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Abstract24

25

Automated detections calculated by the progressive multi-channel correlation (PMCC) 26

method (Cansi, 1995) and the adaptive F detector (AFD) (Arrowsmith et al., 2009) are compared 27

to the signals identified by five independent analysts. Each detector was applied to a four-hour 28

time sequence recorded by the Korean infrasound array CHNAR. This array was used because it 29

is composed of both small (<100 m) and large (~1000 m) aperture element spacing. The four-30

hour time sequence contained a number of easily identified signals under noise conditions that31

have average RMS amplitudes varied from 1.2 to 4.5 mPa (1 to 5 Hz), estimated with running32

five-minute window. The effectiveness of the detectors was estimated for the small aperture, 33

large aperture, small aperture combined with the large aperture, and full array. The full and 34

combined arrays performed the best for AFD under all noise conditions while the large aperture 35

array had the poorest performance for both detectors. PMCC produced similar results as AFD36

under the lower noise conditions, but did not produce as dramatic an increase in detections using 37

the full and combined arrays. Both automated detectors and the analysts produced a decrease in 38

detections under the higher noise conditions. Comparing the detection probabilities with39

Estimated Receiver Operating Characteristic (EROC) curves we found that the smaller value of 40

consistency for PMCC and the larger p-value for AFD had the highest detection probability. 41

These parameters produced greater changes in detection probability than estimates of the false-42

alarm rate. The detection probability was impacted the most by noise level, with low noise43

(average RMS amplitude of 1.7 mPa) having an average detection probability of ~40% and high 44

noise (average RMS amplitude of 2.9 mPa) average detection probability of ~23%.45

46

47
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Introduction48

49

Renewed interest in infrasound has been stimulated by the use of acoustic gauges in the50

International Monitoring System (IMS), which ultimately will be comprised of 60 infrasonic 51

arrays to monitor nuclear testing (Christie and Campus, 2010). Additionally, about 10052

infrasound arrays operate continuously worldwide (Hedlin et al., 2012). The density of 53

infrasound stations combines to increasing and in some areas now includes regional coverage, i.e. 54

USArray Transportable Array (Veron et al., 2012). Near-surface sources such as earthquakes, 55

volcanic eruptions and mining explosions generate both seismic and infrasonic signals (Hagerty56

et al., 1999) and so both seismic and infrasound studies can contribute to source identification. 57

Moreover, an automated system for infrasound detection will reduce analyst workloads in 58

analyzing large data sets and thus streamline detection process, the first step towards source 59

location and ultimately source characterization. 60

In response to the need to identify in excess of 1,000 events per month at a single array 61

(Evers and Haak, 2001; Matoza et al., 2013) several automated infrasound detectors have been 62

developed including the progressive multi-channel correlation (PMCC) algorithm (Cansi, 1995), 63

the standard F-detector (Blandford, 1974) incorporated in Infra Tool (Hart, 2004) and the 64

adaptive F detector (AFD) (Arrowsmith et al., 2009) incorporated in InfraMonitor. Since65

regional and global signals are strongly influenced by time-varying propagation effects, each 66

detector uses a waveform correlation technique applied to array data, rather than a high-fidelity 67

template matching approach. Based on the assumption that noise is uncorrelated, PMCC applies 68

progressive processing to the data recorded by different sensors in an array by first assessing 69

cross-correlation functions of sub-arrays and then adding additional array elements in order to70
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reduce false alarms (Cansi, 1995). The method estimates trace velocities and azimuths from sub-71

arrays and then progressively increases the network aperture. Infra Tool calculates an azimuth, 72

trace velocity, correlation coefficient, and a conventional F-statistic (Blandford, 1974; 2002) for 73

each time segment using multiple overlapping windows that move through the data volume. This74

detector performs well in cases with high values of correlation and an associated high F-statistic 75

(Garcés and Hetzer, 2002). AFD (Arrowsmith et al., 2009) modifies the conventional F-statistic76

based on a time-varying empirical estimate of the background noise, producing a time-adaptive 77

F-statistic. Brown et al. (2008) utilizes the Hough transform (Hough, 1959) for the automatic 78

detection of acoustic signals based on the premise that static sources will have a constant 79

azimuth over time in the case of the low signal-to-noise ratio (SNR). An important criteria in this 80

work, similar to detection of seismic phases (Zeiler and Velasco, 2009), is the association of81

multiple detections to estimate the event location.82

Detection methods can be evaluated in terms of their Receiver Operating Characteristic 83

(ROC) curve (Kay, 1998) that quantifies the relationship between the probability of detection 84

and the probability of false alarm as a function of the detector threshold. The challenge of ROC 85

curve analyses lies in developing a realistic labeled dataset for which the signals are known and 86

span the space of possible signal characteristics, while the noise spans the space of possible noise 87

characteristics. An effort to develop such a dataset for regional and global infrasound monitoring 88

is currently underway at Commissariat à l’Energie Atomique (CEA), Los Alamos National 89

Laboratory (LANL), Southern Methodist University (SMU), and Korea Institute of Geoscience 90

and Mineral Resources (KIGAM), and at the International Data Centre (IDC). This approach to 91

develop a pseudo-synthetic dataset using real signals and noise can be thought of as a 92

compromise between purely synthetic datasets (the standard for ROC curve analyses), in which 93
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there is total control over the labels (signals and noise), and purely real datasets in which the 94

labels are not truly known and must be estimated by analysts. This paper focuses on the 95

estimation of ROC curves using real data and an analyst approach, and motivates the more 96

comprehensive study being undertaken by the consortium of institutions mentioned above. In 97

order to assess the performance of automated detectors, a series of tests using analysts’ review of98

the same data were undertaken as has been done in similar seismic observation studies. 99

Freedman (1966) first studied estimates of picking errors from analyst reviewed seismograms 100

using nine analysts and researchers. Sereno (1990) and Leonard (2000) assessed automatic picks 101

comparing results with those produced by analysts and quantified the misclassification of seismic 102

phases, mis-timing of seismic phases, and poor phase association (Sipkin et al., 2000). Zeiler and 103

Velasco (2009) focused on measurements by highly experienced analysts at a number of 104

institutions. They concluded that the main contributing factors to pick errors for analyst are 105

ambient noise levels, distance from source to receiver, magnitude, source mechanisms, and 106

propagation effects. 107

We compare two automated infrasound detectors to a manually reviewed time sequence 108

of data and provide a testing procedure based on a limited data set. The test procedure for PMCC 109

and AFD was to apply varying detection parameters to the same data set, a four-hour sequence of 110

infrasound data at the Korean infrasound array, CHNAR. This array was selected because it has 111

both a short (< 100 m) and long (~1000 m) aperture spacing. The four-hour time sequence was 112

chosen due to the number of easily identified signals as well as a transition from low to high 113

wind noise conditions half way through the time period. The results of the automated procedures 114

are compared to picks by five independent analysts of varying experience as a step towards 115

assessing the effectiveness of these procedures in terms of changing environmental conditions 116
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during the time period of the dataset. In order to assess the detection performance, we determine 117

the Estimated Receiver Operator Curves (EROC) rather than the more traditional approach. 118

However, in the absence of true data with ground truth (referred to above as ‘labeled’ data), it is 119

important to provide a protocol in order to compare detectors and one possible way is to 120

synthesize signals that are as realistic as possible in a future assessment. Arrowsmith et al. (2008) 121

performed synthetic tests in multi-array detection, association, and location of infrasound in 122

order to assess network location resolution. 123

124

Detectors125

126

AFD127

In the presence of time varying background noise, AFD (Arrowsmith et al., 2009) 128

incorporated in InfraMonitor uses the F-statistic with the null hypothesis of perfectly 129

uncorrelated noise as suggested by Blandford (2002). Automatic detection is based on the F-130

statistic calculated as the power on the beam from the array divided by the average over all 131

channels of the power of the difference between the beam and the individual array channels:132
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�
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,                                (1)133

where J is the number of sensors, xj(n) is the waveform amplitude of the nth sample of the mean-134

free time series from sensor j, lj is the time-alignment lag obtained from beamforming, n0 is the 135

starting sample index for the processing interval, and N is the number of samples in the 136

processing window. The F-statistic is implemented using the maximum average cross correlation 137

for beam formation, and associated p-value, which is the probability of obtaining a F-statistics at 138
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least as extreme as the calculated values under F-distribution: p{F(t)}, from all elements in an 139

array for each time window. 140

In the presence of correlated noise, the theoretical F-statistic is distributed as:141

�����,���(���)                                                        (2)142

where B is the bandwidth of the filtered data and T is the length of the processing (detection) 143

window over which the power is averaged, N is the number of array elements, and C is given by:144

� = �1 + �
��

��
�                                                        (3)145

where Ps/Pn denotes the signal-to-noise ratio (Shumway et al., 1999), refering to the ratio of the 146

correlated-noise power to uncorrelated-noise power ratio (Arrowsmith et al., 2008). The constant, 147

C, is the scaling factor that aligns the peak of the distribution of the F-statistic in the time 148

window with the peak of the theoretical central F-distribution with 2BT, 2BT(N-1) degrees of 149

freedom. This constant is proportional to the number of sensors and the correlated-noise to150

uncorrelated-noise ratio, and becomes 1 when the correlated-noise power Ps=0. 151

The standard F detector can be modified so that it is adaptive in time, capturing change in152

noise characteristics with estimates of C for subsequent adaptive windows when the total time 153

window duration is larger than adaptive window. The observed distribution of the F-statistic154

(F2BT,2BT(N-1)), computed from the output of a standard frequency-wavenumber (F-K) analysis (e.g. 155

Rost & Thomas, 2002) and original input parameters, is adapted to the computed F-distribution 156

(CF2BT,2BT(N-1)) by estimating the maximum C-value which aligns the peaks of the two 157

distributions. The remapped F-statistic is converted to a p-value so a standard p-value threshold 158

can be used to declare a detection with a specified statistical significance. Processing parameters 159

used for the detection tests are summarized in Table 1. In these tests, p-values of 0.01 and 0.05160
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were used. The estimation of these parameters and their relationship to environmental conditions 161

that change as a function of time are discussed by Park (2013).162

163

PMCC164

The PMCC algorithm (Cansi, 1995) assumes uncorrelated noise, resulting in false alarms 165

in the presence of correlated noise. It is based on progressive processing data recorded by sub-166

arrays from a larger array using time domain cross-correlation estimates between individual 167

stations (Cansi, 1995). The first step in PMCC uses cross-correlation to measure the time delay168

∆��� between all pairs of signals, ��(�) and ��(�) at station i and j, in each three-element sub-169

array. In the case of a wave propagating without distortion, the delay is the same for all 170

frequencies in the contributing signal (Cansi and Le Pichon, 2009): 171

∆��� = 	
�

�π�
(��(�) − ��(�))	,                                      (4)172

where ��(�) and ��(�) represent the phase at station i and j. For a plane wave signal observed 173

at three sensors, the sum of time delays from these stations obeys a closure relation, which is174

used as a phase detector:175

∆��� +	∆��� +	∆��� = 0,                                          (5)176

The second PMCC step is progressive (Cansi and Le Pichon, 2009) where the 177

consistency of the set of delays is estimated with all the sensors (n) of a sub-network,��, and is 178

defined as the mean quadratic residual of the closure relations (Cansi and Le Pichon, 2009):179

�� ∋ �, �, � �

���� = ∆��� + ∆��� + ∆���

�� = �
�

�(���)(���)
∑ ����

�
�����

.                                 (6)180
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When the consistency, �� , is below a threshold, a detection is declared on �� . The 181

network aperture is progressively increased in order to provide the most robust estimates of 182

signal phase velocity and azimuth. Hereafter, to avoid a confusion of consistency (��) with C-183

value of Equation (3), we will call it the consistency value. 184

Garcés and Hetzer (2002) investigated the utility of PMCC to detect various infrasound 185

signals including microbaroms, surf noise, volcanic arrivals, as well as signals from bolides, 186

aircraft, and spacecraft, observed in Hawaii. Campus and Christie (2010) assessed the detection 187

of various natural infrasound sources such as earthquakes, the calving of icebergs and glaciers, 188

and volcanic eruptions as well as man-made sources such as a rocket launch and mining 189

activities. These studies illustrate that parameters for optimum PMCC processing depend on 190

infrasonic signal characteristics, array configuration, and background noise.191

Detector testing focuses on regional infrasound arrays with signals from 1 to 5 Hz 192

associated with natural and man-made events. Initial PMCC tuning parameters were set based on 193

the work of Garcés and Hetzer (2002) as well as experience with AFD documented in the next 194

section of this paper. Detection parameters used for the initial test are summarized in Table 1.195

Threshold consistency values (defined as the maximum consistency threshold for declaring a 196

detection) of 0.1 and 0.5 s were used. One advantage of PMCC is that the detections are assessed 197

in both the time and frequency domain. Each frequency band within each time window 198

represents a “pixel” of data, which is analyzed independently, followed by comparison of 199

adjacent pixels in time and frequency, where nearest-neighbor “pixels” with similar 200

characteristics are classified as “families” (Garcés and Hetzer, 2002). 201

A standard deviation of 10° for azimuth and 20 m/s for phase velocity with a phase 202

velocity range from 0.2 to 0.5 km/s were used in grouping the families. The distribution of 203
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backazimuths as well as phase velocities may be seasonal variable and depend on the specific 204

infrasonic arrival but in this initial study these effects were not considered. Incorporation of this 205

type of information might require some type of iterative procedure linked to phase identification206

as well as the analysis of a broader set of data covering much larger time periods.207

208

Data and Analysis209

210

A four-hour-dataset (02:00:00-06:00:00 in UTC, 11am-3pm in local time, Julian day 002, 211

2012) recorded by the seismo-acoustic array, CHNAR is used in this analysis. The array consists 212

of a small infrasound array with an approximate 100 m aperture embedded in a larger 213

approximate 1 km aperture array (Figure 1) with a second or sub-infrasound element 214

approximately 50 m from the gauge in the larger array. There are a total of 11 microbarometers 215

(Chaparral Physics Model 2.0 microphones) and 4 seismometers (GS-13). Data is sampled at 40 216

sample/s. The center of the array has a weather station measuring wind velocity, wind azimuth, 217

and temperature, installed 2 m above the surface, sampled at 1 sample/s. Each microbarometer is 218

attached to ten porous hoses, each eight meters in length connected at the center in a star-like 219

configuration for reducing background noise generated by wind along the turbulent boundary 220

layer. Data is recorded on 24-bit digitizers (Geotech DR24) and sent in real time via radio 221

telemetry to KIGAM in South Korea and forwarded to SMU in Texas.222

PMCC and AFD were both applied to this dataset. The four-hour dataset has noise levels 223

that increase after the first two hours producing two data segments with different background 224

noise levels. The first two hours of data were recorded under wind conditions near 0 m/s, while225

wind velocity increased in the second two hours to an average of 3 m/s. Filtered (1-5 Hz) 226
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waveforms are shown in Figure 2, with four easily identified large signals near 03:00:00 UTC 227

along with the initial output from PMCC discussed latter. 228

The two detectors were tested using four different starting configurations or sub-networks 229

summarized in Table 2. As mentioned earlier, one difference between PMCC and AFD is the use 230

of sub-networks. In the small and large aperture array tests AFD and PMCC used the same array 231

configuration. However, when the small and large aperture arrays were combined, AFD used all 232

array elements together, while PMCC applies two sub-networks, one small and one large 233

aperture. Since each sub-network has a total of four elements, the threshold of 4 sensors was 234

used. The PMCC estimates involve two steps, the first calculates the detection parameters from235

the small aperture array and then reevaluates adding the large aperture array elements. The 236

second step estimates the detection parameters from the large aperture array and then reevaluates237

adding the small aperture array elements. These two estimates are combined to produce the final 238

parameters for a total of three sub-networks (Table 2).239

AFD remaps the F-distribution in time to account for time varying noise conditions using240

the C value (Equation (3)). Figure 3 documents the change in this value with time for the 241

complete data set. C values for the different array configurations tested are displayed and 242

compared to five-minute averages of wind velocity and azimuth at the site. A one-hour adaptive 243

window was used during the InfraMonitor processing based on the detector tuning study of Park, 244

2013. Estimates based on all array apertures for the first two-hours of data have relatively high C 245

values (1.5-2.7) associated with low wind velocities from the north and east, while the last two-246

hours of data have smaller C values of 1.1 to 1.8, with higher wind velocities and azimuths from 247

the northwest (Figure 3). Waveforms after 04:00:00 UTC have significantly higher background 248

noise than those before (Figure 2). In the large aperture tests, the C values are not as variable in 249
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time as for the small aperture tests which may reflect decreased correlation of signals under low 250

noise conditions for the large aperture array consistent with local noise sources. Generally, the 251

variation of C value is larger for the smaller array aperture. In all cases C is dependent on 252

weather conditions, especially wind speed. It is not possible to make a definitive conclusion 253

about the relationship between C and wind conditions because of the small time window 254

analyzed in this study. However, this result is consistent with the tuning study (Park et al., 2011) 255

where the C-value decreased with increasing wind velocity and documented in the study by Park 256

(2013).257

Automatic detections are dependent on background noise levels as well as algorithmic 258

tuning parameters and so sensitivity tests for both detectors were conducted with respect to 259

different values of consistency for PMCC, 0.1 and 0.5 s, and p-value, 0.01 and 0.05, for AFD. 260

Larger consistency values for PMCC provide the ability to include a greater number of 261

automated detections at expense of the quality of the signals across the array. The use of a larger 262

p-value in AFD includes a greater number of detections that depart from the null hypothesis, and263

may include correlated noise. Results for a wider range of consistency and p-value are presented 264

later.265

An example detection output from PMCC with a consistency of 0.1 s using all arrays is 266

given in Figure 4, showing the number of sensors, consistency, correlation, amplitude, azimuth, 267

and phase velocity for each identified signal. Detections with small consistency values using all 268

array elements in the final calculation were observed during the first two hours of data, while 269

few detections under the consistency constraints were found in the last two hours of data when 270

the background noise levels were higher.271
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The sensitivity tests for the two detectors using all array configurations - PMCC (S), 272

PMCC (L), PMCC (S+L), PMCC (All), AFD (S), AFD (L), AFD (S+L), and AFD (All) - are 273

summarized in Figure 5 (see the Table 2 for configuration information). Tests with consistency 274

values of 0.1 and 0.5 s for PMCC are designated PMCC.1s and PMCC.5s and those with p-275

values of 0.01 and 0.05 for AFD are designated AFD.01 and AFD.05. The number of detections 276

in each case are summarized in Table 3 with histograms comparing them in Figure 6. The 277

automatic detections using the larger values of consistency, 0.5 s, and p-value, 0.05, included all 278

the automated detections using the lower values of consistency, 0.1 s, and p-value, 0.01.279

Both automatic detectors produce a larger number of detections using either the 280

combined small and large aperture arrays or all array elements compared to the cases where only 281

the large aperture array was used. In some cases, detections using both the small and large 282

aperture arrays appear to combine individual detections found using the small and large aperture 283

arrays separately. The number of detections estimated by AFD is almost two times greater than 284

the number estimated by PMCC with many of the additional detections from AFD occurring in 285

the last two-hour time period when the wind noise increases (Figure 5). The number of 286

detections increases significantly when the consistency for PMCC and the p-value for AFD are 287

increased. The largest increase in detections occurs with the high p-value for AFD. The strong 288

signals around 03:00:00 UTC were detected with high correlation and consistent phase velocities 289

of 300-400 m/s by both detectors. The azimuth distributions for the detections are primarily from 290

the southeast with a secondary set of detections from the northwest (Figure 5, right).291

292

Analyst Review293

294
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Five analysts reviewed the four-hour dataset. The results of the analysts review are used 295

to assess the automated detectors. Each person was free to define unique criteria for event 296

identification (Table 4). The experience levels of the analysts were variable, three labeled as 297

experts based on a long history of signal analysis and two as new and undergoing training. All 298

used time domain and f-k based tools in Geotool (Coyne and Henson, 1995) to identify signals. 299

The numbers of detections produced by the five analysts are compared to the output of the 300

automatic detectors in Figure 6. The detection numbers by all analysts are significantly higher 301

than those determined by either automated detector. AFD and PMCC each used a 20 s time 302

window with 50 % overlap and therefore multiple phases within the time window can only be 303

separately identified by the analysts. The frequency band of filtering applied by each analyst also 304

varied slightly based on individual interpretations of the data. 305

In most cases, the picks by the analysts included all the events identified by the two 306

automatic detectors (Figure 7). In the case of the last two hours of data, where the noise levels307

are higher, there are fewer automated detections and a reduced number of detections identified 308

by the analysts. This result highlights that detection under higher background noise conditions is 309

difficult for both automatic systems and humans.310

The azimuth and phase velocity estimates for the signals are summarized in Figure 8. A 311

large portion of the identified signals come from azimuths clustered around 150° and 300° before 312

04:00:00 UTC, the time period with low background noise levels. It is difficult to distinguish 313

between automatic and analysts’ detections since both sets of estimates overlap for this time 314

period. In the case of AFD.05, there are consistent detections from 240° for all aperture arrays in 315

the full dataset which might be generated from local noise with a high F-statistics. The azimuth 316

estimates for signals in the second two-hour time period are more scattered. Phase velocities 317
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range from 320 to 350 m/s with a similar distribution of values produced by automatic and 318

human estimates. Polar plots of  phase velocity further documents the changing distribution of 319

detections over the four-hour time period with detections distributed from 90° to 180° and from 320

270° to 330° for the first two hours (Figure 9). The source of these clusters may be local signals321

associated with human activities. In the last two hours of data, the automatic and human322

detections are more scattered although in the case of human detections there is a cluster from 323

approximately 300° to 330°. This implies that either infrasound signals from 90° to 180° stopped 324

or were masked by the noise after the first two hours or the environmental conditions are such 325

that propagation to the station is impeded. 326

327

Estimated Receiver Operating Characteristic Curves328

329

In order to assess detector performance, Receiver Operating Characteristic (ROC) curves 330

can be used to quantify the detection and false alarm probabilities (Johnson and Dudgeon, 1993), 331

providing a basis for detector optimization. This approach has been used to quantify the 332

performance of adaptive and conventional detectors of AFD as noted by Arrowsmith et al. 333

(2009). ROC curves estimate the trade-off between the detection probability (��) and the false-334

alarm probability (��) for a range of detection thresholds as defined by:335

�� = 	
������	��	��������	�������

�����	������	��	�������	
,                                         (7)336

�� = 	
������	��	�����	����������

�����	������	��	���������	���������	������	�����
.                         (8)337

ROC analysis can be accomplished by inserting known signals of varying size into 338

realistic noise in order to provide a known number of signals within a data set. As an alternative, 339
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we introduce a modified data centric procedure that compares the results of the automated 340

detectors against the detections identified by analysts. The total number of signals is defined by 341

the analyst results in this application and is therefore an alternative performance assessment in 342

the absence of ground truth. In order to distinguish this approach with others, we call these 343

curves Estimated Receiver Operator Curves (EROC) to distinguish them from the more 344

traditional approach. 345

There may be an implicit difference in the duration of the detected signals identified by 346

the automatic detectors and the human analysts since each uses different criteria for picking 347

arrival times. For example, analysts were free to make several arrival picks in a 20-second 348

window, the processing time used by both automatic detectors. In order to reduce this effect, the 349

4-hour data set was evenly divided into consecutive 20-second window, each window evaluated 350

for detections. Based on Equations (7) and (8), a total of 720 tests were conducted in order to 351

estimate detection and false alarm probability based on the review of all the analysts.352

The EROC analysis is subdivided into the first two-hours of data (Figure 10) and the last 353

two-hours of data (Figure 11) as result of the changing noise conditions. Depending on the 354

reference values (analysts) used in estimating the EROC, the curves change. For example if the 355

analyst identifies a smaller number of signals it is possible that the EROC will move towards an356

ideal detector. A broader range of p-values (0.01 to 0.09) and consistency values (0.1 s to 0.9 s) 357

were used in these comparisons in order to more fully explore the detection space.358

During the first two-hours of data, the two automated detectors using all array elements 359

or small and large aperture arrays together have higher detection probabilities than when they 360

just use the small or large aperture arrays alone (Figure 10). PMCC produces a higher detection 361

probability (0.40-0.78) than AFD (0.22-0.45). It also produces a more limited range of lower 362
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false alarm probabilities (0.03-0.07) than AFD (0.01-0.11). In the case of PMCC, tests using a 363

consistency of 0.5 (PMCC.5s) had higher detection probabilities while the false-alarm 364

probabilities increases slightly. Detection probability estimates using PMCC were only slightly 365

affected by changes in the dimension of the initial aperture with some small increase in detection 366

probability using large aperture arrays. PMCC detections using the smaller consistency value 367

produced higher detection probabilities in this analysis, up to 0.78 in the case of Analyst 2. The368

detection probabilities produced by AFD increased using the higher p-value under low noise 369

conditions. However, the false alarm rate also increased, especially for the cases where the small 370

aperture array were used. This result implies that AFD detects more signals identified by the 371

analysts at the expense of more false events.372

Under high noise conditions, both automatic detectors produce low detection 373

probabilities with a maximum detection probability of 0.45, compared to 0.78 under low noise 374

conditions. The detection probabilities for both PMCC and AFD cover similar ranges, 0 to 0.45 375

(Figure 11). PMCC has slightly higher detection and false-alarm probabilities when compared to 376

Analyst 1. Since PMCC produced few detections (conservative detection) in this time period, the 377

false-alarm rate is the same using any of analysts for comparison. On average detection 378

probabilities for AFD are higher for the larger p-values. The advantage of using a moving379

window to correct for time variations in background noise are illustrated when noise condition 380

change with time. During the high noise conditions, analysts reported difficulty in identifying 381

signals with the possibility that a number of signals might have gone undetected or that some of 382

the detections represented coherent noise across the array. The dependence of the EROC results383

on the analysts illustrates an intrinsic difficulty in this empirical assessment procedure. 384
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In order to assess the impact of increasing wind velocity on the detection process, the 385

average RMS amplitude and average wind velocity during 5 minute windows for the complete 386

data set were estimated. First, the waveforms were filtered in the frequency band of 1 to 5 Hz. 387

The average RMS amplitude, �����, with respect to time was calculated using waveforms from 388

all array elements as defined:389

����� = 	
�

∑ �
�∑ ���

��� �
�

� ��
���

∆�
,                                               (9)390

where A is the amplitude of waveform at a particular sample, N is the number of infrasound array 391

elements, T is the time window, and ∆� is the total time duration. These estimates are plotted in 392

Figure 12 and document the strong correlation between RMS amplitude and wind velocity 393

during this four-hour time period. The average five-minute RMS noise amplitudes varied from 394

1.2 to 4.5 mPa in the frequency band of 1 to 5 Hz. The amplitude and duration of the detected 395

signals by Analyst 5 are also displayed in Figure 12, illustrating that relatively small amplitude 396

signals were detected under low noise condition, while the number of small amplitude detections397

are greatly reduced during the higher background noise. In summary, the detection probability 398

was most affected by noise level, with low noise conditions (average amplitude of 1.7 mPa)399

having an average detection probability of ~40% and high noise conditions (average amplitude 400

of 2.9 mPa) producing an average detection probability of ~23%.401

Using these same five-minute windows, the number of detections produced by the 402

automatic detectors and the analysts were counted and compared against the RMS amplitude and 403

wind speed (Figure 13). Generally, the numbers of automatic and human detections are 404

dependent on the RMS amplitude which is correlated with wind velocity. When the small 405
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aperture arrays were used by AFD in both AFD.01 and AFD.05, a significantly higher number of 406

detections were identified during higher average RMS amplitudes.407

The number of analyst’s detections in all cases increases for average RMS amplitudes 408

between 1.2 and 3.2 mPa, and includes most all the signals detected by the automated procedures 409

(Figure 14(a)). Most analysts identified signals under higher noise conditions although the 410

largest number of detections identified by the analysts was identified during noise conditions 411

with average RMS amplitudes below 3.2 mPa. In the case of AFD.01 and AFD.05, a number of 412

detections were identified under higher RMS noise conditions. Figure 14(b) shows the 413

relationship between the SNR and the number of detections for both the automatic and manual 414

detectors with the step rise in number of detections that occurs for values above 45.415

416

Conclusions and Discussion417

418

This study provides an initial investigation of two detectors, AFD and PMCC, using a 419

four-hour time sequence (02:00:00-06:00:00 in UTC, 11am-3pm in local time, Julian day 002, 420

2012) at CHNAR located within the continent in South Korea. This time period had 421

approximately two hours of low wind velocity and noise and two hours of increased wind and 422

noise. The array consists of a large (~1 km) and small (< 100 m) aperture providing a variety of 423

spatial scale lengths for detecting signals and separating noise. Automatic detections are 424

dependent on tuning parameters specific to each procedure and background noise level. A 425

number of tuning parameters are common to the two approaches and are dependent on the 426

character of the signals including the length of 20 s, overlap of 50%, and filtered band from 1 to 427

5 Hz based on the regional infrasonic signals. In the case of PMCC, the standard deviation of 10° 428
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for azimuth and 20 m/s for phase velocity with a phase velocity range from 0.20 to 0.5 km/s were 429

used for grouping into families. For AFD, the adaptive window of 1 hour was used and the range 430

of phase velocity and azimuth were unconstrained. Sensitivity tests for both detectors were 431

conducted with respect to different values of consistency (0.1s to 0.9 s) for PMCC and p-value 432

(0.01 to 0.09) for AFD.433

Azimuth and phase velocity estimates for the signals identified by both automatic 434

detectors and human analysts are consistent before 04:00:00 UTC (low noise conditions), while 435

the estimates are scattered after 04:00:00 UTC (high noise conditions), with variations in 436

backazimuth estimates increasing the most. EROC analysis is divided into the first and second 437

two-hours of data as a result of the changing noise conditions. During the first two-hours, PMCC 438

produces higher detection probabilities (0.40-0.78) than AFD (0.22-0.45). PMCC also produces a 439

more conservative estimate of detection based on false alarm probabilities from 0.03 to 0.07440

compared to false alarm probabilities for AFD from 0.01 to 0.11. PMCC had the highest441

detection probabilties using a consistency of 0.1 s, almost twice the value when using a 442

consistency of 0.9 s. AFD produces higher detection probabilities with larger p-values, the443

detection probability with a p-value of 0.05 is twice that compared to estimates using a p-value 444

of 0.01. Both detectors have high false-alarm probabilities.445

PMCC conservatively detects infrasound signals while AFD detects signals during high 446

noise environment, although these detections may be correlated with noise.. In all cases the 447

analysts picked a higher number of signals than either automated process, including detections 448

under higher noise conditions. Both detectors have lower detection probabilities under high wind 449

conditions with a maximum probability of 0.45, compared to that of 0.78 under low noise 450

conditions. PMCC produced few-detections (conservative detection) during the time period of 451
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higher noise. The detection probabilities from AFD for the higher p-values increased and were 452

accompanied by more false alarms.453

The two detection methods rely on signal correlation. AFD adapts to changing 454

background noise conditions with the number of detections controlled by the p-value of the F-455

statistics with an increased number of false alarms for higher p-values (0.09). PMCC uses the 456

cross-correlation technique with the progressive method applied to a sub-network in both the 457

time and frequency domain. By increasing the acceptable consistency value (up to 0.9 s), the 458

detection probability increases under low noise conditions but these tests suggest that PMCC 459

conservatively detects signals under high noise conditions. Using small and large aperture arrays 460

together as a sub-network rather than using small or large aperture arrays separately provided 461

higher detection probabilities illustrating the strength of arrays with a variety of spatial scales.. 462

Generally, the numbers of automatic and human detections are dependent on the RMS 463

amplitudes which are strongly affected by wind velocity. The number of detections in all cases 464

significantly increases for small average RMS amplitudes between 1.2 and 3.2 mPa.  465

Based on the comparison of automated detections from AFD and the analysts, the use of 466

combined small and large aperture arrays is recommended rather than using either the small or 467

large aperture arrays alone. For PMCC, a combination of both small and large aperture arrays for 468

the sub-network also improves the detection probability. 469

This study motivates the exploration of these automated detectors using  longer time 470

periods of data as well as additional arrays in order to further explore the impact of noise and 471

geographic environments on both optimization of the procedures as well as characterization of 472

performance. Extension of similar analysis to regional networks of infrasound arrays will 473
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provide the capability to assess network performance including signal association and 474

subsequent location across the area covered by the network.475

Finally a list of individual conclusions:476

 Both automatic detectors produce a larger number of detections when either the 477

combined small and large aperture arrays or all array elements are used relative to the 478

cases where the small or large aperture arrays are used alone.479

 Results combining the small and large aperture arrays for detection combine individual 480

detections found using the small aperture arrays and large aperture arrays separately.481

 The numbers of detections estimated by AFD are almost twice that estimated by PMCC 482

with many of the additional detections from AFD occurring in the last two-hour time 483

period of data when wind noise increases.484

 In all cases, the number of analyst detections is significantly higher than those determined 485

by either automated detector.486

 In most all cases, analysts identify all events detected by the two automatic processes.487

 In the case of the last two hours of data where the noise levels are higher, there are fewer 488

automated detections and a reduced number of detections identified by the analysts.489

 During the first two-hours of data, cases using either all array elements or small and large 490

aperture arrays together have higher detection probabilities than those using small or 491

large aperture arrays alone with both detectors.492

 Both detection and false alarm rate increase when using the higher p-values and smaller 493

consistency.494

 Based on the EROC which takes analyst’s result as the reference, detection probabilities495

was negatively impacted by noise level, with low noise conditions (average amplitude of 496
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1.7 mPa) producing an average detection probability of ~40% and high noise conditions497

(average amplitude of 2.9 mPa) having an average detection probability of ~23%.498

 Generally, the numbers of automatic and human detections are dependent on the RMS 499

amplitude, which is correlated with wind velocity.500

 The number of detections in all cases significantly is high for average RMS amplitudes501

between 1.2 and 3.2 mPa and includes most all the signals detected by the automated 502

procedures.503
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Table 1642

Detection processing parameters643

Parameters
Automatic detectors

AFD PMCC
Filter band (Hz) 1-5
Time window (s) 20

Overlap (%) 50
p-value 0.01 & 0.05 -

Adaptive window (h) 1 -
Consistency (s) - 0.1 & 0.5

Detection processing parameters used in initial tests of automatic detectors, AFD and PMCC.644
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649

650

651

652

653

654

655

656

657

658

659

660

Table 2661

Configurations of CHNAR used in this study662

Configurations Aperture size Arrays used for test
AFD(S)/PMCC(S) A small aperture (<100m) array CHN00/03/04/05
AFD(L)/PMCC(L) A large aperture (~1km) array CHN00/10/20/30

AFD(S+L)
A hybrid of small and large 

aperture arrays

CHN00/03/04/05/10/20/30

PMCC(S+L) Sub-network(CHN00/03/04/05)
+Sub-network(CHN00/10/20/30)

AFD(All)
A combination of small, large, 
and sub-large aperture arrays

CHN00/03/04/05/10/20/30/12/22/32

PMCC(All)
Sub-network(CHN00/03/04/05)

+Sub-network(CHN00/10/20/30)
+Sub-network(CHN02/12/22/32)

Four different starting configurations of CHNAR for testing of PMCC and AFD.663

664

665

666

667



31

668

669

670

671

672

673

674

675

676

677

678

Table 3679

The numbers of detections estimated by AFD and PMCC.680

Configuration The numbers of 
detections Configuration The numbers of 

detections
AFD.01 (S) 52 PMCC.1s (S) 21
AFD.01 (L) 15 PMCC.1s (L) 8

AFD.01 (S+L) 39 PMCC.1s (S+L) 22
AFD.01 (All) 53 PMCC.1s (All) 22
AFD.05 (S) 65 PMCC.5s (S) 21
AFD.05 (L) 21 PMCC.5s (L) 11

AFD.05 (S+L) 59 PMCC.5s (S+L) 21
AFD.05 (All) 81 PMCC.5s (All) 26

The numbers of detections estimated by AFD and PMCC using the four different starting 681

configurations (Table 2) with different detection thresholds (p-values of 0.01 and 0.05 for AFD, 682

and consistency values of 0.1 s and 0.5 s for PMCC).683

684

685

686



32

687

688

689

690

691

692

693

694

695

696

697

Table 4698

Analysts defined bandwidth for data review.699

Analyst 1 Analyst 2 Analyst 3 Analyst 4 Analyst 5
Filter band (Hz) 1.0-5.0 1.0-5.0 0.5-4.0 1.0-5.0 4.0-8.0

The bandwidth used by five analysts for data review in this study.700

701

702

703

704

705

706

707

708
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709

710

711

712

713

714

715

716

717

718

719

List of Figure Captions720

721

Figure 1. The physical configuration of CHNAR. The four-elements in the 1-km aperture 722

seismo-acoustic array, CHN00/10/20/30 (circles) each have a GS-13 seismometer and 723

infrasound gauge (Chaparral Physics Model 2.0) supplemented by a small aperture (< 724

100 m) infrasound subarray, CHN00/03/04/05 (squares) deployed around the center 725

element. Each of three outer sites has an additional infrasound gauge, CHN12/22/32 726

(triangles), offset by about 50 m from the primary while the additional infrasound gauge, 727

CHN02 is colocated with CHN00.728

Figure 2. The four-hour-dataset (02:00:00-06:00:00 in UTC, 11am-3pm in local time, Julian day 729

002, 2012) recorded at the seismo-acoustic array, CHNAR. Waveforms were filtered 730

from 1 to 5 Hz.731
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Figure 3. The relationship between C value from AFD and wind conditions (average wind 732

velocity and azimuth) for the different array apertures used in detector testing during the 733

four-hour-dataset at CHNAR (02:00:00-06:00:00 in UTC, Julian day 002, 2012) in the 734

above.735

Figure 4. Summary of detection results from PMCC.1s (All) with a consistency of 0.1 s using all 736

arrays (number of sensors, consistency, correlation, amplitude, azimuth, and phase 737

velocity). The waveform beam is displayed at the top with an example filtered waveform738

(CHN00) below.739

Figure 5. The detection results from the two automatic detectors (PMCC and AFD) using 740

different sub-arrays (S: small aperture arrays, L: large aperture arrays, S+L: small and 741

large aperture arrays, and All: all arrays). (a) The result for the case with a maximum 742

consistency of 0.1 s for PMCC (PMCC.1s) and p-value of 0.01 for AFD (AFD.01). (b) 743

The result for the case with a maximum consistency of 0.5 s for PMCC (PMCC.5s) and 744

p-value of 0.05 for AFD (AFD.05). The correlation values for detection are represented 745

by the colors in the plot with the azimuthal distribution of detections plotted to the far 746

right.747

Figure 6. Comparison of the total number of analyst and automatic picks (AFD.01: p-value, 0.01, 748

AFD.05: p-value, 0.05, PMCC.1s: consistency, 0.1 s, and PMCC.5s: consistency, 0.5 s) 749

for the four-hour block of infrasound data recorded at CHNAR. 750

Figure 7. Detection times from the automatic detectors (PMCC: PMCC.1s (Consistency, 0.1 s),751

and PMCC.5s (Consistency, 0.5 s) and AFD: AFD.01 (p=0.01) and AFD.05 (p=0.05)) 752

and those estimated by the five analysts. 753
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Figure 8. The azimuth and phase velocity estimates from the automatic detectors (PMCC.1s and 754

PMCC.5s results, red and pink open circles and AFD.01 and AFD.05 results, blue and 755

sky-blue open circles) and the analyst review (same color designation as in Figure 8).756

Figure 9. Polar plot of azimuth and phase velocity estimates from the analysts (left) and the 757

automatic detectors (right) for the first two-hours of data (top) and the last two-hours of758

data (bottom).759

Figure 10. The Estimated Receiver Operating Characteristic (EROC) for the automatic detectors 760

using the first two-hours of data and different aperture arrays. For AFD, p-values of 0.01 761

(red circle), 0.03 (yellow circle), 0.05 (sky-blue circle), 0.07 (green circle), and 0.09 762

(gray circle) were used for the tests. For PMCC, consistency values of 0.1 s (red circle), 763

0.3 s (yellow circle), 0.5 s (skyblue circle), 0.7 s (green circle), and 0.9 s (gray circle) 764

were used for the tests. The x-axes, False-alarm Probability, are exaggerated by a factor 765

of seven.766

Figure 11. The Estimated Receiver Operating Characteristic (EROC) for the automatic detectors 767

using the second two-hours of data and different aperture arrays. For AFD, p-values of 768

0.01 (red circle), 0.03 (yellow circle), 0.05 (sky-blue circle), 0.07 (green circle), and 0.09 769

(gray circle) were used for the tests. For PMCC, consistency values of 0.1 s (red circle), 770

0.3 s (yellow circle), 0.5 s (skyblue circle), 0.7 s (green circle), and 0.9 s (gray circle) 771

were used for the tests. The x-axes, False-alarm Probability, are exaggerated by a factor 772

of three.773

Figure 12. Top - The average RMS amplitude (green line) as a function of time estimated using 774

all waveforms compared to the amplitude (left y-axis) and duration (colorbar) of the 775

detected signals identified by Analyst 5. Bottom - The wind velocity recorded at CHNAR 776
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during the four-hour time period plotted as a function of time. Superimposed on this plot 777

is the average wind velocity for five-minute windows with standard deviation (sky-blue778

vertical bar) and average wind direction (colorbar), which can be compared to amplitude 779

data in the top plot.780

Figure 13. The relationship between the number of detections estimated by (a) the automated781

analysis and (b) the analyst review during five-minute windows compared to wind 782

velocity and average RMS amplitude (mPa) for each window.783

Figure 14. The cumulative number of detections in all the five-minute windows for both the 784

automatic detectors and the analyst plotted against (a) the average RMS amplitude (mPa) 785

in the window and (b) against 1/(average RMS amplitude) which is proportional to the 786

signal to noise ratio (SNR). 787

788
Figure 1. The physical configuration of CHNAR. The four-elements in the 1-km aperture 789

seismo-acoustic array, CHN00/10/20/30 (circles) each have a GS-13 seismometer and 790
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infrasound gauge (Chaparral Physics Model 2.0) supplemented by a small aperture (< 791

100 m) infrasound subarray, CHN00/03/04/05 (squares) deployed around the center 792

element. Each of three outer sites has an additional infrasound gauge, CHN12/22/32 793

(triangles), offset by about 50 m from the primary while the additional infrasound gauge, 794

CHN02 is colocated with CHN00.795

796

797

798

Figure 2. The four-hour-dataset (02:00:00-06:00:00 in UTC, 11am-3pm in local time, Julian day 799

002, 2012) recorded at the seismo-acoustic array, CHNAR. Waveforms were filtered 800

from 1 to 5 Hz.801

802

803
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804

805

806

807

808

Figure 3. The relationship between C value from AFD and wind conditions (average wind 809

velocity and azimuth) for the different array apertures used in detector testing during the four-810

hour-dataset at CHNAR (02:00:00-06:00:00 in UTC, Julian day 002, 2012) in the above.811

812

813

814
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815

Figure 4. Summary of detection results from PMCC.1s (All) with a consistency of 0.1 s using all 816

arrays (number of sensors, consistency, correlation, amplitude, azimuth, and phase 817

velocity). The waveform beam is displayed at the top with an example filtered waveform818

(CHN00) below.819

820

821

822

823

824

825

826

827
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828

Figure 5. The detection results from the two automatic detectors (PMCC and AFD) using 829

different sub-arrays (S: small aperture arrays, L: large aperture arrays, S+L: small and large 830

aperture arrays, and All: all arrays). (a) The result for the case with a maximum consistency of 831

0.1 s for PMCC (PMCC.1s) and p-value of 0.01 for AFD (AFD.01). (b) The result for the case 832

with a maximum consistency of 0.5 s for PMCC (PMCC.5s) and p-value of 0.05 for AFD833

(AFD.05). The correlation values for detection are represented by the colors in the plot with the 834

azimuthal distribution of detections plotted to the far right.835
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837

Figure 6. Comparison of the total number of analyst and automatic picks (AFD.01: p-value, 0.01, 838

AFD.05: p-value, 0.05, PMCC.1s: consistency, 0.1 s, and PMCC.5s: consistency, 0.5 s) for the 839

four-hour block of infrasound data recorded at CHNAR.840
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848

Figure 7. Detection times from the automatic detectors (PMCC: PMCC.1s (Consistency, 0.1 s), 849

and PMCC.5s (Consistency, 0.5 s) and AFD: AFD.01 (p=0.01) and AFD.05 (p=0.05)) and those850

estimated by the five analysts. 851
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862

Figure 8. The azimuth and phase velocity estimates from the automatic detectors (PMCC.1s and 863

PMCC.5s results, red and pink open circles and AFD.01 and AFD.05 results, blue and sky-blue 864

open circles) and the analyst review (same color designation as in Figure 8).865
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875

Figure 9. Polar plot of azimuth and phase velocity estimates from the analysts (left) and the 876

automatic detectors (right) for the first two-hours of data (top) and the last two-hours of data877

(bottom).878
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885

Figure 10. The Estimated Receiver Operating Characteristic (EROC) for the automatic detectors 886

using the first two-hours of data and different aperture arrays. For AFD, p-values of 0.01 887

(red circle), 0.03 (yellow circle), 0.05 (sky-blue circle), 0.07 (green circle), and 0.09 888

(gray circle) were used for the tests. For PMCC, consistency values of 0.1 s (red circle), 889

0.3 s (yellow circle), 0.5 s (skyblue circle), 0.7 s (green circle), and 0.9 s (gray circle) 890

were used for the tests. The x-axes, False-alarm Probability, are exaggerated by a factor 891

of seven.892

893
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894

Figure 11. The Estimated Receiver Operating Characteristic (EROC) for the automatic detectors 895

using the second two-hours of data and different aperture arrays. For AFD, p-values of 896

0.01 (red circle), 0.03 (yellow circle), 0.05 (sky-blue circle), 0.07 (green circle), and 0.09 897

(gray circle) were used for the tests. For PMCC, consistency values of 0.1 s (red circle), 898

0.3 s (yellow circle), 0.5 s (skyblue circle), 0.7 s (green circle), and 0.9 s (gray circle) 899

were used for the tests. The x-axes, False-alarm Probability, are exaggerated by a factor 900

of three.901
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906

907

Figure 12. Top - The average RMS amplitude (green line) as a function of time estimated using 908

all waveforms compared to the amplitude (left y-axis) and duration (colorbar) of the 909

detected signals identified by Analyst 5. Bottom - The wind velocity recorded at CHNAR 910

during the four-hour time period plotted as a function of time. Superimposed on this plot 911

is the average wind velocity for five-minute windows with standard deviation (sky-blue912

vertical bar) and average wind direction (colorbar), which can be compared to amplitude 913

data in the top plot.914
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915

Figure 13. The relationship between the number of detections estimated by (a) the automated916

analysis and (b) the analyst review during five-minute windows compared to wind velocity and 917

average RMS amplitude (mPa) for each window.918
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919

Figure 14. The cumulative number of detections in all the five-minute windows for both the 920

automatic detectors and the analyst plotted against (a) the average RMS amplitude (mPa) in the 921

window and (b) against 1/(average RMS amplitude) which is proportional to the signal to noise 922

ratio (SNR).923


