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Adaptive Framework for Classification and Novel
Class Detection over Evolving Data Streams

with Limited Labeled Data
Ahsanul Haque, Latifur Khan, Michael Baron, and Joe Ingram

Most approaches to classifying evolving data streams either divide the stream of data into
fixed-size chunks or use gradual forgetting to address the problems of infinite length and concept
drift. Finding the fixed size of the chunks or choosing a forgetting rate without prior knowledge
about time-scale of change is not a trivial task. As a result, these approaches suffer from a
trade-off between performance and sensitivity. To address this problem, we present a framework
which uses change detection techniques on the classifier performance to determine chunk
boundaries dynamically. Though this framework exhibits good performance, it is heavily
dependent on the availability of true labels of data instances. However, labeled data instances are
scarce in realistic settings and not readily available. Therefore, we present a second framework
which is unsupervised in nature, and exploits change detection on classifier confidence values to
determine chunk boundaries dynamically. In this way, it avoids the use of labeled data while still
addressing the problems of infinite length and concept drift. Moreover, both of our proposed
frameworks address the concept evolution problem by detecting outliers having similar values for
the attributes. We provide theoretical proof that our change detection method works better than
other state-of-the-art approaches in this particular scenario. Results from experiments on various
benchmark and synthetic data sets also show the efficiency of our proposed frameworks.

F

1 INTRODUCTION

Data stream classification is a challenging task due to its
own inherent properties, e.g., infinite length, concept drift,
concept evolution, limited labeled data, delayed labeling,
etc. [6], [12], [20]. Due to the infinite length, traditional
multi-pass data mining techniques are not applicable on
stream data as they would require infinite storage. More-
over, class boundaries keep changing due to concept drift.
So, the classification model needs to be updated regularly,
to make sure that it reflects the most recent concept.

Typically, existing data stream classification algo-
rithms [1], [19], [22], [25] address infinite length and concept
drift problems by dividing the stream of data into fixed-size
chunks, and updating the classifier once all the instances
in the chunk are labeled. These approaches require a priori
knowledge about the time-scale of change to find the fixed
size, which is rarely feasible in the case of data streams [5].
As a result, these techniques suffer from a trade-off between
performance during stable periods, and sensitivity to sud-
den concept drift. Some other available approaches [15],
[16], [17] use gradual forgetting to address infinite length
and concept drift problems. These approaches use various
decay functions to assign weight to data instances based on
their age. This strategy also suffers from a similar trade-off
while choosing the decay rate to match an unknown rate of

change.
In this paper, we present two complete frameworks to

address the aforementioned problems. These frameworks
address the infinite length problem by dividing the data
stream into variable-size chunks. It uses a change point
detection technique to keep track of any change in the classi-
fier feedback and to determine the chunk size dynamically.
So, it can adapt to the changing concept immediately. To
address the concept drift problem, our frameworks maintain
an ensemble of classifier models, each trained on different
dynamically determined chunks.

The first framework presented in this paper uses classi-
fier predictive performance as feedback from the classifier.
These predictive performance scores are monitored using
a dynamic sliding window. A change detection method
is exploited to detect significant changes in the classifier
predictive performance. If a change is detected, the chunk
boundary is determined dynamically and the existing clas-
sifier is updated. This framework requires true labels of the
data instances to evaluate predictive performance. However,
labeled data instances are scarce and not readily available
in real-world data streams [20]. So, a good classifier in the
streaming context should be able to use partially labeled
training data, i.e., only a portion of the training data is
labeled.

The second framework proposed in this paper does not
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depend on the classifier predictive performance. Rather, it
uses a few heuristics to calculate the classifier confidence
in predictions and applies a change detection algorithm on
these confidence scores. Hence, this framework does not re-
quire labels for all data instances during training. Intuitively,
heuristic-based confidence scores follow a skewed beta dis-
tribution which is also confirmed by chi-square goodness-of-
fit tests. We design a suitable change detection algorithm to
detect significant changes in the classifier confidence scores.
Theoretically, we show that this change detection algorithm
is more efficient and applicable to this specific scenario than
existing algorithms like adaptive windowing (ADWIN) [5].

Compared to concept drift, relatively few approaches
in the literature focus on addressing the concept evolution
problem in data streams. Concept evolution occurs when a
new class emerges in the data stream [22], [26]. In real-world
data stream classification problems, such as intrusion detec-
tion, text classification and fault detection, concept evolution
may occur at any time. As a result, if instances from a novel
class appear in the data stream, most approaches which do
not handle concept evolution will classify those instances as
one of the existing classes. This affects the performance of
the classifier by increasing classification error.

To address the concept drift problem, our frameworks
maintain an ensemble of t classifier models, each trained
on different dynamically-determined chunks. Each of the
models in the classifier is based on a semi-supervised K-
means algorithm. So, both classification and the confidence
value calculation in our framework can work with delayed
labeling and partially labeled training data. To address the
concept evolution problem, our framework includes a novel
class detector. If any instance falls outside of the decision
boundaries of all the models in the ensemble, it detects
it as an outlier. If there are a sufficiently large number of
outliers which share similar values for the attributes among
themselves, our framework declares those as instances from
a novel class. To the best of our knowledge, our framework
is the first semi-supervised approach which uses heuristic-
based dynamic sliding window management to address
both concept drift and concept evolution.

Primary contributions of our work are as follows: 1) we
present two frameworks to address the challenges of data
stream classification, based on dynamic sliding window
management. 2) To avoid the use of labeled data, we present
a heuristic-based technique to estimate classifier confidence
in predicting labels of data instances. We theoretically justify
the choice of the proposed heuristics. 3) We design suitable
change detection algorithms for these specific scenarios
which take classifier predictive performance or classifier
confidence values as input and determines dynamic chunk
boundaries based on significant change in the confidence
values. Unlike other adaptive sliding window techniques
which detect change in error rates of classifiers, our second
framework does not need true labels of all data instances
for determining chunk boundaries dynamically. 4) We the-
oretically prove that, our proposed change detection will
work better than the existing approaches in this particular
scenario. 5) We integrate a concept evolution module to our
frameworks. To the best of our knowledge, this is the first
effort to address both concept drift and concept evolution
using dynamically determined chunk sizes. 6) We evaluate

our proposed frameworks on several benchmark and syn-
thetic data sets. Results from the experiments show that our
frameworks outperform other state-of-the-art approaches in
data stream classification and novel class detection. We also
show that, though our second framework does not use any
labeled data instances for determining dynamic chunks, it
still achieves competitive performance compared with the
first framework, which uses all labeled instances.

The rest of the paper is organized as follows: in Section 2,
we present a brief literature survey related to our work.
Section 3 describes our approach in detail, including the
confidence estimation and change detection methods. We
describe the data sets, evaluation metrics and present ex-
perimental results in Section 4. Finally, Section 5 concludes
the paper with directions to future work.

2 RELATED WORKS

Most state-of-the-art approaches (for example [1], [22], [25])
divide data streams into fixed-size chunks to solve the infi-
nite length problem. These approaches use abrupt forgetting
as only the latest chunk of data instances is kept in memory.
Typically to address concept drift, each fixed-size chunk is
used to retrain or update the classifier as soon as all the
instances in the chunk are labeled. However, setting the
fixed size of the chunks is very difficult in the context of
an evolving data stream. Approaches using a fixed chunk
size cannot capture the concept drift immediately if the
chunk size is too large, or suffer from unnecessary frequent
retraining during stable time periods if the chunk size is too
small [5].

Gradual forgetting is used by [15], [16], [17]; which is a full
memory approach for defining a window of the instances
for learning. In gradual forgetting, each example is associated
with a weight rather than discarding it from the memory
completely. The weight typically is assigned based on the
age of that data instance assuming that importance of an
instance should decrease with its age. Old instances have
weight close to zero based on the decay function, which is
equivalent to discarding those instances from the memory.
Various decay techniques are used in the literature. For
example, a linear decay technique is used in [16], [17], and
exponential decay is used in [15]. However, finding the
perfect decay function is a challenge if information on the
time-scale of change is not available [5]. In this paper, we
determine the chunk size dynamically by using an explicit
change point detection method.

Change detection techniques are used to determine the
chunk sizes and to address the concept drift problem in
[5], [11], [13]. There are two types of techniques in terms
of change detection, i.e., detecting changes in the posterior
distribution of the classes given the features P (y|X), or
detecting changes in the generating distribution P (X) [12].
In the literature, several methods [18], [29] exist to deal with
the change of P (X). However, detecting a change in P (X) is
a hard problem especially in the case of multi-dimensional
data [13]. In this paper, we focus on detecting change points
in one-dimensional classifier confidence values.

Various techniques to detect changes in P (y|X) have
been proposed in [5], [9], [11], [13]. ADWIN [5] determines
the size of the sliding window online according to the rate
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of change observed from the windowed data itself. The
window size increases until a significant change is detected.
Unlike [5], [11] keeps track of the initial subwindow in
which the error has been lowest so far. When the error
rate over the entire current window significantly exceeds
this lowest error rate, a change is declared. Kruskal-Wallis
analysis and Kolmogorov-Smirnov tests are used by [9] to
detect changes. The approach presented in [13] is based
on obtaining statistics from the loss distribution of the
learning algorithm by reusing the data multiple times via
re-sampling. None of the above approaches handle con-
cept evolution, delayed labeling or limited labeled data
problems. One of our proposed approaches uses predictive
performance of the classifier to manage the sliding window.
However, unlike the above approaches, it also addresses the
concept evolution problem.

The above techniques are mainly based on loss estima-
tion of a predictor’s performance. So, these assume that the
true labels of the instances are readily available which will
be used to evaluate the classifier performance, e.g., accuracy,
precision, recall etc. This assumption is not practical in the
context of data streams [20]. So, these approaches cannot
address the limited labeled data or the delayed labeling
problem. The second approach we present in this paper, is
a framework which does not have this assumption, yet can
detect dynamic chunk boundaries efficiently.

Besides addressing the infinite length and concept drift
problems, our proposed frameworks also address the con-
cept evolution problem in a multi-class environment. Var-
ious cluster-based novel concept detection techniques for
data streams are proposed in [14], [30]. In these approaches,
the instances which are not explained by the current deci-
sion model are labeled with an unknown profile. If a suffi-
cient number of instances with the unknown profile can be
found, clustering is applied on these instances. Valid clusters
are evaluated as an extension of the normal class or a
novelty. So, these are single class novelty detection methods,
where authors assume that there is only one normal class
and all other classes are novel. Thus, it is not suitable for a
multi-class environment.

A novel class detection algorithm in a multi-class envi-
ronment is proposed in [22], where each new test instance
is considered as an outlier if it falls outside of the decision
boundary of the ensemble classifier. A novel class is detected
if a sufficient number of outliers have high cohesion among
themselves and enough separation from the instances of
existing classes. However, this approach divides the data
stream into fixed-size chunks, hence suffers from the trade
off problem discussed earlier. Unlike these approaches,
we present frameworks which can detect novel classes in
a multi-class environment using dynamically-determined
chunk boundaries.

Three general strategies for transforming block-based
ensembles into online learners are investigated in [8]. How-
ever, it does not investigate strategies related to concept
evolution. An evaluation methodology for multi-class nov-
elty detection algorithms is presented in [10]. In this work,
we assume that only one novel class may appear at a time
in the data stream. So, we use the traditional novel class
detection performance evaluation metrics that have been
used by most state-of-the-art approaches.

3 PROPOSED APPROACH

As discussed in Section 2, finding the fixed size of chunks
or the rate of decay is a non-trivial task without prior
knowledge on the rate of change [5], [12]. So, the approaches
which use fixed-size chunks [1], [22], [25] suffer from the
trade-off between performance during stable period, and
sensitivity to sudden concept drift. To address this prob-
lem, we present two adaptive window-based approaches
to determine chunk boundary dynamically and to handle
the concept drift problem. In the first approach, we monitor
predictive performance of the classifier on recent data in-
stances. When there is a significant change in the predictive
performance, we detect a chunk boundary, and the classifier
is updated. We apply a suitable change detection method to
detect the change in predictive performance of the classifier.

Dynamic window management used in the first ap-
proach is based on loss estimation of predictor performance
like other existing sliding window-based approaches in
the literature. This estimation requires true labels of data
instances to calculate the predictive performance. However,
in real-world data streams, labeled data is scarce and not
readily available. Our first approach as well as other sliding
window-based approaches in the literature might suffer
in these scenarios. To address this challenge, we present
another unsupervised dynamic window management ap-
proach, which uses classifier confidence instead of predic-
tive performance. We propose suitable heuristics for this
classifier to estimate the confidence while predicting the
label of a test instance. We also design a change detection
scheme for this scenario. Therefore, if a significant change
is detected in classifier confidence, the chunk boundary is
determined dynamically and the classifier is updated using
only the recent labeled data.

In this paper, we present two frameworks for classifying
and detecting novel classes in data streams by integrat-
ing semi-supervised Classification and Novel Class Detection
modules with two different dynamic window management
approaches discussed above. We refer to the first frame-
work as “ADCMiner” (Adaptive Concept Drift Handler
and Miner for data streams) and the second framework as
“SAND” (Semi Supervised Adaptive Novel Class Detection
and Classification over Evolving Stream Data). Next, we
briefly discuss the classification and novel class detection
methods used by both of these frameworks. ADCMiner
uses supervised dynamic window management whereas
SAND uses unsupervised window management. Since the
classification and novel class detection methods we use are
semi-supervised, SAND can work with limited labeled data
and delayed labeling.

The high level workflow of the proposed frameworks is
depicted in the Figure 1. Both of the frameworks maintain
an ensemble of t classification models and a dynamic win-
dowW containing statistics on the classification, i.e., predic-
tive performance or classifier confidence. Let {M1, ...,Mt}
be the models in the ensemble. We define the terms novel
class and existing class as follows:

Definition 1 (Existing class and Novel class) Let M be the
current ensemble of classification models. A class c is an existing
class if at least one of the models Mi ∈ M has been trained with
class c. Otherwise, c is a novel class.
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TABLE 1: Commonly Used Symbols and Terms

t : Number of models in the ensemble classifier Cx : Confidence of the classifier in classifying x
M : The ensemble classifier τ : Classifier confidence threshold
Mi : ith model in the classifier Ai : Association of model Mi in classification
L : Set of labeled training data U : Set of unlabeled training data
Dip(x) : Distance of instance x from hip Pi : Purity of model Mi in classification
Lip(c) : Frequency of class c in hip yk : True label of test instance k
hip : pth pseudopoint in Mi ŷki : Predicted label of test instance k by Mi

R(hip) : Radius of hip W : Dynamic sliding window

Fig. 1: High level work flow of the frameworks

At the beginning, the ensemble classifier contains models
trained on the initial training data, i.e., warm-up period data
instances. Once the warm up period is over, each incoming
instance in the data stream is first examined by the Outlier
Detection module to determine whether it is an outlier or not.
This module detects an instance as an outlier if the instance
falls outside of the decision boundary of the ensemble classi-
fier. If the instance is not an outlier, it is classified as instance
of an existing class using majority voting among the models
in the ensemble. On the contrary, if the instance is an outlier,
it is temporarily stored in a buffer. When there are enough
instances in the buffer, the Novel Class Detection module is
invoked. We define a class as novel if none of the models
in the ensemble have been trained with any instances from
that class. If a novel class is detected, the instances of the
novel class are tagged accordingly. Otherwise, the instances
in the buffer are considered as part of an existing class and
classified using the current ensemble classifier.

In addition to predicting a label for a test instance, the
proposed frameworks also calculate a score related to the
performance of the classifier on the instance. These scores
are stored in the window W . After inserting each score
value, the Change Detection module searches for any change
of distribution in the values stored in W . If it detects a
significant change of distribution in the values, the chunk
boundary is determined immediately containing instances

corresponding to the values stored in W . Subsequently,
a new model is trained only on the labeled instances of
this chunk and the ensemble is updated by including the
newly trained model. On the contrary, if the change detector
finds no significant change in the confidence values, the
current ensemble is retained and W keeps growing. Details
on training, the classifier decision boundary, classification
and the novel class detection processes will be discussed
in Section 3.1 and 3.2. Table 1 contains the most common
symbols and terms used throughout this paper. Next, we
will describe the classification and novel class detection
methods of our framework.

3.1 Training and Classification
Each model in the ensemble Mi, i ∈ 1 . . . t is a k-NN model
formed with the training data. Rather than storing the raw
training data, K clusters are built using a semi-supervised
K-means clustering algorithm, and the cluster summaries
(mentioned as pseudopoints) of each cluster are retained.
These pseudopoints constitute the classification model. The
summary contains the centroid, radius, and frequencies of
data points belonging to each of the classes. The radius of a
pseudopoint is equal to the distance between the centroid
and the farthest data point in the cluster. The raw data
points are discarded after creating the summary. Therefore,
each model Mi is a collection of K pseudopoints. A test
instance x is classified using Mi as follows. Let h ∈ Mi

be the pseudopoint whose centroid is the nearest to x.
The predicted class of x is the class that has the highest
frequency in h. The data point x is classified using the
ensemble M by taking a majority vote among all classifiers.

Each pseudopoint corresponds to a “hypersphere” in the
feature space with a corresponding centroid and radius.
The decision boundary of a model Mi is the union of the
feature spaces encompassed by all pseudopoints h ∈ Mi.
The decision boundary of the ensemble M is the union of
the decision boundaries of all models Mi ∈M .

3.2 Novel Class Detection
Each instance in the data stream is first examined by the
ensemble of models to see if it is outside of the ensemble
decision boundary. If it is inside the decision boundary,
then it is classified normally using the majority vote of the
models in the ensemble. Otherwise, it is declared as an F-
outlier, or filtered outlier.The main assumption behind novel
class detection is that any class of the data has the following
property.

Property 1 A data point should be closer to the data points of
its own class (cohesion) and farther apart from the data points of
other classes (separation).
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If there is a novel class in the stream, instances belonging
to that class will be far from existing class instances and
will be close to other novel class instances. Since F-outliers
are outside the decision boundary, they are far from the
existing class instances. So, the separation property for a
novel class is satisfied by the F-outliers. Therefore, F-outliers
are potential novel class instances, and they are temporarily
stored in a buffer buf to observe whether they also satisfy
the cohesion property. The buffer is examined periodically
to see whether there are enough F-outliers that are close to
each other. This is done by computing the q-Neighborhood
Silhouette Coefficient, or q-NSC [21], which is defined as
follows:

Definition 2 (q, c-neighborhood) The q, c-neighborhood (or
q, c(x) in short) of an F -outlier x is the set of q class c instances
that are nearest to x (i.e., q-nearest class c neighbors of x).

Here q is a user defined parameter. For example, q, c1(x)
of an F-outlier x is q-nearest neighbors of x from class c1.
Let D̄cout,q(x) be the mean distance of an F-outlier x to
its q-nearest F-outlier neighbors. Also, let D̄c,q(x) be the
mean distance from x to its q, c(x), and let D̄cmin,q(x)
be the minimum among all D̄c,q(x), c ∈{Set of existing
classes}. In other words, q, cmin is the nearest existing class
neighborhood of x. Then q-NSC of x is given by:

q-NSC(x) =
D̄cmin,q(x)− D̄cout,q(x)

max(D̄cmin,q(x), D̄cout,q(x))
(1)

The expression q-NSC is a unified measure of cohesion
and separation, and yields a value between -1 and +1.
A positive value indicates that x is closer to the F-outlier
instances (more cohesion) and farther away from existing
class instances (more separation), and vice versa. The q-
NSC(x) value of an F-outlier x must be computed separately
for each classifier Mi ∈ M . A new class is declared if there
are at least q′ (> q) F-outliers having positive q-NSC for all
classifiers Mi ∈M .

Fig. 2: Change Detection Module

3.3 Supervised Window Management

ADCMiner uses supervised window management by main-
taining a variable-size window W to monitor performance

of the classifier on recent data instances. The expectation is
that the size of W increases during stable periods, i.e., when
there is no significant change in the class boundaries and
decreases when there is a concept drift. The basic intuition is
that concept drift causes a change in class boundaries which
worsens performance of the classifier if it is not updated in
timely manner [32]. The variable-size window W is main-
tained as follows: after receiving each test data instance, the
current ensemble classifier predicts the label of the instance
as discussed in Section 3.1. After receiving the true label
of this instance, performance of the classifier is evaluated
as e ∈ {0, 1} and inserted into W , where e is an indicator
variable based on whether or not the model errors on the
given instance. After inserting each performance evaluation
value, the change detection algorithm is executed. Since
each of the entries of W is either success or failure, each
entry follows a Bernoulli distribution. As W is a collection
of n such values, the values in the window follow a binomial
distribution. It has two parameters, i.e., the number of trials
n and the probability of success in each trial p.

3.4 Unsupervised Window Management

Unlike ADCMiner which stores the predictive performance
of the classifier in the window W , SAND stores the con-
fidence of the classifier on the prediction of test data in-
stances in W . The confidence score on each test instance is
calculated based on two heuristics (to be elaborated next).
Therefore, it does not require true labels of the data instances
for dynamic window management. We generate the confi-
dence values in the range of [0, 1]. We describe calculation
of the confidence of classifier and justify the use of the
confidence estimators in Section 3.4.1 and Section 3.4.2,
respectively. Moreover, in Section 3.4.6, we prove that when
there is a concept drift in the data stream, the classifier will
have lower confidence in classifying the instances from the
stream. As a result, our change detection method is able
to detect the change of distribution in confidences, in other
words detect the concept drift.

We observe from our experiments on various data sets
that generated confidence values tend to follow a beta
distribution. We have carried out a chi-square goodness
of fit test on the generated confidence scores in order to
confirm that observation. The beta distribution forms a
rich two-parameter family of distributions on the interval
[0, 1]. Given parameters α, β ∈ (0,∞), the expectation
and variance of the beta distribution are µ = α/ (α+ β)
and σ2 = αβ/ (α+ β)

2
(α+ β + 1) respectively. Next, we

describe the method we propose to calculate the confidence
of the classifier.

3.4.1 Calculation of Confidence Scores
Figure 2 shows the workflow of the Change Detection module
of SAND. Along with predicting the label of each new test
data instance, we use two different heuristics, association and
purity, to estimate the confidence of each individual model
in the classifier. Finally, we combine the individual model
confidence estimates to estimate the overall confidence of
the ensemble classifier and store it in W . Subsequently, a
change detection method is applied on the values stored in
W to detect any change in the distribution of the confidence
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values which will be discussed in Section 3.5. If a change is
not detected, we keep using the same classifier andW keeps
growing. On the contrary, if a change is detected, we update
the classifier and then shrink the window.

Let hip be the pth pseudopoint in Mi and let cm be the
class having highest frequency in hip. Assuming the closest
pseudopoint from instance x in model Mi is hip, we use the
following heuristics to estimate confidence of model Mi:

• Association is calculated by R(hip) − Dip(x), where
R(hip) is the radius of hip and Dip(x) is the distance
of x from hip.

• Purity is calculated by |Lip(cm)|
|Lip| , where |Lip| is sum of

all the frequencies in hip and |Lip(cm)| is the frequency
of cm in hip.

The association and purity of the model Mi is denoted
by Ai and Pi, respectively. Both of the above heuristics
contribute to the confidence score of a model according to
their estimation capability. We measure this capability by
calculating the correlation coefficient between heuristic val-
ues and classification accuracy for each model Mi using the
initial training instances as follows:Mi calculates confidence
heuristic values for each of the labeled training instances.
Let Hkij be the value of jth heuristic in Mi’s classification
of instance k. Since we use two heuristics, j ∈ {1, 2}. Let
ŷki be the prediction of Mi on instance k and yk be the
true label of that instance. Let vi is the vector containing
vki values indicating whether the classification of instance
k by model Mi is correct or not. In other words, vki = 1 if
ŷki = yk and vki = 0 if ŷki 6= yk. Finally, the correlation vector
ri is calculated for model Mi. It contains rij values which
are Pearson’s correlation coefficients betweenHij and vi for
different j.

Correlation coefficients calculated in the training phase
are used for classification and confidence estimation during
the testing phase as follows. First, our framework SAND
calculates confidence heuristic values Hxi for a test instance
x. Let Cxi be the confidence of model Mi in predicting
test instance x. Cxi is calculated by taking the dot product
of Hxi and vi, i.e., Cxi = Hxi .vi. In the same way, SAND
calculates confidence values for each of the models in the
ensemble along with the prediction for each test instance.
After calculating all the confidence values, we normalize
these between 0 and 1. The normalized confidence value Cxi
is treated as a weight for the prediction ŷi by model Mi.
Finally, to estimate the confidence of the entire ensemble
denoted by Cx, SAND takes the average confidence of the
models in the ensemble towards the predicted class.

3.4.2 Justification of Confidence Heuristics
In this Section, we first define the objective function for
semi-supervised K-means clustering mentioned in Sec-
tion 3.1. Then, based on the objective function, we theo-
retically justify the choice of the heuristics for estimating
classifier confidence.

3.4.3 Objective Function
Given a limited amount of labeled data, the goal of
impurity-based clustering is to create K clusters by mini-
mizing the intra-cluster dispersion (unsupervised K-means

has the same goal) and at the same time minimizing the im-
purity of each cluster. We refer to this problem as K-means
with Minimization of Cluster Impurity (MCI-Kmeans). A
cluster is completely pure if it contains labeled data points
from only one class (along with some unlabeled data). Thus,
the objective function should penalize each cluster for being
impure. The general form of the objective function is as
follows:

OMCIKmeans =
K∑
i=1

∑
x∈Xi

||x− µi||2 +
K∑
i=1

Wi ∗ Impi (2)

where Wi is the weight associated with cluster i, Impi is
the impurity of cluster i and Xi is the set of all (both labeled
and unlabeled) points in cluster i. To ensure that both the
intra-cluster dispersion and cluster impurity are given the
same importance, the weight associated with each cluster is
chosen to be

Wi = |Li| ∗ D̄Li
⇒Wi =

∑
x∈Li

||x− µi||2

where Li is the set of all labeled data points in Cluster
i and D̄Li

is the average dispersion from each of these
labeled points to the cluster centroid. Any impurity measure
can be plugged in to Equation 2. We use the following
impurity measure: Impi = ADCi ∗ Enti, where ADCi is
the “Aggregated Dissimilarity Count” of cluster i and Enti
is the entropy of cluster i. The Dissimilarity count DCi(x, y)
of a data point x in cluster i having class label y is the total
number of labeled points in that cluster belonging to classes
other than y. If x is unlabeled (i.e., y = ∅), then DCi(x, y)
is zero. In other words, DCi(x, y) = 0, if x is unlabeled,
and DCi(x, y) = |Li| − |Li(c)|, if x is labeled and its label
y = c, where Li(c) is the set of labeled points in cluster i
belonging to class c. The “Aggregated Dissimilarity Count”
or ADCi is the sum of the dissimilarity counts of all the
points in cluster i: ADCi =

∑
x∈Li

DCi(x, y). The entropy
of a cluster i is computed as: Enti =

∑C
c=1(−pic ∗ log(pic)),

where pic is the prior probability of class c, i.e., pic = |Li(c)|
|Li| .

After combining all the above terms, our objective func-
tion is

OMCIKmeans =
K∑
i=1

∑
x∈Xi

||x− µi||2 +
K∑
i=1

∑
x∈Li

||x− µi||2∗

∑
x∈Li

(|Li| − |Li(c)|) ∗
C∑
c=1

(
−|Li(c)|
|Li|

∗ log
|Li(c)|
|Li|

)
(3)

Let hip and hjq be the closest pseudopoint from a test data
point x in model Mi and Mj respectively. We define Mi

will have higher confidence than model Mj in classifying
a test data instance x, if including x in hjq increases the
objective function more than including x in hip. We define
the following terms:

∆Dispxi ← increase in intra-cluster dispersion due to
adding x to the closest pseudopoint in the Model Mi.

∆ADCxi ← increase in the “Aggregated Dissimilarity
Count” due to adding x to the closest pseudopoint in the
Model Mi.

∆Entxi ← increase in Entropy due to adding x to the
closest pseudopoint in the model Mi.
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3.4.4 Association
Consider two cases: 1) x is inside only one of hip and hjq .
Without loss of generality, let assume that x falls inside hip
but outside of hjq . Therefore,

R(hip) > Dip(x)⇒ R(hip)−Dip(x) > 0⇒ Ai(x) > 0

and

R(hjq) < Djq(x)⇒ R(hjq)−Djq(x) < 0⇒ Aj(x) < 0

So, from the above equations, we get the following:

Ai(x) > Aj(x) (4)

If x falls inside hip but outside of hjq , hip has a greater
association than hjq . As a result, Mi will have greater
confidence than Mj as expected. Moreover, since the point
x falls outside of decision boundary of hjq but inside of
hip, ||µjq − x||2 > ||µip − x||2 ⇒ ∆Dispxi < ∆Dispxj . So,
including x into hjq increases the objective function value
(Equation 3) more than that of hiq . So, Mi will have more
confidence than Mj in classifying x.

2) Test instance x falls into the same side of both hip and
hjq . Without loss of generality, let assume that, hip and hjq
have similar characteristics (e.g., centroid, radius etc). Let us
also assume that Mi has a higher association than Mj in the
case of classifying x. Therefore, we can deduce:

Ai(x) > Aj(x)

⇒ R(hip)−Dip(x) > R(hjq)−Djq(x)

⇒ R(hip) +Djq(x) > R(hjq) +Dip(x)

⇒ Djq(x) > Dip(x) (since R(hip) = R(hjq))

⇒ ||µjq − x||2 > ||µip − x||2

⇒ ∆Dispxi < ∆Dispxj (5)

So, in case 2, including x into hjq increases the objective
function more than including x into hip. So, in both cases,
greater association leads to better confidence.

3.4.5 Purity
Assume that hip predicts x as an instance of cm and hiq
predicts x as an instance of cn. Let us also assume that hip
and hjq share similar properties except that hip has a higher
purity than hjq in predicting data point x. There can be two
different cases:

1) Both of the pseudopoints contain an equal number of
labeled points, i.e., |Lip| = |Ljq|. Then,

Pi(x) > Pj(x)

⇒ |Lip(cm)|
|Lip|

>
|Ljq(cn)|
|Ljq|

⇒ |Lip(cm)| > |Ljq(cn)| (Since |Lip| = |Ljq|)
⇒ −|Lip(cm)| < −|Ljq(cn)|
⇒ |Lip| − |Lip(cm)| < |Ljq| − |Ljq(cn)| (Since |Lip| = |Ljq|)
⇒ DCip(x, cm) < DCjq(x, cn)

⇒ ∆ADCxip < ∆ADCxjq (6)

2) The pseudopoints contain an unequal number of
labeled points, i.e., |Lip| 6= |Ljq|. Then,

Pi(x) > Pj(x)

⇒ |Lip(cm)|
|Lip|

>
|Ljq(cn)|
|Ljq|

Again since

picm =
|Lip(cm)|
|Lip|

; pjcn =
|Ljq(cn)|
|Ljq|

So,

picm > pjcn ⇒ ∆Entxip < ∆Entxjq (7)

Equation 6 and Equation 7 show that in both cases, in-
cluding x into the closest pseudopoint in model Mj will
increase the value of the objective function more than that
of model Mi. Thus, a higher value of purity leads to higher
confidence.

3.4.6 Effect of Concept Drift on Confidence Score

In this Section, we show that classifier confidence can de-
crease due to a concept drift. First, we will see the relation-
ship between the intra-cluster dispersion in terms of sum
of squared error (SSE) and association. Let SSEp denote the
SSE of pseudopoint hip, µip be the centroid of hip, and x an
arbitrary data point. Therefore, the SSEi of a classification
model is defined as follows:

SSEi =
∑
p

SSEp =
∑
p

∑
x∈hip

(x− µip)2

=
∑
p

nip

∑
x∈hip

(x− µip)2

nip
=
∑
p

nipD̄ip (8)

where D̄ip is the mean distance between a data point in hip
and the centroid of hip, and nip is the number of instances
in hip. Now the Sum of Association of the model Mi can be
formulated as follows:

Ai =
∑
p

Aip =
∑
p

∑
x∈hip

(R(hip)− (x− µip)2)

=
∑
p

nipR(hip)−
∑
p

∑
x∈hip

(x− µip)2

=
∑
p

nipR(hip)− SSEi (9)

Equation (9) concludes that total model association is in-
versely proportional to the model SSE because the pseudo-
point radii are fixed (can be considered constant) on a given
model.

Next, we show that a concept drift increases model
SSE. We describe concept drift as the drift of the decision
boundary, obtained by drifted pseudopoints. Assume, with-
out loss of generality, that concept drift is quantified by
the amount of drift of the pseudopoints, which is obtained
by δip displacement of the centroid of hip for all p in the
model. Assume that a new window (i.e., chunk) appears in
the stream that exhibits the drift. Therefore, the new chunk
can be obtained by moving the center of each pseudopoint
hip in the current model by δip, while keeping the same
distribution of data points in each pseudopoint. Let the
drifted pseudopoint be h′ip. Now if we randomly draw
nip data points from h′ip, and calculate the mean distance
between each a point x′ and the centroid µip (of the old
pseudopoint), the mean distance would be higher by δip
amount. Let SSE′i be the SSE of the new model, and D′ip
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be the mean distance between new data points and old
pseudopoint. Therefore, we can derive that:

SSE′i =
∑
p

nipD
′
ip =

∑
p

nip(D̄ip + δip)

=
∑
p

nipδip +
∑
p

nipD̄ip =
∑
p

nipδip + SSEi > SSEi

(10)

Since SSE′i > SSEi, from equation (9) we can follow up
that A′i < Ai, meaning that association, and as a conse-
quence, confidence in classifying the new data chunk will be
lower because of the concept drift. The higher the amount
of drift, the lower the confidence will be.

3.5 Change Detection and Updating the Ensemble

As discussed earlier, ADCMiner stores predictive perfor-
mance scores in a variable-size window W . On the contrary,
SAND stores confidence scores of the classifier on recent
data instances in W . After inserting each score in W , the
Change Detection module is invoked to check if there is any
significant change of distribution among the values stored
in it.

Algorithm 1 Change Detection Algorithm

1: W ← ∅
2: Th ← −log(α) // α is sensitivity parameter.
3: while true do
4: x← the latest data point in the stream
5: [ŷ, score(x)]← Classify(x) // ŷ is the predicted label

and score(x) is the associated score calculated as
discussed in Section 3.3 and Section 3.4.

6: W ⇐ score(x)
7: N ← |W |; wn ← 0; ecp← −1 // ecp contains the

estimated change point
8: for k ← ∆ to N −∆ do
9: mb ← mean(W [1 : k])

10: ma ← mean(W [k + 1 : N ])
11: if ma ≤ (1− α) ∗mb then
12: Sk ← 0
13: Distb ← estimateParam(W [1 : k])
14: Dista ← estimateParam(W [k + 1 : N ])
15: for i← k + 1 to N do
16: Sk ← Sk + log

(
f(W [i] | Dista)
f(W [i] | Distb)

)
17: end for
18: if Sk > wn then
19: wn ← Sk; ecp← k
20: end if
21: end if
22: end for
23: if wn > Th then
24: retrainClassifier(W )
25: W ←W [ecp+ 1 : N ]
26: end if
27: end while

In both cases, we know the family of underlying dis-
tribution of the values stored in W . Moreover, change
detection in these cases refers to detecting a change of
parameters, not a change of distribution family. Therefore,

we propose a CUSUM (CUmulative SUM) type parametric
change detection algorithm on corresponding distributions
to use in this context. In other words, we design CUSUM
based on a binomial distribution for ADCMiner and CUSUM
based on a beta distribution for SAND.

The overview of the change detection method is the
following. It starts by dividing W into every possible pair
of sub-windows Wb and Wa having at least a minimum
number of values. Then it estimates the parameters of the
distributions in each of the split from the values stored
in the corresponding split. If the number of observations
are sufficiently large, the method of moments estimations
hold consistency and asymptotic normality properties. Our
change point detection method splits W in such a way that
each sub-window contains at least ∆ = 100 observations.
Typically, this number of observations is good enough to
make sure that the estimations of the parameters are close
to the real parameter values. Finally, it detects the change
point based on the sum of likelihood ratios.

Algorithm 1 sketches our change detection method. As
soon as a new test instance arrives, the current version of the
classifier is used to predict the label along with calculating a
score shown at Line 5. Predictive performance and classifier
confidence are used as scores respectively by ADCMiner
and SAND as discussed in Section 3.3 and Section 3.4. Then,
the proposed change detection method divides the window
W for each k between ∆ to N − ∆ where N is the total
number of observations in W . Wb = W [1 : k] contains
relatively older observations and Wa = W [k + 1 : N ]
contains the recent observations. When concept drift occurs,
both predictive performance and confidence values are ex-
pected to be decreased. So, we want to detect the changes in
the negative direction only in both ADCMiner and SAND.
In other words, if ma and mb are the mean values of the
observations in Wa and Wb, we want to detect the change
only when ma < mb. Let α be the sensitivity parameter, we
only execute the change point detection if ma ≤ (1−α)∗mb

to avoid any discrete noise or sudden short term spikes. In
our experiments, we use α = 0.05.

After splitting W into two sub-windows having at least
∆ number of observations, our change detection method
estimates the parameters of the distribution from the values
in each of the splits using the method of moments technique at
Line 13 and 14. The binomial distribution has two parameters,
i.e., the number of trials n and the probability of success p.
In ADCMiner framework, n is estimated by the number of
observations in the sub-window. p is estimated by the mean
value (x̄) in the sub-window. Similarly, the beta distribution
has two positive shape parameters, i.e., α and β. Method of
moments estimations of the parameters of the beta distribu-
tion are the following:

α̂ =
X̄2 − X̄3

s2
− X̄ (11)

β̂ = α̂

(
1

X̄
− 1

)
(12)

Where X̄ is the sample mean and s is the sample standard
deviation. Let Distb and Dista be the estimated distribu-
tions from Wb and Wa respectively. The sum of the log
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likelihood ratios is calculated in the inner loop between
Lines 15 and 17 using the following formula:

Sk =
n∑

i=k+1

log

(
f (W [i] | Dista)

f (W [i] | Distb)

)
(13)

Where f (Xi | Dist) is the probability density function
(PDF) of the distribution Dist applied on the data instance
Xi. The CUSUM process score wn for the values in the
whole window W is calculated in the outer loop between
Lines 8 and 22 using the following formula:

wn = max
∆≤k≤N−∆

Sk (14)

Let kmax be the value of k for which the algorithm calcu-
lated the maximum Sk value where ∆ ≤ k ≤ N − ∆. If
wn is greater than a pre-fixed threshold, then a change point
is detected at point kmax. We fix the threshold based on
the value of the sensitivity α. In our experiments, we use
−log(α) as the threshold value.

If the change detection method detects a change in the
distribution, a new model is built on the data instances
corresponding to scores stored in W and the sub-window
Wb is subsequently dropped. Once a new model is trained,
it replaces the oldest one among the existing models in the
ensemble. This ensures that we have exactly L models in the
ensemble at any given point of time. In this way, the infinite
length problem is addressed because a constant amount of
memory is required to store the ensemble. The concept drift
problem is addressed by keeping the ensemble up-to-date
with the most recent concept.

3.6 Optimal Properties of Proposed Change Detection
Technique
Our proposed CUSUM-type change detection technique is
based on the sum of log-likelihood ratios rather than the raw
observations xi. For this reason, it is able to detect arbitrary
changes in the distribution of xi, and not only the mean
shifts. This is important for our situation, when the range of
observed xi is from 0 to 1. Changes in a location parameter
alone are mere shifts, and they necessarily imply changes of
the range, hence it is important to detect changes in other
parameters. It is proven mathematically that among all the
sequential change-detection procedures with a given rate
of false alarms, the CUSUM rule has the lowest expected
detection delay [2], [24]. Stating this rigorously, the CUSUM
procedure minimizes the “worst” mean delay

ess supEν{(T − ν)+|x1, . . . , xν}

among all the stopping rules with the mean time between
false alarms

E∞(T ) ≥ γ,

where T is the stopping time; (T − ν)+ is the detection
delay which equals 0 if T < ν, i.e., in case of a false alarm;
ess sup represents the longest expected delay given the first
ν data points; this essential supremum is attained when the
CUSUM process equals 0 at the change-point ν [24]; γ is a
chosen positive constant; andE∞(T ), the expected stopping
time given ν = ∞, represents the average time until a false
alarm when no change has ever occurred. This mean time
until a false alarm is used to measure the rate of false alarms.

As discussed in Section 2, various techniques to detect
changes in P (y|X) have been proposed in the literature [5],
[11]. Among them, ADWIN is widely used and provides
rigorous guarantees of performance, as bounds on the
rates of false positives and false negatives [5]. Comparing
with ADWIN, the CUSUM procedure is in general more
optimal. The ADWIN rule guarantees, using the normal
approximation for large window size n, that a false alarm
has probability δ/n at any moment inside the window.
Then the probability of at least one false alarm in a given
window does not exceed n, this rate being preserved by
the Bonferroni inequality, a standard approach to multiple
testing. However, the Bonferroni inequality is not sharp and
not efficient, especially for large n. The CUSUM algorithm
is a sequential procedure that controls the same probability
of a false alarm accurately, based on the analysis of the log-
likelihood ratio process as a random walk instead of the
Bonferroni inequality.

The difference between [24] and our approach is the
presence of nuisance parameters, e.g., α and β of the beta
distribution that we estimate before and after the poten-
tial change point by their maximum likelihood estimators
α̂ and β̂. The resulting generalized-likelihood-ratio (GLR)
process appears exponentially close to the original like-
lihood ratio. That is, the largest difference between the
original CUSUM process and the GLR process with inserted
estimated parameters can exceed an exponentially small
threshold n−β only with an exponentially small probability,
as n → ∞ [3]. Therefore, the GLR-based CUSUM process
remains an asymptotically optimal change detection. While
its mean detection delay is a linear function of the chosen
threshold, its mean time between false alarms is exponen-
tially long [4].

3.7 Analysis on Time and Space Complexity

Our proposed frameworks have mainly four modules, i.e.,
Classification, Change Detection, Novel Class Detection, and
Update. The buffer which stores outliers temporarily is exam-
ined periodically by calling the Novel Class Detection module
to see if a novel class has arrived. Time complexity of the
Novel Class Detection module is O(KW ) where K is the
number of pseudopoints. This module is invoked only when
the buffer contains q number of instances in it. Including this
periodic call to the Novel Class Detection module, the total
time complexity for classification isO(KtW+tW+mKW ),
where t is the number of models in the ensemble classifier
and m = W/q. Since m >> Kt, the total time complexity
for the Classification module is O(mKW ). The time com-
plexity for invoking Change Detection module is O(W 2). So,
the overall time complexity for executing the frameworks
is O(mkW + W 2 + f(W )), where f(W ) is the time to
train a new classifier with W training instances. Most often,
W >> m and W >> k, so the total time complexity
is essentially O(W 2 + f(W )). We use four buffers, i.e.,
filtered outlier buffer, training buffer, unlabeled data buffer and
dynamic sliding window. All the buffers can contain at most
W instances, where W is the maximum allowable size for
the dynamic sliding window. So, space complexity for our
frameworks is O(W ).
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4 EXPERIMENT RESULTS

In this section, we evaluate our proposed approaches both
on several benchmark real-world data sets and synthetic
data sets. We compare performance of our proposed ap-
proach against several well known base-line approaches in
terms of different performance metrics on both classification
and novel class detection.

4.1 Data Sets

We use four real and six different types of synthetic data
sets to test performance of SAND along with some other
baseline approaches. Table 2 depicts the characteristics of
the data sets.

TABLE 2: Characteristics of Data Sets

Name of Num of Num of Num of
Data set Instances Classes Features

ForestCover 150,000 7 54
Electricity 45,312 2 8

Power Supply 29,927 2 24
PAMAP 150,000 19 52
SynCN 100,000 20 40

SyntheticLED 100,000 10 7
HyperPlane 100,000 5 10

SynRBF@0.002 100,000 7 70
SynRBF@0.003 100,000 7 70

The ForestCover data set is obtained from the UCI
repository as explained in [22]. We normalize the data set,
and arrange the data in order to prepare it for novel class
detection so that in any chunk at most three and at least two
classes co-occur, and new classes appear randomly.

The Electricity [23] data set contains data collected from
the Australian New South Wales Electricity Market. In this
market, price is affected by demand and supply. The class
label identifies the change of the price relative to a moving
average of the last 24 hours. The Power Supply [28] data
set contains hourly power supply of an Italian electricity
company which records the power from two sources: power
supply from main grid and power transformed from other
grids. The learning task is to predict which hour (1 out of 24
hours) the current power supply belongs to.

We have also collected the Physical Activity Monitoring
data set (PAMAP) from the UCI [27] repository. In this data
set, nine people were equipped with sensors that gathered a
total of 52 streaming metrics features whilst they performed
activities. Nineteen total activities were identified as class la-
bels - including one category for miscellaneous or transient
activities.

Besides using real-world data sets, we also use syn-
thetically generated data sets. SynCN (Synthetic Data with
Concept-Drift and Novel Class) is a synthetic data set gen-
erated using the following equation:

∑d
i=1 aixi = a0 [22].

There are several parameters that simulate concept-drift in
these data sets. If

∑d
i=1 aixi ≤ a0, then an example is

negative, otherwise it is positive. Each example is a ran-
domly generated d-dimensional vector {x1, . . . , xd}, where
xi ∈ [0, 1].

The SyntheticLED data set is generated using the
MOA [7] framework which simulates the LED digits clas-
sification problem with 10% noise added. In this data set,

seven segments correspond to seven binary features, and
the digits “0” through “9” represent 10 classes.

HyperPlane is a synthetic data stream which is generated
using the equation: f(x) =

∑d−1
j=1 aj

(xj+xj+1)
xj

, where f(x)
is the label of instance x and aj , j = 1, 2, .., d, controls
the shape of the decision surfaces. SynRBF@X are other
synthetic data sets generated using RandomRBFGenerator-
Drift of the MOA [7] framework where X is the Speed of
change of centroids in the model. We generate two such
data sets using different X to check how efficiently different
approaches can adapt to a concept drift.

We use the ForestCover, PAMAP and SynCN data sets
for simulating both concept drift and novel classes. The rest
of the data sets are used to test only concept drift handling
capability of different approaches.

4.2 Experimental Setup
We implemented both ADCMiner and SAND using Java
version 1.7.0.51. To evaluate performance, we used a virtual
machine which is configured with 8 cores and 16 GB of
RAM. The clock speed of each virtual core is 2.4 GHZ.

We compare classification and novel class detection per-
formance of our approaches with ECSMiner [22]. We have
chosen ECSMiner since it is one of the most robust and
efficient frameworks available in the literature for classi-
fying data streams having both concept drift and concept
evolution. However, it uses a fixed chunk size where our
proposed approach uses a variable chunk size based on the
change in classifier performance.

Other than that, we compare classification performance
of the proposed approaches with OzaBagAdwin (OBA)
and Adaptive Hoeffding Tree (AHT) implemented in the
MOA [7] framework, since these approaches seem to have
superior performance than others on the data sets used in
the experiments. Both OBA and AHT uses ADWIN [5] as the
change detector. These approaches do not have a novel class
detection feature. So, we compare these approaches with our
approach only in terms of classification performance.

Other than ECSMiner, we use two more baseline ap-
proaches to compare novel class detection performance of
our proposed frameworks. These two baseline approaches
are a combination of two techniques: OLINDDA [31] and
Weighted Classifier Ensemble (WCE) [33], where the former
works as novel class detector and latter performs classifica-
tion as shown in [22]. OLINDDA assumes that there is only
one “normal” class, and all other classes are “novel”. So, it
is not directly applicable to the multi-class novelty detection
problem, where any combination of classes can be consid-
ered as the “existing” classes. Therefore, two alternative
solutions are proposed. First, parallel OLINDDA models
are built, one for each class, which evolve simultaneously.
Whenever the instances of a novel class appear, a new
OLINDDA model is built for that class. A test instance is
declared as novel, if all the existing class models identify
this instance as novel. We refer to this method as W-OP.
Second, initially an OLINDDA model is built using all the
available classes with the first few instances. Whenever a
novel class is found, the class is absorbed into the existing
OLINDDA model. Thus, only one “normal” model is main-
tained throughout the stream. This will be referred to as
W-OS.
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(a) ForestCover (b) PAMAP (c) SynCN

Fig. 3: Number of Instances v.s. Overall Error of Each Method

TABLE 3: Summary of Classification Results

Name of ADCMiner SAND ECSMiner AHT OBA
Data set Error% Error% Error% Error% Error%

ForestCover 1.12 4.46 4.55 22.89 18.06
Electricity 0.01 0.01 0.022 27.72 22.26

Power Supply 0.01 0.01 0.01 85.59 86.92
PAMAP 9.07 5.01 35.26 8.76 7.27
SynCN 0.01 0.99 0.01 4.81 4.5

SyntheticLED 0.55 0.41 0.41 26.09 26.09
HyperPlane 0.01 0.01 3.73 46.24 48.55

SynRBF@0.002 21.58 31.36 63.43 38.75 37.04
SynRBF@0.003 36.47 39.50 65.39 48.65 46.86

We evaluate each of the above classifiers on a stream by
testing and then training with chunks of data in sequence.
To evaluate ECSMiner, W-OP and W-OS, we use 50 pseudo-
points, ensemble size 6, and 95% of labeled training data as
suggested in [22]. On the other hand, we use 100% labeled
training data in case of OzaBagAdwin (OBA) and Adaptive
Hoeffding Tree (AHT) since training and updating of these
approaches are fully supervised.

4.3 Performance Metrics

Let FN = total novel class instances misclassified as exist-
ing class, FP = total existing class instances misclassified
as novel class, TP = total novel class instances correctly
classified as novel class, Fe = total existing class instances
misclassified (other than FP ), Nc = total novel class in-
stances in the stream, N = total instances the stream.
We use the following performance metrics to evaluate our
technique:

1) Error%: Total misclassification error (percent),
i.e., (FP+FN+Fe)∗100

N .
2) Mnew: % of novel class instances misclassified as

existing class, i.e., FN∗100
Nc

.
3) Fnew: % of existing class instances Falsely identified

as novel class, i.e., FP∗100
N−Nc

.
4) F2: Fβ score provides the overall performance of a

classifier by considering both precision and recall.
In this paper, we use β = 2, which gives us F2 =

5∗TP
5∗TP+4∗FN+FP .

In the case of the F2 measure, a higher value is better. In
case of all the other metrics, a lower value is better.

4.4 Classification Performance

As discussed earlier, most of the state-of-the-art techniques
to classify evolving data stream, e.g., ECSMiner divide the
data stream into fixed-size chunks regardless of occurrence
or intensity of concept drift. However, our proposed ap-
proaches determine the chunk size dynamically based on
the feedback from the classifier, i.e., predictive performance
or confidence values of the classifier. In this way, ADCMiner
and SAND avoid unnecessary training during stable pe-
riods and frequently update the classifier when needed
which is also supported by the experimental results. As an
instance, with increasing speed of change of centroids X in
SynRBF@X data sets, our change detection technique helps
SAND to update the ensemble classifier more frequently to
cope with more frequent concept drift. SAND creates 231
and 249 number of chunks while classifying SynRBF@0.002
and SynRBF@0.003 data sets respectively where ECSMiner
creates the same number of chunks in both of the cases.
ADCMiner creates 522 and 550 number of chunks respec-
tively for the same data sets. On the contrary, SAND and
ADCMiner update the classifier 3 times only in case of
Hyperplane data set comparing with fixed 47 number of up-
dates by ECSMiner approach. This indicates that, SAND and
ADCMiner avoid unnecessary training during the stable
periods and frequently updates the classifier during concept
drift.

Table 3 summarizes the classification error for each of
the techniques on each data set described in Section 4.1.
ADCMiner shows the best performance among all the other
classifier on most of the data sets. However, it requires labels
for all the data instances for maintaining dynamic sliding
windows. SAND, on the other hand, does not requires true
labels of the data instances for maintaining dynamic sliding
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(a) ForestCover Fnew (b) ForestCover Mnew

(c) PAMAP Fnew (d) PAMAP Mnew

Fig. 4: Number of Instances v.s. Novel Class Detection Performance of Each Method

window and determining dynamic chunk size. Still, it shows
very competitive performance compared with ADCMiner
and outperforms other approaches on all the data sets used,
except SynCN. Figure 3 shows overall percentage of error
of all the approaches compared as the stream progresses on
the ForestCover and PAMAP data sets. In the case of the
PAMAP data set, ECSMiner, AHT and OBA exhibit 7.03,
1.75 and 1.45 times more error rate than our proposed
framework SAND. Similarly, in the case of the ForestCover
data set, ECSMiner, AHT and OBA show 1.02, 5.13 and 4.04
times more error rate than SAND.

Only in the case of the SynCN data set does ECSMiner
shows slightly better performance than SAND, yet both of
the approaches achieve less than 1% error rate. It can be
observed that, in the case of the SynCN data set, the other
approaches also show comparatively better results than on
the rest of the data sets. This indicates that the SynCN data
set contains less frequent concept drift compared with other
data sets. Since ECSMiner uses a fixed-chunk size, it up-
dates the model more frequently during stable time periods
than SAND. From the experiments, we know that SAND

updates the ensemble classifier only 30 times compared
to the 47 number of updates by ECSMiner. So, ECSMiner
gains slightly better accuracy in expense of more frequent
training and updating the ensemble. These results indicate
that our proposed change point detection algorithm help
the framework to detect concept drift efficiently compared
to ADWIN which is used in the AHT and OBA approaches.

4.5 Novel Class Detection Performance
Table 4 summarizes the novel class detection performance
of SAND and ECSMiner on different data sets. Similar to
the classification results, ADCMiner shows the best perfor-
mance in terms of Mnew, Fnew and F2. However, SAND
does not use any labeled instances for determining dynamic
chunk sizes, yet shows very competitive results on all the
data sets. SAND clearly outperforms ECSMiner in terms of
novel class detection on the PAMAP data set. It shows 1.25,
8.28 and 1.71 times better performance than ECSMiner in
terms of the Mnew, Fnew and F2 measures. On the contrary,
SAND shows very competitive performance compared with
ECSMiner in the case of the ForestCover and SynCN data
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TABLE 4: Summary of Novel Class Detection Results

Data set Method Mnew Fnew F2

ForestCover ADCMiner 0.0 0.225 0.998
SAND 8.45 1.05 0.83
ECSMiner 8.42 2.13 0.88
W-OP 27.206 4.226 0.718
W-OS 67.727 0.661 0.368

PAMAP ADCMiner 0.04 16.31 0.96
SAND 0.04 4.53 0.77
ECSMiner 0.05 37.53 0.45
W-OP 60.09 10.86 0.32
W-OS 36.57 1.81 0.64

SynCN ADCMiner 0.0 0.0 1.0
SAND 0.0 0.01 0.99
ECSMiner 0.0 0.0 1.0
W-OP 13.41 1.31 0.86
W-OS 82.55 0.28 0.20

sets. ECSMiner gains slightly better performance due to
more frequent updates as discussed above. Figure 4 shows
performance of all the approaches in terms of Fnew and
Mnew on the ForestCover and PAMAP data sets as the
stream progresses. It shows that, ADCMiner and SAND
dominate other approaches in novel class detection perfor-
mance.

So, empirical data show that, both of the proposed
approaches are very effective for classifying evolving data
streams. Moreover, SAND shows very competitive perfor-
mance regardless of using no labeled data for dynamic
window management.

5 CONCLUSION

In this paper, we present two complete frameworks, i.e.,
ADCMiner and SAND which use feedback from the classi-
fier to detect chunk boundaries dynamically. These dynamic
chunks are then used to update the existing classifier to
adapt to the concept drift or concept evolution problems.
ADCMiner uses classifier predictive performance as clas-
sifier feedback, which requires labeled data instances. To
avoid this, SAND monitors classifier confidence values to
determine chunk sizes. We integrate novel class detection
capability to the both of the frameworks. We show that,
SAND exhibits very competitive performance comparing
with ADCMiner, in spite of not using any labeled data in-
stances. In the future, we would like to extend our approach
for better semi-supervised learning using active learning
technique.
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