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Programmatic object and technical path forward

LENS / PBF fundamentals and their resultant metallurgy

3-D LENS- and PBF- prototyping

Effect of of geometry on mechanical behavior and property

Summary



Programmatic objective

AM Science and Technology Maturation (LENS & PBF)

Technical integration

AM processing Materials
(Development/control/optimization) (Structure & properties)

Numerical simulation
(prediction and validation)

l Establish

* Process-structure-property relationships
* Geometry/ precision & limitation/ manufacturing constraint
* Material property control and defect mitigation

l To support

Sound science base AM system engineering



Fundamentals for powder-based 3-D LENS & PBF AM printing
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3-D LENS and PBF metal printing
demonstration
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3-D PBF printing
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Chemical etching reveals a composite structure of systematic
solidified modulesin the 3-D-LENS- & PBF- printed 316LSS
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3-D LENS and PBF prints exhibit cellular solidified cells
with extremely fine arm spacing, << 3um

Increasing magnification —>
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3-D LENS- PBF- prototyping for 316L stainless steel (316LSS)

SS316L for material science R&D




Printing parameters and conditions for 316LSS prototyping

3-D LENS printing (Optomec 750)

Part No. Name Dimension | Laser power Current Speed Fezz‘gfr:te
(mm) (W) (A) (mm/s) (g/min)
1 Short Cylinder 24.5x12.3
Thinwall funnel 50.0x1.0 360 38 16.3 10
3 2" x 2" 3-tier hexagon | 56 x49 x 54

3-D PBF printing (3-D ProX300)

. . Max. Laser |Avg.% Power Powder Layer
Dimension Speed .
Part No. Name power Used Thickness
(mm) (W) (%) (mm/s) (nm)
1 Short Cylinder 24.5x12.3
2 Thin wall funnel 50.0x1.0 500 41 200 40
3 2" x 2" 3-tier hexagon | 56 x49 x 54




LENS-and PBF- prototyping and properties of interest

Bulk cylinder

4

Stress-Strain curve

N\

Ultimate tensile
strength (UTS)
Engineering
strength
Ductility

Geometry effect >

* Engineering properties

* Mechanical behavior (e.g.,
strength & ductility)

* Solidification structure

Deposit building direction (BD)

3-tier Hexagon

<«<—Tier 1

Tier 2

Thin wall funnel




Tensile testing

« Quasi-static with a strain rate about 0.001 s
* A laser extensometer was used to measure the elongation

of the gage section.
* The tensile test was conformed to ASTM E8/E8M standard.



Tensile properties are consistent but anisotropic for both LENS-
and PBF- printed 316LSS bulk deposit
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Lower UTS and elongation of PBF hexagon attributes to
geometry, defect, material/testing uncertainty ?

120 Loading | Tensile data
2 YS (ksi) 68
—3 100 .
< YA UTS(ksi) 90
— 8 7
a
g
& 60
2 —A2  —A4 A6 (x)
o 40 —B1 B3 B5 (y)
)= —C2 —Cc4  —C6(2)
® 5 D1 D3 D5
i E1 —E3
0 | |
0.1 0.2 0.3 0.4 0.5 0.6
Engineering Strain ( L/L,)
Loading | Tensile data
- YS 67
f: 100 VA UTS 92
o ._-——-‘-\
X e “\\\ Elongation
— 80 \\
A
2 . PBH1_1(2)
wn —PBH1_2
< > —PBH1_3
QJ'J 40 PBH2_1 (X))
'nEo PBH2_2
g % —PBH3_1(y')
—PBH3_2
0 i \
0.1 0.2 0.3 0.4 0.5 0.6
Engineering Strain ( L/L,)




Local thermal transport and heat distribution dictate bulk
physical metallurgy that the mechanical behavior

3-D LENS 3-D PBF Annealed wrought 304LSS
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Localized interpass heat-affect-zone (HAZ) is responsible for the larger
micro hardness variation seen at the base of the LENS hexagon



Vickers microhardness in the 3-D LENS-hexagon
printed is geometry dependent
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The LENS hexagon softens gradually toward the Tier 1,
attributed to cell coarseningin absence of interpass?
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Similar to the LENS hexagon, the 3-D LENS thin-wall funnel
also softens toward the upper neck of smaller diameter
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Solidification morphology, revealed by optical-dark field
image of the chemically etched funnel, varied with diameter.

Note: Optical dark field (OM/DF)
images obtained from the of the
nitric acid etched cross section




Solidification cell coarsening led to the funnel softening at
the neck of smaller diameter
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The funnel softening toward the neck observed in all LENS
funnels build by the different LENS systems at three facilities
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The smaller diameter neck is subjected to higher heat intensity and
longer heat exposure due to shorter laser travel distance

Neck of small diameter

Tapper of reducing diameter

Body of large diameter




The overall Vickers microhardness varies among the prototypes,
printed with the same LENS parameter at the same condition
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The Vickers hardness increases toward the substrate interface in all cases




PBF build funnel with flat hardness profile
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Average Vickers hardness decrease with combination of
distance from the substrate and funnel diameter

Vickers Hardness (VHN)
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Summary

For complex AM engineering components, the geometry and dimensions
impact local metallurgy and mechanical behavior as a result of the localized
thermal transport and heat distribution.

Thermal transport and heat distribution is determined by laser-material
interactions, of which are AM process parameter and printing condition
dependent.

Process control and optimization must be a integral part of AM S&T maturation
for enabling the material property control and material assurance to achieve
component qualification.



