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I. INTRODUCTION

Large-eddy simulation (LES) is a method to compute
the solutions to turbulent flows by resolving the larger
flow features while modeling the smaller (sub-grid) scale
fluctuations1. Mathematically, these two scales are sepa-
rated by use of a low-pass filter, but most LES formula-
tions do not account for the filtering operation explicitly.
How to do so in the context of practical LES calcula-
tions has yet to be fully resolved, particularly because
numerical errors can pollute the solution2,3.

Several efforts have addressed this topic. Gullbrand
and Chow4 considered a dynamic reconstruction model
to estimate the sub-grid stress (SGS) by approximately
inverting an explicit filtering operator to compute part
of it from the resolved turbulent flow field. As an al-
ternative, Bose and Moin5 considered directly modifying
the SGS model with the filter width with the goal of
providing “mesh-independent” LES results. Moser and
co-workers6,7 took a different strategy in which LES SGS
model form and parameters were determined by apply-
ing linear stochastic estimation to channel flow in a tech-
nique known as optimal LES. Other approaches which
explicitly bring information regarding the filter into the
LES formulation involve boundary conditions. Previ-
ous studies have considered the effect of explicit filtering
on boundary conditions for the Burgers’ equation8,9 and
the Navier-Stokes equations10,11, with the work of Bhat-
tacharya et al.11 being in the context of optimal LES.

The purpose of this paper is twofold: 1) we propose
a framework for the estimation of uncertainties in the
parameters for sub-grid scale turbulence models followed
by a forward Uncertainty Quantification (UQ) study to
examine the predictive capabilities of the LES approach
given the calibrated set of parameters, and 2) we assess
the feasibly of using directly filtered turbulence informa-
tion to contribute to existing LES SGS models. Figure 1
shows a schematic of this framework, consisting of two
intrinsically connected workflows, for Parameter Estima-
tion and Forward UQ. The joint probability density for
input parameters is estimated in a Bayesian framework.
The Bayesian context provides a flexible framework to
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handle heterogeneous information and allows for sequen-
tial updates of posterior distributions as the prior in-
formation is revised. Both the model error εm and the
measurement error εd can be embedded in the param-
eter estimation. The computational model, f , is based
on Sandia’s FUEGO LES software suite. In the con-
text of this work, we explore the predictive capabilities
of f in a channel flow configuration, when employing the
calibrated parameters for the ksgs sub-grid scale model.
We note that Bayesian estimation has been successfully
used to infer model parameters within multiscale settings
in other applications, such as molecular dynamics,12,13

porous media flows,14 and Carbon cycle models.15,16

There have been several prior efforts which used
Bayesian17 and other machine learning techniques to es-
timate uncertainties in turbulence simulations with par-
ticular emphasis on turbulence models. Decompositions
of the RANS turbulent stress tensor have been consid-
ered as uncertain parameters and their effect on resulting
RANS solutions has been quantified.18–20 For example,
the principal stress axes were computed and each per-
turbed to estimate the effect of structural uncertainty
of turbulence models on flow realizations. The effects
of uncertain boundary conditions have been examined
using the Burgers’ equation21,22 and the Navier-Stokes
equations.23 Bayesian estimation of the effects of com-
bustion models in LES has also been carried out,24 while
in cold flow isotropic turbulence, Lucor et al.25 assumed
a distribution for the constant in the Smagorinsky model
following a Polynomial Chaos Expansion (PCE) which
was sampled to compute the PCE of different scales of
turbulent motion. Optimization-based calibration meth-
ods have also been applied to RANS models.26 Other
recent efforts have focused on using adjoint methods to
assess model sensitivities.29,30 A review article by Najm28

provides a discussion on uncertainty quantification tech-
niques, with emphasis on Polynomial Chaos expansions,
in computational fluid dynamics.

Our interest in this work is to demonstrate a calibra-
tion strategy for LES SGS models and to provide means
to propagate the uncertainty in the resulting models to
quantities of interest. In this context, we plan to in-
vestigate how calibrated LES models fare in simulations
with different physical parameters, numerical methods,
and meshes. To the best of our knowledge, the first at-
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tempt at deriving LES closures from resolved flow fields
using machine learning strategies was the optimal LES
formulation7 which used linear stochastic estimation.31

By using Bayesian inference, we can obtain model pa-
rameter uncertainties which enable the effect of imperfect
calibration arising from sampling uncertainty and model
form to be assessed on the LES flow field. In particu-
lar, we consider this propagation on a different flow field
than the calibration study (i.e. isotropc flow vs. channel
flow). Because the uncertainty in the ideal calibration
process can be determined, this framework also enables
us to start to quantify the uncertainties arising from other
sources of error such as the mesh spacing and numerical
method choice.

This paper is organized as follows. Section II provides
a description of the LES formulation. Section III presents
the Bayesian framework for model calibration. Specifi-
cally, the calibration data is discussed in Section III A
followed by likelihood and prior constructions in Sec-
tions III B and III C. Posterior density results are pre-
sented in Section III D. Section IV describes propagation
of uncertainties from calibrated model parameters to rel-
evant quantities of interest in LES of channel flow. The
channel flow setup is described in Section IV A, while Sec-
tion IV B describes the Rosenblatt transformation em-
ployed to construct the PCE results presented in Sec-
tion IV C. Section IV D presents probability densities for
several quantities of interest for the channel flow stud-
ies. We end with conclusions in Section V. The methods
employed in this paper are part of UQTk v3.0.32

II. LARGE EDDY SIMULATION

The LES field is formally defined as a low-pass filtered
turbulent flow field, i.e.

ũi(x) ≡
∫

Ω

ui(y)G(x− y; ∆) dV, (1)

where ui is the ith velocity component, ũi is the fil-
tered or LES ith velocity component, and G is a con-
volution kernel which preferentially removes small-scale
energy from ui. “Small-scales” are defined relative to
the parametric dependence of G on a length scale ∆, de-
noted the filter width. If

∫
Ω
GdV = 1 and it satisfies as-

sumptions of isotropy, homogeneity, and continuous dif-
ferentiability, the order of convolution and differentiation
can be exchanged such that the equations governing the
LES field as determined from the incompressible Navier-
Stokes equations are

ρũi
∂t

+
∂ρũiũj
∂xj

= −∂P̃
∂x

+ ν
∂2ũi
∂xj∂xj

+
∂τij
∂xj

, (2)

∂ũj
∂xj

= 0. (3)

While similar to the Navier-Stokes equations, the LES
equations differ through the inclusion of the SGS tensor

τij = ρũiũj − ρũiuj . (4)

Determining closure models for this term, particularly
in complex engineering flows, remains an active area of
research. We also note that when the assumptions on the
filter are violated, as in wall-bounded flows, commutation
error is incurred because differentiation and filtering no
longer exactly commute.

Of relevance to our current effort, the SGS model not
only expicitly depends on the convolution kernel G, but
given the kernel and a turbulent flow field, it can be ex-
actly determined. This mathematical relationship be-
tween the “true” flow field and the LES SGS tensor en-
ables our goals of calibration, uncertainty propagation,
and error assessment. Calibration can be achieved by fil-
tering a direct numerical simulation (DNS) to exactly
construct the terms present in the SGS model, from
which model constants can be inferred. Given these con-
stants, with quantified uncertainty, the error associated
with the ideal LES model, based on the mathematics of
continuous fields and filtering only, can be forward prop-
agated in new solutions. The remaining error can be
attributed to sources of uncertainty not present in the
ideal LES.

A. ksgs Turbulence Model

The transport equation for the LES transport model
for the subgrid scale turbulent kinetic energy, ksgs, is
given by33,34

∫
V

ρ̄ksgs

∂t
dv +

∫
∂V

ρ̄ksgsũjnjds =

∫
∂V

µk
σk

∂ksgs

∂xj
njds+

∫
V

(P sgsk −Dsgs
k ) dv (5)

The production and dissipation of turbulent kinetic en-
ergy, P sgsk and Dsgs

k , are given by

P sgsk =

(
2µt

(
S̃ij −

1

3
S̃kkδij

)
− 2

3
ρ̄ksgsδij

)
∂ũi
∂xj

(6)

and

Dsgs
k = Cε

ksgs3/2

∆
(7)
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After expanding the parenthesis, the production term can
be written as

P sgsk = 2µt

(
S̃ij

∂ũi
∂xj
− 1

3
(∇ · ũ)

2

)
− 2

3
ρ̄ksgs (∇ · ũ) (8)

For incompressible flows, with ∇ · ũ = 0, the production
term reduces to

P sgsk = 2µtS̃ij
∂ũi
∂xj

(9)

The filtered strain rate tensor is written as:

S̃ij =
1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
(10)

and the product S̃ij
∂ũi
∂xj

can be further expanded as fol-

lows

1

2

∑
i

∑
j

(
∂ũi
∂xj

)2

+
1

2

∑
i

∑
j

∂ũj
∂xi

∂ũi
∂xj

(11)

The subgrid turbulent viscosity is modeled as

µt = Cµε∆k
sgs1/2 (12)

III. MODEL CALIBRATION

We employ a probabilistic approach, specifically a
Bayesian framework, to compute posterior probabilities
for the ksgs model parameters, Cµε and Cε, introduced in
Eqs. (7) and (12). In the Bayesian approach the posterior
probability density for the model parameters is given by

p(θ|D) = LD(θ)p(θ)/p(D) (13)

Here, θ = {Cµε , Cε} and p(θ) and p(θ|D) are the
prior and posterior probability densities, respectively,
for model parameters θ. These densities represent our
knowledge about the values of Cµε and Cε before and
after learning from the data D. The likelihood function
LD(θ) = p(D|θ) is the likelihood of the data D for a
particular instance of θ. The denominator in Eq. (13),
p(D), is the “model evidence,” and is not relevant for the
calculations presented in this paper.

A. Calibration Data

For this study we employ the Johns Hopkins University
(JHU) turbulence database35,36 of forced isotropic turbu-
lence in a periodic cube. Specifically, this dataset results
from a DNS using 10243 grid nodes overlaying a cube
with sides of length L = 2π. The Taylor-scale Reynolds
number, Reλ, for this simulation is approximately 433.
The simulation covers a non-dimensional time range of
2.048 with solution files saved every 10 time steps, or

2× 10−3. For the current study we considered the DNS
data at times t = {0, 0.1, 0.2, . . . , 2.0}.

Filtered velocity values are computed from the DNS
data using a top-hat filter of width ∆ in all coordinate
directions. The sub-grid scale kinetic energy is then com-

puted as ksgs = K̃−Kres, where K̃ = 1̃
2uiui is the kinetic

energy per unit mass and Kres = 1
2 ũiũi is its “resolved”

component, computed using the filtered values.
The boundary integrals in Eq. (5) are statistically zero

in a periodic configuration,∫
∂V

ρ̄ksgsũjnjds =

∫
∂V

µk
σk

∂ksgs

∂xj
njds ≡ 0. (14)

The remaining terms in Eq. (5) can be written in compact
form as

fk(t; ∆) = CµεfP (t; ∆)− CεfD(t; ∆) (15)

where

fk(t; ∆) =

∫
V

ρ̄ksgs

∂t
dv, fD(t; ∆) =

∫
V

ksgs3/2

∆
dv,

fP (t; ∆) =

∫
V

∆
√
ksgsS̃ij

∂ũi
∂xj

dv (16)

Spatial derivatives for terms fP and fD in Eq. (16)
were computed at each time instant using second-order
centered finite differences. For fk, time derivatives were
computed using centered finite differences using the data
from solution files immediately adjacent to the corre-
sponding time stamp. In addition to the dependence on
time, the terms in Eq. (15) also depend on the filter width
∆.

Figure 2 shows slices though the DNS field in the left
column. These slices correspond to planes perpendicular
to the coordinate directions and centered at x = y =
z = π/2. The top, middle, and bottom rows show the
u, v, and w velocity components, respectively. The right
column in this figure shows the corresponding filtered
velocity components.

Figure 3 shows ksgs in a x−const slice (left column)
and y−const slice (right column), centered at the same
point as in Fig. 2. The dependence of ksgs on the filtered
size is evident from this figure, as larger ∆ values lead to
more diffuse features for the filtered quantities.

Figure 4 shows the values of ratios fk/fD and fP /fD
at several 0.1 time intervals. In this configuration, the
production and dissipation terms are nearly proportional
with a ratio that depends on the filter width. At the same
time the time derivative of the overall sub-grid scale tur-
bulent kinetic energy is smaller and varies around zero.
This is to be expected in the forced isotropic turbulence
configuration where energy is continuously injected to
keep the total kinetic energy constant.

B. Likelihood Construction

In the Bayesian framework, the likelihood LD(θ) is the
probability to observe the data D for an instance of the
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model parameters θ. In this context, D consists of the
values for fk, fP , and fD, and the model is given by
the right-hand side of Eq. (15). In order to construct
the likelihood, using the data and this linear model, we
first examine the degree of correlation, which is a mea-
sure of linear dependence, between several data compo-
nents. We employ the Pearson correlation coefficient, ρ,
for data pairs (fk, fP ), (fk, fD), and (fP , fD). For all
filter values ∆, the Pearson correlation coefficient values
for the first two pairs, ρk,P and ρk,D are less than 0.4 in
absolute value while ρP,D (between production and dis-
sipation data) are about 0.9. Based on these values we
consider fk to be uncorrelated from fP and fD, respec-
tively. Further, we presume a bi-normal distribution for
(fP , fD).

In general, the discrepancy between model predictions
and the data can be formalized as27

fk =M+ εm + εd. (17)

Here, M = CµεfP (t; ∆) − CεfD(t; ∆), εm is the model
error, i.e. a consequence of the model only being an ap-
proximation of the true process, and εd is the data er-
ror, i.e. the discrepancy resulting from any imperfec-
tions in the measurement process. Under the above
assumptions, the model M has a normal distrubution,
M∼ N(CµεfP − CεfD, σ2

M), with

σ2
M = (CµεσP )2 + 2CµεCερPDσPσD + (CεσD)2 (18)

and σP and σD are the standard deviations computed
based on fp and fD data.

In the present context all data is gathered from numer-
ical simulations, hence the data error is not considered in
this study. The assignment of a statistical model struc-
ture for the model error εm is not straightforward and
entails a significant degree of modeling.27

In this study we employ two modeling approaches to
estimate εm. In the first approach we consider a nor-
mally distributed error model, with εm ∼ N(0, σ2). Un-
der this assumtion the likelihood LD(θ) is approximated
as a product of marginal densities at each time instant

LD(θ) =

Nt∏
i=1

1√
2πσi

exp

(
− (fk,i − CµεfP,i + CεfD,i)

2

2(σ2
M + σ2

i )

)
(19)

Here, the dependency on the filter width was dropped to
simplify the notation. In this study we further assume
the same standard deviation for all ti with i = 1, 2 . . . , Nt,
σi = σ. The posterior distribution for σ will be estimated
along with distributions for Cµε and Cε. One setback
with this approach is that the model error term is now
part of the calibrated model, i.e. the evolution of ksgs is
now governed by a right-hand side that includes a stan-
dard normal random variable in addition to the two terms
shown in Eq. (15).

The second approach follows the works of Berliner37

and Sargsyan et al.27 who suggest to embedd the model
error terms in the model components. By embedding

the error model within the components themselves, the
model predictions automatically contain all errors with-
out the need to specify external error terms. We begin
by parameterizing these model constants as

Cµε = Cµε(α1), Cε = Cε(α2) (20)

where α1 and α2 are sets of parameters whose densities
are yet to be determined. This effectively re-casts the
calibration problem into one of estimating densities of θ
such that the forward-propagated PDFs of Cµε and Cε,
and subsequently of CµεfP − CεfD, are consistent with
the values of fk.

For both approaches we presume that Cµε and Cε are
random variables with finite variance and we will adopt
a Polynomial Chaos expansion (PCE)38,39 to represent
these model constants. A brief description of PCE con-
cept is presented below. For an in-depth description,
the reader is referred to a series of publications on this
topic.38,40–42

Consider a probability space (Ω,S, P ), where Ω is a
sample space, S is a σ-algebra on Ω, and P is a proba-
bility measure on (Ω,S). Let ξ = {ξ1(ω), ξ2(ω), . . .} be a
set of independent standard random variables (RVs) on
Ω. Then any RV X : Ω → R with finite variance, i.e.
X ∈ L2(Ω), can be represented as:

X(ω) =

∞∑
k=0

αkΨk(ξ1, ξ2, . . .) (21)

where Ψk are multivariate polynomials, Ψk(ξ1, ξ2, . . .) =
Ψk(ξ) = Ψk1(ξ1)Ψk2(ξ2) . . . that are products of univari-
ate polynomials. In a practical computational context,
one truncates the PCE in both polynomial order p and
dimensionality n. The number of terms in the resulting
finite PCE

X(ω) ≈
P∑
k=0

αkΨk(ξ1, ξ2, . . . , ξn) (22)

and P = (n+ p)!/n!p!.
Generalized Polynomial Chaos (GPC) expansions have

been developed42 using a broader class of orthogonal
polynomials in the Askey scheme.43 Each family of poly-
nomials corresponds to a given choice of distribution for
the ξi and is orthogonal with respect to the density of
the vector of random variables ξ, i.e.

〈ΨiΨj〉 =

∫
Ψi(ξ)Ψj(ξ)dP (ξ) = δij〈Ψ2

i 〉, (23)

where δij is Kronecker’s delta. In general, popular
choices for (ξ,Ψ) pairs are uniform RVs with Legendre
polynomials or normal RVs with Hermite polynomials.

We employ Hermite-Gauss PCEs to represent Cµε and
Cε as

Cµε =
∑
k

α1,kΨk(ξ), Cε =
∑
k

α2,kΨk(ξ). (24)
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Here ξ = {ξ1, . . . , ξM} is a vector of standard normal
random variables, while Ψk(ξ) = Ψk1(ξ1) · · ·ΨkM (ξM )
are multivariate Hermite polynomials, orthogonal with
respect to the density of these standard normal random
variables. To illustrate the functional form representa-
tion via PCEs we employ first order expansions for both
parameters

Cµε = α10 + α11ξ1

Cε = α20 + α21ξ1 + α22ξ2 (25)

A “triangular” form is adopted adopted above in order
to avoid rotational symmetries. The likelihood, expressed
as

LD(α1,α2) = p(D|α1,α2), (26)

is the multivariate density for D = {(fk,i, fP,i, fD,i), i =
1 . . . Nt}. Generally, this multivariate density is hard
to estimate accurately due to cost associated with nu-
merical approaches such as the Kernel Density Estimate
(KDE).44,45 Instead, we approximate this multivariate
density with a product of marginal densities correspond-
ing to each data point

LD(α1,α2) =

Nt∏
i=1

p(Di|α1,α2), (27)

To simplify the derivation below, we approximate
p(Di|α1,α2) as p(fk,i|fP,i, fD,i,α1,α2). Given
that germs ξ1 and ξ2 are normal RV’s and the
model in Eq. (15) is linear, the marginal densities
p(fk,i|fP,i, fD,i,α1,α2) are normal densities with mean

and variance, µ∗i and σ∗i
2 computed as

µ∗i = α10fP,i − α20fD,i

σ∗i
2 = (α11fP,i − α21fD,i)

2 + (α22fD,i)
2. (28)

In this paper we will employ acronyms PEM (presumed
error model) for results based on the likelihood shown in
Eq. (19) and EEM (embedded error model) for results
based on the approach described in the later part of this
section.

C. Prior Construction

A result of the present work is that the data presented
in Section III A, in particular Fig. 4, does not contain
sufficient information to constrain both model constants
Cµε and Cε. The production and dissipation terms are
nearly proportional to each other, while fk, showing the
overall change in ksgs, is small and fluctuates around
0. While it is to be expected that the balance of sub-
grid kinetic energy should preferentially inform the ratio
rather than the values of the two constants, it was not
known a priori if the fluctuations in ksgs would be suf-
ficient to estimate the parameter values. It could be the

case that the removal of the boundary flux terms is par-
tially to blame, but it appears as though the time-scale of
the sub-grid kinetic energy variation relative to the time-
scale of the fluctuations in production and dissipation is
also too small as in Fig. 4. With this observation, and in
the absence of additional data, it is clear that one needs
additional regularization to constrain the parameter es-
timation problem.

To this end we choose independent Gaussian priors,

N (µprCµε , σ
pr2

Cµε
) and N (µprCε , σ

pr2

Cε
), centered at parameter

values previously recommended in the turbulence model-
ing literature rather than Jeffreys (non-informative) pri-
ors. These values correspond to

µpr1 = (0.0845, 0.85)46

µpr2 = (0.07, 1.05), 33,34 (29)

respectively, for Cµε and Cε. For the classical approach,
we explore a range of values for the marginal standard
deviations for the prior densities, from 0.01 . . . 0.04 for
Cµε , and 0.1 . . . 0.4 for Cε as follows

σpr1 = (0.04, 0.4), σpr2 = (0.02, 0.2), σpr3 = (0.01, 0.1)
(30)

For EEM we construct a prior that resembles the above
formulation. In this approach the priors are set on the
mean values of the two constants. Given the formulation
proposed in Eq. (25), the mean values for (Cµε , Cε) are
given by

µCµε = α10, µCε = α20 (31)

We adopt independent Gaussian priors for these means,
with the same values as the ones mentioned above for
the classical approach, in Eqs. 29 and 30. Further we
truncate these densities so that

ppr(α10 ≤ 0) = ppr(α20 ≤ 0) = 0.

Additionally, we impose conditions on the other α co-
efficients to ensure only a small probability that Cµε and
Cε are less than zero. We adopt a threshold value of 0.1%
and impose

P (Cµε < 0) < 10−3, P (Cε < 0) < 10−3 (32)

For Cµε this condition leads to

α10 − 3|α11| > 0→ ppr(α11|α10) =
H(α10 − 3|α11|)

2α10/3

where H is the Heaviside function. For Cε, Eq. (32) leads
to

ppr(α21, α22|α20) =
1

4

H(α20 − 3
√
α2

21 + α2
22)

πα2
20/9

The 1/4 factor in the above expression produces the cor-
rect normalization when considering only positive values
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for α21 and α22. The full prior for EEM is then written
as

ppr(α1,α2) = ppr(α10)× ppr(α11|α10)×
ppr(α20)× ppr(α21, α22|α20) (33)

The denominators in the conditional prior densities
ppr(α11|α10) and ppr(α21, α22|α20) can push both α10 and
α20 towards the degenerate case α10 = α20 = 0. How-
ever, this is avoided by the truncated normal densities
imposed above for these two model parameters.

D. Posterior Densities of ksgs Parameters

A Markov Chain Monte Carlo (MCMC) algorithm is
used to sample from the posterior probability density,
p(θ|D) in Eq. (13). MCMC is a class of techniques that
allows sampling from a probability density by construct-
ing a Markov Chain that has the target density as its sta-
tionary distribution.47 In particular, we employ an adap-
tive Metropolis algorithm,48 which uses the covariance of
the previously visited chain states to find better proposal
distributions, allowing it to explore the posterior distri-
bution in an efficient manner. We employ the Raftery-
Lewis diagnostic49 to determine when the MCMC sam-
ples converge to stationary posterior distributions. We
also test the MCMC samples via the Effective Sample
Size50 (ESS) to determine if there is significant autocor-
relation between chain samples.

We start with results from the PEM approach pre-
sented in the previous sections. In this context we pre-
sume that σi = σ and we infer this value along with Cµε
and Cε. In order to maintain positivity for the standard
deviation we will actually work with log σ, and use an
improper prior for this parameter.

Table I presents the prior setup for the set of trials
employed in this study. For each run, the filtered DNS
data employed in the calibration was generated using sev-
eral choices for the filter width ∆ = {L/64, L/32, L/16}.
Henceforth, results corresponding to a certain prior setup
will employ a subscript corresponding to the filter size
used for the data, e.g. R13 employs the setup for R1
with filter size ∆ = L/16, while R32 employs the setup
for R3 with filter size ∆ = L/32.

TABLE I: Setup for model calibration studies. µpr1−2 are
defined in Eq. (29) while σpr1−3 are defined in Eq. (30).

Run Prior mean Prior St. Dev.

R1 µpr
1 σpr

1

R2 µpr
2 σpr

1

R3 µpr
1 σpr

2

R4 µpr
2 σpr

2

R5 µpr
1 σpr

3

R6 µpr
2 σpr

3

Figure 5 shows marginal PDFs for R32. The 1D
marginal densities are shown in the diagonal plots, while

the contour plots show joint densities between Cµε , Cε,
and σ, respectively. The narrow joint density for the pair
(Cµε , Cε) indicate a strong dependence between these two
parameters, specifically with respect to their ratio which
is in line with the discussion in the previous subsection.

On the other hand, the joint posterior densities be-
tween these parameters and the standard deviation used
in the likelihood construction, σ, suggests a weak depen-
dency between the error term the model parameters. The
marginal PDF results based on other filter sizes and/or
other prior specifications (i.e. mean value, standard devi-
ation) are qualitatively similar to results shown in Fig. 5.

Figure 6 shows marginal posterior densities corre-
sponding to parameters αij that define the models for
Cµε and Cε in the EEM aproach. These densities were
computed via KDE using 5 × 106 MCMC samples. Pa-
rameters α10 and α20 that correspond to the means of
Cµε and Cε exhibit a joint distribution that is very sim-
ilar to the joint distribution for these model constants
observed in Fig. 5 for the PEM approach. The first or-
der coefficients, α11 and α21, corresponding to the first
random variable, ξ1, also exhibit a strong dependency.
Other 2D joint distributions show little correlations be-
tween parameters αij . It should be also noted that con-
ditions in Eq. (32) are reflected in some sharp boundaries
observed for several 2D joint posterior densities.

Figure 7 compares posterior densities for Cµε and Cε
obtained with the PEM and EEM approaches. Each set
of results is represented with five equally spaced contours.
The results in this figure, corresponding to the three fil-
ter widths for R3, show consistently narrower densities
for the PEM approach compared to EEM. For the former
approach, the posterior densities for the model parame-
ters only partially explain the discrepancy between the
model and the data, the remaining contribution man-
ifesting through the error terms in Eq. (17). For the
EEM approach, the model parameters are parameterized
such that the output density is consistent to the spread
in the data. For this approach the discrepancy between
the model, in this case the ksgs sub-grid model, and the
data is completely folded into the density of Cµε and Cε.

Figures 8 and 9 show the posterior mean and standard
deviations based on marginal posteriors for Cµε and Cε,
respectively. These figures show results for the three filter
widths, discussed in Section III A, and prior model spec-
ifications, provided in Table I. For the PEM approach,
the marginal posterior standard deviation for Cµε , σ

Ps
Cµε

in Figs. 8a and 8b, is about half compared to the corre-
sponding prior density, while for Cε, σ

Ps
Cε

in Figs. 9a and
9b, the discrepancy between prior and marginal poste-
rior standard deviations is smaller. The corresponding
results for the EEM approach, in Figs. 8(c,d) and 9(c,d),
show larger marginal standard deviations for both model
constants compared to PEM. The posterior means µPsCµε
and µPsCε are less impacted by the prior widths than the
posterior standard deviations. The PEM and EEM re-
sults corresponding to runs R1 and R2 are similar, while
for smaller prior widths, i.e. runs R3 through R6, the



LES UQ 7

posterior means for both model parameters are smaller
for EEM compared to PEM.

In order to measure the degree of dependence between
Cµε and Cε, we examine the “distance correlation” val-
ues51 estimated based on the MCMC samples from their
posterior distribution. The distance correlation is a mea-
sure of dependence between two random variables, being
zero when they are independent. Given random variables
X and Y with finite first moments, the distance correla-
tion R(X,Y ) ∈ [0, 1] is defined as

R(X,Y ) =
ϑ2(X,Y )√
ϑ2(X)ϑ2(Y )

(34)

where ϑ2(X,Y ) is the “distance covariance” between X
and Y and ϑ2(X) is the “distance variance,” ϑ2(X) =
ϑ2(X,X). The distance covariance is given by

ϑ2(X,Y ) =E(||X −X ′||||Y − Y ′||))
+ E(||X −X ′||)E(||Y − Y ′||)
− 2E(||X −X ′||||Y − Y ′′||))

where (X ′, Y ′), (X ′′, Y ′′) are pairs of RVs with the same
joint distribution as (X,Y ), and E(·) denotes expecta-
tion.

Figure 10 shows the dependence of R(Cµε , Cε) on the
prior witdth for the two model parameters. For all model
settings the distance correlation values between Cµε and
Cε corresponding to the PEM approach is greater than
approximately 0.6 indicating a relatively strong depen-
dency between the two model parameters. For all filter
sizes employed to filter the DNS data, these dependecies
are largest when the prior is wide and decrease as the
prior narrows and hence has a stronger effect on the pos-
terior distributions. Since the priors for the two model

constants are independent, this leads to weaker depen-
dencies, i.e. smaller R(Cµε , Cε) values. The results cor-
responding to the EEM approach are consistently smaller
compared to the ones for the PEM approach. This ob-
servation is consistent with the less elongated posterior
distributions for EEM compared to PEM, shown in Fig. 7
for select runs.

This last observation is not necessarily general when
comparing PEM and EEM approaches. Due to its setup,
i.e. embedding the error model in the physical model con-
struction, the EEM approach will result in wider den-
sities for the model parameters compared to the PEM
approach. While we do not provide additional examples
here, we believe that the degree of dependency between
model parameters is case dependent and a general con-
clusion should not be drawn just based on the examples
provided in this paper.

1. Posterior Predictive Distributions for Filtered DNS
Data

In this section we explore the predictive skill of the
ksgs model given the posterior distributions for Cµε
and Cε. We employ the Bayesian posterior predictive
distribution52 to determine the how well the model cov-
ers the filtered DNS data. This test examines the prob-
ability density of the predicted data, fpk , conditional on
the existing data. Essentially it indicates how well the
spread in the existing data is covered by the calibrated
model. The marginal posterior distributions for the pre-
dicted fk,i at several times ti corresponding to the origi-
nal filtered DNS data is computed through

ppp
(
fpk,i|D

)
=

∫
fk,−i

(∫
Cµε ,Cε

p(fpk |Cµε , Cε)p(Cµε , Cε|D)dCµε dCε

)
dfpk,−i (35)

Here, p(fpk |Cµε , Cε) is the likelihood given by Eq. (19),
p(Cµε , Cε|D) is the posterior distribution for the model
constants, and notation “−i” denotes all time locations,
except i. Since the likelihood is constructed assuming
independent errors between time locations, Eq. (35) sim-
plifies to

ppp
(
fpk,i|D

)
=

∫
Cµε ,Cε

p(fpk,i|Cµε , Cε)p(Cµε , Cε|D)dCµε dCε

(36)

For the PEM approach we will compare the posterior pre-
dictive distributions with the pushed-forward densities,

ppf
(
fpk,i|D

)
=

∫
Cµε ,Cε

p(Mi|Cµε , Cε)p(Cµε , Cε|D)dCµε dCε

(37)
Here, Mi ∼ N(CµεfP,i − CεfD,i, σ2

M), and σM is given
by Eq. (18). The dependence on filter size ∆ was omitted
for brevity.

For the EEM approach the posterior predictive and the
pushed-forward densities are the same. For this approach
the error model is embedded in the posterior densities for
the model parameters, hence the pushed-forward densi-
ties also represent a posterior predictive check.
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Figure 11 shows a pushed-forward (PF), in dark grey,
and posterior predictive (PP) densities, in light grey, for
runs R3 and R4 using the PEM approach and just the
posterior predictive density for the EEM approach (since
it is the same as the pushed foward density in this case).
Both the PF and the PP densities are illustrated via the
1-99% quantile ranges constructed from the correspond-
ing densities. For the PEM approach, the PF 1 − 99%
quantile range, bordered by blue solid (R3) and dashed
(R4) lines, is narrower than the spread observed in the
filtered DNS data. This indicates that considering only
the posterior densities of model parameters for further
parametric studies will underestimate the full uncertainty
established through the Bayesian framework presented
here. In contrast, the PP 1 − 99% quantile range, bor-
dered by green lines for R3 and R4, covers well the spread
observed in the filtered DNS data. Similar results are
observed for the other runs. While this is encouraging,
reproducing this approach is not feasible in practice as
the error term is connected to a certain configuration, in
this case the filtered DNS data. While posterior densities
of model parameters can be carried to other configura-
tions employing the same model, it is not clear how to es-
timate posterior predictictive distributions in configura-
tions other than the one used for the calibration process.
For the EEM approach this difficulty is circumvented by
the fact that parameter densities are consistent with the
data and there are no additional error terms involved.
For this approach, the posterior 1− 99% quantile range,
shown with red lines in Figure 11, is very close to the
posterior predictive results for the PEM approach. Fig-
ure 12 shows further comparisons between PEM, with
solid lines, and EEM, with dashed lines, for runs R1 and
R5. For both these runs there is a similar agreement for
the PP 1 − 99% quantile range between the PEM and
EEM approaches. Similar results are observed for runs
R2 and R6 (results not shown).

2. Principal Component Analysis of Joint PDFs

Given the strong dependence in the joint posterior dis-
tribution of Cµε and Cε for PEM, we proceed with a
Principal Component Analysis53 (PCA) of these distri-
butions. Through the PCA approach, we aim to identify
linear combinations of these parameters that explain the
MCMC samples. Let X ∈ Rn×2 be a matrix with n rows
and two columns, first column for Cµε and second col-
umn for Cε. Each row represents one MCMC sample.
Without loss of generality, assume that the mean values
are already subtracted from X.

The principal components (PC) of X are the eigenvec-
tors of the covariance matrix XTX ∈ R2×2, and the cor-
responding non-zero eigenvalues represent the variances
of the MCMC data along the principal directions. For
this study there are two principal directions correspond-
ing to the parameter space spanned by Cµε and Cε. For
the PEM approach, the PC analysis indicate that vari-

ances attributed to the 2nd PC are less that 5% of the
variances along the 1st PC. This is consistent with the
degree of dependency observed by visual inspection in
Fig. 5 and by the distance correlation results in Fig. 10.
For the EEM approach the variances along the 2nd PC
are about 10 − 15% of the ones for the 1st PC. This is
consistent with the wider joint posterior distributions for
Cµε and Cε for EEM compared to PEM.

In the next section, we will explore the dependency
between Cµε and Cε along the 1st PC for several cases.
Figure 13 shows segments along the 1st PC line corre-
sponding to R32 corresponding to PEM and EEM, re-
spectively. The ends of these segments correspond to the
5%-95% quantile range obtained from MCMC samples
projected on the 1st PC.

IV. FORWARD UQ

In this section we describe an approach for pushing
forward the densities of model parameters θ = (Cµε , Cε)
and obtain probability densities for Quantities of Inter-
est (QoIs) prediced by LES models. Figure 1 shows a
schematic for the Forward UQ process in the bottom
half. Below we provide a description of a non-intrusive
approach, followed by a description of LES code and the
configuration setup.

The non-intrusive propagation of uncertainty from
model parameters θ to QoI y, proceeds through the fol-
lowing procedure. Given a basis of standard random vari-
ables ξ = (ξ1, ξ2, . . . , ξn), and a known functional form
θ = θ(ξ), we employ the representation in Eq. (21) to
cast the QoI y derived from the output of LES model f
as a PCE expansion

y(θ(ξ)) ≈
Nt∑
k=0

ckΨk(ξ1, ξ2, . . . , ξn). (38)

The coefficients of this PCE are evaluated by Galerkin
projection exploiting the orthogonality of basis terms

ck =
〈yΨk〉
〈Ψ2

k〉
. (39)

Evaluation of the projection integrals in Eq. (39) require
a number of evaluations of the model f . For small to
moderate number of dimensions, numerical quadrature
provides an efficient way to evaluate ck using a number
of samples much smaller compared to Monte Carlo sam-
pling algorithms. The quadrature approach involves eval-
uating y = f(θ) for a particular set of parameter values

θj = θ(ξj1, ξ
j
2, . . . , ξ

j
n) corresponding to the set quadra-

ture points required by the accuracy of the method. The
PCE coefficients are then computed as

ck =
1

〈Ψ2
k〉

Nq∑
j=1

wjf(θj) (40)
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where, wj is the weight corresponding to the quadrature

point θj = θ(ξj1, . . . , ξ
j
n), and Nq is the number of quadra-

ture points.
Once the PCE is constructed for QoI y, moments of

the distribution of y can be estimated analytically based
on the expansion coefficients ck.38 For example the ex-
pectation of y is given by c0. The PCE in Eq (38) can
also be used as a “surrogate” when the computational
model is expensive and/or the probability density of the
input parameters are updated. For example the proba-
bility density of y can be evaluated with negligible cost
compared to the full model evaluations. In the following
sections we describe the setup for the LES simulations,
followed by additional manipulation of the input param-
eter space to help construct PCE for several QoIs.

A. Channel Flow Setup

In this section we describe the LES model f , employed
to propagate densities from model parameters to output
QoIs. For this study, the model f , referenced in Fig. 1,
is represented by the SIERRA Thermal/Fluids software,
developed by Sandia National Labs. It is designed to sim-
ulate turbulent reacting flow and heat transfer54 on mas-
sively parallel computers, and was built on the SIERRA
framework.55 In this work the low-Mach number mod-
ule is used. The discretization scheme is based on the
control volume finite element method56 where the par-
tial differential equations of mass, momentum, and en-
ergy are integrated over unstructured control volumes.
The one equation subgrid-scale kinetic turbulent energy
model46,57 as calibrated in the first part of this study
was used for this forward UQ propagation considering a
different geometry of a parallel plane channel flow at a
Reynolds number of Reτ = 590. This value was chosen
to match the Direct Numerical Simulation (DNS) work
done by Moser et.al.58

The channel dimensions are 2πh × 2h × πh in the
streamwise, wall-normal, and spanwise directions, re-
spectively. The boundary conditions are periodic in
both the streamwise and spanwise directions, and no slip
walls are applied at both the top and bottom bound-
aries. There are 48 uniformly spaced grid nodes in both
streamwise and spanwise directions. In the wall normal
direction there are 103 nodes, with the first four nodes
from the walls placed uniformly with a y+ = 1 spacing.
The grid is then stretched through a hyperbolic tangent
function until the spacing at the centerline is approxi-
mately equal to the spacing in the spanwise direction.
We note that our grid setup is considerably more coarse
than the fully resolved DNS case for a Reτ = 590 pre-
sented by Moser et.al.58 in which the number of nodes
were 383 × 257 × 383 in the streamwise, wall normal,
and spanwise directions respectively. We employ a CFL
number of about 0.5, resulting in a time step of approx-
imately 10−4. The time coordinate is normalized by the
channel half-width h.

B. Rosenblatt Transformation

In order to construct the PCE presented in Eq. (38)
we map the parameter space θ that employs dependent
densities for its components to the ξ space where all coor-
dinates have independent densities. For this study, the θ
space consists of (Cµε , Cε), the ξ space consists of (ξ1, ξ2),
and the map between the two can be constructed via the
Rosenblatt transformation.59 The inverse of the Rosen-
blatt transformation can formally be written as

Cµε = F̃−1
Cµε

(ξ1),

Cε = F̃−1
Cε|Cµε

(ξ2|ξ1),
(41)

where ξ1, ξ2 are i.i.d. uniform random variables. Eq. (41)
relates the regular, mapped domain [0, 1] × [0, 1] to the

pair (Cµε , Cε) and uses the inverses of the marginal, F̃−1
Cµε

,

and conditional, F̃−1
Cε|Cµε

, cumulative distribution func-

tions (CDF) for the random variable pair (Cµε , Cε).
Numerically, the Rosenblatt transformation is com-

puted through interpolation tables constructed for the
CDF functions in Eq. (41). To illustrate this approach
we use the joint density for the uncertain parameters Cµε
and Cε, corresponding to an average of the joint posterior
distribution for runs R3 and R4 via the EEM approach.
This ensures that LES runs cover a region wide enough in
the parameter space, leading to a PCE that can be used
as a surrogate to push forward the joint distributions for
Cµε and Cε corresponding to all runs R3 and R4.

Figure 14 shows the correspondence between physi-
cal parameter space (Cµε , Cε) and the space parameter-
ized by uniform random variables (ξ1, ξ2). The markers
show the location of quadrature points corresponding to
a Gauss-Legendre quadrature approach. Their images
in the physical space are mostly distributed around the
regions where the joint density p(Cµε , Cε) is significant.

C. Polynomial Chaos Expansions

We performed a set of LES simulations using the setup
for the channel flow described in Section IV A. Each
simulation corresponds to Cµε and Cε values selected ac-
cording to the Rosenblatt transform presented in Sec-
tion IV B. Using the raw LES data, we computed sev-
eral QoIs. Specifically, we estimated the centerline veloc-
ity, u, the maximum velocity RMS, uRMS , and the mass
flux, ṁ. All these QoIs are averaged in time over ap-
proximately five flow-through times. Using the discrete
values for these QoIs we then estimate the coefficients
of their corresponding PCE via the quadrature approach
presented in Eq. (40).

The mean centerline velocity, in Fig. 15a, exhibits
a quasi-linear trend in the ξ1 direction and a weak
quadratic trend in ξ2. The mean values of the peak ax-
ial velocity RMS, in Fig. 15b, exhibit a quadratic depen-
dency on the input parameters while the mean mass flux,
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in Fig. 15c, shows a shape similar to the mean centerline
velocity. For this work the ξ1 coordinate is mostly aligned
with the first principal component of (Cµε , Cε), while ξ2
is proportional to Cε.

We examined the relative L2 error between LES sim-
ulations and the PCE values for these QoIs. These er-
rors are around 6% for u and ṁ, and less than 10% for
uRMS . While, in principle, longer time averages can re-
duce the noise in the LES values and allow lower discrep-
ancies compared to the corresponding PCEs, we consider
these errors to be reasonable for the subsequent use of the
PCEs as surrogate models.

D. Probability Densities for Quantities of Interest

We employ the PCEs discussed in the previous sec-
tion to compute values for several QoIs using the MCMC
samples for Cµε and Cε corresponding to several runs
and conditions discussed in Section III. The resulting
PCE-approximated model evaluations are then used to
compute the PDFs of the output QoIs via KDE. This
procedure is repeated for all calibration studies shown in
Table I.

Figure 16a shows the densities for the mean centerline
velocity u for R3 corresponding to several filter widths.
The results in this figure indicate a strong effect exercised
by the filter size, on the PDF ofu. The parameter densi-
ties corresponding to smaller filter widths, i.e. ∆ = L/64
(red lines), shift the center of mass to higher velocity val-
ues. Larger filter widths shift the most likely values for
the centerline velocities towards smaller values which are
closer to the DNS value. Earlier DNS results58 indicate a
reference value of 21.26 for the mean centerline velocity.
We attribute the discrepancy between the DNS value and
our LES study to other sources of error that can impact
this configuration such as insuficient grid resolution, in
particular near the walls.

The wider PDFs observed for (Cµε , Cε) with the EEM
approach translate into wider PDF’s for the mean cen-
terline velocity compared to PEM values. This is consis-
tently observed for all filter widths. Results correspond-
ing to other runs are qualitatively similar to the ones
observed for R3. Both the peak RMS of the axial ve-
locity, in Fig. 15b, and the mass flux, in Fig. 15c, show
output densities that are qualitatively similar to results
for the centerline velocity.

Next we compare the posterior densities obtained by
sampling the full joint PDFs of Cµε and Cε with the
posterior PDFs obtained by sampling the density along
the corresponding 1st PCs. The results shown in Fig. 17
correspond to R32. For the PEM approach the the results
based on the densities along the 1st PC, with dashed
red line, are in close agreement with the results based
on full joint PDFs with solid red line. This indicates
that, for this particular study, the strong dependency
between the two input parameters for PEM effectively
renders the output being dependent only on the linear

combination of the two parameters. Unlike for PEM,
the EEM results show a significant discrepancy between
the full joint posterior and the values based on the 1D
density along the 1st PC. For this set of cases the width
of the joint posterior is important to the system behavior
and reduced dimensionality data do not capture the full
range of results. The PCA-based results for other runs
and QoIs are qualitatively similar to the ones observed
in Fig. 17.

V. CONCLUSIONS

In this paper we present a Bayesian framework for es-
timating joint densities for LES turbulent sub-grid scale
model parameters based on filtered DNS data. These
densities are then propagated forward through LES of
channel flow to generate probability densities for several
quantities of interest.

We employ DNS of forced isotropic turbulence, down-
loaded from the Johns Hopkins Turbulence Database, to
calibrate two parameters for the sub-grid scale turbu-
lent kinetic energy model employed in LES. We employ
Gaussian priors for the model parameters, centered at
values previously reported in the literature for these pa-
rameters. We then explore the effect of prior widths on
the posterior densities and several summary statistics of
interest. In this context we compare two approaches for
treating the discrepancy between the model and the data
in the Bayesian framework. In the first approach, abbre-
viated as PEM, the discrepancy is presumed Gaussian
with zero mean, and the standard deviation is inferred
together with the posterior densities for the model pa-
rameters. In the second approach, developed recently by
some of the co-authors of this paper and abbreviated as
EEM, the error is embedded in the formulation of the
model parameters.

We find that the filter size, employed to filter the DNS
data, has a significant impact on the posterior means for
the model parameters, while the effect on the marginal
posterior standard deviations is weaker. We also observe
that prior widths affect mostly marginal posterior stan-
dard deviations, while the priors means are less impor-
tant for the posterior means. We find that the EEM ap-
proach leads to wider joint densities for the model param-
eters compared to the PEM approach. This also results
in weaker dependencies between the two model param-
eters for EEM, while for PEM, these dependencies are
very strong.

In the second part of the paper, the joint posterior
densites for the LES model parameters are propagated
forward to several quantities of interest (QoI). We em-
ploy a non-intrusive approach, and construct Polynomial
Chaos expansions (PCEs) for these QoIs. The expansion
coefficients are estimated via Galerkin projection. Specif-
ically, the projection integrals are computed via Gauss-
Legendre quadrature. Twenty-five LES channel flow sim-
ulations were run with the two model constants set ac-
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cording to the corresponding quadruature points. Once
the coefficients of these PCEs were available, the densi-
ties for the corresponding QoIs were evaluated through
multiple samples of the PCEs. We found that the first
pricipal component corresponding to the joint posterior
density leads to forward UQ results that are very close to
the ones based on the full densities in the PEM approach
which show narrow joint posterior densities. Unlike the
PEM approach, EEM leads to wider posterior densities,
possibly accounting for model error and the first principal
component is no longer sufficient to explain the depen-
dence on the input parameters.

The use of informative priors was necessary to con-
strain the parameter space as the isotropic turbulence
data was sufficient to constrain the ratio between the
model parameters considered here, but not their values.
It is suggested that in the future this calibration process
use data from multiple complementary flows to better es-
timate all unknowns. Even in this case it is likely that
the filter width will play a significant role in the resulting
model form despite the fact that many turbulence mod-
els, such as this one, include a parameterized dependence
on the filter width. It will also be important to match the
filter width when propagating these uncertain turbulence
models through a flow as this work provides data showing
the impact of filter width on important flow quantities.
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FIG. 1: Schematic of parameter estimation and

forward UQ workflows.
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σpr2 = (0.02, 0.2).
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FIG. 9: Posterior mean (left axis, filled circle) and
standard deviation (right axis, white square) for Cε.

The color scheme is the same as in Fig. 8.
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FIG. 10: Distance correlation dependency on the
standard deviation of the marginal prior densities of
Cµε and Cε via PEM (solid lines) and EEM (dashed
lines). The color scheme corresponds to several filter

sizes, and is the same as in Fig. 8.
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FIG. 14: Illustration of the correspondence between
samples in the parameter space and their images via the
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pushed forward PDF’s for the PEM approach while
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results shown in red and EEM in black.
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