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ABSTRACT

A new approach for solving Laplacian linear systems pro-
posed by Kelner et al. involves the random sampling and up-
date of fundamental cycles in a graph. We evaluate the per-
formance of this approach on a variety of real world graphs.
We examine different ways to choose the set of cycles and
their sequence of updates with the goal of providing more
flexibility and potential parallelism. We propose a paral-
lel model of the Kelner et al. method for evaluating poten-
tial parallelism concerned with minimizing the span of edges
updated at every iteration. We provide experimental results
comparing the potential parallelism of the fundamental cycle
basis and the extended basis. Our preliminary experiments
show that choosing a non-fundamental set of cycles can save
significant work compared to a fundamental cycle basis.

1. INTRODUCTION
1.1 Graph Laplacians

Networks play an important role in many application ar-
eas, including engineering, social sciences, and biology. Solv-
ing linear systems on the graph Laplacians of large unstruc-
tured networks has emerged as an important computational
task in network analysis [17]. The Laplacian matrix of a
weighted, undirected graph is defined as L = D — A, where
D is the diagonal matrix containing the sum of incident edge
weights and A is the weighted adjacency matrix. The Lapla-
cian is symmetric and positive definite.

Most applied work on Laplacian solvers has been on pre-
conditioned conjugate gradient (PCG) solvers, including sup-
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port graph preconditioners [8][3][4], or specialized multigrid
methods [15][14]. Spielman and Teng [18] showed how to
solve these problems in nearly-linear work, later improved
upon by Koutis, Miller, and Peng [13], but their algorithms
do not yet have a practical implementation. An algorithm
proposed by Kelner et al. [11] has the potential to solve
these linear systems in nearly-linear work with a simple, im-
plementable algorithm.

1.2 The Dual Randomized Kaczmarz Algorithm

The inspiration for the algorithm proposed by Kelner et
al. [11] , which we refer to as Dual Randomized Kaczmarz
(DRK), is to treat graphs as electrical networks with resis-
tors on the edges. For each edge, the weight is the inverse
of the resistance. We can think of vertices as having an
electrical potential and a net current at every vertex, and
define vectors of these potentials and currents as v and f
respectively. These vectors are related by the linear sys-
tem Lv = f. Solving this system is equivalent to finding
the set of voltages that satisfies the net “injected” currents.
Kelner et al.’s DRK algorithm solves this problem with an
optimization algorithm in the dual space, which finds the op-
timal currents on all of the edges subject to the constraint
of zero net voltage around all cycles. They use Kaczmarz
projections [10] to adjust currents on one cycle at a time,
iterating until convergence.

We will also refer to the Primal Randomized Kaczmarz
(PRK) method that applies Kaczmarz projections in the
primal space [19]. One sweep of PRK performs a Kaczmarz
projection with every row of the matrix. Rows are randomly
permuted at every sweep.

DRK iterates over a set of fundamental cycles, cycles formed
by adding individual edges to a spanning tree T. The fun-
damental cycles are a basis for the space of all cycles in the
graph [7]. The resistance R, of a cycle C. formed by offtree
edge e is defined as the sum of the resistances around the

cycle
Re = Z Ter
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which is thought of as approximating the resistance of the
offtree edge r.. Cycles are chosen randomly, with probability
Re/re.

The performance of the algorithm depends on the sum of
these approximate resistances, a property of the spanning
tree called the tree condition number



The number of iterations of DRK is proportional to the
tree condition number. Kelner et al. use a particular type
of spanning tree with low tree condition number, called
a low stretch tree, specifically the one described by Abra-
ham and Neiman [1] with 7 of O(mlognloglogn). The
work of one iteration is naively the cycle length, but can
be reduced to O(logn) with a fast data structure ,yielding
O(mlogn?loglogn) total work.

1.3 Related Experimental Work

As the DRK algorithm is a recent and theoretical result,
there are few existing implementations or performance re-
sults. Hoske et al. implemented the DRK algorithm in C++
and did timing comparisons against unpreconditioned CG
on two sets of generated graphs [9]. They concluded that
while DRK does scale with near linear time, the stretch of
spanning trees is too large for DRK to be useful in practice.
They cite experimental results by Papp [16] which suggest
that the theoretically low stretch tree algorithms aren’t sig-
nificantly better than min-weight spanning trees in practice,
at least on relatively small graphs.

We also cite the experimental work of Chen and Toledo
[5] on support graph preconditioners. They demonstrated
that support graph preconditioners can outperform incom-
plete Cholesky on certain problems. There has also been
some experimental work in implementing the local cluster-
ing phase of the Spielman and Teng algorithm [20].

2. INITIAL EVALUATION OF DRK
AND COMPARISON TO PCG AND PRK

2.1 Experimental Design

For completeness, we include our own initial study of DRK
which measures performance in terms of work instead of
time, and which uses a more diverse graph test set. We
implemented the algorithm in Python with Cython to see
how it compared against PCG (preconditioned with Jacobi
diagonal scaling) and PRK. However, we did not implement
a low stretch spanning tree. Instead we use a low stretch
heuristic that ranks and greedily selects edges by the sum of
their incident vertex degrees (a cheap notion of centrality).
We have found that this works well on unweighted graphs.
We also did not implement the fast data structure Kelner et
al. use to update cycles in O(logn) work.

We do not measure wall clock time, as our DRK imple-
mentation isn’t highly optimized. Instead we are interested
in measuring the total work. For PCG the work is the num-
ber of nonzeros in the matrix for every iteration, plus the
work of applying the preconditioner at every iteration (num-
ber of vertices for Jacobi). For PRK the work is the number
of nonzero entries of the matrix for every sweep, where a
sweep is a Kaczmarz projection against all the rows of L.
For DRK we consider four different cost estimates for the
work of updating a single cycle.

Metric 1. cycle length (naive)
Metric 2. logn (using fast update data structure)
Metric 3. log(cycle length) (optimistic)

Metric 4. 1 (lower bound)

Updating every edge in a cycle is the naive implementation
we are currently using. The data structure described by
Kelner et al. can update the fundamental cycles in O(logn)
work. This may be an overestimate when the cycle length
is actually less than logn. We consider a hypothetical log
of cycle length update method which we do not know to
exist. However we surely cannot do better than O(1) work
per cycle.

We ran experiments on all the structured mesh-like graphs
and unstructured network graphs shown in Table 1. Mesh-
like graphs come from more traditional applications such
as model reduction and structure simulation, and contain
a more regular degree distribution. Unstructured networks
graphs come from electrical, road, and social networks, and
contain a more irregular, sometimes exponential, degree dis-
tribution. Most of these graphs come from the UF sparse
matrix collection [6]. A few 2D and 3D grids are added along
with a few graphs generated with the BTER generator [12].
Weights were removed and in a few cases the matrices were
symmetricized by adding the transpose. These graphs were
pruned down to the largest connected component of their
2-core, by successively removing all degree 1 vertices, since
DRK operates on the cycle space of the graph. The differ-
ence of the original graph and the 2-core are trees that hang
off the original graph. These can be solved in linear time so
we disregard them to see how solvers compare on just the
structurally interesting part of the graph.

We solve to a relative residual tolerance of 1073, The
Laplacian matrix is singular with a nullspace dimension of
one. For DRK and PRK this is not a problem but for
PCG we must handle the non-uniqueness of the solution.
We choose to do this by removing the last row and column
of the matrix. We could also choose to orthogonalize the
solution against the nullspace inside the algorithm, but we
note the performance results are similar.

We also ran a set of PCG vs. DRK experiments where the
convergence criteria is the actual error within 1072, We do
this knowing the solution in advance. One of the interesting
results of the DRK algorithm is that, unlike PCG and PRK,
convergence does not depend on the condition number of
the matrix, but instead just on the tree condition number.
Since higher condition number can make small residuals less
trustworthy, we wondered whether convergence in the actual
error yields different results.

2.2 Experimental Results

We compare DRK to the other solvers by examining the
ratio of DRK work to the work of the other solvers. The ratio
of DRK work to PRK work is plotted in Figure 1, separated
by graph type. Each vertical set of four points are results
for a single graph, and are sorted on the x axis by graph
size. The four points represent the ratio of DRK work to
PRK work under all four cost metrics. Points above the line
indicate DRK performed more work while points below the
line indicate DRK performed less work. Similar results for
the PCG comparison are shown in Figure 2. Another set of
PCG comparisons, converged to the actual error is shown in
Figure 3. An example of the convergence behavior on the
USpowerGrid graph is shown in Figure 4. This plot indicates
how both the actual error and relative error behave during
the solve for both PCG and DRK. A steeper slope indicates
faster convergence. Note this only shows metric 1 work for
DRK.
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Figure 1: DRK vs. PRK: Relative work of DRK to PRK work under the four cost metrics is shown (PRK is better than DRK
at points above the line.)
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Figure 2: DRK vs. PCG: Relative work of DRK to PCG work under the four cost metrics is shown (PCG is better than DRK
at points above the line.)
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Figure 3: DRK vs. PCG Converged to Actual Error: Relative work of DRK to PCG work under the four cost metrics is
shown, convergence tolerance is norm of actual error within 1073
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Figure 4: DRK and PCG Convergence Behavior on USpow-
erGrid: Relative residual error and actual error are shown
for both solvers over the iterations required for convergence.

2.3 Experimental Analysis

In the comparison to PRK (shown in Figure 1), DRK is
often better with cost metrics 3 and 4. On a few graphs,
mostly networks, DRK outperforms PRK in all cost met-
rics (all the points are below the line.) In the comparison
to PCG (shown in Figure 2), DRK fares slightly better for
the network graphs, but on both graph sets these results
are somewhat less than promising for. PCG often does bet-
ter (most of the points are above the line.) Even if we as-
sume unit cost for cycle updates, PCG outperforms DRK.
The performance ratios also seem to get worse as graphs get
larger.

The experiments concerned with the actual error (shown
in Figure 3) are very interesting as they are quite differ-
ent than using the residual tolerance. For all of the mesh
graphs, considering the actual error makes DRK look more
promising. The relative performance of cost metrics 3 and
4 are now typically better for DRK. However, PCG is still
consistently better with the cost metrics 1 and 2. For some
of the network graphs, the convergence behavior is similar,
but for others things look much better when considering ac-
tual error. Informally the number of edges updated by DRK
did not change much when switching convergence criteria,
but PCG work often increased. The USpowerGrid example
(shown in Figure 4) gives a sense of this. The residual error
and actual error decrease similarly for DRK, but the actual
error curve for PCG decreases much slower for the actual
error.

3. NEW ALGORITHMIC IDEAS

We consider ways in which DRK could be improved by
experimenting with cycles and their updates. We are in large
part interested in any potential parallelism that we can take
advantage of if multiple threads are used inside DRK. To this
end we are interested in measuring the number of parallel
steps, the longest number of steps a single thread would
have to perform before before convergence, maximized over
all threads. We will also refer to the span, or critical path
length, which is the number of parallel steps that have to be

taken if we can utilize infinite threads.

3.1 Expanding the Set of Cycles

Sampling fundamental cycles with respect to a tree will
require updating several long cycles which will not be edge-
disjoint. It would be preferable to update edge-disjoint cy-
cles, as these updates could be done in parallel. The cycle
set we use does not need to be a basis, but it does need
to span the cycle space. In addition to using a cycle basis
from a spanning tree, we will use several small, edge-disjoint
cycles. We expect that having threads update these small
cycles is preferable to having them go idle.

3.1.1 2D Grid Example

We first conceived of using a different cycles basis by con-
sidering the 2D grid graph shown in Figure 5. Instead of
using a tree to select cycles as in Figure 5(a) we considered
using all of the face cycles. The facial cycles span the cycle
space of a planar graph [7]. Half of these cycles could be
updated at one iteration and then the other half could be
updated during the next iteration, in a checkerboard fashion,
as in Figures 5(b)(c). Furthermore, to speed up convergence,
smaller cycles could be added together to form larger cycles
(in a multilevel fashion) as in Figure 5(d).

Figure 5: Grid Cycles: (a) Fundamental cycles are formed
by adding edges to the spanning tree. (b-c) First level facial
cycles are shown, grouped into edge-disjoint sets. (d) Second
level facial cycles are formed by adding smaller facial cycles.

We implemented such a cycle update scheme using the
grid face cycles, and performed experiments to see how the
face cycles affected the total work measured in both the
number of cycles updated (metric 4) and edges updated
(metric 1). For the facial cycles, the span per iteration is
the cost of updating two cycles at every level. There is no
span plot for the fundamental cycles as we leave a discus-
sion of a more general parallelization scheme to the next
section. We ran experiments with and without the hierar-
chical combination of the face cycles against the original set



of fundamental cycles. In the case of the fundamental cycles
we use H trees [2], which are known to have optimal stretch
O(logn) . Solutions were calculated to a residual tolerance
of 1076,

The results shown in Figure 6 indicate that the face cy-
cles improve both the work and span. Using a hierarchical
update scheme reduces the total number of edges updated.
However as this requires updating larger cycles it has a worse
span than simply using the lowest level of cycles.
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Figure 6: Grid Cycle Performance: Work and span of DRK
using facial cycles and fundamental cycles are shown for two
dimensional grids of various sizes.

3.1.2  Extension to General Graphs

The small cycles we will add to the basis we refer to as
local greedy cycles. Pseudo code for finding these cycles
is shown in Algorithm 1. We construct this cycle set by at-
tempting to find a small cycle containing each edge. Starting
with all edges unmarked, the algorithm selects an unmarked
edge and attempts to find a path between its endpoints. This
search is truncated by bounding the max number of edges
searched so that each search is O(1) and constructing the
entire set is O(m). If found, this path added to the edge
forms a cycle, which is added to the new cycle set, and all
edges used are marked. Table 1 includes the number of local
greedy cycles found for all the test graphs when the trun-
cated BFS was allowed to search 20 edges. Greedy cycles
were found on all the graphs except for the tubel graph,
in which all the vertices had such large vertex degree that
searching 20 edges was not enough to find a cycle.

Algorithm 1 Local Greedy Finder

function LoCAL-GREEDY(G)
for e; ; € E do
if e;,; unmarked then
pi,; = Truncated-BFS(G \ (ei,;), %, j, max_edges)
Add p;,; + e;,; to cycle set
Mark all edges in p;,; + €45
end if
end for
end function

Adding additional cycles to the cycle basis means we also
need new probabilities with which to sample all the cycles.

Figure 7: Local Greedy Cycles: An edge is selected on the
left and a local greedy search is performed to find the cycle
on the right.

Since in the unweighted case, the stretch of a cycle is just
its total length, the natural choice is to update cycles pro-
portional to their length. Though we note this might not be
the best way to select cycles.

3.2 Cycle Sampling and Updating in Parallel

In the original DRK algorithm, cycles are chosen one at
a time with probability proportional to tree stretch. We
propose a parallel update scheme in which multiple threads
each select a cycle. The current approach we are using is to
have each thread select a cycle at every iteration with prob-
ability proportional to cycle length. If two threads select
cycles that share an edge, one of the threads goes idle for
that iteration. In Figure 8, threads one, two, and four select
edge-disjoint cycles. However the third processor selects a
cycle which contains edge 3, which is already in use by the
cycle on thread 1. Processor 3 sits this iteration out while
the other processors update their cycles.

Thread 1| |Thread 2| [Thread 3| |Thread 4

7 10 13

Figure 8: Example of Processors Selecting Cycles: Threads
1, 2, and 4 select edge-disjoint cycles, but thread 3 selects a
cycle with edge 3 already in use. Thread 3 will go idle for
an iteration.

There are various measures of parallel performance in this
model that we are interested in. The first is simply the
number of iterations. The second is the total work across all
threads at every iteration. Lastly we are interested in the
total span, or critical path length. This is the maximum of
the work over all threads, summed up over all the iterations.

We envision threads working in a shared memory envi-
ronment on a graph that fits in memory. This might not be
realistic in practice as there must be some communication



of which edges have already been used which might be too
expensive relative to the cost of a cycle update. However we
are simply interested in measuring the potential parallelism,
thus we ignore any communication cost.

This parallel selection scheme will change the probabili-
ties in which cycles are selected by conditioning on edges
being available p(Ce) = LZ<p(e’ € C. available). This se-
lection scheme will create a bias towards smaller cycles with
less conflicting edges as more threads are added, which can
increase total work.

4. EXPERIMENTS AND RESULTS

4.1 Experimental Design

We performed experiments on a variety of unweighted
graphs from the UF Sparse Matrix Collection (the same test
set at in Section 2, shown in Table 1). Again we distinguish
between structured mesh-like graphs and unstructured net-
work graphs.

We continue to use our Python/Cython implementation of
DRK, without a low stretch spanning tree or a cycle update
data structure. The code does not run in parallel, but we
simulate parallelism on multiple threads by selecting and
updating edge-disjoint cycles at every iteration as described
above.

Our experiments consist of two sets of strong scaling ex-
periments, the spanning tree cycles with and without local
greedy cycles, up to 32 threads. We set a relative residual
tolerance of 1073, We consider the same 4 cycle update
cost metrics as used in the PCG comparisons in Section 2:
cycle length, logn, log(cycle length), and unit cost. How-
ever in the case of the local greedy cycles, which cannot use
the logn update data structure, and we always just charge
the number of edges in a cycle. For all the work cost mod-
els, we measure the total work required for convergence and
the number of parallel steps taken to converge. For metric
4 these will be the same. A condensed subset of the scaling
results are shown in Table 2.

4.2 Experimental Results

We first examine the effects of using a different cycle ba-
sis sequentially. We estimate the usefulness of extra cycles
as the length of the largest cycle in the fundamental set
normalized by the number of cycles in the fundamental set.
This is because we suspect the large cycles to be a barrier to
performance as they are updated the most frequently, and
at higher cost depending on the cost metric. We plot the
performance of the local greedy cycles on the two different
graph types (shown on the highest and lowest cost metrics
in Figure 9). These figures show the ratio between the work
of the different cycle sets as a function of the estimated use-
fulness. Points below the line indicate that adding the local
greedy cycles improved performance.

Figure 10 shows examples of our results on three of the
graphs. In Figure 10(a) the parallel steps (with the four
different metrics) is plotted as a function of the number of
threads used for the barth5 graph. The total edge cost is
cost at the top of the plot, while the unit cost is at the
bottom. These results are shown for both sets of cycles,
with and without local greedy. Figure 11 shows the effect of
adding threads to the total work.

To measure the parallel performance across multiple graphs
we will look at the average speedup of the span metrics

across all graphs. Speedup is defined as the sequential work
of one thread over the number of parallel steps on multiple
threads. The speedup with and without cycles is shown in
Figure 12. Note that without local greedy cycles metric 2
and metric 4 speedup are the same as the costs differ by
logn. We compare the speedup between the different cycle
sets for the different graph types in Figure 13 The speedup
of using 8 threads without local greedy is plotted against
the speedup of using 8 threads with local greedy.

4.3 Experimental Analysis

In the serial results shown in Figure 9 we see that our
usefulness estimate is a crude guess at when local greedy
cycles will be helpful. There seems to be a threshold of
largest cycle length over which local greedy cycles can be
useful, but under which there’s not much difference. Also
note that meshes tend to have larger, largest cycles than
networks, leading to local greedy cycles working better on
meshes. The local greedy cycle improvement is slightly bet-
ter metric 1 where we count every edge update. At the other
extreme, when updating large cycles is the same cost (unit)
as small cycles added by local greedy, the local cycles are less
effective. However there is still an improvement in number
of cycles updated. We tried but were unable to find some
measure of the usefulness of a single local greedy cycle.

The parallel steps scaling of the mesh-like barth5 graph
(shown in Figure 10(a)) is an example of the local greedy
cycles improving both sequential performance and scaling
performance. At the left of this plot we see the extra cy-
cles improve results sequentially. Then as threads are added
parallel the steeper slope indicates the local greedy cycles
improved parallel steps scaling. The parallel steps scaling
of the mesh-like tumal graph (shown in Figure 10(b)) is an
example of the local greedy cycles improving sequential per-
formance, but with similar or worse scaling. At the left of
this plot we see the extra cycles improve results sequentially,
but when scaled to 32 threads performance is similar. The
parallel steps scaling of the network email graph (shown in
Figure 10(c)) is an example in which the local greedy cycles
do not improve sequential performance, and scaling is poor
with both cycle sets. There is little difference between the
different cycle sets in this plot. Furthermore scaling is poor
and quickly flattens out by about four threads. For a better
understanding of the poor parallel steps scaling we exam-
ine the total work scaling (shown in Figure 11, showing how
much extra work we have to do when skewing the probabil-
ity distribution. This extra work quickly increases, limiting
the parallel performance.

In the speedup plot (shown in Figure 12), we see simi-
lar speedup for both cycle sets. On mesh graphs the local
greedy cycles do slightly better on all cost metrics beyond
16 threads. However on the network graphs, only with cycle
cost metric 4 do the local greedy cycles perform better, and
under metric 3 they perform worse. (Again note that with-
out local greedy cycles metric 4 and metric 3 speedups are
the same.) We hypothesized that giving the solver smaller,
extra cycles would improve the parallel performance com-
pared to the fundamental cycles. However this seems to
only be true for mesh like graphs, and even then the im-
provement is minimal. An interesting thing to note is that
the speedup is better with the logn cost model. This is
probably due to overcharging small cycles, which is less of
an issue when there are more threads to pick potentially
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networks graphs which don’t have much speedup for either

larger cycles. Taking a snapshot of these results on eight
cycle set (bottom left of the plot). However there are meshes

threads (shown in Figure 13), we see that there are some
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and networks which enjoy a speedup for both cycle sets (top
right of the plot). It’s difficult to say on what graphs could
using different cycles aid with parallelism.

S.  CONCLUSIONS

We have done an initial comparison of Kelner et al.’s
DRK with PCG and PRK. These results, which simply mea-
sure algorithm work by number of edges touched, do not at
present support the practical utility of DRK. For mesh-like
graphs, PCG usually takes less work than DRK, even if DRK
is charged only one unit of work per cycle update. This sug-
gests that the fast cycle update data structure proposed by
Kelner et al. (or any undiscovered fast update method) will
be enough to provide practical utility to DRK. It does seem
that DRK is an improvement to PRK on several graphs,
mostly networks. One promising result of these experiments
is that DRK converges to small actual error similarly to
residual error, while PCG sometimes does not. More PCG
iterations are required when solving to a low actual error,
while DRK work does not increase very much. More work
should be done to understand to understand this behavior.

The experiments in this paper were limited to unweighted
graphs for simplicity. Experiments with weighted graphs

should be run for more complete results. An open question
is whether there is a class of graphs with high condition
number, but with practical low stretch trees where DRK
will perform asymptotically better.

We suggest techniques for improving DRK in practice. We
consider using a non fundamental cycle basis to accelerate
convergence. Using face cycles of a two-dimensional grid
graph greatly reduces the required number of edge updates
compared to the fundamental cycle basis. We attempt to
generalize these cycles by finding small local greedy cycles.
We found these cycles can accelerate convergence, especially
for mesh like graphs. Because of the randomized nature of
DRK, it is difficult to measure the usefulness of any one
cycle in the basis, so it is difficult to determine where and
which extra cycles are useful.

We also consider how DRK could be implemented in par-
allel to take advantage of simultaneous updates of edge dis-
joint cycles. We describe a model in which threads select
cycles, and go idle if a conflicting edge is found. While this
can increases total work, we find this can often reduce the
number of parallel steps. However there is a limit to this
parallelism. Furthermore, this scaling behavior seems to be
very similar with or without local greedy cycles.
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Graph Nodes | Edges | 2-core | 2-Core | Greedy Probability of Targest
(Collection) Nodes Edges Cycles Selecting Greedy Cycle Length
jagmesh3 (HB) 1.09k 3.14k 1.09k 3.14k 1.92k 0.2419 77
1shp1270 (HB) 1.27k 3.70k 1.27k 3.70k 2.17k 0.4712 95
rail 1357 1.36k 3.81k 1.36k 3.81k 1.85k 0.2507 55
(Oberwolfach)
50 x 50 grid 2.50k 4.90k 2.50k 4.90k 2.40k 0.5000 120
data (DIMACS10) 2.85k 15.1k 2.85k 15.1k 7.43k 0.1760 92
100 x 100 grid 10.0k 19.8k 10.0k 19.8k 9.80k 0.5000 230
20 x 20 x 20 grid 8.00k 22.8k 8.00k 22.8k 3.57k 0.1941 122
L-9 (A-G Monien) 18.0k 35.6k 18.0k 35.6k 17.6k 0.4992 411
tumal 23.0k 37.2k 22.2k 36.5k 10.7k 0.0610 420
(GHS_indef)
barth5 (Pothen) 15.6k 45.9k 15.6k 45.9k 29.9k 0.1765 375
cti (DIMACS10) 16.8k 48.2k 16.8k 48.2k 7.27k 0.0501 172
aft01 (Okunbor) 8.21k 58.7k 8.21k 58.7k 26.6k 0.6680 105
30 x 30 x 30 grid 27.0k 78.3k 27.0k 78.3k 8.35k 0.1399 202
wing (DIMACS10) 62.0k 122k 62.0k 122k 27.9k 0.0301 605
olesnik0 88.3k 342k 88.3k 342k 220k 0.1327 363
(GHS_indef)
tubel (TKK) 21.5k 438k 21.5k 438k 0 0.0000 102
fe_tooth (DIMACS10) 78.1k 453k 78.1k 453k 217k 0.3673 286
dawson5 (GHS_indef) 51.5k 480k 20.2k 211k 19.8k 0.0941 165
(a) Structured Mesh-like Graphs
Graph Nodes Edges 2-core 2-core Greedy Probability of Largest
(Collection) Nodes Edges Cycles Selecting Greedy Cycle Length
EVA (Pajek) 8.50k 6.71k 314 492 84 0.2346 18
bcspwr09 (HB) 1.72k 2.40k 1.25k 1.92k 651 0.3276 54
BTER1 981 4.85k 940 4.82k 510 0.0465 18
davg = 10, dmaxz = 30
cemaz = 3, cColopal = -1
USpowerGrid (Pajek) 4.94k 6.59k 3.35k 5.01k 1.68k 0.2997 80
email (Arenas) 1.13k 5.45k 978 5.30k 362 0.0433 11
uk (DIMACS10) 4.82k 6.84k 4.71k 6.72k 1.97k 0.2488 211
as-735 (SNAP) 7.72k 13.9k 4.02k 10.1k 3.83k 0.0822 9
ca-GrQc (SNAP) 4.16 13.4k 3.41k 12.7k 4.43k 0.2315 22
BTER2 4.86k 25.1k 4.54k 24.8k 2.69k 0.0468 17
davg = 10, dmax = 70
ccmazx = -3, CCglobal = .1
gematll (HB) 4.93k 33.1k 4.93k 33.1k 9.72k 0.0011 42
BTERS3 4.94k 37.5k 4.66k 37.2k 4.79k 0.0518 18
davg = 15, dmax = 70
ccmax = -6, CCqlobal = .15
dictionary28 (Pajek) 52.7k 89.0k 20.9k 67.1k 20.2k 0.1410 36
astro-ph (SNAP) 16.7k 121k 11.6k 111k 13.2k 0.0786 18
cond-mat-2003 31.2k 125k 25.2k 114k 32.5k 0.1533 23
(Newman)
BTER4 999 171k 999 171k 33 0.0002 7
davg = 15, dmaz = 30
cemax = -6, CcCglobal = .15
HTC_336_4438 (IPSO) 226k 339k 64.1k 192k 32.9k 0.0339 990
OPF_10000 (IPSO) 43.9k 212k 42.9k 211k 122k 0.3146 53
ga2010 (DIMACS10) 291k 709k 282k 699k 315k 0.1466 941
coAuthorsDBLP 299k 978k 255k 934k 297k 0.1524 36
(DIMACS10)
citationCiteseer 268k 1.16M 226k 1.11M 150k 0.0484 56
(DIMACS10)
(b) Unstructured Network Graphs
Table 1: Statistics of All Graphs Used in Experiments




Graph
and Metric

Sequential Work
(with Local Greedy)

2 Thread Parallel Steps
(with Local Greedy)

8 Thread Parallel Steps
(with Local Greedy)

jagmesh3 (Metric 1)

2.73M (1.72M)

2.02M (1.26M)

1.07M (28.3K)

jagmesh3 (Metric 4)

127K (101K)

69.7K (51.2K)

632K (17.4K)

1shp1270 (Metric 1)

6.80M (4.35M)

4.87M (3.50M)

3.41M (2.29M)

1shp1270 (Metric 4)

192K (150K)

104K (85.1K)

61.0K (41.9K)

rail_ 1357 (Metric 1)

1.64M (1.26M)

1.21M (909K)

653K (550K)

rail_ 1357 (Metric 4)

TI9K (114K)

63.8K (57.0K)

143K (143K)

50 x 50 grid (Metric 1)

9.42M (4.32M)

9.42M (4.43M)

3.55M (1.50M)

50 x 50 grid (Metric 4)

213K (125K)

115K (62.5K)

45.0K (20.0K)

data (Metric 1)

17.0M (16.4M)

13.1M (13.1M)

8.43M (7.41M)

data (Metric 4)

815K (878K)

216K (470K)

185K (168K)

100 x 100 grid (Metric 1)

84.0M (38.1M)

59.7M (29.1M)

27.2M (13.1M)

100 x 100 grid (Metric 4)

T.11M (610K)

560K (310K)

180K (90.0K)

20 x 20 x 20 grid (Metric 1)

64.7M (63.3M)

45.3M (46.0M)

30.9M (28.6M)

20 x 20 x 20 grid (Metric 4)

T.55M (1.61M)

816K (856K)

148K (416K)

L-9 (Metric 1)

820M (382M)

557M (266M)

346M (124M)

L-9 (Metric 4)

3.92M (2.03M)

2.07M (1.04M)

1.10M (396K)

tumal (Metric 1)

597M (282M)

362M (186M)

T47M (75.9M)

tumal (Metric 4)

3.36M (1.69M)

1.60M (845K)

512K (267K)

barth5 (Metric 1)

282M (149M)

212M (119M)

T18M (54.9M)

barth5 (Metric 4)

3.11M (1.98M)

1.61M (1.03M)

655K (312K)

cti (Metric 1)

204M (195M)

T42M (143M)

87.7M (103M)

cti (Metric 4)

3.87M (3.89M)

2.02M (2.09M)

1.01M (1.20M)

aft01 (Metric 1)

127M (118M)

90.8M (88.3M)

45.4M (43.5M)

aft01 (Metric 4)

4.38M (4.32M)

2.19M (2.22M)

763k (738k)

30 x 30 x 30 grid (Metric 4)

401M (394M)

284M (283M)

152M (142M)

30 x 30 x 30 grid (Metric 4)

6.51M (6.62M)

3.35M (3.40M)

1.35M (1.27M)

wing (Metric 1)

1.98B (4.16B)

3.41B (2.99B)

2.58B (2.08B)

wing (Metric 4)

21.8M (18.8M)

12.2M (10.8M)

8.31M (6.70M)

olesnik0 (Metric 1)

2.69B (1.71B)

1.09B (1.36B)

978M (630M)

olesnik0 (Metric 4)

33.8M (24.6M)

16.9M (1.28M)

5.47M (3.62M)

tubel (Metric 1)

2.74B (N/A)

1.988 (N/A)

1,598 (N/A)

tubel (Motric 4)

56.1M (N/A)

32.0M (N/A)

22.0M (N/A)

fe_tooth (Metric 1)

6.56B (5.76B)

1.46B (4.09B)

3.04B (2.87B)

fe_tooth (Metric 4)

65.5M (62.1M)

34.3M (32.7M)

19.8M (18.8M)

dawsonb (Metric 1)

1.49B (1.45B)

1.06B (1.05B)

650M (658M)

dawsonb (Metric 4)

24.9M (24.7M)

12.8M (12.8M)

6.11M (6.19M)

(a) Structured Mesh-like Graphs

Graph
and Metric

Sequential Work
(with Local Greedy)

2 Thread Parallel Steps
(with Local Greedy)

8 Thread Parallel Steps
(with Local Greedy)

EVA (Metric 1)

41.4K (25.1K)

22.5K (23.8K)

18.5K (15.1K)

EVA (Metric 4)

6.28K (4.08K)

2.83K (3.14K)

1.88K (1.88K)

bospwr09 (Metric 1)

308K (242K)

T99K (165K)

130K (115K)

bespwr09 (Metric 4)

26.2K (24.9K)

12.5K (12.5K)

1.99K (4.99K)

BTER1 (Metric 1)

2.26M (2.25M)

1.78M (1.76M)

T.59M (1.64M)

BTER1 (Metric 4)

246K (253K)

243K (253K)

333K (397K)

USpowerGrid (Metric 1)

T.06M (887K)

735K (557K)

297K (279K)

USpowerGrid (Motric 4)

73.8K (77.1K)

36.9K (33.6K)

10.1K (10.1K)

email (Metric 1)

T.22M (1.23M)

871K (862K)

639K (638K)

email (Metric 4)

T99K (204K)

127K (127K)

87.0K (87.0K)

uk (Metric 1)

7.30M (3.88M)

5.51M (3.29M)

3.04M (1.62M)

uk (Metric 4)

T60K (108K)

84.8K (61.2K)

33.0K (18.8K)

as-735 (Metric 1)

911K (887K)

498K (550K)

203K (267K)

as-735 (Metric 4)

201K (201K)

96.6K (109K)

48.3K (44.2K)

ca-GrQc (Metric 1)

2.08M (3.39M)

T.02M (2.16M)

923K (950K)

ca-GrQc (Metric 4)

413K (509K)

201K (242K)

71.7K (75.1K)

BTER2 (Metric 1)

T1.3M (11.7M)

8.21M (8.31M)

6.52M (6.60M)

BTER2 (Metric 4)

T.30M (1.39M)

876K (894K)

658K (667K)

gematll (Metric 1)

63.7M (62.2M)

50.4M (49.4M)

45.7M (44.9M)

gematll (Metric 4)

3.30M (3.22M)

2.38M (2.33M)

2.07M (2.04M)

BTER3 (Metric 1)

18.56M (19.0M)

14.6M (14.1M)

13.4M (12.4M)

BTER3 (Metric 4)

2.13M (2.27M)

T.50M (1.54M)

1.39M (1.29M)

dictionary28 (Metric 1)

38.0M (33.8M)

24.4M (24.6M)

16.4M (15.2M)

dictionary28 (Metric 4)

3.20M (3.18M)

1.65M (1.78M)

941K (878K)

astro-ph (Metric 1)

25.3M (25.9M)

15.7M (16.3M)

8.63M (8.57M)

astro-ph (Metric 4)

4.45M (4.74M)

2.27M (2.43M)

T.01M (1.01M)

cond-mat-2003 (Metric 1)

38.8M (40.9M)

27.4M (30.3M)

21.0M (20.5M)

cond-mat-2003 (Metric 4)

4.57M (5.35M)

2.62M (3.10M)

1.74M (1.72M)

BTER4 (Metric 1)

25.4M (26.4M)

15.1M (15.1M)

8.53M (8.01M)

BTER4 (Metric 4)

6.78M (7.06M)

3.67M (3.67M)

1.84M (1.73M)

HTC 3364438 (Metric 1)

14.2B (13.7B)

8.50B (8.89B)

4.10B (3.67B)

HTC_336_4438 (Metric 4)

32.2M (32.0M)

15.9M (16.9M)

6.80M (6.09M)

OPF_10000 (Metric 1)

47.3M (49.1M)

31.8M (33.2M)

16.0M (16.5M)

OPF_10000 (Metric 4)

6.86M (8.66M)

3.34M (4.29M)

857K (1.07M)

ga2010 (Metric 1)

8.77B (6.16B)

6.88B (4.97B)

3.21B (2.59B)

ga2010 (Metric 4)

40.8M (33.5M)

20.8M (16.9M)

6.48M (5.35B)

coAuthorsDBLP (Metric 1)

539M (552M)

356M (371M)

264M (237M)

coAuthorsDBLP (Metric 4)

14.4M (51.3M)

23.5M (26.3M)

15.3M (13.8M)

citationCiteseer (Metric 1)

1.08B (1.07B)

7IG6M (723M)

506M (482M)

citationCiteseer (Metric 4)

74.4M (76.2M)

40.7M (41.8M)

25.3M (24.2M)

(b) Unstructured Network Graphs

Table 2: Condensed Results of Scaling Experiments




