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Abstract

This paper presents an end-to-end design process for compliance minimization-
based topological optimization of cellular structures through to the realization of
a final printed product. Homogenization is used to derive properties representa-
tive of these structures through direct numerical simulation of unit cell models of
the underlying periodic structure. The resulting homogenized properties are then
used assuming uniform distribution of the cellular structure to compute the final
macro-scale structure. A new method is then presented for generating an STL
representation of the final optimized part that is suitable for printing on typical
industrial machines. Quite fine cellular structures are shown to be possible using
this method as compared to other approaches that use nurb based CAD represen-
tations of the geometry. Finally, results are presented that illustrate the fine-scale
stresses developed in the final macro-scale optimized part and suggestions are made
as to incorporate these features into the overall optimization process.
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1. Introduction

Interest in cellular materials continues to grow in light-weighting applications
as technologies to realize these materials become more reliable, repeatable and of
lower cost. Besides the weight savings inherent in these materials due to their low
density (relative to the solid base material), cellular structures can also exhibit
good dynamic performance, defect tolerance, corrosion and thermal resistance and
lower cost than traditional materials [1, 2, 3].

Following the taxonomy of Wadley [4] cellular structures fall into one of two
broad categories; stocastic and periodic. Stocastic structures are those where
where the cellular structure is randomly distributed. While this cellular structure
is among the easiest to manufacture using traditional techniques (e.g. foaming
and sintering) its random layout and varying density make control of mechanical
properties (and hence maximizing performance) difficult [4]. Better control of
material properties are possible with periodic structures but their manufacture
with traditional approaches is limited.

Periodic structures may also be amenable to numerical analysis at the scale of
the part as homogenization techniques assume a regular or nearly regular structure
at some scale [1]. Specifically, periodic cellular structures can be characterized by
Representative Volume Elements (RVEs) that capture the repeatable structures
evident in the material. When the RVE is of a size much smaller than the part they
compose (i.e. “scale separation” exists) homogenization theory can be employed
to provide representative material properties of the RVE that may be used to
accurately describe the macro-scale response of the structure.

Although conventional manufacturing approaches are available and dominate
the creation of these cellular materials, thier use becomes problematic for more
complex cell geometries such as lattice structures [5]. These manufacturing lim-
itations may be overcome by using Advanced Manufacturing (AM) techniques.
Unlike traditional subtractive processes, AM approaches “print” parts from, for
example, powders or droplets that are fused together with thermal or other process.
In this way, AM can build parts that are otherwise unimaginable by traditional
subtractive processes.

Approaches to multi-scale topological optimization can be broadly classified
as concurrent and non-concurrent. In the non-concurrent approach either the
structural (macro-structure) or micro-structure is optimized [5]. In the concur-
rent approach both macro- and micro-structure are “designed” together to get a
final part [6]. In this paper we consider the non-concurrent approach, selecting a
(spatially) uniform micro-structure and optimizing the macro-structure topology.
Although the part design is based on the homogenized response we do examine
the maximum total stresses (i.e. those that account for RVE stress raisers) in the
final optimized geometries.



This paper begins with a discussion of homogenization theory and the appli-
cation of homogenization to the linear elastostatic problem. This is followed by
a description of the topological optimization algorithms use here. Note that a
range of topological optimization algorithms are available for the compliance min-
imization problem including gradient-based methods such as Solid Isotropic with
Penalization (SIMP), and level set techniques and evolutionary methods including
the ESO and BESO approaches to name a few [7, 8]. Here we choose the SIMP
approach and describe some of the important aspects of our implementation. This
discussion is followed by a description of our process for mapping the optimized
topology to a faceted representation that incorporates the cellular structure. This
leads directly to an STL file that may be exported to a 3D printer for production
without further user intervention. Finally we present results of our process to
design realizable cellular parts and comment on the impact of stress risers due to
the micro-scale features.



2. Problem Formulation

In the linear elastostatic setting, the expression for static equilibrium (conser-
vation of momentum) is
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where 7 is the applied traction, u{ is the displacement constraint, n; is the bound-
ary surface normal, 9Q% U 00 = 99, and 99 is the boundary of the domain,
Q.

2.1. Homogenization

In periodic or nearly periodic heterogeneous materials the elasticity tensor,
Efi1, is assumed to vary with period of the structure, e. The goal of homogeniza-
tion is to (a) determine effective or homogenized material constants that account
for this microscale variation, and (b) provide a means for examining the local or
microscopic fields in component scale analysis [9, 1]. The approach begins with an

asymptotic expansion of the dependent variable in the period of the structure, e,
u(x) = u’(x, x/e) + eul(x,x/¢) + 2u*(x,x/€) + ... (4)

The material response is assumed to be Y-periodic, where Y is the domain of the
periodic cell. Recasting equation (1) in terms of the local variable, y = x/¢, yields
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where A5, is the differential operator:
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Substituting in the expansion in equation (4) yields
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Equation (5) is satisfied if terms on powers of € are equal to zero, i.e.,

A’ =0 (11)
Alu' + A%u’ =0 (12)
Alu? 4+ A%t + A3 = 0. (13)

Equations (11), (12), and (13) correspond to the lowest order terms, €72, ¢!, and

€%, respectively. Since we are concerned with the limit as e — 0, any higher order
terms are neglected.
Equation (11) requires ug be constant in y, i.e., u’ = u®(x), so equation (12)
can be reduced to
0 Ez'Ejkl 8U2
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At this point we wish to find a solution for the microscale displacement, u!, to equa-
tion (14) that can then be used to reduce equation (13) to include only macroscale
terms. The reduced form will define the homogenized problem that implicitly ac-
counts for features at the microscale. To that end, we define the “cell problem” in
the domain, Y, of the periodic cell to be

1.1 _
Ajpuy, =

(14)

=50 (15)

where x%'(y) are Y-periodic. Combining the cell problem with equation (14) yields
a solution for the fine scale:
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where ;(x) is an arbitrary additive constant.
The solution, u?, to equation (13) exists only if the cell average of the forcing
is zero [9], i.e.,
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Equations (16) and (17) reduce to a homogenized set of equations in terms of the

macroscale, u’,
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where the homogenized material properties, H;;x;, are given by
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In summary, the homogenized problem consists of the following;:

Cell Problem (weak form):
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Homogenized System (weak form):
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2.2. Discretization

To solve the cell problems and homogenized system, the trial, characteristic,
and test functions, u;, Xz , and v;, are approximated using a traditional Galerkin
finite element discretization:
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where ¢7(§) are basis functions defined in the parent coordinates, £ € ), and
w;y are the discrete nodal values for the field of interest. The cell problems and
homogenized systems are then:

Cell Problem (discrete form):
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FEffective Constants (discrete form):
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Homogenized System (discrete form):
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where, for element el, B,; is the symmetric gradient matrix, IN,; is the nodal basis
matrix, X is the matrix of characteristic displacement degrees of freedom, det J,ﬁlg
is the Jacobian determinant of the mapping from global coordinates, x € 2, to
parent coordinates, & € Q.

The solution proceedure begins by solving the cell problem once for each of the
unique characteristic displacements, y*. Due to symmetry there are six unique
terms in 3D and three unique terms in 2D. Then the effective constants can be
found and the homogenized system solved. The microscale solution can be evalu-
ated if information at the fine scale is desired.

2.8. Structural Optimization

Here we consider the problem of minimizing the compliance under conditions
of static equilibrium and a given mass/volume. Following Bendsge [7] we have:
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where p(x) is the design field that defines the topology — a value of zero/one indicat-
ing absence/presence of material, respectively. Here, the design field is supported
as a nodal bi-linear (2D) or tri-linear (3D) Lagrange basis function, and filter-
ing (described later) is used to stabilize the equal-order density and displacement



fields. To account for the evolving topology in the enforcement of the equilibrium
constraint, the global stiffness matrix is scaled according to the SIMP method [10]:

K(p) = [pmin + (1 - pmin) pp] K, (36)

such that the design field can be zero in void regions, but the local stiffness is
always nonzero to ensure acceptable conditioning of the global system. In equa-
tion (36), the penalty exponent (p = 3) is chosen to limit the appearance of
intermediate densities in the design, and the initial (fully dense) stiffness, K,, is
given by equation (30).

The design update scheme used in this work follows Bendsge [7]:
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where 27! are the optimization degrees of freedom from which the nodal design

values, pr, are computed using a projection operation. Recursive bisection is used
to find the value for A that produces an updated design, z?“, satisfying the volume
constraint.

The projection operation is used to prevent checkerboarding, control minimum
feature size, and improve smoothness of the resulting design, and consists of a
convolution of a local kernel, h(x,y), with the optimization variable, i.e.,:

p = Mz"t! (39)
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where x; is the position of node I, x; is the position of the Jth neighbor of
node I, and Nj; is the set of nodes within a given radius, r, of node I. The
kernel function used for this work is h(x,y) = r — |y — x|. Note that treating the
projection as a matrix operation simplifies the implementation of this approach
for parallel computing.

The approach described above has been implemented in Albany [11] — a mas-
sively parallel multiphysics analysis package based on the Trilinos [12] library.
Albany uses template based generic programming principles and automatic dif-
ferentiation (AD) to simplify the construction of new objectives/constraints and
associated gradients. Albany has been used to rapidly develop finite element ap-
plication codes in diverse areas including ice sheet modeling [13], computational
poromechanics [14], and quantum device design [15]. Albany and Trilinos are
open-source and available at github.com.
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3. Construction of Cellular Models

To construct a cellular model, we first generate a hexahedral mesh from an
STL geometry representation produced from a topology optimization procedure
of Section 2.3. This STL representation is constructed from this design field, p,
using the Sculpt meshing tool [16]. Sculpt is a companion application to the
Cubit Meshing and Geometry Toolkit [17] developed at Sandia. It is a parallel
all-hex tool that utilizes an overlay grid procedure that is ideally suited to the
organic shapes generated from topology optimization. The procedure begins by
generating a three-dimensional Cartesian grid bounding the STL geometry, where
cell sizes are representative of the target cellular dimensions. Volume fractions are
then computed from p for each cell of the Cartesian grid. Figure 1(A) shows an
example Cartesian grid of volume fractions where v; is the volume fraction of the
i material contained within each grid cell and >~ v; = 1.0. Material interfaces are
approximated using a procedure described in [16]. Grid nodes close to material
interfaces are moved to the surfaces as shown in figure 1(B). Figure 1(C) then
shows a layer of hexahedra inserted on both sides of the material interfaces by
projecting othogonally from the local interface tangent plane. To improve mesh
quality, a smoothing step is performed to improve both smoothness of the interface
plains and the quality of the hexahedra as shown in figure 1(D).
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¥y =027 | v, «0.59] v, =0.57
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(a) (b) (c)

Figure 1: Sculpt procedure for generating an all-hex mesh.

Figure 2 illustrates a coarse hexahedral mesh generated from an STL geometry
produced from a topology optimization procedure. Figure 2(A) is an exterior view
of the mesh generated with Sculpt while (B) and (C) show cutaway views of the
same. Note the regular interior structure of the mesh shown in (B) as well as the
boundary conforming layer of hexes at the surfaces.

Having defined a hexahedral mesh, it can now serve as the structure on which
a cylindrical lattice network can be defined. Within each hexahedra, a repeating
geometry can be defined representing a single cell of the lattice network. While
various configurations of lattice structures may be represented, we show three



(a) (b) (c)

Figure 2: Example coarse hex mesh produced with Sculpt

examples of lattice geometry. Figure 3 shows solid model representations of hex-
ahedron, octahedron and tetrahedon lattices. Note that the geometry for each of
the lattice examples is symmetric around its three principal axis, a requirement to
ensure the lattice geometry will be conforming between hexahedra.

(a)

Figure 3: Solid model representations of lattice structures on a unit cube (A) Hexahedron, (B)
Octahedron, (C) Tetrahedron

Although the solid model representation is convenient for visualization, it is
impractical in application. Instead we simplify the lattice geometry into templates
composed only of triangles that approximate the cylindrical lattice structures as
shown in figure 4.

To build the lattice structure we copy the triangles of a given template into
each hexahedron of the mesh. We note that the template triangles are defined on a
unit cube, where x-y-z coordinate values are in the range 0.0 to 1.0. A local u-v-w
parametric coordinate system can also be defined on a hexahedron with the same
parametric coordinate range. A one-to-one mapping from the x-y-z coordinates
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(a) (b) (c)

Figure 4: Simplified triangle representations of lattice structures on a unit cube (A) Hexahedron
(96 triangles), (B) Octahedron (232 triangles), (C) Tetrahedron (468 triangles)

of the unit cube template to the u-v-w parametric space of the hexahedron can
then be easily computed. To ensure a watertight volumetric representation of the
lattice structure, triangles at the unit cube face boundaries are only copied when
the corresponding hexahedral face is at a material boundary.

Figure 5 shows a simple example of a mesh of a sphere composed of 32 hexa-
hedra. Lattice structures have been defined for each of the three different lattice
configurations.

(a) (b) (c)

Figure 5: Lattice networks defined on a mesh of a sphere with 32 hexes (A) Hexahedron (1728
triangles), (B) Octahedron (5072 triangles), (C) Tetrahedron (12,624 triangles)

In the following section, this approach is shown to be a fast and reliable tech-
nique for creating complex cellular topologies.
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4. Applications

4.1. Microstructured Materials

The homogenization proceedure described above can be used to account for
microstructural effects in printed parts. Two microstructures are considered: a
representative volume element (RVE) with a three-by-three array of elongated
pores that are a) horizontally oriented (Figure 6) and b) vertically oriented. The
Mitchell structure shown in Figure 7 is supported at the top and bottom corners
of the left edge, and a vertical load is applied at the center of the right edge.

Problem setup requires a mesh for the RVE from which the characteristic so-
lutions and effective material constants are computed, and a second mesh for
conducting the optimization of the structure. Figure 6 shows paint plots of the
three characteristic displacements that are computed in the initialization phase.
These displacements are then used in equation (28) to compute the effective mate-
rial stiffness, and the structural optimization proceeds based on the homogenized
values.

The effect of the anisotropy that is introduced by the microstructure is evident
in Figure 7. The material stiffness is greater in the direction parallel to the long axis
of the pores. Depending on the orientation of the pores, the resulting optimized
structure has tensile/compressive members that are oriented to take advantage of
the directional stiffness.

The effect of heterogeneity on peak stresses can be considered by including the
microscale solution in equation (21) to arrive at the total stress — the macro stress
plus micro stress. The stress plots in Figure 7 show the average and maximum
effective total stress for the two microstructures. As could be expected, the average
effective total stresses are approximately the same as the effective macrostress. The
maximum total stresses, i.e., the stresses that account for stress raisers in the RVE,
are roughly twice the value of the average.

— | —e—
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Figure 6: Paint plots of the characteristic displacement fields.
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(a) Horizontal voids: Design (b) Average effective stress (¢) Maximum effective stress

(d) Vertical voids: Design (e) Average effective stress (f) Maximum effective stress

Figure 7: Classic 2D Mitchell structure for horizontally oriented voids (top) and vertically ori-
ented voids (bottom). Stress plot levels: Blue — 0.0 MPa, Red — 5.0 MPa.

4.2. Cellular Structures

Homogenization based topology optimization and subsequent construction of
cellular models can be used to generate exceptionally lightweight and stiff struc-
tures. The approach is demonstrated in the context of a 3D Mitchell structure
for which the RVEs and resulting optimized designs are shown in Figure 8. The
designs correspond to the same cellular structure realized at four different material
volume fractions: 10, 20, 50, and 75 percent of solid density (Figure 9).

The loading configuration consists of a fixed displacement on the left face with
a vertical load applied to the center of the right face. The volume budget of each
optimization is adjusted to maintain a constant mass among the designs. The
design based on a fully dense material was given a volume budget of 6 percent of
the design domain which results in volume budgets of 0.60, 0.30, 0.12, and 0.09
for cellular densities of 10, 20, 50, and 75 percent, respectively. The deflection at
the load surface for the fully dense design is 6.1 mm, and the deflection (percent
reduction) for the cellular designs is 2.5 mm (59%), 3.6 mm (41%), 5.4 mm (11%),
and 5.7 mm (7%), for the 10, 20, 50, and 75 percent dense designs, respectively.

Figure 10 illustrates an example tetrahedron lattice structure for the mesh
shown in figure 2. A close up view of the lattice structure is also shown in Figure
10(B) where the lattice structure for a single hexahadron in the mesh is highlighted.
In this coarse mesh example, composed of 905 hexahedra, approximately 308,000
facets are generated. Also illustrated in figure 11 is a finer mesh representation

13



2D

a) 10% dense, deflection: 2.5 mm (b) 20% dense, deflection: 3.6 mm

> >

(c) 50% dense, deflection: 5.4 mm (d) 75% dense, deflection: 5.7 mm

Figure 8: Fully dense design produces a deflection of 6.1 mm.

of the same model. In this example approximately 25 million facets have been
generated. Time to generate the lattice structure geometry for this model was
approximately 60 seconds or less.
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a) 10% dense b) 20% dense ¢) 50% dense d) 75% dense

Figure 9: Cellular structure with 10, 20, 50, and 75 percent density.

Figure 10: Example tetrahedron lattice on a coarse mesh defined on a topology optimized geom-
etry.

(a) (b)

Figure 11: Example tetrahedron lattice on a fine mesh defined on a topology optimized geometry.
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5. Concluding Remarks

This paper presents an end-to-end design process for compliance minimization-
based topological optimization of cellular structures through to the realization of a
final printed product. Homogenization is used to derive properties representative
of these structures through direct numerical simulation of unit cell models of the
underlying periodic structure. It is seen that, as expected, part design is signifi-
cantly impacted by cell micro-structure. Further we noted that stress-raisers are
generated due to the micro-structure and these are not directly reflected in the part
design. Specifically, a concurrent approach to the design that, for example, includes
both compliance minimization as well as micro-scale stress minimization might be
warranted. A methodology described here that maps the topologically optimized
structure to a STL-ready representation is then used to contruct a printer-ready
part. Resulting final designs are shown for moderate to fine cellular structures
(relative to other related work). These micro-structured parts were then realized
without further user intervention.
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