceCU ,U(t, ref)
→
resolution′CU◦S(t, ref) = resolutionCU ◦S (t , ref)

Axiom 5. Let U denote a complete code base, and let CU denote a code base derived from U . Let
(t, ref 1 ..n) ∈ CU denote a fully qualified reference. Let prefix (t, ref 1 ..i) where 1 ≤ i < n denotes a
package.

∀(t, ref 1 ..n) ∈ CU :
ref 1 ..i ∈ packages(U) ∧ ref 1 ..i 6∈ packages(CU)
→
resolution′CU

(t, ref 1 ..n) = <unresolved>

G. A Summary of Monarch’s Resolution Analysis
A summary of the resolution algorithm that Monarch uses to resolve the first atom in a reference is

shown in Figure 9. It is important to note that, in Java, the resolution of the first atom is treated differently
from the resolution of all other atoms in a reference. In order to resolve the first atom in a reference a
wide variety of searches are used, including searching encapsulating classes as well as import statements.
After the first atom is resolved, all other atoms in the reference are resolved exclusively using a search up
inheritance chains (i.e., supertype search). Since we require that target code bases are supertype closed,
all resolution searches up the inheritance chain will, by assumption, produce correct resolvents. Thus, we
focus our attention exclusively on issues surrounding the resolution of the first atom in a reference.

Without loss of generality, the summary in Figure 9 shows resolution in the case where the first atom is
a simple identifier (and not a method/constructor call). It is important to keep in mind that this summary
omits a number of technical details (e.g., nested classes, generic types, the impact of visibility modifiers,
and method overloading). However, the summary does explicitly highlight places in the resolution algo-
rithm where supertype closure, package closure, and on-demand closure are necessary for the correctness
of resolution. The proof that these closures are necessary is “by example”. Specifically, Sections VI-C,

SUBMISSION TO IEEE TRANSACTIONS ON RELIABILITY - SPECIAL SECTION ON SOFTWARE QUALITY 23

1) Search 1: Interpret the first atom of the reference as a local variable
a) Search frame.
b) If this search fails, continue on to Search 2.

2) Search 2: Interpret the first atom of the reference as a field, method, or constructor.
a) Search subtype hierarchy, beginning with the most closely encapsulating type t containing

the reference.
• Correctness assumption: supertype closed

b) Search static imports (both single-type and on-demand).
• Correctness action: on-demand closed

c) If this search fails, continue on to Search 3.
3) Search 3: Interpret the first atom of the reference as a Type

a) Search subtype hierarchy, beginning with the most closely encapsulating type t containing
the reference.
• Correctness assumption: supertype closed

b) Search static imports (both single-type and on-demand).
• Correctness action: on-demand closed

c) Search non-static single-type imports for element.
d) Search package contents (all compilation units within the package).

• Correctness action: package closed
e) Search non-static on-demand imports.
• Correctness action: on-demand closed

f) If this search fails, continue on to Search 4.
4) Search 4: Interpret prefix of reference as a Package

a) Search for package.
• Correctness action: none - search will fail if package is external

b) If this search fails, the reference is <unresolved>.

Figure 9. A summary of Monarch’s algorithm for resolving the first atom in a reference.

VI-D, and VI-E give relatively straightforward arguments or source-code examples demonstrating that
resolution errors will occur if a particular closure property is not satisfied.

The argument that supertype, package, and on-demand closures are sufficient to assure resolution
correctness is more involved. Without loss of generality we will restrict our discussion exclusively to
top-level types. By this we mean that in all references (t, ref) both the t and ref are top-level types. The
reason this is without loss of generality is that it is here where the problems arising from the analysis of
incomplete code bases lie.

Lemma 1. (Preservation of Primary Resolvents – the PPR lemma.) Let U denote a complete code base,
and let CU denote a target code base derived from U which is supertype closed. The removal of secondary
resolvents from a CU does not affect the ability of resolutionCU

to locate primary resolvents.

∀(t, ref) ∈ CU : ¬externalReferenceCU ,U (t , ref)
→
resolution′CU

(t, ref) = resolutionU (t , ref)

Proof. (by contradiction) Suppose resolutionCU
(t, ref) 6= resolutionU (t , ref).

SUBMISSION TO IEEE TRANSACTIONS ON RELIABILITY - SPECIAL SECTION ON SOFTWARE QUALITY 24

Case 1: resolutionU(t, ref) 6∈ CU . In this case, externalReferenceCU ,U (t , ref), so the lemma
is vacuously true.

Case 2: resolutionU(t, ref) ∈ CU . Let C denote the largest code base such that CU ⊆
C ⊆ U for which resolution′C(t, ref) 6= resolutionU (t , ref). This implies there
exists a single type t′ ∈ U − C whose inclusion in C would result in a code
base C ′ = C ∪ {t′} such that resolution′C′(t, ref) = resolutionU (t , ref). Note that
t′ ∈ U − C and CU ⊆ C implies t′ 6∈ CU . Because ¬externalReferenceCU ,U (t , ref)
the type t′ cannot explicitly participate in the resolution of (t, ref). The only other
possibility for t′ to affect resolution is for a search that was unsuccessful in C to
become successful in C ′. But this would require that t′ be the result of the (now
successful) search, in which case t′ does explicitly participate in the resolution of
(t, ref). But this implies externalReferenceCU ,U (t , ref).

Lemma 2. Let U denote a complete code base, and let CU be derived from U . Let the full contents of all
packages in CU be PCU

= packageContents(packages(CU), U). Suppose CU ⊂ PCU
. What this means

is that one or more top-level types have been omitted from packages whose top-level types are otherwise
included in CU .

∀(t, ref) ∈ CU :
¬externalReferenceCU ◦PCU

,U (t , ref) ∧ resolutionU (t , ref) ∈ (PCU
− CU)

→
resolution′CU◦SPCU

(t, ref) = <unresolved>

Proof. Since ¬externalReferenceCU ◦PCU
,U we know, from the PPR-lemma that resolution′CU◦PCU

(t, ref) =

resolutionU (t , ref). From resolutionU(t, ref) ∈ (PCU
− CU), corollary 1, and axiom 3 it follows that

resolution′CU◦SPCU

(t, ref) = <unresolved>.

Lemma 3. Resolution of external declarations accessible via on-demand imports. Let U denote a complete
code base, let CU be derived from U , and let ICU

⊂ (U−CU) denote the contents of all packages external
to CU that are accessible via on-demand imports, and let SICU

denote the skeletal form of ICU
. Consider a

reference (t, ref) ∈ CU whose resolution involves a successful match with an on-demand import statement
in CU .

∀(t, ref) ∈ CU :
¬externalReferenceCU◦ICU

,U ∧ resolutionU(t, ref) ∈ ICU

→
resolution′CU◦SICU

(t, ref) = <unresolved>

Proof. Note that on-demand import matching can only be used to resolve the first atom in a reference.
Without loss of generality, let us assume that ref consists of a single atom whose resolution involves an
on-demand import. Note that ¬externalReferenceCU ◦ICU

,U (t , ref). Thus, from corollary 1 and the PPR-
lemma it follows that resolutionU(t, ref) = resolutionCU ◦SICU

(t , ref). From resolutionU(t, ref) ∈ ICU
,

corollary 1 and axiom 3, it follows that resolution′CU◦SICU

(t, ref) = <unresolved>.

The WLOG assumption in the proof of lemma 3 warrants further discussion. In the general case, a
reference consists of a sequence of atoms. During the resolution of such a sequence, there only specific
places where resolution can involve on-demand imports. In particular, aside from the first resolution step
(see Section V-A), it is only the in resolution of the first atom in a context type that on-demand imports
can be considered.

Lemma 4. Let U denote a complete code base and let CU be derived from U . Let (t, ref) ∈ CU denote a
reference whose resolution involves a fully qualified name or which involves a single-type import statement.

SUBMISSION TO IEEE TRANSACTIONS ON RELIABILITY - SPECIAL SECTION ON SOFTWARE QUALITY 25

Suppose the package referenced by either the fully qualified name or the single-type import is external to
CU .

∀(t, ref 1 ..n) ∈ CU :
resolutionU(t, ref 1 ..i) ∈ packages(U) ∧ resolutionU (t , ref 1 ..i) 6∈ packages(CU)
→
resolution′CU

(t, ref) = <unresolved>

Proof. Follows from axiom 5.

Theorem 2. (Completeness of the Prepared Code Base.) Let U denote a complete code base and let CU

be derived from U . Let S = SPCU
◦SICU

. The function resolutionCU◦S satisfies the completeness property
stated in Section VI.

Proof: By the PPR lemma we know that the resolution of references (t, ref) ∈ CU for which
¬externalReferenceCU

(t , ref) holds has the property that resolution′CU
(t, ref) = resolutionU (t , ref). We

also know that resolutionU does not output the value <unresolved>. What remains to be shown is
that resolution′CU

(t, ref) = resolutionCU ◦S (t , ref). More specifically, we need to show that, in the case
where resolution′CU

(t, ref) 6= <unresolved>, adding secondary resolvents to CU via the composition
CU ◦ S does not prevent the resolution function from finding the primary resolvent. We leave this last
step to the reader.

Theorem 3. (Consistency of the Prepared Code Base.) Let U denote a complete code base and let CU

be derived from U . Let S = SPCU
◦ SICU

. The functions resolutionCU◦S and resolutionU satisfy the
consistency property stated in Section VI.

Proof. By case analysis.
Case 1: externalReferenceCU ◦S (t , ref). In this case, ref is either a fully qualified name

whose prefix references an external package, or the resolution of ref involves a
single-type import referencing an external package. In this case, lemma 4 lets us
conclude that resolutionCU◦S(t, ref) = <unresolved>.

Case 2: ¬externalReferenceCU ◦S (t , ref) ∧ externalReferenceCU
(t , ref). By axiom 3, we

conclude resolutionCU◦S(t, ref) = <unresolved>.
Case 3: ¬externalReferenceCU ◦S (t , ref) ∧ ¬externalReferenceCU

(t , ref). From the PPR
lemma we conclude that resolutionCU◦S(t, ref) = resolutionU (t , ref).

H. An Operational Perspective
In Monarch the prepared code base CU ◦ (SPCU

∪ SICU
) must be used as the basis for dependency

analysis. The creation of CU ◦ (SPCU
∪ SICU

) is not fully automated. However, Monarch does give
assistance in its creation. Specifically, Monarch provides the following:

1) A transformation that extracts all on-demand import statements from a target code base.
2) A graph which can be viewed in order to visually confirm the subtype hierarchy of the target code

base CU is supertype closed. To view such graphs, a plugin has been developed for Cytoscape
[12], an open source tool for visualizing complex networks, which can be launched from within
Monarch.

3) A capability for converting a code base into skeletal form.
4) A capability for storing a code skeleton.
5) A capability for composing a target code base with a stored code skeleton.
In practice, code preparation is a manual process assisted by Monarch. After (PCU

∪ ICU
) has been

created it is transformed into a skeleton and internally stored. When the target code base CU is selected

SUBMISSION TO IEEE TRANSACTIONS ON RELIABILITY - SPECIAL SECTION ON SOFTWARE QUALITY 26

for migration, a composition is automatically performed to produce the CU ◦ (SP ∪ SICU
), which is then

used for dependency analysis.
A Monarch migration is then performed as follows:
• Select the target code CU to be migrated.
• Select the stored model SP ∪ SICU

to be used.
• Apply the migration transformation.

VII. CONCLUSION

Java-based embedded processors have restrictions that limit the extent to which Libraries can be utilized
in embedded software. The two primary concerns are (1) the memory footprint entailed by Libraries can
be prohibitive, and (2) the presence of language features or native methods in a Library that are not
supported by the embedded processor. Diametrically opposed to this is the improvement in software
quality that can be achieved in embedded software through utilization of the abstractions provided in
Java Core libraries. An effective solution to this dilemma is to identify, perhaps in an application-specific
fashion, the essential abstractions provided by a Library and to then migrate the selected Library subset
to the embedded development environment.

From the perspective of reliability, security, and safety, the major challenge when performing such
migrations lies in providing high-assurance that the functionality of the migrated code is correct with
respect to its original form. In regards to this issue a major threat centers on understanding how the
omission of element declarations affects the resolution of element references. This article describes how
closure properties can be combined with code skeletons in order to create a source-code base of reasonable
size for which the resolution of references is correct.

SUBMISSION TO IEEE TRANSACTIONS ON RELIABILITY - SPECIAL SECTION ON SOFTWARE QUALITY 27

APPENDIX

The code base targeted for migration is a subset of Java SE 6 update 18. The selected subset consists
of code belonging to the following packages:

Target Subset Size Total Package Size
java.io 2 files 84 files
java.lang 42 files 108 files
java.util 15 files 96 files

Some standard metrics for the targeted code base are shown in Table II .

Packages = 3
LOC = 23209
Compilation Units = 59
Classes = 48
Interfaces = 20
Enums = 0
Static Fields = 263
Instance Fields = 26
Static Methods = 271
Instance Methods = 254
Constructors = 120
Static Initialization Blocks = 7
Static Initialization Blocks LOC = 42
Instance Initialization Blocks = 0
Instance Initialization Blocks LOC = 0

Method Cyclomatic Complexity
Mean = 4
Standard Deviation = 6

Table II
SOME STANDARD METRICS FOR THE TARGETED CODE BASE

The location of all initialization blocks is shown in Table III.

Class Line Type of Initialization
java.lang.Byte = 66 Basic cache initialization
java.lang.Character = 2065 Basic cache initialization
java.lang.Integer = 584 Cache initialization
java.lang.Long = 533 Basic cache initialization
java.lang.Object = 23 Calls native method registerNatives()
java.lang.Short = 186 Basic cache initialization
java.lang.System = 41 Calls native method registerNatives()

Table III
LOCATION OF INITIALIZATION BLOCKS

A. A Listing of the Files Included in Migration
A listing of the files (i.e., compilation units) selected for migration is shown in Table IV. It should be

noted that in the java.lang.System class, three methods have been manually removed. The reason for this
manual removal is that two of these methods contained an anonymous local class extending a class lying
outside of the targeted code base. The third method made a call (the only such call in the targeted code
base) to one of the deleted methods. In order to avoid the potential for a secondary resolvent to emerge
(i.e., the call to the deleted method is resolved to another method in the code base), the third method
was removed. All three manually removed methods were called nowhere else in the targeted code base
(a property that our tool can automatically check).

SUBMISSION TO IEEE TRANSACTIONS ON RELIABILITY - SPECIAL SECTION ON SOFTWARE QUALITY 28

java.io
IOException.java Serializable.java

java.lang
AbstractStringBuilder.java
Appendable.java
ArithmeticException.java
ArrayIndexOutOfBoundsException.java
ArrayStoreException.java
AssertionError.java
Boolean.java
Byte.java
Character.java
CharSequence.java
ClassCastException.java
ClassNotFoundException.java
Cloneable.java
CloneNotSupportedException.java
Comparable.java
Enum.java
EnumConstantNotPresentException.java
Error.java
Exception.java
IllegalArgumentException.java
IllegalStateException.java
IndexOutOfBoundsException.java

Integer.java
Iterable.java
Long.java
Math.java
NegativeArraySizeException.java
NoSuchFieldException.java
NoSuchMethodException.java
NullPointerException.java
Number.java
NumberFormatException.java
Object.java
RuntimeException.java
Short.java
StackTraceElement.java
String.java
StringBuilder.java
StringIndexOutOfBoundsException.java
System.java*
Throwable.java
UnsupportedOperationException.java

java.util
Collection.java
Comparator.java
EmptyStackException.java
Enumeration.java
Iterator.java
List.java
ListIterator.java
Map.java

NoSuchElementException.java
Observer.java
Queue.java
RandomAccess.java
Set.java
SortedMap.java
SortedSet.java

Table IV
A LISTING OF THE TARGETED FILES.

Monarch has the capability of extracting the set imports used by a targeted code base. For the code
base selected for migration the set of imports is shown in Table V. For the targeted code base, on-demand
reference closure requires the following skeleton:

SICP

def
= {java.io,java.lang,java.util}

REFERENCES

[1] Ittai Balaban, Frank Tip, and Robert Fuhrer. Refactoring Support for Class Library Migration. In Proceedings of OOPSLA 2005, pages
265–279, San Diego, California, United States, 2005. ACM.

[2] Michael Barr and Brian Frank. Java: Too Much for Your System? In Embedded Systems Programming. Embedded Systems
Programming, May 1997.

[3] ThiagoTonelli Bartolomei, Krzysztof Czarnecki, Ralf Lämmel, and Tijs van der Storm. Study of an API Migration for Two XML APIs.
In Mark van den Brand, Dragan GaŽevic, and Jeff Gray, editors, Software Language Engineering, volume 5969 of Lecture Notes in
Computer Science, pages 42–61. Springer Berlin Heidelberg, 2010.

[4] Ira Baxter. private communication. Date: 2014-12-10.
[5] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles Henri-Gros, Asya Kamsky, Scott McPeak, and

Dawson Engler. A Few Billion Lines of Code Later: Using Static Analysis to Find Bugs in the Real World. Commun. ACM, 53(2):66–75,
February 2010.

[6] David Blaza. Shifting sands: Trends in embedded systems design. Embedded, May 2012.

SUBMISSION TO IEEE TRANSACTIONS ON RELIABILITY - SPECIAL SECTION ON SOFTWARE QUALITY 29

java .io .*
java .io .IOException
java .io .InvalidObjectException
java .io .ObjectInputStream
java .io .ObjectStreamClass
java .io .ObjectStreamException
java .io .ObjectStreamField
java .io .Serializable
java .io .UnsupportedEncodingException
java .nio .channels .Channel
java .nio .channels .spi .SelectorProvider
java .nio .charset .Charset
java .security .AccessController
java .security .AllPermission
java .security .PrivilegedAction
java .util .*
java .util .ArrayList
java .util .Arrays

java .util .Comparator
java .util .Formatter
java .util .HashMap
java .util .Iterator
java .util .Locale
java .util .Map
java .util .Properties
java .util .PropertyPermission
java .util .Random
java .util .StringTokenizer
java .util .regex .Matcher
java .util .regex .Pattern
java .util .regex .PatternSyntaxException
sun .misc .FloatingDecimal
sun .nio .ch .Interruptible
sun .reflect .Reflection
sun .reflect .annotation .AnnotationType
sun .security .util .SecurityConstants

Table V
THE SET OF IMPORTS FOR THE TARGETED CODE BASE.

[7] Kingsum Chow and D. Notkin. Semi-automatic update of applications in response to library changes. In Software Maintenance 1996,
Proceedings., International Conference on, pages 359–368, Nov 1996.

[8] Francesco Cibai. private communication. Date: 2014-12-18.
[9] David R. Cok and Joseph R. Kiniry. ESC/Java2: Uniting ESC/Java and JML. In Gilles Barthe, Lilian Burdy, Marieke Huisman,

Jean-Louis Lanet, and Traian Muntean, editors, Construction and Analysis of Safe, Secure, and Interoperable Smart Devices, volume
3362 of Lecture Notes in Computer Science, pages 108–128. Springer Berlin Heidelberg, 2005.

[10] Joseph Kiniry Cormac Flanagan and Patrice Chalin. private communication. Date: 2014-12-11.
[11] Coverity. Static Analysis Verification Engine(SAVE). http://www.coverity.com/products/coverity-save/. Accessed: 2014-12-10.
[12] Cytoscape. http://www.cytoscape.org/. Accessed: 2014-12-10.
[13] Semantic Designs. Java Parser (Front End). http://www.semanticdesigns.com/Products/FrontEnds/JavaFrontEnd.html. Accessed: 2014-

12-10.
[14] Semantic Designs. Life After Parsing: Got My Grammar... uh, now what? http://www.semanticdesigns.com/Products/DMS/

LifeAfterParsing.html. Accessed: 2014-12-10.
[15] Danny Dig and Ralph Johnson. The Role of Refactorings in API Evolution. In Proceedings of the 21st IEEE International Conference

on Software Maintenance (ICSM’05), pages 389 – 398. IEEE, 2005.
[16] Manuel Fähndrich and Francesco Logozzo. Static contract checking with abstract interpretation. In Proceedings of the 2010 International

Conference on Formal Verification of Object-oriented Software, FoVeOOS’10, pages 10–30, Berlin, Heidelberg, 2011. Springer-Verlag.
[17] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe, and Raymie Stata. Extended Static Checking

for Java. In Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language Design and Implementation, PLDI ’02,
pages 234–245, New York, NY, USA, 2002. ACM.

[18] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specification (Third Edition). Addison-Wesley, New York,
USA, 2005.

[19] Johannes Henkel and Amer Diwan. Catchup!: Capturing and replaying refactorings to support api evolution. In Proceedings of the
27th International Conference on Software Engineering, ICSE ’05, pages 274–283, New York, NY, USA, 2005. ACM.

[20] Peter Henriksen. private communication. Date: 2014-12-10.
[21] David Hovemeyer and William Pugh. Finding bugs is easy. SIGPLAN Not., 39(12):92–106, December 2004.
[22] IS2T. The five top reasons for using Java in embedded systems. News, October 2013.
[23] Konstantin Knizhnik and Cyrille Artho. Jlint. http://jlint.sourceforge.net/. Accessed: 2014-12-10.
[24] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley, editors. The Java Virtual Machine Specification (Java SE 7 Edition). Oracle, 2011.
[25] Francesco Logozzo. Cibai: An abstract interpretation-based static analyzer for modular analysis and verification of java classes. In

Byron Cook and Andreas Podelski, editors, Verification, Model Checking, and Abstract Interpretation, volume 4349 of Lecture Notes
in Computer Science, pages 283–298. Springer Berlin Heidelberg, 2007.

[26] Francesco Logozzo and Manuel FÃd’hndrich. On the relative completeness of bytecode analysis versus source code analysis. In
Laurie Hendren, editor, Compiler Construction, volume 4959 of Lecture Notes in Computer Science, pages 197–212. Springer Berlin
Heidelberg, 2008.

[27] James A. McCoy. An Embedded System For Safe, Secure And Reliable Execution of High Consequence Software. In Proceedings of
the 5th IEEE International Symposium on High Assurance Systems Engineering (HASE), pages 107–114. IEEE, 2000.

[28] N. Mitchell, E. Schonberg, and G. Sevitsky. Four Trends Leading to Java Runtime Bloat. Software, IEEE, 27(1):56–63, Jan 2010.
[29] Nick Mitchell and Gary Sevitsky. The Causes of Bloat, the Limits of Health. In Proceedings of the 22Nd Annual ACM SIGPLAN

Conference on Object-oriented Programming Systems and Applications, OOPSLA ’07, pages 245–260, New York, NY, USA, 2007.
ACM.

http://www.coverity.com/products/coverity-save/
http://www.cytoscape.org/
http://www.semanticdesigns.com/Products/FrontEnds/JavaFrontEnd.html
http://www.semanticdesigns.com/Products/DMS/LifeAfterParsing.html
http://www.semanticdesigns.com/Products/DMS/LifeAfterParsing.html
http://jlint.sourceforge.net/

SUBMISSION TO IEEE TRANSACTIONS ON RELIABILITY - SPECIAL SECTION ON SOFTWARE QUALITY 30

[30] Oracle. Java card technology. http://www.oracle.com/technetwork/java/embedded/javacard/overview/index.html. Accessed: 2014.12.16.
[31] Oracle. Java Platform, Micro Edition (Java ME). urlhttp://www.oracle.com/technetwork/java/embedded/javame/index.html. Accessed:

2014.12.16.
[32] J. Palsberg and M. Schwartzbach. Object-Oriented Type Systems. John Wiley & Sons, 1993.
[33] J. T. Perry, V. Winter, H. Siy, S. Srinivasan, B. D. Farkas, and J. A. McCoy. The Difficulties of Type Resolution Algorithms. Technical

Report SAND2010-8745, Sandia National Laboratories, December 2010.
[34] William Pugh. Compressing java class files. SIGPLAN Not., 34(5):247–258, May 1999.
[35] Derek Rayside and Kostas Kontogiannis. Extracting Java Library Subsets for Deployment on Embedded Systems. Science of Computer

Programming, 45(2-3):245–270, November-December 2002.
[36] David Reddy. Java technology is ready for embedded programming. Hearst Electronic Products, March 2012.
[37] David L. Ripps. Java for embedded systems: An introduction to using Java in embedded systems. JavaWorld, September 1996.
[38] Jon Ritzdorf. Globalization Issues with Medical Device Embedded Systems. In Documentation & Training Life Sciences, June 2008.
[39] N. Rutar, C.B. Almazan, and J.S. Foster. A Comparison of Bug Finding Tools for Java. In Software Reliability Engineering, 2004.

ISSRE 2004. 15th International Symposium on, pages 245–256, Nov 2004.
[40] Sun. The History of Java Technology. Sun Developer Network, c. 1995.
[41] Bjorn De Sutter, Frank Tip, and Julian Dolby. Customization of Java Library Classes using Type Constraints and Profile Information.

In Proceedings of ECOOP 2004, pages 585 – 609, Oslo, Norway, 2004.
[42] EE Times. Embedded systems will be everywhere, expert predicts. EE Times, July 2005.
[43] Frank Tip, Adam Kiezun, and Dirk Baumer. Refactoring for Generalization using Type Constraints. In Proceedings of OOPSLA 2003,

pages 13–26, Anaheim, California, USA, 2003.
[44] Frank Tip, Peter F. Sweeney, Chris Laffra, Aldo Eisma, and David Streeter. Practical Extraction Techniques for Java. ACM Trans.

Program. Lang. Syst., 24(6):625–666, 2002.
[45] Thiago Tonelli, Krzysztof Czarnecki, and Ralf Lämmel. Swing to SWT and back: Patterns for API migration by wrapping. In 26th

IEEE International Conference on Software Maintenance (ICSM 2010), September 12-18, 2010, Timisoara, Romania, pages 1–10. IEEE
Computer Society, 2010.

[46] G. L. Wickstrom, J. Davis, S. E. Morrison, S. Roach, and V. Winter. The SSP: An Example of High-Assurance System Engineering. In
HASE 2004: The 8th IEEE International Symposium on High Assurance Systems Engineering, pages 167–177, Tampa, Florida, United
States, 2004. IEEE.

[47] V. Winter, , C. Reinke, and J. Guerrero. Using Program Transformation, Annotation, and Reflection to Certify a Java Type Resolution
Function. In Proceedings of the 15th IEEE International Symposium on High Assurance Systems Engineering (HASE), January 2014.

[48] V. Winter, J. Guerrero, A. James, and C. Reinke. Linking Syntactic and Semantic Models of Java Source Code within a Program
Transformation System. In Proceedings of the 14th IEEE International Symposium on High Assurance Systems Engineering (HASE).
IEEE, 2012.

[49] V. Winter, J. Guerrero, C. Reinke, and J. Perry. Monarch: A High-Assurance Java-to-java (J2j) Source-code Migrator. In Proceedings
of the 13th IEEE International Symposium on High Assurance Systems Engineering (HASE), 2011.

[50] V. Winter, J. Guerrero, C. Reinke, and J. Perry. Java Core API Migration: Challenges and Techniques. In Proceedings of the 2014
International Conference on Software Engineering Research and Practice (SERP), July 2014.

[51] V. Winter, J. Perry, H. Siy, S. Srinivasan, B. Farkas, and J. McCoy. The Tyranny of the Vital Few: The Pareto Principle in Language
Design. In Journal of Software Engineering and Applications (JSEA), volume 4, pages 146 – 155, March 2011.

[52] V. Winter, H. Siy, J. McCoy, B. Farkas, G. Wickstrom, D. Demming, J. Perry, and S. Srinivasan. Incorporating Standard Java Libraries
into the Design of Embedded Systems. In Ke Cai, editor, Java in Academia and Research. iConcept Press, 2011.

http://www.oracle.com/technetwork/java/embedded/javacard/overview/index.html

SUBMISSION TO IEEE TRANSACTIONS ON RELIABILITY - SPECIAL SECTION ON SOFTWARE QUALITY 31

Victor Winter Victor Winter is an Associate Professor in the Department of Computer Science at the University
of Nebraska at Omaha. His research interests include: program transformation, Java source-code analysis, language
design, and high-assurance systems.

James A. McCoy James McCoy retired as a DMTS from Sandia National Laboratories in 2011 after 20+ years of
work in computer security and information surety. He received a patent in 2013 for a secure processor architecture
that is the foundation for the SCore Processor and was the technical lead for the team that produced RAD hard
ASICs containing Score-based systems. With Dr. Victor Winter he co-developed a high-level, self-defining language
for writing microcode called Paradigm that is architecture and processor independent.

Jonathan Guerrero Jonathan Guerrero is a graduate student at the University of Nebraska at Omaha pursuing an
MS degree in Computer Science, with a concentration in Programming Languages. He has helped to develop Sextant:
a tool for static analysis/visualization of Java source code, and for his thesis he is developing Cassandra: a tool for
analysis/visualization of AspectJ code. In his free time he plays piano and attends martial arts classes.

Carl Reinke Carl Reinke recived in MS in Computer Science in December 2013 from the University of Nebraska at
Omaha. He presently works at Sandia National Laboratories in Albuquerque New Mexico.

James T. Perry James Perry Received B.S. and M.S degrees from the University of Nebraska at Omaha (UNO)
in 2009 and 2010, respectively. Prior to receiving his M.S., he worked as a Graduate Assistant for Victor Winter at
UNO. Since 2011 he has been developing Surety Software as a Member of the Technical Staff at Sandia National
Laboratories.

	Introduction
	Context of Our Research
	Assumptions Upon Which This Research Rests
	Contribution

	Class files versus Source Code
	Related Work
	Evolution, Change, and Propagation
	Reduction

	Platform
	Rationale and History of the SCore
	The Scalable Core
	The SCore Classloader

	Core Analysis
	Resolution
	Local Variables and Generic Type Parameters
	Restriction to Top-level Types
	Primary versus Secondary Resolvents
	Unresolvable References

	The Preparation Stage
	External Reference Sources
	Code Skeletons
	The Supertype Closure Property
	The Package Closure Property
	The On-demand Closure Property
	The Prepared Code Base
	A Summary of Monarch's Resolution Analysis
	An Operational Perspective

	Conclusion
	Appendix
	A Listing of the Files Included in Migration

	References
	Biographies
	Victor Winter
	James A. McCoy
	Jonathan Guerrero
	Carl Reinke
	James T. Perry

