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Abstract

One of the most widely-used statistical procedures for dimensionality reduction of high di-

mensional random fields is Principal Component Analysis (PCA), which is based on the

Karhunen-Loève expansion (KLE) of a stochastic process with finite variance. The KLE

is analogous to a Fourier series expansion for a random process, where the goal is to find

an orthogonal transformation for the data such that the projection of the data onto this

orthogonal subspace is optimal in the L2 sense, i.e, which minimizes the mean square error.

In practice, this orthogonal transformation is determined by performing an SVD (Singular

Value Decomposition) on the sample covariance matrix or on the data matrix itself. Sam-

pling error is typically ignored when quantifying the principal components, or, equivalently,

basis functions of the KLE. Furthermore, it is exacerbated when the sample size is much

smaller than the dimension of the random field. In this paper, we introduce a Bayesian KLE

procedure, allowing one to obtain a probabilistic model on the principal components, which

can account for inaccuracies due to limited sample size. The probabilistic model is built via

Bayesian inference, from which the posterior becomes the matrix Bingham density over the

space of orthonormal matrices. We use a modified Gibbs sampling procedure to sample on

this space and then build a probabilistic Karhunen-Loève expansions over random subspaces

to obtain a set of low-dimensional surrogates of the stochastic process. We illustrate this

probabilistic procedure with a finite dimensional stochastic process inspired by Brownian

motion.

Keywords: Karhunen-Loève expansion, Principal Component Analysis, uncertainty

quantification, Bayesian inference, matrix Bingham density, Gibbs sampling, Markov
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1. Introduction

The Karhunen-Loève theorem briefly states that a square integrable stochastic process

can be represented by a linear combination of orthogonal functions, typically taken to be

eigenfunctions of the covariance function of the stochastic process, with random coefficients

[1]. To find the eigenfunctions of the covariance function, one can employ solvers for the5

Fredholm integral equation of the second kind [2], or, in the case of a discrete finite process,

utilize Principal Component Analysis (PCA), which is a ubiquitous statistical procedure for

model reduction of high-dimensional random data [3]. In this paper, we will consider the

latter by only looking at discrete stochastic processes (or discretized versions of continuous

stochastic processes).10

The eigenfunctions in the Karhunen-Loève expansion (KLE) are known as the principal

components or directions, and in many cases, since the covariance function is not known

exactly, they are approximated from the sample covariance matrix. This can be done by

performing an eigenvalue/ eigenvector decomposition of the sample covariance matrix or,

more efficiently, by performing a singular value decomposition on the data itself. A conse-15

quence of working with sample data is that there is an underlying statistical uncertainty in

computing these principal components. For different sets of realizations of the stochastic

process, the sample covariance will change and thus the principal components will vary.

Often this statistical variance, which is worse when the sample size is much smaller than the

dimensionality of the stochastic process, is ignored, but a single set of principal components20

is still used. In the context of uncertainty quantification, it is important to understand

and utilize the full probabilistic structure of the underlying quantity of interest - in this

case being a stochastic process, which includes the principal components. Ignoring the full

probabilistic structure while only using first or second order the summary statistics, e.g.

means and/or variances, can lead to drastic under or over-estimates of quantities of interest25

[4]. More simply, it is incorrect to model the principal components deterministically. Other

methods do exist, which take a slightly different route and place a distribution on the covari-

ance matrix itself, incorporating the use of the Wishart and inverse Wishart distributions

[5]. Often these methods require the sample covariance matrix to be fully ranked, and so

one must explore algorithms that condition the covariance matrix, e.g., shrinkage methods,30

etc [6]. The method described in this paper does not require any type of conditioning or

inversion of the covariance matrix directly.
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In this paper, we derive the matrix Bingham density for the principal components, which

is a measure on the space of orthonormal matrices, i.e., the Stiefel manifold. This gives

us a probabilistic characterization of the principal directions which best explain the data.35

In order to derive this density, we utilize the classical minimum reconstruction procedure

for determining the principal components. Once we obtain the appropriate density on the

Stiefel manifold, we introduce a modified Gibbs sampling procedure, similar to the algorithm

introduced by Hoff [7], to obtain samples of the principal components which can account

for statistical uncertainty due to limited sample size. From this we obtain a collection of40

random subspaces onto which we can project our data and obtain random Karhunen-Loève

expansions, i.e., low dimensional representations of our data.

Similar work can be found in topics related to probabilistic PCA algorithms and Factor

Analysis, which formalize the problem in a more classical Bayesian framework, but utilize

Expectation-Maximization algorithms to arrive at a single set of principal components [8].45

Our work differs in that we can obtain multiple samples of the principal components on the

manifold which describes the density of these principal components.

This paper is structured as follows. In Section 2 we briefly describe the mathematical

setup and derivation of classical PCA. In Section 3 we derive the posterior density on the

principal components in a Bayesian setting. Section 4 details the Gibbs sampling procedure50

used to sample from the density derived in the previous section. Section 5 describes how one

can use the Bayesian framework to arrive at random KLE’s. Finally, Section 6 illustrates

these sampling methods on low and high-dimensional random processes.

2. Setup and Derivation of the Principal Components

55

Consider the space of all m × R real, orthonormal matrices, referred to as the Stiefel

manifold, denoted by VR,m. The Stiefel manifold consists of matrices whose columns live

on Sm−1, i.e., the surface of the m-dimensional unit sphere. Given a collection of n real-

izations of an m-dimensional zero-mean stochastic process, x, or random field, denoted by

{x1, . . . , xn}, xi ∈ Rm, the principal components can be derived using the following min-60

imum reconstruction argument. Note that if x is not a zero-mean process, we can simply

consider x − x̄, where x̄ is the exact or sample mean. Let Φ ∈ Rm×R be some element in

VR,m so that its columns form an orthonormal basis for some R-dimensional subspace in an
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m-dimensional space. Consider the reconstruction or projection error of the data onto this

R-dimensional subspace Φ, i.e., the mean square error:65

Err(Φ) =

n∑
i=1

‖xi − ΦΦTxi‖2, (1)

where ΦΦT ∈ Rm×m is the projection matrix, and ‖ · ‖2 is the usual Euclidean norm. PCA

attempts to find an orthonormal matrix Φ which has the least projection error,

Φ∗ = arg min
Φ∈VR,m

n∑
i=1

‖xi − ΦΦTxi‖2, (2)

where the columns of Φ∗ ∈ Rm×R are referred to as the R principal components. Equiva-

lently, in the derivation of the the Karhunen-Loève expansion, one tries to find the eigen-

functions which minimize the mean square error. In practice, in order to determine the70

principal components, one can solve (2) analytically. Expanding the sum for Err(Φ) gives

Err(Φ) =

n∑
i=1

xTi xi − xTi ΦΦTxi. (3)

Since the minimization in (2) is only over Φ ∈ VR,m, the first term on the right hand side

can be ignored. This results in

Φ∗ = arg max
Φ∈VR,m

n∑
i=1

xTi ΦΦTxi. (4)

Let X ∈ Rm×n denote the data matrix where the ith column is xi and recall that the trace

of a matrix is the sum of the diagonal elements. Then, (4) can be more compactly written75

as

Φ∗ = arg max
Φ∈VR,m

tr(ΦT (nS)Φ), (5)

where tr denotes the matrix trace and S ∈ Rm×m is the sample covariance matrix, i.e.,

S = n−1XXT , where we have assumed x is a zero-mean stochastic process. Now, using (5)

it can be shown that Φ∗ is exactly the set of eigenvectors of S which have the R largest

eigenvalues [3]. It can also be shown that tr(ΦTSΦ) represents the sum of the variance80

along each orthonormal column in Φ. Thus, (5) shows an equivalence between the minimum

reconstruction derivation of PCA (2) and the maximum variance derivation.

One can equate the optimization problem (5) to an iterative optimization procedure

where we solve for Φ∗ one column at a time. We briefly detail this approach since it
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will be illustrative in understanding how to sample matrices on the Stiefel manifold while85

retaining orthogonality. In order to solve (5) one column at a time, we can first find the

m-dimensional orthonormal vector, φ1 ∈ Rm with φT1 φ1 = 1, that maximizes φT1 Sφ1. φ1

represents the direction onto which the data exhibits maximum variance, which turns out

to be the eigenvector of S with the largest eigenvalue. Next, in order to find the second

principal component, we seek another orthonormal vector, φ2 ∈ Rm such that φT2 φ2 = 190

and φT1 φ2 = 0, which maximizes φT2 Sφ2. The method of Lagrange multipliers yields the

eigenvector with the second largest eigenvalue. This process can be repeated in order to

determine the remaining columns of Φ∗. In the next section, when we introduce the Bayesian

procedure for obtaining samples on the principal components. We will utilize this iterative

Bayesian procedure to obtain orthogonal samples.95

3. Bayesian approach to PCA

Let us assume that the projection error can be modeled by i.i.d white noise. That is,

x− ΦΦTx = η, (6)

where η ∈ Rm and η ∼ N (0, σ2I). Let us define the conditional density for the data, x,

given the principal components, Φ, to be proportional to the projection error, i.e., p(x|Φ) ∝100

p(x− ΦΦTx). Then,

p(x|Φ, σ) ∝ exp

(
− 1

2σ2
ηT η

)
, (7)

which follows from (6). We refer to p(x|Φ, σ) as the likelihood of the data. One can think

of the likelihood, p(x|Φ, σ), for a fixed x and σ, as purely a function of Φ, denoted by

g(Φ)
.
= p(x|Φ, σ). Then, g(Φ) can be interpreted as a penalization or cost function for Φ,

which we can use to minimize the mean square error.105

Let π(Φ) be the uniform density on the Stiefel manifold for Φ ∈ VR,m. That is,

π(Φ) ∝ 1{Φ∈VR,m}(Φ), (8)

where

1{Φ∈VR,m}(Φ) =

 1, Φ ∈ VR,m
0, Φ 6∈ VR,m
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Bayes’ rule then gives

p(Φ|x, σ) ∝ p(x|Φ, σ)π(Φ), (9)

where the proportionality is up to a constant, which only depends on the data, and the

noise term, σ ∈ R+, is fixed for now. If we let X be the data matrix where the columns are110

i.i.d. realizations of x, then (9) can be written more explicitly as

p(Φ|X,σ) ∝
n∏
i=1

p(xi|Φ, σ)π(Φ), (10)

Plugging (7) into (10), gives

p(Φ|X,σ) ∝ exp

(
− 1

2σ2

n∑
i=1

‖xi − ΦΦTxi‖2
)

1{Φ∈VR,m}(Φ). (11)

Finally, after some algebra, one can show that

p(Φ|X,σ) ∝ etr(ΦT (nS)Φ/2σ2)1{Φ∈VR,m}(Φ), (12)

where etr is the exponential trace of a matrix, S
.
= n−1XXT , and the prior probability

distribution is over the Stiefel manifold, VR,m. The density in (12) is referred to as the matrix115

Bingham density, which is a density on Sm−1 (see [9] for more details on the normalization

constant).

Sampling from this density can be tricky because samples from the matrix Bingham

density must be (m×R)-dimensional orthonormal matrices. To sample from (12) we propose

breaking up the density into conditional densities over the individual columns of Φ, utilizing120

the chain rule for probability densities. Thus, we can write the posterior as

p(Φ|X,σ) ∝ p(φ1|X,σ)p(φ2|φ1, X, σ) · · · p(φR|φ1, . . . , φR−1, X, σ), (13)

where Φ = [φ1 · · ·φR] ∈ Rm×R, subject to orthonormality between φ1, . . . , φR. To be clear,

the conditional densities in (20) are as follows:

p(φ1|X,σ) ∝ exp(φT1 (nS)φ1/2σ
2), ‖φ1‖2 = 1 (14)

p(φ2|φ1, X, σ) ∝ exp(φT2 (nS)φ2/2σ
2), s.t. φ2 ⊥ φ1, ‖φ2‖2 = 1

...

p(φR|φ1, . . . , φR−1, X, σ) ∝ exp(φTR(nS)φR/2σ
2), s.t. φR ⊥ φ2, . . . , φR−1, ‖φR‖2 = 1.
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For each conditional density we will use a Gibbs sampling procedure. Each conditional

density is not independent of its predecessors so some maneuvering must be taken in order125

to sample over the correct orthogonal space, which is explained in the next section. In short,

we will first show how to sample p(φ1|X,σ), then use a simple linear transformation using

the left null space of φ1 to generate samples from p(φ1|φ2, X, σ), and so on.

4. Sampling the Posterior Density

130

In this section, we will show how to sample from (20) where each conditional density

is defined by (14) using Hoff’s Gibbs sampling algorithm introduced in [7]. Note that the

algorithm presented here is a slight modification of the aforementioned algorithm, which

will give us a set of ordered vectors, analogous to retrieving principal components in order

of decreasing variance. Without this modification, we loose the ordering of the principal135

components in order of decreasing variance. Nonetheless, both algorithms will produce

principal components from the matrix Bingham density defined in (12).

First, in Section 1 we will describe how to sample the vector Bingham density, i.e. (12)

for R = 1. Then, in Section 4.2 we will introduce a fairly simple trick to sample from the

full matrix Bingham density using a left null space transformation.140

4.1. Sampling the vector Bingham density

Consider the vector Bingham density on the m-dimensional sphere with respect to the

uniform distribution over the unit sphere,

p(φ|A) ∝ exp(φTAφ)1{φ∈V1,m}(φ). (15)

Without loss of generality, let us assume that A ∈ Rm×m is symmetric. For the purposes145

of this paper, A is in fact proportional to the sample covariance matrix, i.e., A = nσ−2S/2,

which is always semi-positive definite. Since this matrix A is symmetric, it always admits

an eigenvector/ eigenvalue decomposition

A = UΛUT , (16)
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where U ∈ Rm×m is unitary and Λ ∈ Rm×m is diagonal and has non-negative values. If we

transform our density under the isometric mapping U , letting y = UTφ, then we can write150

(15) under the new variable y as

p(y|E,Λ) ∝ exp

(
m∑
i=1

λiy
2
i

)
1{y∈V1,m}(y), (17)

where λi’s are the eigenvalues of S. Note that since the change of variables is given by a

linear, unitary mapping U , the determinant of the Jacobian is 1. Furthermore, we can write

the probability density function for s(y)
.
= 1{y∈V1,m}(y) explicitly as

s(y) ∝ s(y) =

(
1−

m−1∑
i=1

y2
i

)−1/2

, s.t.y2
m = 1−

m−1∑
i=1

y2
i . (18)

Note that the uniform density over the sphere Sm−∞ only has m− 1 degrees of freedom due155

to the normality constraint. Thus, the density in (17) can be explicitly written as

p(y|E,Λ) ∝ exp

(
m∑
i=1

λiy
2
i

)(
1−

m−1∑
i=1

y2
i

)−1/2

, s.t. y2
m = 1−

m−1∑
i=1

yi. (19)

A Gibbs sampling procedure can be performed to sample from (19), which means that we

need to derive the one-dimensional conditional densities for (19). Hoff suggests performing

a simple transformation before deriving the conditional densities for p(y|E,Λ), in order

to improve the mixing of the Markov Chain [7, 10]. We briefly go over the suggested160

transformation.

In a straightforward Gibbs sampling procedure for (19), we need to sample from p(yi|y−i, E,Λ)

where

y−i = (y1, . . . yi−1, yi+1, . . . ym) ∈ Rm−1.

This conditional density is hard to sample from in practice, so we perform the following

transformation. Let θ
.
= y2

i and define165

q
.
=

1

1− θ
(y2

1 , . . . y
2
i−1, y

2
i+1, . . . y

2
m),

so that {y2
i , y

2
−i} = {θ, (1 − θ)q−i}. Then, after some calculation, Hoff shows that the

conditional density, p(yi|y−i, E,Λ), in terms of θ
.
= y2

i

p(θ|q−i, E,Λ) = exp(θ[λi − qT−iλ−i])θ1/2(1− θ)(m−3)/2, (20)
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where λi is the ith diagonal element of Λ. Since we are making a change of variables, we

will also need the determinant of the Jacobian which is given by the following:∣∣∣ dθdyi ∣∣∣ = 2|yi| = 2θ1/2
∣∣∣ dqjdyj

∣∣∣ = 2
|yj |

1−yj2
= 2q

1/2
j (1− θ)1/2, , j 6= i. (21)

In order to sample (20) over θ ∈ (0, 1), we can proceed in either of two directions. The170

first is the most straightforward, but not the most efficient. In the first approach, we can

either build the inverse cumulative distribution function (CDF) via interpolation and then

sample based on the inverse CDF method, or evaluate p(θ|q−i, E,Λ) at a set of uniform grid

points, weight them according to their PDF value, and then draw samples from this discrete

density. A more efficient alternative is to use a rejection sampler. The target density (20)175

is of the form

p(θ|q−i, E,Λ) ∝ θ−1/2(1− θ)k−1eθa, (22)

where k = (m−3)/2 and a = λi− qT−iλ−i. In order to obtain a proper rejection sampler, we

need a proposal density f(θ), also known as an envelope function, s.t Mf(θ) > p(θ|q−i, E,Λ)

for some fixed constant M > 0. Since (22) is very similar to a beta density, Hoff proposes

using a beta(1/2, 1 + k ∧ [(k − a) ∨ −1/2]) envelope which works well for many choices of180

k and a [7]. Note that choosing the constant M is not trivial in practice. Please see the

companion R implementation to [7] for a proper choice of M .

Under the Gibbs sampling approach the above procedure generates a Markov chain in

{y2
1 , . . . , y

2
m} with a stationary distribution equal to p(y2

1 , . . . , y
2
m|E,Λ) [7]. The sign of

yi does not actually effect the density so it can be randomly assigned. The algorithm is185
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summarized below.

Input: A, φ(0) = e1, where e1 is the canonical unit vector

Output: Gibbs sample from p(φ|A)

Let A = ETΛE and set y = ETφ;

for i = 1, . . . ,m, in random order do

Set {q1, . . . , qm} = {y1/(1− y1)2, . . . , ym/(1− ym)2} ;

Sample θ ∈ (0, 1) from p(θ|q−i, E,Λ) ∝ θ−1/2(1− θ)keθa with k = (m− 3)/2 and

a = λi − qT−iλ−i;

Sample si on {−1,+1} using a binomial with p = .5;

Transform θ back to y: yi = siθ
1/2 and yj = (1− θ)qj for j 6= i;

end

Transform y back to φ: φ = Ey ;

Add new sample to the Markov chain: φ(1) = φ

Algorithm 1: Gibbs sampler for the vector Bingham density.

Algorithm 1 can be repeated to obtain a Markov chain of samples from the vector

Bingham density. In practice, the mixing seems to work rather quickly, usually with a

burn-in of only about five to ten samples. Figure 1 shows samples from a three-dimensional190

vector Bingham density using this Gibbs sampling procedure outlined above. Notice that

the distribution is bi-modal because the vector Bingham density is antipodally symmetric,

i.e., the density is invariant under a scalar multiplication by −1. In the next section, we

explore how one obtains samples from the individual conditional densities in (14), i.e., a set

of orthogonal vectors.195

4.2. Sampling the matrix Bingham Density

In the previous section we discussed how to sample from the vector Bingham density.

Now, we will explain how to sample from the conditional densities given in (14). In general,

suppose we want to sample from the vector Bingham density (15) subject to φ ⊥ Ψ where200

Ψ ∈ Rm×k is some set of k orthonormal columns, with k < R. This density can be written

as

p(φ|A, φ ⊥ Ψ) ∝ exp(φTAφ)1{φ∈V1,m,φ⊥Ψ}(φ) (23)

In short, to sample from this density, we will write φ as a function of the left null space of Ψ
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Figure 1: Samples of a three-dimensional vector Bingham density. Arrows indicate the direction of the

principal eigenvector. Points in green indicate the samples from the vector Bingham density, while points

in blue indicate samples from the Stiefel manifold, illustrating the surface of the sphere, S2.

and show that under this linear, isometric mapping, the density is again a vector Bingham

density.205

To show this, let N ∈ Rm×m−k be an orthonormal basis for the left null space of

Ψ ∈ Rm×k. That is, for l ∈ Rm in the span of the columns of N , we have lTΨ = 0. Now, if

φ must be orthogonal to Ψ, then φ must be a linear combination of the columns of N , i.e.,

φ = Nz for some z ∈ Sm−k, i.e., a vector on the (m− k)-dimensional unit sphere. Then we

can perform the following change of variables for (23)210

p(φ = Nz|A) ∝ exp((Nz)TA(Nz))1{z∈V1,m−k}(z)

= exp(zT Ãz)1{z∈V1,m−k}(z), (24)

where Ã
.
= NTAN . Thus, (24) is again a vector Bingham density. This means we can use

Algorithm 1 again. In particular, we can use Algorithm 1 in an iterative fashion to sample

from the conditional densities defined in (14), with A defined as nσ−2S/2.

In summary, consider matrix Bingham density

p(Φ|A) ∝ exp(ΦTAΦ)1{Φ∈Vm,R}(Φ), (25)
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subject to Φ ∈ VR.m, where Φ = [φ1, . . . , φR]. We can now sample from this density using215

the following algorithm.

Input: A, Φ(0) = I, where I is the m×R identity matrix.

Output: Set of Gibbs samples from p(Φ|A)

Using Algorithm 1 generate M samples from p(φ|A), denoted by {φ(1)
1 , · · · , φ(M)

1 };

for r = 2, . . . ,m do

for j = 1, . . . ,M do

Let Ψj
.
= [φ

(j)
1 · · ·φ

(j)
r ], s.t. Ψ ∈ VR,r−1;

Compute the Null space of Ψj , Nj ∈ Rm×m−r+1;

Set Ãj = NT
j ANj ;

Use Algorithm (1) to get sample of z ∼ exp(zT Ãz);

Transform z to get sample of φr: φ
(j)
r = Njz;

end

end

Algorithm 2: Gibbs sampler for the matrix Bingham density using conditional densities.

Since the Gibbs sampling procedure for the vector Bingham density converges to the

unique stationary distribution, giving us exact samples from each conditional density in

(14), Algorithm (2) will converge to the target matrix Bingham density as well (see [11, 7]220

for more details about convergence of the Gibbs sampler).

In summary, Algorithm (2) obtains samples of the matrix Bingham density by breaking

up the joint density into conditional densities, using the chain rule, for which each conditional

density can be sampled via the vector Bingham algorithm. This allows flexibility in obtaining

the orthonormal vectors Φ in two ways. First, by obtaining samples of the conditional225

densities, one can choose to increase R, i.e., the number of basis elements of Φ, adaptively

if more basis terms are needed. Secondly, if one is probabilistically certain of a particular

subset of the columns of Φ, i.e., one might know the first few columns exactly, then Algorithm

(2) can be used to sample over the space orthogonal to the know subspace. This allows one

to obtain a probability distribution on select columns of Φ only.230

Hoff proposes a more classical Gibbs procedure, which is perfectly valid for a fixed choice

of R [7]. Essentially, Hoff’s Gibbs sampling algorithm runs over each individual column of Φ,

while fixing all other columns simultaneously. He shows that this algorithm indeed generates

a reversible, irreducible, aperiodic Markov chain for R < m. The difference between the

algorithms introduced in this paper and Hoff’s algorithm is that the principal components235
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obtained in the latter formulation will not necessarily be ordered in decreasing projection

error. In contrast, Algorithm (2) will indeed give us a set of ordered principal directions.

This is more consistent with computational techniques involving SVD used to compute

principal component vectors, which return the orthonormal vectors in order of decreasing

variance. This ordering is useful in determining which basis terms to keep in the Karhunen-240

Loève expansion. Typically, the basis terms are chosen so that the cumulative energy, given

by Σji=1λ
2
i /Σ

m
i=1λ

2
i where j ≤ m is the number of basis terms retained and λi’s are the

variances along the respective φi directions, is above a prescribed threshold, i.e. 90%. In

order to illustrate this point, Figure 2 shows samples of a three-dimensional matrix Bingham

density with m = 3 and R = 2. Both algorithms provide samples from the same density, but245

Algorithm (2) provides samples in the correct ordering. Note that both algorithms provide

subspaces which are more-or-less equivalent under rotation.

Figure 2: The samples on the left provide samples around the vectors determined by PCA, while Hoff’s

algorithm on the right provide equivalent samples, but under different rotations.

5. Random Karhunen-Loève Expansions

The Karhunen-Loève theorem states that one can represent any square integrable stochas-250

tic process as a linear combination of deterministic, orthogonal vectors, whose coefficients

are uncorrelated, but not necessarily independent, random variables [12, 13]. To be precise,

for a zero-mean, m-dimensional stochastic process W ∈ Rm, and any set of m orthonormal

basis functions Ψ = {ψ1, . . . , ψm} where ψi ∈ Rm, one can write

W
d
=

m∑
i=1

αiψi, (26)
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where {αi = 〈W,ψi〉}mi=1 constitute a set of uncorrelated random variables induced by the255

projection of W onto each ψi, and equality is given in distribution. Typically, one chooses

the basis functions, ψi, to be the eigenvectors of the covariance matrix of W (or the sample

covariance matrix if one is only given samples of the stochastic process), where λi are the

corresponding eigenvalues. In this way, the expansion (26) can be optimally chosen in the

L2 sense if one chooses eigenvectors in decreasing order of eigenvalues, i.e. ψi are ordered260

such that λ1 ≥ · · · ≥ λm. In particular, Parseval’s theorem gives

E

(W − R∑
i=1

αiψi

)2
 =

m∑
i=k+1

λ2
i ,

where R ≤ m. Thus, for R < m, if the residual eigenvalues are small, the k-dimensional

approximation,
∑R
i=1 αiψi, to W may be a sufficient representation of the original stochastic

process, at least in distribution.

In the present context, we no longer have a single set of principal components, but rather265

a set of M random subspaces {Φ(1), . . . ,Φ(M)}, where Φ(i) ∈ VR,m are sampled from (5)

via the Gibbs sampling procedure outlined in Algorithms (1) and (2). Thus, each set of R

orthonormal basis functions, Φ(i), admits M Karhunen-Loeve approximates to the stochastic

process W : 
R∑
j=1

α
(i)
j φ

(i)
j


M

i=1

, (27)

where Φ(i) = {φ(i)
1 , . . . , φ

(i)
R } contains R orthonormal m-dimensional columns. For each fixed270

i, the distribution on coefficients, {α(i)
1 , . . . , α

(i)
R } can be determined by projecting samples

of W onto each basis vector φ
(i)
j . That is, samples of {α(i)

1 , . . . , α
(i)
R } are given by

{〈φ(i)
1 , xj〉, . . . , 〈φ(i)

R , xj〉}Mj=1. (28)

It is important to note that even though the individual α
(i)
j ’s are uncorrelated random

variables, they may not be independent. Thus, the full joint density must be determined

in most cases, unless independence is known. For a Gaussian process W , uncorrelated, in275

fact, implies independence, and, moreover, one can show that the α
(i)
j ’s are independent,

zero-mean normal random variables with variance E[〈φ(i)
j ,W 〉2]. In all other cases, in order

to obtain the full joint density on {α(i)
1 , . . . , α

(i)
R } from the projection samples (28), one could

use kernel density estimation (KDE) along with the inverse Rosenblatt transformation, to

produce a polynomial chaos expansion (PCE) for the α
(i)
j ’s [14, 15]. A thorough discussion280
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of alternative methods for inferring the full joint density on the coefficients goes beyond the

scope of this paper, so we refer the readers to the references.

6. Examples

In this section, we illustrate the approaches introduced in the previous sections on a285

discretized version of a continuous time, square integrable stochastic process, given by

Wt =

3∑
k=1

ξk√
π
(
k − 1

2

)√2 sin

((
k − 1

2

)
πt

)
, (29)

for t ∈ [0, 1], ξk ∼ N (0, 1), where
{√

2 sin
((
k − 1

2

)
πt
)}3

k=1
are the first three eigenfunctions

of the covariance function for standard Brownian motion, and
{

1/
√
π
(
k − 1

2

)}3

k=1
are the

corresponding eigenvalues. We discretize in time to obtain an m-dimensional approximation,

Wm = (w1, . . . , wm) ∈ Rm, to (29), where290

wj =

3∑
k=1

ξk√
π
(
k − 1

2

)√2 sin

((
k − 1

2

)
π
j

N

)
, (30)

for j = 1, . . . ,m. Figure 3 shows the the first three PCA modes, in absolute value, of Wm

with m = 100, alongside realizations of this finite-dimensional stochastic process.

Figure 3: (left) First three PCA modes for Wm. Absolute value is shown since the principal vectors are

invariant under scalar multiplication by -1. (right) Realizations of the stochastic process Wm.
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6.1. Samples from the matrix Bingham density

Suppose we are given n realizations of our stochastic process, where n � m (this is295

not a requirement but is indicative of a scenario in which we have very few samples of a

discrete random process relative to the dimensionality). Assuming a fixed noise parameter

value, σ, we use the Bayesian KLE approach outlined in Algorithm (2) to obtain samples of

the principal components. Figure 4 shows the spread of samples from the matrix Bingham

density (12), illustrated by the shaded regions, color coded for each principal mode. Figure300

4 also displays a single realization from the matrix Bingham density, which lives on the

Stiefel manifold V3,100.

Figure 4: (left) Shaded regions represent ±2σ error bars for principal components sampled from the matrix

Bingham density. Black lines represent the PCA modes, which are the eigenvectors of the sample covariance

which are computed from performing an SVD. (right) One sample from the matrix Bingham density. In this

example, n = 25, m = 100, and σ = .1. Again, absolute values are shown since the density is antipodally

symmetric.

If the noise parameter, σ, is not known, the Gibbs sampling procedure makes it fairly

easy to obtain a posterior on the noise, given an appropriate choice of a prior. In fact, by

choosing the conjugate prior on 1/σ2 to be gamma(α, β), then305

p(1/σ2|Φ, X) ∼ gamma

(
α+

n

2
, β +

1

2

n∑
i=1

‖xi − ΦΦTxi‖2
)
, (31)

where p(Φ|X,σ) is defined in (12). Figure 5 shows samples of the matrix Bingham density

for n = 25 when we impart a gamma prior on 1/σ2. Note the similarity to the results shown

in Figure 4. In general, if one does not choose a conjugate prior on σ, one can perform a

Metropolis-Hastings accept/ reject scheme for σ, for every sample of Φ, and then iterate
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between the two. This approach is known as Metropolis-within-Gibbs sampling or block310

MCMC [16].

Figure 5: (left) Shaded regions represent ±2σ error bars at each point in time for samples from the matrix

Bingham density. Black lines represent the PCA modes, which are the eigenvectors of the sample covariance.

(right) Samples from the matrix Bingham density. In this example, n = 25, m = 100, and the prior on 1/σ2

is given by beta(100, .1). Again, absolute values are shown since the density is antipodally symmetric.

An important observation from these figures is that the samples from the matrix Bing-

ham density exhibit a large amount of fluctuation, compared with the vectors obtained via

traditional PCA, which, in general, seems far smoother as a function of t. This is not a

consequence of the Gibbs sampling algorithm, but rather a consequence of the assumption315

on the data likelihood in (6), which assumes that the projection error is i.i.d Gaussian white

noise. This assumption is equivalent to having a matrix Bingham density for the principal

directions (12), and, furthermore, indicates that the manifold defined by the matrix Bing-

ham density does not impose any smoothness constraint, and, in fact, gives more weight

to noisy realizations. In other words, samples from the matrix Bingham density are inher-320

ently noisy as illustrated by Figures 5 and 6. If one does require some degree of regularity

on the principal component samples, one can either use a different conjugate prior on the

noise enforcing smaller σ2 values, or impose a prior on Φ in (12) which tends to smooth the

samples. For example, if D is the m-dimensional, first-order, finite difference operator, then

one might consider325

p(Φ|X,σ) ∝ etr(ΦTn(S − δDTD)Φ/2σ2), (32)

where δ > 0 is a tunable parameter which penalizes the columns of Φ for having a high total

variation or squared difference. This is by no means the only prior that imposes regularity,

17



but, rather we want to emphasize that the Bayesian framework allows for regularization via

an appropriately chosen prior.

Before we move on to the random Karhunen-Loeve expansions, we illustrate how the330

uncertainty about the principal components decreases as the sample size, n, increases. In

particular, Figure 6 shows the uncertainty in the principal vectors when n is multiplied by

a factor of ten. Note the reduction in the spread of the samples, shown in shaded regions

of color, compared with Figure 5.

Figure 6: (left) Shaded regions represent ±2σ error bars at each point in time for samples from the matrix

Bingham density. Black lines represent the PCA modes, which are the eigenvectors of the sample covariance.

(right) Samples from the matrix Bingham density. In this example, n = 250, m = 100, and the prior on

1/σ2 is given by gamma(100, .1). Compare this with Figures 4 and 5, where n = 25.

6.2. Random KLE335

Each sample from the matrix Bingham density, Φ(i), for i = 1, . . . ,M , admits a Karhunen-

Loeve expansion, where the coefficients are independent, zero-mean Gaussians (this is only

valid because Wm is a Gaussian process). To determine the variance for each projection

coefficient, we use (28) to obtain samples and then compute the empirical variance. The set340

of random approximates (27) can now be used to generate new sample data, where each set

lives on the subspace defined by Φ(i). Figure 7 shows the original 25 samples versus a set

of samples generated from (27).

Figure 8 shows samples from the Karhunen-Loeve approximates when we multiply the

number of samples. by a factor of ten. Note that realizations exhibit slightly less variation345

due to higher certainty in the principal components (see Figure 6).
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Figure 7: (left) n = 25 samples from the stochastic process, W . (right) Samples from the random Karhunen-

Loeve approximates. We take m = 100 and impose a gamma prior on the noise (See Figure 5).

Figure 8: (left) n = 250 samples from the stochastic process, W . (right) Samples from the random Karhunen-

Loeve approximates. We take m = 100 and, again, impose a gamma prior on the noise (See caption of Figure

5).

As per the discussion in the previous section, because the principal components exhibit

variability (See Figures 4 and 5 (right)), the samples from the KLE, which are linear combi-

nations of the principal components, exhibit similar variation (see Figure 7 (right)). Again,

these fluctuations can be mitigated by decreasing the noise term σ2 in (12) or by imposing a350

smoothing prior for Φ (32). However, as previously discussed, this is a natural consequence

of the matrix Bingham density, which stems from assumption that our projection error is i.i.d

white noise (6). Regardless, summary statistics such as means, variances, and correlations

can still be computed and can reasonably approximate the statistics of the true, underlying

stochastic process. In fact, for most types of summary statistics, for which smoothness is355

not a necessity, e.g., P (W (t) ∈ [a, b]|t ∈ [t1, t2]), one can interpret these noisy realizations

in Figures 4 and 5 (right) as samples of the stochastic process from non-contiguous real-
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izations. Therefore, a more appropriate plot of the realizations, which would help compute

these types of summary statistics, might look like the following (see Figure 9).

Figure 9: Plot of 100 realizations of the random KLE where each blue data point is plotted as non-contiguous

realizations with n = 25 (left) and n = 250 (right) in (12) and a gamma(100, .1) prior for 1/σ2. All data

points are shown in blue to emphasize the non-contiguous interpretation of the realizations.

7. Conclusion360

In this paper we formulate a Bayesian procedure to obtain the basis functions for the

Karhunen-Loève Expansion of a square-integrable stochastic process, which allows for un-

certainty in the principal components as a function of the sample size. We derive the matrix

Bingham density on the Stiefel manifold as the posterior density in this Bayesian approach365

by making an assumption that the projection error is i.i.d. Gaussian white noise, and intro-

duce a modified Gibbs sampling procedure, based on work by Hoff [7], to sample from this

density. The modification allows us to obtain an orthonormal basis in order of decreasing

variance, similar to how the principal components are computed numerically via classical

Singular Value Decomposition (SVD). Moreover, the Bayesian framework allows flexibility370

in the form of priors on the noise and the principal components themselves. After samples

are obtained from the matrix Bingham density, we can compute random Karhunen-Loeve

expansions to generate realizations of the original stochastic process. This probabilistic

characterization of the principal components is important in the context of uncertainty

quantification so that we can accurately predict the affects of sample size for any quantities375

of interest which depend on these stochastic processes.
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