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ABSTRACT 

This report presents the study of the convergence behavior of the computational fluid dynamics-
discrete element method (CFD-DEM) method, specifically National Energy Technology 
Laboratory’s (NETL) open source MFiX code (MFiX-DEM) with a diffusion based particle-to-
continuum filtering scheme. In particular, this study focused on determining if the numerical 
method had a solution in the high-resolution limit where the grid size is smaller than the particle 
size. To address this uncertainty, fixed particle beds of two primary configurations were studied: 
i) fictitious beds where the particles are seeded with a random particle generator, and ii) 
instantaneous snapshots from a transient simulation of an experimentally relevant problem. Both 
problems considered a uniform inlet boundary and a pressure outflow. The CFD grid was refined 
from a few particle diameters down to 1/6th of a particle diameter. The pressure drop between two 
vertical elevations, averaged across the bed cross-section was considered as the system response 
quantity of interest. A least-squares regression method was used to extrapolate the grid-dependent 
results to an approximate “grid-free” solution in the limit of infinite resolution. The results show 
that the diffusion based scheme does yield a converging solution. However, the convergence is 
more complicated than encountered in simpler, single-phase flow problems showing strong 
oscillations and, at times, oscillations superimposed on top of globally non-monotonic behavior. 
The challenging convergence behavior highlights the importance of using at least four grid 
resolutions in solution verification problems so that (over-determined) regression-based 
extrapolation methods may be applied to approximate the grid-free solution. The grid-free solution 
is very important in solution verification and VVUQ exercise in general as the difference between 
it and the reference solution largely determines the numerical uncertainty. By testing different 
randomized particle configurations of the same general problem (for the fictitious case) or different 
instances of freezing a transient simulation, the numerical uncertainties appeared to be on the same 
order of magnitude as ensemble or time averaging uncertainties. By testing different drag laws, 
almost all cases studied show that model form uncertainty in this one, very important closure 
relation was larger than the numerical uncertainty, at least with a reasonable CFD grid, roughly 
five particle diameters. In this study, the diffusion width (filtering length scale) was mostly set at 
a constant of six particle diameters. A few exploratory tests were performed to show that similar 
convergence behavior was observed for diffusion widths greater than approximately two particle 
diameters. However, this subject was not investigated in great detail because determining an 
appropriate filter size is really a validation question which must be determined by comparison to 
experimental or highly accurate numerical data. Future studies are being considered targeting 
solution verification of transient simulations as well as validation of the filter size with direct 
numerical simulation data. 
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1. INTRODUCTION 

Convergence tests have often been conducted rather casually, in which a codified numerical 
method is applied to two or three grid discretizations and the results overlaid on top of one another 
to qualitatively determine if the solution is converged or not. Converged solutions are then 
frequently treated as being free of numerical error, or grid independent. Solution verification is the 
formal study of numerical error within the still emerging field of verification, validation and 
uncertainty quantification (VVUQ) in which the error in a numerical solution of a particular 
problem is quantified, at least approximately. The most general procedure is similar to casual 
convergence tests: the problem is computed at several (two at the very least) grid resolutions and 
a system response quantity (SRQ) or Quantity of Interest (QoI), i.e., the code output the user is 
interested in (SRQoI is used here to cover all bases) to approximate an exact or grid-free solution, 
i.e., what the SRQoI would be in the limit of infinite grid resolution, through Richard extrapolation 
and the error is then calculated based on the difference between the (approximate) exact solution 
and the solution on a given grid. Other methods exist, e.g., method refinement, error transport 
equation and adjoint methods among others, (Oberkampf and Roy, 2010); however, grid-
refinement/Richard extrapolation based methods remain the most popular in scientific computing, 
which is used in this work.  

Solution verification has been primarily developed for and largely applied to single-phase flows 
and, more specifically, steady Reynolds Averaged Navier Stokes (RANS)-type models. Even in 
single-phase flows solution verification based on grid refinement breaks down in the case of Large-
Eddy Simulations (LES). In LES the sub-grid scale (SGS) viscosity typically depends on the grid 
size, so, changing the grid essentially changes the model (Celik et al., 2005). Further, in the limit 
of infinite resolution, the SGS viscosity should approach zero (or in practical limits the SGS 
viscosity should become substantially less than the material viscosity), in which case a DNS model 
is recovered. The validity of estimating error in a LES from a level of grid refinement which has 
transitioned to a DNS is uncertain. A similar issue arises in the case of the computational fluid 
dynamics-discrete element method (CFD-DEM) implemented in NETL’s open source MFiX code. 
The CFD-DEM method couples a traditional RANS-type CFD model for the gas-phase (including 
volume fraction and interfacial transfer terms like one phase of a two-fluid model (TFM)) with 
Lagrangian method for the solids where position and velocity of each particle are solved using 
Newtons’ laws of motion, and, in the case of MFiX-DEM, a soft-sphere collision model for 
contacting particles (Garg et al., 2012a; 2012b). Filtering or interpolating schemes must be applied 
to transfer particle information, e.g., drag, to the continuum grid and vice versa.  

As with LES, there are essentially two “philosophical” approaches to the transfer function: grid-
coupled or grid-independent. In practice, CFD-DEM models typically use grid-coupled methods 
and the Garg scheme (Garg et al., 2007) employed in MFiX-DEM is the most commonly applied 
method among the user base. The grid-coupled approach also seems to fit with the idea that, like 
LES, CFD-DEM is a coarse-grained version of DEM-direct numerical simulation (DNS) (Fullmer 
and Hrenya, 2017). However, the grid-coupled approach presents a unique challenge to grid-
refinement based solution verification methods which is not encountered in LES. Shown on the 
top of Figure 1, if the grid is refined below the scale of the particle, the interpolated values no 
longer occupy a region of space as large as the representative particle itself. In the case of solids 
volume fraction, some cells may have a very large value or even exceed unity. This sets a vague 
lower bound on how fine a grid-coupled interpolation-based CFD-DEM method can be refined 
that is somewhere in the vicinity of * ~ 1, where * = (Vtot/Nxyz)1/3/dp is the dimensionless grid 
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size, Vtot is the volume of the computational domain, Nxyz are the total number of grid points (cells) 
in the domain, and dp is the particle diameter. Superficially, setting limitations on the level of 
refinement for a solution verification study is dissatisfying at best and, more critically, could be 
seriously problematic if the “asymptotic region” cannot be reached for a particular solution outside 
of this limitation. The concern is compounded by the fact that many studies have shown that the 
CFD-grid must be refined to a level of * ~ 2 in order to achieve grid-insensitive solutions, see, 
for example, (Capecelatro et al., 2015; Liu et al., 2016).  

 
Figure 1: Sketch of two primary coupling schemes for Eulerian-Lagrangian numerical 
methods. The red circle indicates the particle scale, the black lines indicate the CFD grid and 
the blue scale indicates a filtered variable, e.g., Vp. 

For the troubling resolution limitations of grid-coupled interpolation, we conclude that the grid-
independent filtering method should be the preferred method for transferring particle and 
continuum information. As shown on the bottom of Figure 1, a grid-independent filtering method 
would give the same spatial distribution of weights regardless of the underlying CFD-grid. While 
this easily circumvents the resolution limitation challenge of grid-coupled interpolation schemes, 
some challenges arise with grid-independent filtering methods. From a “philosophical” view, one 
can no longer think of DNS as being the limiting case of CFD-DEM, completely breaking the 
similarity with single-phase LES-to-DNS models. Although this might break the multiphase 
numerical methods hierarchy for some, note that, unlike LES-to-DNS, the actual CFD-DEM model 
itself would have to be changed at some point to achieve a DNS type method. Specifically, terms 
like interfacial drag do not vanish (or become much less than other terms) in the limit of infinite 
resolution. From a more practical standpoint, grid-independent methods present a numerical 
challenge when the CFD grid becomes much smaller than the filter size. The lower right sketch in 
Figure 1 shows that the number of cells used in transferring information (interpolation stencil) 
between the grid and particle increases as the grid length scale is refined below the diameter of a 
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particle. Such an approach quickly becomes computationally intractable as the interpolation stencil 
grows. Furthermore, if distant cells reside in the memory space of a different processor than the 
particle (for distributed memory parallelism), the MFiX code fails as only two ghost layers 
surround each domain partition. (This could be remedied by increasing the ghost cell layers, 
however this also becomes computationally intractable for CFD grid sizes significantly smaller 
than the filter size.) Fortunately, grid-independent filtering can be achieved by a diffusion method 
rather than an explicit interpolation stencil based on the distance between the CFD grid and the 
particle centroid. The diffusion method of grid (size)-independent filtering is applied in this work, 
see Section 2.  

The question of “What filter size should be used?” also arises. This is fundamentally a validation 
question, not a verification question (and will be discussed in Section 3.5). Further, the same 
question arises (or at least should arise) for grid-coupled interpolation schemes, but is impossible 
to isolate an answer to this question when the model and the numerical error both depend on grid. 
Whatever the filter size (maybe the selected value gives good agreement with DNS, maybe there 
are analytical reasons to choose a certain value, perhaps it is an arbitrary and poor selection, etc.), 
the verification question exists: What would the given model predict in the mesh free limit, and 
what is the resulting error of a simulated result on a given grid? For CFD-DEM, this is an open 
question and, as the title of the work suggests, it is largely unknown whether a grid-independent 
solution can even be achieved in the fine grid limit. In this work, we address this question in a 
preliminary manner by considering fixed-bed conditions, i.e., particles are not allowed to change 
position or velocity in time so that a steady-state solution is sought for the fluid at several different 
grid resolutions. Such a problem is similar to a porous media model, however the general CFD-
DEM method implemented in MFiX is used throughout so that the results may be considered as 
instantaneous snapshots of grid-convergence of a transient CFD-DEM simulation.  

It is valuable to note that one may question why CFD-DEM on a grid below the particle scale 
would even be considered at all. After all, DNS (for lower particle Reynolds numbers, Rep) may 
be attained at resolutions of * ~ 1/6. The simple answer is that all scientific computing methods 
should be subject to solution verification to quantify the numerical error present in a given solution, 
especially when that solution is used in decision making, safety analysis or may have any other 
real-world implications. Even if more practical solution verification of CFD-DEM use relatively 
coarse grids (e.g., * = 2, 2.6 and 3.4, are practical grid sizes and generally accepted as grid-
insensitive resolutions within the community yet satisfy American Society of Mechanical 
Engineers’ (ASME) (Celik et al., 2008) suggested minimum r = k+1/k ≥ 1.3, where k is the grid 
number), it is worth studying how well the error calculated from solutions on relatively coarse 
grids corresponds to similar calculations with relatively fine grids. Finally, it is worthwhile in 
general to study the applicability of MFiX CFD-DEM to cases with grid resolution at or smaller 
than the particle diameter as such instances can occur in practical applications, e.g., when high 
resolution of a gas-phase wall boundary layer is required (Capecelatro et al., 2016), in filtration 
and other fluidic devices where the flow area is smaller than the particle size (Baran et al., 2016).  
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2. METHODS 

2.1 MODEL 

The results reported in this report were generated with the CFD-DEM model available in NETL’s 
open source MFiX code (https://mfix.netl.doe.gov/) version 2016.1. The theory and numerics of 
the CFD-DEM method have been documented elsewhere (Garg et al., 2012a; 2012b) and are not 
repeated here for the sake of brevity. Instead, we focus on: i) a few, slight modifications to the 
2016.1 version that were necessary for this work, and ii) the diffusion method for particle-to-grid 
interpolation which has not been previously documented for the MFiX code.  

The modifications and alterations to the 2016.1 code base used in this study included:  

 The most important modification is a simple one character insertion. This study simulated 
a steady-state problem, which is not available in the DEM side of the code. Furthermore, 
the diffusion step was only taken at the start of a fluid timestep, so if the code were to be 
run in a steady-state mode, the diffusion step would need to be placed inside of the iteration 
step. It is much easier to simply comment out the CALL DES_TIME_MARCH, effectively 
eliminating any DEM calculations. In the 2016.1 version of the code, this call occurred on 
line 160 of time_step.f which was simply commented out.  

 Since the steady-state problem is run in a transient mode, a new residual (or error) occurs 
which is due to the transient term. In theory, the solution will reach steady-state when ∂ug/∂t 
= ∂vg/∂t = ∂wg/∂t = ∂pg/∂t = 0. In practice, however, a solution is observed to be converged 
when these transient residuals reach a certain tolerance or threshold level. What this 
tolerance should be is unknown a priori and is investigated in Section 2.2. It should be 
noted that the full transient term is taken as a residual, i.e., including the time-step in the 
denominator, since the difference between new and old time values may become very small 
if the time step is adapted to be very small. The terms are also non-dimensionalized based 
on particle diameter, dp, and the distributor inlet velocity, U0, i.e., u* = u/U0, x* = x/dp, t* = 
tdp/U0, and p* = (p - P0)/gU0

2, where the value of P0 is irrelevant as pressure differences 
are only considered in this work. The user defined hooks used to monitor the transient 
residuals are provided in the Appendix, Section A.1. 

 During the transient simulation, MFiX will increase the time step if a certain set of criteria 
are satisfied indicating good convergence behavior, i.e., specified iterative residuals are 
being met quickly. In this case, increasing the time step is favorable to reaching a state of 
steady-state convergence (transient residual tolerances being satisfied). Therefore, the 
number of steps taken before performing a time step increase check is reduced. This value 
is controlled by the step_min parameter in the function ADJUST_DT which was reduced 
to a value of 2. In the 2016.1 version the step_min parameter is located on line 852 of the 
iterate.f subroutine.  

 There is a known limitation in MFiX-DEM when the CFD grid becomes smaller than the 
particle diameter, which really begins at a grid resolution of about 3 particle diameters if 
the default DES_GRIDSEARCH parameters are used. The issue is this: when periodic 
boundaries are applied, if the DES grid (which is used for neighbor detection) is larger than 
the fluid grid, ghost particles are copied to the boundary layer which can be outside of the 
ghost fluid cell layer. This can be easily circumvented by forcing the DES grid to the same 
size as the CFD grid, which is applied in this work. This solution may be fine in practice 
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for modest grid sizes, however, when the grids are refined below the particle size, close 
neighbors (and even collisions if the grid is small enough) will be missed. This is not an 
issue in the current study, since the dynamics of the DEM model have been completely 
removed. Therefore, the internal code checks on the DES grid size are modified so that the 
code does not exist when these checks fail, although the error message was still reported. 
In the 2016.1 version of MFiX, three ABORT=.TRUE. assignments were changed to 
ABORT=.FALSE. on lines 148, 157, and 168, in the check_geometry.f subroutine.  

 Finally, two coding errors were uncovered during this study in the comp_mean_fields1.f 
and diffuse_mean_fields.f subroutines. The details of the errors are not reported as the bug 
fixes were patched into the developmental version of the code and subsequently released 
under version 2017.1. It is recommended to use this version or later for repeating this study 
or undertaking a similar one.  

Section 1 discussed that there are essentially two particle-to-grid interpolation methods: grid-
coupled and grid-independent, both of which are available in MFiX. GARG_2012 interpolation 
(Garg et al., 2007) is a grid-coupled scheme, was the first method available in MFiX, and still 
receives the most widespread usage among the user base today. More recently, the Square Divided 
Particle Volume Method (DPVM) was implemented; in theory, this method is grid-independent. 
Practical limitations prevent this method from being applied to very fine grids; however, this could 
be circumvented by increasing particle neighborhoods to more than the nearest 27 cells around 
particle centroids. Unfortunately, this is not a practical solution as discussed previously in Section 
1. Another way to arrive at a grid-independent Gaussian filter is to solve a diffusion equation 
(Capecelatro and Desjardins, 2013; Sun and Xiao, 2015),  

 

                                                                    
డఈ

డఛ
ൌ  (1)                                                              , ߙଶ׏௙ߥ

 

where  is the data associated with the particle to be filtered, e.g., volume (concentration), drag 
force, etc.,  is an artificial time and f is a diffusion coefficient. The diffusion coefficient and the 
(artificial) time for which the equation is solved, f, are related to the width of a Gaussian filter of 
the transfer process,  

 

௙߬௙ߥ                                                                ൌ
୫ୟ୶ቀఋ೑

మି୼మ,଴ቁ

ଵ଺ ୪୬ଶ
 ,                                                      (2) 

 

where f is the Gaussian filter full width at half maximum (FWHM) and  is the CFD grid size. 
Note that for a Gaussian the FWHM is related to the standard deviation by a factor of 2√2 ln 2	. 
In MFiX, the start and end artificial times are set to 0 and 1, which is solved in five steps.  The 
filter width is specified user input. In this study, the baseline case considered f = 6dp (ߜ௙

∗ = 6). It 
was determined (in some cases at least) that an accurate solution of the linear solver for this 
equation was necessary to meet certain volume fraction tolerances within the code. As shown in 
the baseline example input deck in Section A.2 of the Appendix, the tolerance of the linear solver 
is set to 10-10 and the maximum number of linear solver iterations is set to 100.  
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2.2 CONVERGENCE 

There are three errors associated with the numerical solution of this type problem: 1) since the 
steady-state problem is solved as a transient, there is a transient residual which should (hopefully) 
approach zero as the simulation progresses; 2) the discretized equations are solved in a linearized, 
semi-implicit (SIMPLE-type) fashion which has an iterative residual associated with the coupled, 
nonlinear terms; and 3) at any given iteration within a timestep, the matrix equations are solved 
with an iterative method which as a linear equation solver tolerance from the computed solution 
not exactly satisfying the original matrix equation. This study used a small linear equation solver 
tolerance, 10-8 for all equations except the diffusion equation which is even lower at 10-10. These 
values are at least two orders of magnitude smaller than the transient and iterative residual 
tolerances, even more in the diffusion case, and is therefore assumed to contribute negligible error 
to the solutions.  

As mentioned previously, the transient residual is based on the non-dimensionalized temporal 
gradients of the four gas-phase primary variables. The largest single value of each within the 
domain (L∞ metric) is verified and then the maximum of the four terms is determined, i.e.,  

 

                                              maxሾቀ
డ௨೒∗

డ௧∗
ቁ
ஶ
, ቀ
డ௩೒∗

డ௧∗
ቁ
ஶ
, ቀ
డ௪೒∗

డ௧∗
ቁ
ஶ
, ቀ
డ௣೒∗

డ௧∗
ቁ
ஶ
ሿ ,                                      (3) 

 

Finally, the average of the current and previous transient residuals in Equation3 must satisfy the 
specified tolerance for the simulation to be considered converged to steady-state. The iterative 
residuals are calculated using the standard MFiX method with for the maximum continuity + 
momentum residual, i.e., TOL_RESID, normalized based on the dominant term in the continuity 
equation, i.e., NORM_G = 0.  

The tolerance limits of the other two residuals should be set to a level low enough not to affect the 
results of the solution, but also as large as possible to achieve a solution in a reasonable amount of 
time. The values used in this study were arrived at after a rather lengthy trial and error phase and 
only the final (useful) results of this study are shown here. It was determined that iterative and 
transient tolerances of approximately 10-5 were sufficient to achieve converged solutions. Figure 
2 shows the convergence behavior of the pressure transient residuals for iterative tolerances of 10-

5 and 10-6 on the left and right, respectively, for the bursting bubble case described in Section 3.1. 
Some cases fall below the 10-5 tolerance level indicating in these cases one of the velocity residuals 
was slower to converge.  
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Figure 2: Convergence of the non-dimensionalized pressure temporal residuals for all grids. 
Horizontal lines show selected tolerances.  

 

 
Figure 3: At left, comparison of the SRQoI for the bursting bubble case with (both) transient 
and residual tolerances set to 10-5 and 10-6. At right, absolute difference between computed 
solutions.  

In Figure 3 the SRQoI for the bursting bubble case for the two tolerance levels, 10-5 and 10-6, is 
compared as a function of grid resolution showing essentially identical results. The absolute 
difference of the two sets of solutions is provided on the right of Figure 3 which shows that there 
is a difference in the two solutions produced from the different tolerances levels; however, it is 
rather small, epically considering the magnitude of the SRQoI. The L∞-norm of this error, defined 
as  
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                                                           ݁ஶ ൌ
୫ୟ୶ቚ௙ೖ

ሺభ೐షఱሻି௙ೖ
ሺభ೐షలሻቚ

୫ୟ୶ቚ௙ೖ
ሺభ೐షఱሻቚ

 ,                                                   (4) 

 

is just 9.0×10-8 and the L2-norm of this error, defined as  

 

                                                             ݁ଶ ൌ
ฮࢌሺభ೐షఱሻିࢌሺభ೐షలሻฮ

మ

ฮࢌሺభ೐షఱሻฮ
మ  ,                                                     (5) 

 

is just 2.3×10-8. Hence, tolerance limits of 10-5 for both iterative and transient residuals are used 
throughout and the remaining residual errors from these sources (and the linear solver residual 
errors) are assumed to be negligible.  

2.3 EXTRAPOLATION METHODS 

As mentioned in Section 1, grid-refinement based methods were used to quantify the error in 
numerical solutions and, more importantly for this study, determine if there even exists a 
reasonable grid-free limit to the solutions. There are several different approaches to Richard 
extrapolation such as Roach’s grid convergence index (GCI) (Roache 1994; 1998), Roy’s mixed 
order method (Roy, 2003), power law and approximate error spline methods (Celik and Li, 2005), 
etc. An important variation, which may be applied within the context of several of the approaches 
mentioned above, is when the system is over-determined, i.e., when there are more solutions 
(grids) than needed to calculate the unknowns of the function used for extrapolation. Of course, 
one may simply take the SRQoIs from the three (or however many are required) finest grids—
which amounts to distributing an importance weighting uniformly among the highest resolution 
results—to perform an extrapolation and neglect the coarser solutions. This seems to be a 
justifiable approach and it appears to work quite well in some instances, e.g., see the curve in 
Figure 11 of Roy (2003) which is extrapolated from the three finest solutions yet compares quite 
favorably over the entire region studied. Another approach is to include all of the SRQoIs and find 
the unknowns of the over-determined extrapolation as the solution to a regression (Eça and 
Hoestra, 2014) or optimization (Rider et al., 2016) problem. Such methods also have the favorable 
property that oscillatory or noisy convergence behavior is fit much more reasonably. A quick 
glance at Figure 3 (left) shows that noisy, oscillatory convergence will indeed be an issue here.  

This study primarily used Richardson-type extrapolation based on power laws,  

 

ோாߜ                                                              ൌ ௜݂ െ ଴݂ ൌ ܿ	݄௜
௣ ,                                                     (6) 

 

and mixed-order (first and second),  

 

ோாߜ                                                        ൌ ௜݂ െ ଴݂ ൌ ܿଵ݄௜ ൅ ܿଶ	݄௜
ଶ ,                                              (7) 
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error estimators. Both Eqs. (6) and (7) contain three unknowns (f0 and c and p or c1 and c2). 
Therefore, if three different grid levels are used to compute the solutions, Eqs. (6) and (7) have a 
unique solution. If there are more than three grid level solutions (as there are here), Eqs. (6) and 
(7) are overdetermined and can only be solved approximately, i.e., in an optimization framework. 
Here, least-squares regression was used, i.e., seeking the minimum of the sum of the error squared, 
given by  

 

                                          ܵோாሺ ଴݂, ܿ, ሻ݌ ൌ ට∑ ௜ݓ ቀ ௜݂ െ ൫ ଴݂ ൅ ݄ܿ௜
௣൯ቁ

ଶ௡೒
௜ୀଵ  ,                                  (8) 

 

for the power law estimator and  

 

                                   ܵோாሺ ଴݂, ܿଵ, ܿଶሻ ൌ ට∑ ௜ݓ ቀ ௜݂ െ ሺ ଴݂ ൅ ܿଵ݄௜ ൅ ܿଶ݄௜
ଶሻቁ

ଶ௡೒
௜ୀଵ  ,                          (9) 

 

for the mixed-order estimator. The minimum of SRE is determined by setting the partial derivatives 
with respect to each unknown equal to zero. For the power-law fit this results in three equations 
which must be solved iteratively and for the mixed-order fit a 3x3 matrix equation which can be 
solved directly. The corresponding equations for each can be found in Appendix B of Eça and 
Hoekstra (2014).  

The new variable wi appearing in Equations 8 and 9 is a weighting function. This is not an 
additional unknown, but a parameter that should be applied by the user before regression. If there 
is no reason to weight some solutions over others, then a uniform weighting function should be 
specified: Wi = 1 where wi = Wi/sum(Wi), i.e., wi = 1/ng where ng is the number of grids. In CFD, 
the results obtained on fine grids are more accurate than those on coarse grids (which is justifiable 
assuming the numerical scheme is consistent), and so weightings based on the grid spacing are 
also common and used here, primarily Wi = 1/hi.  
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3. CASE 1: BURSTING BUBBLE 

3.1 SYSTEM AND CONDITIONS 

The first case studied is a simple, hypothetical problem which (loosely) resembles a dilute bubble 
about to burst at the surface of a dense bed. The problem is completely fictional and generated 
with a slightly modified particle input generator. The source code for the particle generator is 
provided in the Appendix in Section A.3. (Note that this source code is for the thermal case 
discussed in Section 3.7. To get static cases, simply change the write statement near the end to 
print 0.0d0 in place of the particle velocities.) The geometry of the domain is 30 particle diameters 
wide (ܮ௫∗ ൌ 30), 200 particle diameters tall (ܮ௬∗ ൌ 200), and 10 particle diameters deep (ܮ௭∗ ൌ 10). 
The particles only occupy the lower quarter of the domain (y* ≤ 50) and are separated into three 
regions: a dilute “freeboard” region above surface, a “dense bed” region below the surface, and a 
single dilute “bubble” inside the bed near the surface. The regions are defined only in the xy-plane 
and (statistically) uniform in the z-dimension. The bubble diameter is 10 particle diameters and is 
centered at (x*, y*) = (15, 25). The bed surface is defined by y* = 30 + 5 exp[-(x*-15)2/50]. The 
dilute regions have a specified concentration of 1% and the dense region has a concentration of 
30%. Based on the specified volume and concentration, the problem contains just 5,181 particles 
in total. The particles are distributed randomly and no particle is in contact with any other particle. 
In the baseline case, all particles have null velocity, i.e., static bed. A slice of the initial particle 
configuration is presented in Figure 4 for all particles within one diameter of the z-centerline 
(plane). 

 

 
Figure 4: Initial particle configuration for the bursting bubble case showing all particles with 
centroids within dp of the centerline z = Lz/2. 

 

The x- and z-dimensions are treated as periodic (cyclic BCs). In the y-direction, the inlet plane, y* 
= 0, is a uniform mass inflow BC and the exit plane, y* = Lz

*, is a pressure outflow BC. The inlet 
gas velocity is set to U0 = 20 cm/s. With the specification g = 1×10-3 g/cm3, g = 2×10-4 g/cm-s 
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and dp = 100 m, the particle Reynolds number at the (single-phase) inlet is unity, Rep0 = gdpU0/g 
= 1. Gravity is set to zero. The particle density, although irrelevant in this case, is p = 1 g/cm3. 
The initial condition is uniform with values (t=0) = 0.18, ug(t=0) = 0, vg(t=0) = 24.4 cm/s, and 
wg(t=0) = 0. The gauge pressure at the outlet is pg(y* = Ly

*) = 0 Ba. The filter width (FWHM) is 
initially set to 6 particle diameters, ߜ௙

∗ ൌ 6. The BVK drag law (Beetstra et al., 2007) is specified 
in the baseline case. The baseline case also uses the MFiX recommended Superbee flux-limiter 
(Waterson and Deconinck, 2007) which is applied to all equations, although not used in the 
diffusion equation which does not contain first-order spatial derivatives.  

3.2 GRID CONVERGENCE 

For the bursting bubble cases, 18 different grids have been studied. The number of grid cells in the 
z-dimension are listed in Table 1. In all cases, the number of cells in the x- and y-dimensions are 
Nx = 3Nz and Ny = 20Nz, consistent with the ܮ௫∗ ⁄∗௭ܮ  and ܮ௬∗ ⁄∗௭ܮ  ratios of the domain. This results in 
a uniform discretization, Δ௫∗ ൌ Δ௬∗ ൌ Δ௭∗ ൌ Δ∗, which becomes simply * ≡ (Vtot/Nxyz)1/3/dp = Lz

*/Nz 
= 10/Nz. Hence, the grids represented in Table 1 span from * = 3.3 down to 0.16. The finest of 
these grids reaches down into the resolution range used in DNS of particulate flows, at least for 
moderate particle Reynolds numbers (Fullmer et al., 2017). 

 

Table 1: Number of grid cells in the z-dimension of grids considered for bursting bubble cases 

Nz  r 

 ‐  3   ‐  4  1/2 

5  6  7  8  ‐ 

10  12  14  16  2 

20  24  28  32  4 

40  48  56  64  8 

 

The first check performed is to see whether or not the problem appears to converge qualitatively. 
Indeed, it is observed that as the grid is refined, the concentration and flow profiles do appear to 
approach a unique solution that should exist in the limit of infinite resolution. Figure 5 shows key 
profiles along the center (z* = Lz

*/2) of the domain for several grid resolutions. The concentration 
field is set by the particle configuration and converges to the solution of the diffusion equation as 
more points are used to represent the Gaussian kernel of the filtering operation. This result is to be 
expected. The convergence of the velocity fields are more noteworthy. Although the drag force is 
filtered out over the same distance (volume) defined by the filter width, ߜ௙

∗, the force being filtered 
depends on a local velocity—namely, the gas-phase velocity in the cell containing the centroid of 
the particle—which will continue to change as the grid is resolved. Hence, there is not the same 
guarantee of a unique, convergent solution as in the case of simply filtering particle locations into 
a concentration field. 
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Figure 5: Convergence of the solids volume fraction field (top), gas horizontal (x) velocity field, 
Reu = p dp ug/g (center), and gas vertical (v) velocity field, Rev = p dp vg/g (bottom) at the 
center of the domain, z* = Lz

*/2, with increasing grid refinement.  

 

Before proceeding, we note that the previous discussion may raise the questions: “Should we 
resolve below * ~ 1?”, and, “In CFD-DEM should we calculate the drag on a particle using a 
velocity obtained from a cell smaller than a particle diameter?” Consider that for * < 1, the gas-
phase velocity field varies “within” a particle, i.e., the gas velocity may vary among the cells within 
a radius of the particle’s centroid. While perhaps somewhat dissatisfying, the short answer is that 
this is a validation question (Does the model accurately represent the physics?), not the type of 
verification question addressed in this work (What is the numerical error of a given solution 
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obtained for a particular?). Here, questions of whether or not the model is physically consistent, 
or whether or not the model is physically accurate are not of concern. This verification study is 
focused on whether or not the model converges to a solution in the limit of infinite resolution and 
(to a lesser extent, but more importantly in practice), quantifying the numerical (grid) error of a 
given solution. It should be pointed out that, at least qualitatively for the ߜ௙

∗ ൌ 6 case displayed in 
Figure 5, the velocity fields appear sufficiently smooth from the drag filtering that even the local 
velocities in the very fine grid cases are not representative of DNS-type microscale velocities, 
which may vary appreciably on a length scale smaller dp, but are more representative of a diffused 
velocity field, which varies on a length scale proportional ߜ௙

∗ ൐ ݀௣.  

3.3 BASELINE RESULTS 

The previous section discussed that the problem seems to converge qualitatively. More quantitative 
metrics are pursued here in the form of an extrapolated least squares curve. In order to apply the 
methods in Section 2.3, an SRQoI, f, needs to be identified to calculate on each grid. Since this is 
a fictional problem, there is no obvious choice for the SRQoI. The gas-phase pressure drop is one 
of the most widely studied metrics in gas-solids flows and seems like a natural choice here. 
Therefore, the following option was chosen:  

 

                                                    ݂ ൌ ܦ ଵܲିଶ
∗ ൌ

௣̅೒ሺ௬∗ୀ௬భ
∗ሻି௣̅೒ሺ௬∗ୀ௬మ

∗ሻ

ఘ೒௎బ
మ  ,                                         (10) 

 

where ̅݌௚ሺݕ∗ ൌ ௝ݕ
∗ሻ is the gas-phase pressure averaged across the xz cross-section at an elevation 

of ݕ௝
∗ with ݕଵ

∗ ൌ 4 and ݕଶ
∗ ൌ ଵݕ

∗ ൅ 100. The choice of ݕଵ
∗ ൌ 4 intentionally avoids the first row of 

grids cells along the inlet in all cases and also does not lie along the cell centerline of any of the 
grids studied. Second order linear interpolation is used between the two rows of cells adjacent to 
ଵݕ
∗ and ݕଶ

∗ . 
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Figure 6: Convergence behavior of the bed pressure drop in the bursting bubble case for 
uniform (blue) and grid-inverse (red) weightings with a least-squares power law extrapolation.  

 

ܦ ଵܲିଶ
∗  for the “baseline” case was shown previously in Figure 3 when testing the transient and 

iterative residual tolerances and is repeated in Figure 6 with two least-squares curve fits, both using 
the power law extrapolation of Equation 8. The difference between the extrapolations in Figure 6 
is the weighting factors, the blue curve using a uniform weighting, Wi = 1, and the red curve using 
a weighting inversely proportional to the grid cell size, Wi = 1/hi, or, equivalently, Wi = 1/i

*. There 
is very little difference between the two weighting schemes. The approximate exact solutions are 
virtually indistinguishable, f0 = 1158.6 and 1158.8 for uniform and gird inverse weightings, 
respectively. There is a larger discrepancy in the predicted order of accuracy, p = 1.29 and 1.03, 
the uniform weighting with the larger order since there is more variability in the coarser solutions. 
The remainder of this report utilizes the grid inverse weighting factors except where specifically 
noted. In general, it is observed that the regression-based method of using all of the available data 
to determine the coefficients of the extrapolation produces a nice, well-fit curve that follows the 
general, global trend of the results. It can be seen that by picking just two or three points along this 
curve and performing a traditional (determined) extrapolation might result in an exact solution 
very far away from the data and an excessively large error. Before moving on, note that possibly 
the most important take away from the baseline case, beyond the value of regression-based 
extrapolation, is that the grid has been refined from a typical coarse-grained CFD-DEM grid length 
scale (* ≥ 3) down to the boundary of DNS grid length scale (* ≤ 1/6) and the pressure drop has 
changed by less than 0.5% [(max f – min f)/(max f + min f)/2×100], a very welcome result.  

 

 

3.4 DISCRETIZATION SCHEMES 

Next, we deviate from the baseline case/conditions by exploring the impact of two additional 
numerical schemes: first-order upwind (FOU) and van Leer’s (1979) MUSCL flux limiter. Figure 
7 shows the results and the respective (grid inverse weighted) least squared power law 
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extrapolation. Interestingly, the FOU scheme appears to converge from above, while the higher-
order schemes (MUSCL and Superbee scheme in the baseline case) converge from below. This 
trend may not continue if the grid were coarsened further, i.e., the global trend of the FOU solutions 
may also show decreasing ܦ ଵܲିଶ

∗  with increasing *. This point will be touched on again in Section 
3.8. The predicted convergence rate for these two schemes are p = 0.14 and 1.50, for FOU and 
MUSCL which may be compared to p = 1.03 previously calculated for Superbee with grid inverse 
weighting. None of the predicted convergence rates calculated here match the expected rates of 
the schemes, either calculated analytically or from previous performance results on significantly 
simpler problems (Waterson and Deconinck, 2007). This may not be so surprising, given the 
complexity of this system, even with the frozen particles. However, it is reassuring that at least the 
same ranking of the three schemes was recovered from a scalar convection case (i.e., even simpler 
than single-phase Navier-Stokes): p(FOU) < p(Superbee) < p(MUSCL).  

 

  
Figure 7: Convergence behavior of the bed pressure drop in the bursting bubble case with the 
FOU scheme (left) and the MUSCL scheme (right). Both cases show a least-squares power law 
extrapolation.  
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Figure 8: Direct comparison of results in Figure 6 and Figure 7: Superbee (� ), FOU (○) and 
MUSCL (×) discretization schemes.  

 

The results and extrapolated curves for the three numerical schemes are compared directly to one 
another in Figure 8. Again, it is encouraging that the spread in results for all schemes and on all 
grids is relatively small. The higher-order schemes give a very similar result in Figure 8 and the 
difference decreases with decreasing * and visually appears to vanish altogether at the finer grids 
studied here. The results from the FOU scheme are also converging to the results of the higher-
order schemes, though some observable differences are still present in the finest grid. It is also 
somewhat curious that the oscillation pattern is reproduced nearly identically between the three 
schemes. It is hypothesized that this pattern emerges due to changes in the flow pattern with grid 
refinement, i.e., the oscillations are a manifestation of the dependence of drag force calculation on 
the local velocity which continues to change with refinement. However, note that the magnitude 
of the oscillations decays with refinement as the values used in the calculations approach point-
wise (infinitely resolved) values. It is worth reiterating that while the drag does depend on local 
values (which is becoming more and more representative of the conditions at the singular centroid 
locations with grid refinement), these local values do not appear to show the same type of flow 
microstructure, ℓ ≤ dp, as in DNS simulations, but are representative of local values on filtered 
features with ℓ ~ f. For an example of DNS-type microstructure flow resolution, see several of 
the figures in Tenneti and Subramanian (2014) and in many of the references cited therein.  

3.5 FILTER WIDTH 

In this study, we have tried to make clear the distinction between problems of validation and 
problems of verification. A filter width of ߜ௙

∗ = 6 was selected arbitrarily and has been utilized so 
far. An assessment of the most appropriate choice of filter length cannot be determined here, 
however, one question does arise, “Would we get similar convergence behavior with a different, 
equally arbitrary choice of ߜ௙

∗?” To provide some insight into this question, the impact of ߜ௙
∗ on 

the convergence behavior was explored, yet readers are cautioned that this is not a validation study 
of which is the most appropriate value of ߜ௙

∗.  
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Figure 9: Convergence behavior of the bed pressure drop in the bursting bubble case filter 
widths of * = 8 (left) and * = 4 (right). Red least-squares curves are power law extrapolation 
and blue curve is mixed-order.  

 
Figure 9 is similar to Figure 6 with a slightly larger (left) and slightly smaller (right) filter widths. 
The larger filter width, ߜ௙

∗ = 8, has a slightly lower order of convergence than in the baseline case, 
p = 0.79, which could be inferred from the global trend of the results which are continuing to 
increase more so than in the baseline case. This is a somewhat surprising result given that the filter 
resolution essentially increased, i.e., ߜ௙

∗ Δ௜
∗⁄  has increased.  

The smaller filter width, ߜ௙
∗ = 4, displays a different global behavior than observed previously. On 

average, ߜ௙
∗ increases and then decreases, again with a superimposed oscillation. In this case, the 

predicted order of convergence is absurdly high, p = 9.16. Although there were no expectations in 
mind for p before undertaking this study, it may be expected that the p should be in the vicinity of 
1 to 2 based on the lowest and highest order of accuracy of the employed numerical schemes. (Note 
that even Superbee defaults to FOU in the presence of extrema (Waterson and Deconinck, 2007).) 
A convergence rate of p = 9.16 seems too high—and it is. Essentially, the extrapolation based on 
a single term cannot handle the “globally nonmonotonic” trend in the data which indicates there 
at least two terms present of opposing signs. For this case, the mixed-order (powers of 1 and 2) 
regression of Equation 9 were applied. Shown as the blue curve in Figure 9, the mixed-order least 
squares extrapolation appears to fit the “globally nonmonotonic” data much better than the single 
power law extrapolation. Note that the solution verification method of Eça and Hoekstra (2014) 
also provide guidleines on when to deviate from the single power law extrapolation, which is also 
based on anomalous p predictions.  
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Figure 10: Convergence behavior of the bed pressure drop in the bursting bubble case filter 
widths of * = 3 (left) and * = 2 (right). Red least-squares curves are power law extrapolation 
and blue curves are mixed-order.  

 

The filter width was further reduced to ߜ௙
∗ = 3 and 2 on the left and right side of Figure 10, 

respectively. Like the ߜ௙
∗ = 4 case, both smaller filter width cases present “globally nonmonotonic” 

behavior and the single power law extrapolation predicts artificially large convergence rates of 
6.40 and 3.37. The mixed-order method again provides a better fit, however the strong 
nonmonotonic behavior for ߜ௙

∗ = 2 is not fit particularly well.  

It can also be observed, for the cases presented in Figure 10, that the amplitude of the oscillations 
decay with decreasing ߜ௙

∗ and are almost absent in the ߜ௙
∗ = 2 case. The reason for this change in 

behavior seems due to the difference in filter resolution, ߜ௙
∗/Δ∗. For ߜ௙

∗ ≤ 4 and below, the filter is 
not well resolved on the coarser grids or even resolved at all. In these cases, the grid needs to be 
refined to a certain level before the filter width even begins to have an impact on the solution. This 
is a completely different type of convergence than in the larger cases, ߜ௙

∗ > 4, where the filter had 
an impact on the solution at all grids.  
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Figure 11: Variation in bed pressure drop with filter width, *, on a numerical grid of Nz = 40 
(* = 0.25).  

 

It can also be observed from Figure 9 and Figure 10 that the extrapolated exact solution(s) are 
increasing with decreasing filter width. To study this trend further, the grid resolution of Nz = 40 
(* =1/4) is used to simulate filter width varying from ߜ௙

∗ = 1 to 12. The results are summarized in 
Figure 11. For a wide range of ߜ௙

∗ the pressure drop remains relatively stable, i.e., it appears that 
the choice of ߜ௙

∗ does not strongly affect the solution of ܦ ଵܲିଶ
∗ . However, this trend changes 

abruptly around ߜ௙
∗ = 3, below which the SRQoI is strongly dependent on the modeling choice in 

௙ߜ
∗ (note the log-log scale).  

One concern is that perhaps the diffusion scheme is failing under such small filter widths and the 
particle volume fraction is not being conserved. The left panel of Figure 12 shows that this is not 
the case. The mean concentration in all cases agrees very well with the expected value (calculated 
from the integer number of particles in the domain) and, if anything, only agrees better at small 
filter widths. Perhaps as some readers have already guessed, the sharp increase in ܦ ଵܲିଶ

∗  with ߜ௙
∗ 

of around two and below is really the essence of the validation question, i.e., the filter width should 
not be this small. Rather than problems with the total concentration, it is the local concentration 
that is the issue. The right-hand side of Figure 12 shows that the largest concentration calculated 
in any cell increases with decreasing ߜ௙

∗. The smaller values of ߜ௙
∗ have exceeded the dense bed 

concentration of 0.30, even what might reasonably be expected to bethe densest region from the 
random packing configuration. Actually, for the smallest values of ߜ௙

∗ studied, the maximum 
concentration exceeds the physical limit for monodisperse spheres in random close packing, ~0.62.  



An Investigation into Solution Verification for CFD-DEM 

21 

 
Figure 12: At left, absolute difference between mean calculated concentration and exact, 
analytical value. At right, maximum calculated solids concentration within the domain. Both 
shown as a function of the filter width, *, on a numerical grid of Nz = 40 (* = 0.25).  

 

The concentration and flow profiles along the center z* = Lz
*/2 plane are provided in Figure 13 for 

several filter widths. For ߜ௙
∗ = 1 (left-hand side of Figure 13), individual particles have been 

“fuzzily” resolved which results in microscale flows that are very low within particles and very 
large in the interstices with very low concentration. While this may be somewhat physically 
reminiscent of DNS flow patterns, this is clearly not a condition that the mean drag law (constituted 
in a domain of several/many particles) was derived to model. Note that on the other end, beyond 
௙ߜ
∗ > 12, the maximum concentration is just barely reaching 0.30 of the dense bed. Further increase 

would begin to cause excessive diffusion until all identifiable patterns of the problem have been 
smeared out into uniformity. Even for ߜ௙

∗ = 12 the bubble structure on the right-hand side of Figure 
13 has disappeared. While a validation statement cannot be made on what the filter width should 
be without validation data, clearly it seems to need to fall within the range of ߜ௙

∗	~ሾ2,12ሿ. This 
range is consistent with other works which utilize the diffusion filtering approach. Capecelatro and 
Desjardins (2013) use ߜ௙

∗ of 3, 3.5 and a range of 2 to 8 for a poly disperse case. Using a locally 
adaptive filter, Capecelatro et al. (2015) specify ߜ௙

∗ which varies from 2.5 to 12.6 for concentrations 
ranging from 0.6 to 0.005, respectively.  
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Figure 13: Convergence of the solids volume fraction field (top), gas horizontal (x) velocity 
field, Reu = p dp ug/g (center), and gas vertical (v) velocity field, Rev = p dp vg/g (bottom) at 
the center of the domain, z* = Lz

*/2, with increasing grid refinement.  

 

As a side note, it was found that for convergence behavior such as that observed in Figure 10, a 
better estimate of the approximate exact solution apparently can be found from the single power 
law extrapolation with a severe inverse grid size weighting. Figure 14 shows the fit to single power 
law extrapolations with Wi = (hi)-8 weighting factors. The coarse grid solutions have been 
essentially neglected, although not entirely. Hence the extrapolated curve does not predict the 
coarse grid solution at all (if this curve were used for solution verification these solutions would 
have a fictitiously high error), but provides a better extrapolation of the high-resolution trends.  
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Figure 14:  Same data as in Figure 10 here using least-squares power law extrapolation with 
Wi = hi

-8.  

 

3.6 GARG_2012 INTERPOLATION 

Although this work focuses on grid-independent filtering using the diffusion method, a few grid 
refinement cases were also compared using the GARG_2012 interpolation method. In this case 
only a subset of the grids outlined in Table 1 can be studied and the focus of this study was 
restricted to Nz > 10 corresponding to * ≥ 1. The results are presented in Figure 15. Neither the 
power law nor the mixed order extrapolation schemes give a particularly convincing fit to the data. 
Using only the finest two or three solutions to perform an extrapolation would provide an even 
more ambiguous result as they are divergent. It is hard to tell from the data available in Figure 15 
what the value of ܦ ଵܲିଶ

∗  should be in the limit of infinite resolution, which is part of the challenge 
of placing grid/resolution restrictions on solution verification studies.  
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Figure 15: Convergence behavior of the bed pressure drop in the bursting bubble case with 
the GARG_2012 interpolation scheme. Red least-squares curves are power law extrapolation 
and blue curves are mixed-order.  

 

It should also be noted that using the grid-coupled GARG_2012 interpolation scheme is not as 
pure of a solution verification study as with the grid-independent filtering method. Instead, two 
things are occurring at once, which was mentioned in Section 1. Since the GARG_2012 scheme is 
coupled to the grid, when the grid is refined the CFD-DEM model itself is also changing, via the 
filtering method, specifically the length scale over which particle data is transferred. While 
solution verification may be significantly complicated in this case, the results are similar to those 
in Figure 11 with the variable filter width (single grid). The comparison here is a little ambiguous, 
but depending on where a particle is within a given grid cell, the GARG_2012 interpolation will 
give a weighted filtering between two and three cells. Therefore, in Figure 16 compared ߜ௙

∗ from 
the diffusion filtering method to 2* to 3* (horizontal red lines).  
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Figure 16: Data of Figure 15 compared to data in Figure 11, i.e., variation in bed pressure 
drop calculated with Garg_2012 interpolation on different numerical grids (red) compared to 
diffusion interpolation with different filter widths, *, on a single numerical grid of Nz = 40 (* 
= 0.25) (black). The horizontal lines span from 2* to 3* with the connecting curve at 2.5*. 

 

3.7 DIFFERENT PARTICLE CONFIGURATIONS 

This section explores two different particle configurations. Since the particles in this case are 
generated randomly, the (pseudo-) random number generator can be seeded with a different 
starting point to get a different configuration which is statistically equivalent. The particle 
configuration (PC) used previously will now be referred to as PC1 to differentiate it from two new 
randomized replicates PC2 and PC3. Particles near the center-plane for the three PCs are compared 
in Figure 17. Clearly the general problem remains the same (statistically equivalent based on 
geometry/concentration of the problem), but the exact particle locations have changed. As a 
slightly different variant, a fixed but non-static assembly for PC3 was also explored. In this case, 
labeled PC3t, the particles are given a uniform (Gaussian) random distribution of velocities with 
zero mean. Since the particles have no net motion, this condition was considered a “thermal” fixed-
bed. The magnitude of the particle velocities can be quantified as a pseudo-granular-temperature, 
ܶ ൌ ∑࢜௣ ⋅ ࢜௣ /3 ௣ܰ. The thermal Reynolds number, ReT = pdpT1/2/g, is set to 0.025. The thermal 
condition of PC3, PC3t, is shown in Figure 17 with individual particle velocity magnitudes 
normalized by the inflow gas-phase velocity, ||vp||/U0.  
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Figure 17: Initial particle configuration of original particle configuration (PC1) on left, a 
second replicate PC2 in center and a third replicate PC3 at right, which is also considered in 
a thermal condition (as shown), PC3t. For PC3t colors indicate particle velocity magnitude 
normalized by U0 varying from 0 (black) to 0.1 (white). All particles shown have centroids 
within dp of the centerline, z=Lz/2. 

 

Similar to Figure 6 for the baseline PC1 case, the convergence of the SRQoI is shown in Figure 
18 for PC2 (left) and the static and thermal PC3 (right). The overall trends are generally the same 
as in the baseline case. For PC2 and PC3, the convergence rates are quite a bit higher, p = 2.28 and 
2.60, respectively. On the whole, there is very little difference between PC3 and PC3t. This may 
not be so surprising since the pressure drop is largely determined by the dense region. Since there 
are several particles within a given diffusion filter length and velocities have a zero mean, much 
of the individual particle velocities have been smeared out onto an even lower solids velocity field. 
It is possible to circumvent this by providing a correlated particle motion to see how mean solids 
(filtered) velocities affect the results, but more realist PCs will be explored with correlated motion 
in Section 4, which will move away from the fictional cases produced with a random particle 
generator. It may have been expected that providing a particle velocity would increase the pressure 
drop yet, ܦ ଵܲିଶ

∗ ሺܲݐ3ܥሻ ൏ ܦ ଵܲିଶ
∗ ሺܲ3ܥሻ. Since the particle velocities are thermal (random, zero 

mean), this simply means that, on average, more particles have randomly been aligned with the 
gas-phase velocity rather than oppose it.  
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Figure 18: Convergence behavior of the bed pressure drop in PC2 (left) and PC3 (right) 
showing least-squares power law extrapolations (red). On the right, the dashed line indicates 
the thermal case, PC3t.  

 

While the general trends of the SRQoI convergence behavior are quite similar for the different 
configurations, the magnitudes are slightly different. In Figure 19, ܦ ଵܲିଶ

∗  for the three (static) PCs 
are directly compared. It is observed that the variation between the configurations is comparable 
to the variation between the (approximate) exact and coarsest solution any one PC. The differences 
are not surprising given that these are not identical PCs. However, they are statistically equivalent 
and the magnitude of their relative variation to convergence on one replicate is meaningful. 
Consider the question, “What is the PC-independent pressure drop for this bed geometry?”, i.e., 
the ensemble average over all [many] replicate PCs. Unless many replicates are used, the error due 
to the ensemble averaging itself will be as large as the numerical error of the grid. (However, using 
the coarsest grids would bias the result). In a broader sense, CFD-DEM simulations are transient 
and data is typically taken as time average, i.e., the average is taken over many different reference 
states, which are oftentimes very different, see Section 4. If the error introduced from two 
statistically equivalent cases matches the spatial discretization error, this is an indication that, for 
more practical conditions which are highly dynamic and only time averaged over computationally 
tractable periods of time, the contribution to the error in the measurements from the numerical 
grid—even for relatively coarse grids—is likely much less than the error (or uncertainty) of 
(incomplete) time averaging.  
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Figure 19: Comparison of convergence behavior of the bed pressure drop in PC1, PC2 and 
PC3 and their respective least-squares power law extrapolations (red).  

 

3.8 DISCRETIZATION SCHEMES ON PC2 

Here, the robustness of the results presented in Section 3.4 are tested on PC2 using FOU and 
MUSCL discretization schemes. Skipping first to the MUSCL scheme, which is straightforward, 
the right panel of Figure 20 shows a similar convergence behavior to most previous results. The 
order of convergence is approximated at p = 3.20. In the case of the FOU scheme, the power law 
extrapolation failed. The numerical method could not find a root of the nonlinear equations 
between a small number and order 20, indicating that the order of convergence was zero. This 
occurs due to the globally nonmonotonic behavior. As before, a mixed-order (first-second) 
extrapolation scheme produces a nice fit to this type of data. Note that it is primarily the coarsest 
grid, i = ng, causing this behavior. If either this point is neglected, Wi=ng = 0, or if an inverse squared 
weighting is used, Wi = 1/hi

2, then the power law extrapolation succeeds with predicted 
convergence rates of p = 0.19 and 0.21, respectively. These two curves are shown in Figure 20 as 
the solid and dashed red lines. Although the convergence rates are again quite different than the 
expected order of accuracy of the numerical scheme (approximately between one and two), p(FOU) 
< p(Superbee) < p(MUSCL), are still found as before with PC1. 
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Figure 20: Convergence behavior of the bed pressure drop in the bursting bubble case with 
the FOU scheme (left) and the MUSCL scheme (right). Both compare to a least-squares power 
law extrapolation (red) with the coarsest grid neglected in the FOU case. Also shown for FOU 
are power law fit with inverse fitted to FOU data, the coarsest grid has been neglected law 
with Wi = hi

-2 (dashed) weighting and the mixed-order method (blue).  

 

 
Figure 21: Direct comparison of results in Figure 18 (left) and Figure 20 Superbee (�), FOU 
(○), and MUSCL (×) discretization schemes on replicate PC2.  
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The convergence behavior of the three schemes are compared in Figure 21. The two higher-order 
methods converge to each other in this resolution range. The FOU scheme is still in the process of 
converging to the higher order results, but difference is quite small at the highest resolutions 
considered here. Overall, the discrepancy due to the numerical method seems to be rather small, 
even the FOU scheme which may be partially attributable to the larger filter size (ߜ௙

∗ ൌ 6) 
smoothing out the discontinuities of the bubble and bed surface.  

3.9 DRAG LAWS ON PC3t 

Before moving onto a new fixed bed problem, the thermal fictional bursting bubble case, PC3t, 
was used to study the impact of the drag law. Again, the focus here is on verification, specifically 
solution verification and cannot make any assertions about which drag law is the most appropriate. 
This is a validation question and one that has been at the heart of countless studies over several 
decades with no universally accepted answer. Here, it is determined how the drag law affects 
convergence behavior.  

 

 
Figure 22: Convergence behavior of the bed pressure drop in PC3t using the 
GIDASPOW_BLEND (left), WEN_YU (center), and KOCH_HILL (right) drag laws showing 
least-squares power law extrapolations (red).  

 

All results reported thus far have followed the baseline configuration and employed the BVK 
(Beetstra et al., 2007) drag law. On PC3t, the drag laws (MFiX nomenclature) are applied: 
GIDASPOW_BLEND (Ding and Gidaspow, 1990; Lathouwers and Bellan, 2001), WEN_YU 
(Wen and Yu, 1966); and KOCH_HILL (Hill et al., 2001a; Hill et al., 2001b; Benyahia et al., 
2006). The convergence of the SRQoI for the three drag laws is almost identical, as shown in 
Figure 22. The extrapolated convergence rates are also quite similar, p = 3.38, 2.27, and 2.49. The 
only major differences in the data or the extrapolated curves are the approximate exact solutions. 
Without making an assessment of the validity of any model (other than noting that all of these 
models have been applied extensively in a large number of previous works), it should be noted 
that the difference between models is large compared to the spread of the results in the grid 
convergence of any particular model. The large absolute difference between an extrapolated exact 

value and the coarsest solution occurs for the baseline case which is ቚ ଴݂
ሺ஻௏௄ሻ െ ௜݂ୀ௡௚

ሺ஻௏௄ሻቚ ൌ 7.16. 

On the other hand, the difference between the extrapolated exact solutions with BVK and 

WEN_YU drag laws is ቚ ଴݂
ሺ஻௏௄ሻ െ ଴݂

ሺௐாே_௒௎ሻቚ ൌ 467, over 65x larger. Within the VVUQ 
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framework, this would indicate that model form uncertainty (and potentially input uncertainties 
that drag models depend on) dwarf numerical uncertainties, a welcome result given that a more 
comprehensive VVUQ study of a gas-solids system (although utilizing the TFM) had previously 
indicated that numerical uncertainty may be excessively large (Gel et al., 2013). Figure 23 
compares the results of the four different drag laws against one another. At this scale, the variation 
due to the grid has almost vanished and the simulation results collapse to nearly horizontal lines. 
Only the tails of the extrapolations vary appreciably, and at a resolution not frequently utilized in 
CFD-DEM. Although caution should be exercised in generalizing the results from a small, 
fictitious, fixed particle bed to more general, practical CFD-DEM simulations, these are 
encouraging findings.  

 

 
Figure 23: Convergence behavior of the bed pressure drop in PC2 (left) and PC3 (right) 
showing least-squares power law extrapolations (red). 

 

3.10 SUMMARY OF EXTRAPOLATED DATA 

Throughout Sections 3.3–3.9, a least-squares method was used, outlined by Eça and Hoestra 
(2014) to compute the minima of Eqsuations 8–9 producing power law and mixed-order curve fits 
to the solution data. The curve fits extrapolate the data to the limit of infinite resolution which 
provide estimates of the grid-free solutions. Some of the coefficients of the curve fits have been 
provided where discussed, primarily the extrapolated order of convergence, p. In Table 2 and Table 
3, all three coefficients of both types of regression are summarized for all cases discussed in 
Sections 3.3–3.9. 
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Table 2: Summary of coefficients from least-squares extrapolation using power-law regression 

case f0 p c 

baseline, Wi = 1/hi  1.158800E+03  1.0326910  ‐1.112676E+00 

baseline, Wi = 1  1.158618E+03  1.2877890  ‐8.354265E‐01 

FOU  1.154426E+03  0.1384588  5.964083E+00 

MUSCL  1.158627E+03  1.5037070  ‐5.375400E‐01 

f
* = 2 1.298589E+03  3.3736310  ‐2.233332E+00 

f
* = 3 1.213669E+03  6.3961730  ‐1.065858E‐02 

f
* = 4 1.190161E+03  9.1643680  ‐1.461461E‐04 

f
* = 8 1.131035E+03  0.7939152  ‐1.656922E+00 

GARG_2012  1.194496E+03  4.3984070  ‐1.492723E‐01 

PC2  1.141871E+03  2.2775130  ‐4.406736E‐01 

PC3  1.152168E+03  2.5982400  ‐2.996187E‐01 

PC3t  1.151936E+03  2.6380250  ‐2.861210E‐01 

PC2, FOU  ‐  ‐  ‐ 

PC2, FOU, neglecting Nz = 3  1.137526E+03  0.1910382  6.762096E+00 

PC2, FOU, Wi = 1/hi2  1.138479E+03  0.2111117  5.669678E+00 

PC2, MUSCL  1.141883E+03  3.1991670  ‐1.397391E‐01 

PC3t, GIDASPOW_BLEND  8.400106E+02  3.3755370  ‐7.677591E‐02 

PC3t, WEN_YU  6.914840E+02  2.2747090  ‐2.330144E‐01 

PC3t, KOCH_HILL  1.141717E+03  2.4903680  ‐3.228197E‐01 
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Table 3: Summary of coefficients from least-squares extrapolation using mixed-order 
regression 

case  f0  c1  c2 

baseline, Wi = 1/hi  1.158793E+03  ‐1.036744E+00  ‐4.615858E‐02 

baseline, Wi = 1  1.158673E+03  ‐7.530477E‐01  ‐1.386442E‐01 

FOU  1.158630E+03  2.800858E+00  ‐7.556195E‐01 

MUSCL  1.158674E+03  ‐4.114950E‐01  ‐1.815690E‐01 

f
* = 2 1.254384E+03  1.534158E+02  ‐6.203141E+01 

f
* = 3 1.202255E+03  3.795341E+01  ‐1.349758E+01 

f
* = 4 1.187415E+03  9.148216E+00  ‐3.309191E+00 

f
* = 8 1.130912E+03  ‐1.720572E+00  1.587567E‐01 

GARG_2012  1.165907E+03  3.643732E+01  ‐1.121604E+01 

PC2  1.141820E+03  3.117257E‐01  ‐6.945055E‐01 

PC3  1.152106E+03  4.411637E‐01  ‐7.093355E‐01 

PC3t  1.151864E+03  4.823467E‐01  ‐7.213819E‐01 

PC2, FOU  1.141671E+03  4.233970E+00  ‐1.316126E+00 

PC2, FOU, neglecting Nz = 
3  1.141770E+03  3.791499E+00  ‐1.054393E+00 

PC2, FOU, Wi = 1/hi2  1.141748E+03  3.946489E+00  ‐1.197082E+00 

PC2, MUSCL  1.141677E+03  9.988265E‐01  ‐8.381551E‐01 

PC3t, GIDASPOW_BLEND  8.399329E+02  4.815103E‐01  ‐4.961429E‐01 

PC3t, WEN_YU  6.914782E+02  9.119092E‐02  ‐3.402114E‐01 

PC3t, KOCH_HILL  1.141675E+03  3.330353E‐01  ‐6.506675E‐01 

 



An Investigation into Solution Verification for CFD-DEM 

34 

4. SSCPI 

4.1 SYSTEM AND CONDITIONS 

The results presented in Section 3 were quite promising and showed rather definitively that 
solution verification via grid refinement is applicable to the CFD-DEM method, at least with a 
grid-independent filtering scheme. One remaining concern is with the relatively simple and 
completely fictitious bursting bubble problem. Do the previous results hold if you freeze an actual 
CFD-DEM simulation so that the particles are in a realistic (but frozen) configuration? In an 
effort to address this question, the particle configurations were taken from an actual simulation of 
the NETL Small Scale Challenge Problem (SSCP-I), which was run previously (Gopalan et al., 
2016).  

The SSCP-I is a rectangular bubbling bed of Geldart Group D particles. The bed is 23.0 cm wide, 
122.0 cm tall, and 7.5 cm deep. The median particle diameter, dp50, is 3256 m. The particles have 
a fairly narrow size distribution and a single particle diameter (monodisperse) is applied, dp = dp50. 
The nondimensionalized domain is therefore ܮ௫∗ ∗௬ܮ ,70.64 =   = 374.69, and ܮ௭∗  = 23.03, roughly 
two times larger in each dimension than the previous fictional case. However, the mass inventory 
in this case is such that the particle count is 92,948, almost a 20-fold increase over the fictional 
case. The fluid properties are set as g = 1.2×10-3 g/cm3, g = 1.8×10-4 g/cm-s. Although not 
significant for the resulting fixed bed simulations, the particle properties may affect the states 
observed (i.e., frozen for study here) and they are: p = 1.131 g/cm3, epp = 0.84, epw = 0.92, pw = 
pw = 0.35. The particle-particle and particle-wall spring stiffness coefficients of the linear spring 
dashpot model are both 106. One minor discrepancy should be noted. The particles are slightly 
nonspherical, sphericity of 94%. The sphericity was taken into account during the original 
simulation used to produce the PCs, but not here in the fixed bed CFD-grid convergence studies 
for consistency with the results presented in Section 3. The original simulation used the WEN_YU 
drag law (Wen and Yu, 1966) and the Superbee flux limiter. However, the interpolation method 
of GARG_2012 was used. Similar to the fictional case, a uniform mass inflow BC is set at the inlet 
plane, y* = 0 to model a distributor. The inlet gas velocity is U0 = 219 cm/s, hence Rep0 = gdpU0/g 
= 475. A pressure outflow BC is specified at the exit plane, y* = Ly

*. The front, back, left side, and 
right-side domain boundaries are all specified as no-slip wall BCs.  

The original simulation used to generate the particle configuration used a grid of Nx×Ny×Nz = 
18×96×6; where there was a grid number spacing of Nx = 3Nz and Ny = 16×Nz. However, this grid 
(and all others used here) is not uniform (cubic), but close, with Δ௫∗  = 3.92, Δ௬∗  = 3.90, and Δ௬∗  = 

3.84 for Δ∗ = 3.89. In general, Δ∗ ൌ ∛ሺ ௧ܸ௢௧
∗ /48ሻ/ ௭ܰ	 ≈ 23.332/Nz. For the fixed-bed convergence 

tests, grids of Nz = 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28, 32, and 40, are considered, each with Nx = 
3Nz and Ny = 16×Nz. This spans a grid cell size range from * = 4.67 to 0.58.  

In the fixed-bed convergence tests used here, only the particle positions and velocities, PCs, are 
used for the fixed bed simulations using the same code modifications as in the fictional case 
discussed in Section 2. The fluid domain is reinitialized as single phase, hydrostatic pressure 
profile and ug(t=0) = 0, vg(t=0) = 200 cm/s, and wg(t=0) = 0. The diffusion filtering scheme is 
applied with ߜ௙

∗ ൌ 6. The BVK drag law (Beetstra et al., 2007) is specified in the baseline case and 
the GIDASPOW_BLEND (Ding and Gidaspow, 1990; Lathouwers and Bellan, 2001) model is 
also used for comparison. The PCs are taken from the “DES_DATA” code output files which were 
saved at a frequency of 1 Hz. The original simulation was run for a period of 65 s, the first 5 s was 



An Investigation into Solution Verification for CFD-DEM 

35 

neglected and the remaining 60 s used for time averaging statistical properties of the system. Here, 
the first six cases outside of the transient window were considered and saved at: t = 5, 6, 7, 8, 9 
and 10s which are denoted PC5, PC6, etc.  

4.2 CONVERGENCE RESULTS 

The bed pressure drop of Equation 10 is again considered as the SRQoI. Here, however, since this 
is a real problem there is a more natural choice for the locations ݕଵ

∗ and ݕଶ
∗. Although the 

experimental data will not be compared, the original simulation did and it seems a natural choice 
to use the experimental pressure tap locations here as well. Therefore, y1 = 4.13 cm and y2 = 34.61 
cm, or ݕଵ

∗ ≅ 12.68 and ݕଶ
∗ ൌ 106.3, were used in calculating ܦ ଵܲିଶ

∗ . 

A slice of particles lying along the center-plane of the configurations PC5 to PC10 are provided in 
Figure 24 to Figure 29. The particles are colored by their velocity magnitude normalized by the 
inlet gas velocity. Unlike the thermal PC3t of the fictitious case, these snapshots of the simulation 
“frozen” in time show mean, correlated motion of the particles. The conditions of PC5–PC10 are 
clearly more realistic than the fictional ones created with a random particle generator. Perhaps one 
of the most significant differences is that the simple random generator did not allow for particles 
to be in contact to avoid excessive overlap. In these cases, the dense regions are much denser than 
just 30% (near the maximum concentration limit for a random generator to continue seeding 
particles without contact) and some particles (likely many particles) are in contact. However,  some 
elements that the bursting bubble geometry attempted to represent can be identified in PC5–PC10 
can be identified.  

 

 
Figure 24: On left, slice of PC5, particle configuration of SSCP-I simulation at time t = 5 s, 
showing particles with centroids within dp of the centerline, z=Lz/2, colored by normalized 
velocity magnitude. At right, convergence behavior of the bed pressure drop compared to 
least-squares extrapolations of power law (red) and mixed-order (blue) regression types. 
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Figure 25:  Same as Figure 24 frozen at t = 6 s, i.e., PC6. 

 

 
Figure 26: Same as Figure 24 frozen at t = 7 s, i.e., PC7. 
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Figure 27: Same as Figure 24 frozen at t = 8 s, i.e., PC8. 

 

 
Figure 28: Same as Figure 24 frozen at t = 9 s, i.e., PC9. 
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Figure 29: Same as Figure 24 frozen at t = 10 s, i.e., PC10. 

 

The convergence behavior for PC5 to PC10 are shown on the right-hand side in Figure 24 to Figure 
29. In all instances, the BVK drag law has been used and both power-law (red) and mixed-order 
(blue) least-squares extrapolation curve fits have been compared. It is rather apparent that the 
convergence behavior is somewhat degraded. Although the grid has not been refined quite as far, 
the calculated solutions in all six cases have yet to level off, which occurred in the fictional case 
around * = 1. However, for the first four cases, PC5-PC8, the solution is at least clearly 
converging. The predicted convergence rates from the power law based extrapolation in these 
cases is between 0.96 and 1.4, quite a bit lower than some of the convergence rates previously 
observed, but more reasonable for the numerical methods employed. For the last two cases, PC9 
and PC10, the solutions have not yet clearly approached an asymptote. The power-law 
extrapolations predict very low convergence rates, essentially zero in the case of PC10. In these 
cases, the mixed-order extrapolations appear to provide a somewhat more acceptable fit. The 
coefficients of both types of least squares regression are provided in Section 4.4. Unfortunately, 
even the mixed-order regression predicts an exact solution relatively far away from the calculated 
data. This would indicate a comparatively large numerical (grid) uncertainty, i, which is largely 
determined from the difference between a computed solution and the extrapolated exact solution, 
see Equation 11.  

4.3 GIDASPOW BLEND DRAG LAW 

Solution verification studies have also been performed on PC5–PC10 with the same set of CFD 
grids using the GIDASPOW_BLEND drag law. The results are summarized in Figure 30 to Figure 
32. Qualitatively, the trends are nearly identical to the convergence behavior with the BVK drag 
law. Quantitatively, however, it can be seen that the nondimensional pressure drop is roughly 35 
to 50% larger than with the BVK drag law. Interestingly, this is the opposite of the trend observed 
in Figure 23 for the fictional case, however the SSCPI conditions are at a much higher Reynolds 
number.  
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Figure 30: Convergence behavior of the bed pressure drop for PC5 (left) and PC6 (right) using 
the GIDASPOW_BLEND drag law compared to least-squares extrapolations of power law 
(red) and mixed-order (blue) regression types. 

 

 
Figure 31: Same as Figure 30 for PC7 (left) and PC8 (right). 
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Figure 32: Same as Figure 30 for PC9 (left) and PC10 (right). 

 

4.4 SUMMARY OF EXTRAPOLATED DATA 

The results of the least-squares regression for the Richard extrapolation are summarized here for 
PC5-PC10. Table 4 provides the power-law regression coefficients and Table 5 the mixed-order 
regression coefficients. Results for both BVK and GIDASPOW_BLEND drag models are 
provided 

Table 4: Summary of coefficients from least-squares extrapolation using power-law regression 

   f0  p  c 

BVK, PC5  2.293768E+02  1.418199E+00  ‐2.638573E‐01 

BVK, PC6  2.079770E+02  9.605520E‐01  ‐6.250076E‐01 

BVK, PC7  2.081712E+02  1.267951E+00  ‐3.574525E‐01 

BVK, PC8  2.114639E+02  1.108870E+00  ‐4.525479E‐01 

BVK, PC9  8.719776E+01  6.918749E‐02  ‐5.721289E+00 

BVK, PC10  5.785591E+03  5.778374E‐05  ‐5.720112E+03 

GIDASPOW_BLEND, PC5  3.131216E+02  1.422975E+00  ‐3.342532E‐01 

GIDASPOW_BLEND, PC6  2.887770E+02  1.163298E+00  ‐6.107155E‐01 

GIDASPOW_BLEND, PC7  2.843857E+02  1.292549E+00  ‐4.517571E‐01 

GIDASPOW_BLEND, PC8  2.931625E+02  1.023624E+00  ‐6.771372E‐01 

GIDASPOW_BLEND, PC9  1.254982E+02  1.425360E‐01  ‐4.063413E+00 

GIDASPOW_BLEND, PC10  1.011310E+02  1.177375E‐01  ‐4.365198E+00 
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Table 5: Summary of coefficients from least-squares extrapolation using mixed-order 
regression 

   f0  c1  c2 

BVK, PC5  2.294458E+02  ‐2.880215E‐01  ‐4.975930E‐02 

BVK, PC6  2.079757E+02  ‐6.330566E‐01  1.083315E‐02 

BVK, PC7  2.082474E+02  ‐4.064803E‐01  ‐3.215461E‐02 

BVK, PC8  2.115106E+02  ‐4.905091E‐01  ‐1.147158E‐02 

BVK, PC9  8.195706E+01  ‐5.298259E‐01  6.765167E‐02 

BVK, PC10  6.587477E+01  ‐4.358104E‐01  5.643766E‐02 

GIDASPOW_BLEND, PC5  3.132099E+02  ‐3.648351E‐01  ‐6.405998E‐02 

GIDASPOW_BLEND, PC6  2.888680E+02  ‐6.759751E‐01  ‐2.776830E‐02 

GIDASPOW_BLEND, PC7  2.844867E+02  ‐5.125789E‐01  ‐4.690295E‐02 

GIDASPOW_BLEND, PC8  2.932022E+02  ‐7.233375E‐01  4.329973E‐03 

GIDASPOW_BLEND, PC9  1.221426E+02  ‐7.821042E‐01  9.790477E‐02 

GIDASPOW_BLEND, PC10  9.736067E+01  ‐6.476843E‐01  7.692264E‐02 

 

4.5 NUMERICAL UNCERTAINTY 

This section performs the next step in a solution verification study and calculates the numerical 
uncertainty, . In a practical computational science and engineering study, calculating or 
approximating  is really the goal of a solution verification study. Understanding if a grid-
refinement procedure was even possible for the CFD-DEM numerical method was the primarily 
motivation of this work. However, the less than ideal extrapolations for PC5–PC10 beg the 
question, “How large is the predicted numerical uncertainty in these cases?”. 

With the Richard extrapolation curve-fits at hand, it is relatively straightforward to estimate the 
numerical uncertainty. A quick comment on the difference between numerical error and numerical 
uncertainty. In theory, if the extrapolation of solution data into the limit of zero grid spacing is 
credible, it is possible to correct the discrete solutions with the numerical error, i.e., use the exact 
(grid-free) solution, and the solution can be treated as being free of numerical errors or 
uncertainties. In practice, it is much more frequently the case that there is not a high level of 
confidence and credibility in the extrapolation. In this case, it is advisable to use the calculated 
error bound of the exact solution to within an uncertainty interval from the discrete solution 
(Oberkampf and Roy, 2010). The conversion of error to uncertainty essentially amounts to taking 
the unsigned error multiplied by a safety factor commensurate with the degree of confidence in the 
estimate. Here, the numerical uncertainty is estimated by,  

 

                                                          ߳௜ ൌ |௦ሺܨ ଴݂ െ ௜݂| ൅  ோாሻ ,                                                  (11)ߪ

 

where Fs is the factor of safety, RE is the standard deviation of the regression,  
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ோாߪ                                                        ൌ ට
௡೒

௡೒ିଷ
∑ ൫ ௜݂ െ መ݂

௜൯
ଶ௡೒

௜ୀଵ  ,                                              (12) 

 

and መ݂௜ is the extrapolated solution at the same level of grid refinement as the calculated solution, 
i.e., መ݂

௜ ൌ ଴݂ ൅ ݄ܿ௜
௣ for power-law regression and for መ݂

௜ ൌ ଴݂ ൅ ܿଵ݄௜ ൅ ܿଶ݄௜
ଶ mixed-order 

regression. The factor of safety is taken to be Fs = max[1.25, 3RE/Rf] where Rf = (max fi – min 
fi)/(ng – 1) is the data range parameter. The ratio of the standard deviation of the regression to the 
data range parameter, RE/Rf, can be used to quantify the “goodness of fit,” with values less than 
unity being considered good. It should be noted that the definitions of i and Fs differ slightly than 
in the methodology proposed by Eça and Hoekstra (2014), which have slightly different forms 
depending on the goodness of fit. A single, consistent defininiton is used here as some regressions 
(of PC5 – PC10) fail the test (RE/Rf > 1), while others pass (RE/Rf < 1).  

 

Table 6: Estimated numerical uncertainties for PC5 – PC10 on grid Nz = 6 

   BVK  GIDASPOW_BLEND    

PC5  1.422479E+01  1.825696E+01  power‐law 

PC6  5.915502E+00  1.054684E+01  power‐law 

PC7  1.159393E+01  1.553671E+01  power‐law 

PC8  6.246764E+00  5.642258E+00  power‐law 

PC9  1.717361E+01  2.625377E+01  mixed‐order 

PC10  1.453015E+01  1.925627E+01  mixed‐order 

 

The least-squares Richardson extrapolations displayed in Figure 24 to Figure 32 are used to 
estimate i as defined in Equation 11. For PC5–PC8, the power-law form is applied and the mixed-
order method is applied for PC9 and PC10. This change in form is consistent with the methodology 
of Eça and Hoekstra (2014), which also recommend a mixed-order regression if the power-law 
regression predicts an order of convergence less than 0.5. Table 6 provides the numerical 
uncertainties for the grid Nz = 6 (* = 3.89) for both drag laws. The errors are appended to the Nz 
= 6 grid solutions and shown along with the complete transient of ܦ ଵܲିଶ

∗  calculated in the original 
simulation in Figure 33. Note that the original simulation also used the Nz = 6 grid, but utilized 
GARG_2012 interpolation and the WEN_YU drag law. There are several noteworthy results 
displayed in Figure 33, including:  

 The predicted numerical uncertianty is neither non-neglegable nor (seemingly) excessively 
large. For DP5–DP8, the relative discretization error (RDE), i/f0, ranges from 1–7%. 
However, it should be noted that the case considered here, Nz = 6, is, on average, the worst 
one, i.e., farthest from the extrapolated exact solution.  

 Not surprisingly, the largest uncertainty is predicted in the PC9 and PC10 cases which have 
an average RDE of approximately 21%.  
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 In general, the uncertainty due to the drag law is larger than the uncertainty due to the grid, 
however the error bars do overlap in the PC9 and PC10.  

 Larger yet is simply the natural variation in ܦ ଵܲିଶ
∗  from the dynamics of the bubbling bed.  

While not conclusive, the results suggest a heirachy for practical CFD-DEM simulations as 1) 
uncertainty due to time averaging, 2) model form uncertainty of important sub-models, e.g., drag, 
and 3) numerical uncertainty due to the grid. Where model input uncertainties rank in this list can 
not be assessed outside of a particular validation exercise. Additonally, it should also be cautioned 
that numerical uncertainties due to the temporal discretization cannot be assessed in a frozen state.  

 

 
Figure 33: Comparison of the fixed-bed pressure drops with the BVK (red) and 
GIDASPOW_BLEND (blue) drag laws on the Nz = 6 grid with estimated numerical 
uncertainties. The results from the six fixed-bed PCs are superimposed over the complete 
transient results of the bed pressure drop predicted from the original simulation.  
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5. CONCLUSIONS 

The most salient findings of this work are outlined below.  

 Is solution verification even possible for CFD-DEM? Yes. Several fixed-bed cases 
(particles are frozen in place) were studied which showed that as the CFD grid is refined 
below the scale of the particle, the model does converge to a unique solution.  

 While the solution did converge, here the SRQoI being a bed pressure drop, the 
convergence behavior was quite oscillatory and at times, an oscillatory behavior 
superimposed on a (globally) non-monotonic behavior. Using determined two or three 
point traditional Richard extrapolation methods would result in inaccurate and 
unreasonably large error estimates, i.e., extrapolate the exact solution far from the data. To 
circumvent this issue many grid resolutions were studied and extrapolations were found as 
the least-squares solutions to the overdetermined system, a method largely developed by 
Eça and Hoekstra (2014). The value and utility of the regression based extrapolations were 
clearly demonstrated in this work.  

 The predicted rates of convergence are quite different than previously observed for first-
order upwind, Superbee and MUSCL flux-limiters on a much simpler continuum problem 
(Waterson and Deconinck, 2007). However, the ranking p(FOU) < p(Superbee) < p(MUSCL) is 
preserved.  

 Qualitatively similar convergence behavior can be observed with a different diffusion filter 
width than the baseline choice ߜ௙

∗ = 6. This was not a validation study and the (most) 
appropriate value of ߜ௙

∗ cannot be determined from the verification exercises herein. 
However, it seems that ߜ௙

∗ between 2 and approximately 12 seems to be advisable, 
consistent with other studies using a diffusion filtering scheme (Capecelatro and Desjardins 
2013; Capecelatro et al., 2015).  

 Qualitatively similar convergence behavior can also be observed with a different choice of 
drag law, BVK, GIDASPOW_BLEND, KOCH_HILL, and WEN_YU being studied. 

 Quantitatively, the impact of modeling choices (e.g., drag, filter width) and the specific 
particle configuration (i.e., a particular instantaneous state of a transient, dynamic problem) 
appear to have a bigger impact on the solution than the numerical grid, at least for * ≲ 5. 

 

In closing, we suggest exercising caution using this study as a more general path forward for CFD-
DEM solution verification. That is, for a given problem, freeze the simulation at several random 
instances, perform grid refinement, calculate the uncertainty in the SRQoIs, average the 
uncertainties over an ensemble of frozen PCs, and attribute the resulting ensemble average 
uncertainty to the full, time-averaged solution. However, drawbacks are that: 1) such a method 
cannot quantify the time discretization error/uncertainty, and 2) since different states (PCs) may 
have very different uncertainties—as in Figure 33, also see data in Table 4 to Table 6, where the 
RDE of PC10 is roughly an order of magnitude larger than the RDE present in PC8—the number 
of PCs in the ensemble may need to be large and should equally sample the different states of the 
trajectory being time averaged, i.e., such an approach may end up being as computationally 
expensive as simply performing full transient simulations on different numerical grids. Although 
there are some clear drawbacks to such an approach, one advantage is that grid discretization error 



An Investigation into Solution Verification for CFD-DEM 

45 

can be calculated independently from time averaging error. Future studies aimed at the feasibility 
solution verification of transient CFD-DEM, i.e., calculating numerical error in the presence of 
time-averaging error, are currently being planned.  
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APPENDIX  

A.1  USER MODIFICATIONS 

usr_mod.f  

      MODULE usr 
! 
!       Declare the user-defined namelist variables (usrnlst.inc) in this module. 
!       Also Include user-defined variables in this module.  To access the 
!       variables from a subroutine add the statement "Use usr".  If allocatable 
!       arrays are defined in this module allocate them in usr0.  To turn on the 
!       user defined subroutines (usr0, usr1, and usr2) set call_usr to true in 
!       mfix.dat. 
! 
!                       a dummy variable listed in usrnlst.inc 
        DOUBLE PRECISION DUMMY_DP 
 
        DOUBLE PRECISION :: max_Linf_norm 
 
      END MODULE usr 

 

usr0.f 

!           user-definable.  The user may insert code in this routine  C 
!           or call appropriate user defined subroutines.  This        C 
!           can be used for setting constants and checking errors in   C 
!           data.  This routine is not called from an IJK loop, hence  C 
!           all indices are undefined.                                 C 
!                                                                      C 
!  Author:                                            Date: dd-mmm-yy  C 
!  Reviewer:                                          Date: dd-mmm-yy  C 
!                                                                      C 
!  Revision Number:                                                    C 
!  Purpose:                                                            C 
!  Author:                                            Date: dd-mmm-yy  C 
!  Reviewer:                                          Date: dd-mmm-yy  C 
!                                                                      C 
!  Literature/Document References:                                     C 
!                                                                      C 
!  Variables referenced:                                               C 
!  Variables modified:                                                 C 
!                                                                      C 
!  Local variables:                                                    C 
!                                                                      C 
!^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^C 
! 
      SUBROUTINE USR0 
!...Translated by Pacific-Sierra Research VAST-90 2.06G5  12:17:31  12/09/98 
!...Switches: -xf 
      Use usr 
      USE compar, ONLY: myPE, PE_IO 
      IMPLICIT NONE 
!----------------------------------------------- 
! 
!  Include files defining common blocks here 



 

 

! 
! 
!  Define local variables here 
! 
! 
!  Include files defining statement functions here 
! 
! 
!  Insert user-defined code here 
! 
      IF (myPE .EQ. PE_IO) THEN 
        OPEN(UNIT=801,FILE='norms.dat',STATUS='UNKNOWN') 
        CLOSE(801) 
        max_Linf_norm = 0.0d0 
      END IF 
 
 
      RETURN 
      END SUBROUTINE USR0 

 

usr1.f 

!vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvC 
!                                                                      C 
!  Module name: USR1                                                   C 
!  Purpose: This routine is called from the time loop and is           C 
!           user-definable.  The user may insert code in this routine  C 
!           or call appropriate user defined subroutines.  This        C 
!           can be used for setting or checking errors in quantities   C 
!           that vary with time.  This routine is not called from an   C 
!           IJK loop, hence all indices are undefined.                 C               C 
!                                                                      C 
!  Author:                                            Date: dd-mmm-yy  C 
!  Reviewer:                                          Date: dd-mmm-yy  C 
!                                                                      C 
!  Revision Number:                                                    C 
!  Purpose:                                                            C 
!  Author:                                            Date: dd-mmm-yy  C 
!  Reviewer:                                          Date: dd-mmm-yy  C 
!                                                                      C 
!  Literature/Document References:                                     C 
!                                                                      C 
!  Variables referenced:                                               C 
!  Variables modified:                                                 C 
!                                                                      C 
!  Local variables:                                                    C 
!                                                                      C 
!^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^C 
! 
      SUBROUTINE USR1 
!...Translated by Pacific-Sierra Research VAST-90 2.06G5  12:17:31  12/09/98 
!...Switches: -xf 
      USE usr 
      USE functions 
      USE mpi_utility 



 

 

      USE indices,   ONLY: I_OF, J_OF, K_OF 
      USE toleranc,  ONLY: TOL_RESID 
      USE run,       ONLY: DT, DT_MIN, TIME, TSTOP 
      USE fldvar,    ONLY: P_G, U_G, V_G, W_G 
      USE fldvar,    ONLY: P_GO, U_GO, V_GO, W_GO 
      USE physprop,  ONLY: RO_G0, D_p0 
      USE bc,        ONLY: BC_V_G 
      USE compar,    ONLY: myPE, PE_IO 
  
      IMPLICIT NONE 
 
      INTEGER :: ii, jj, kk, ijk, Nquickly, ierr 
      DOUBLE PRECISION :: norm_dudt, norm_dpdt 
      DOUBLE PRECISION, DIMENSION(4) :: Linf_norms, Linf_norms_global 
      DOUBLE PRECISION :: old_max_Linf_norm, TOL_TRANS_MAX 
 
!----------------------------------------------- 
! 
!  Include files defining common blocks here 
! 
! 
!  Define local variables here 
! 
      TOL_TRANS_MAX = 1.0d-6 
      norm_dudt = D_p0(1)/BC_V_G(1)**2 
      norm_dpdt = D_p0(1)/(RO_G0*BC_V_G(1)**3) 
! 
!  Include files defining statement functions here 
! 
! 
!  Insert user-defined code here 
! 
 
!  Calc L_inf norms 
      Linf_norms(:) = 0.0d0 
      DO ijk = IJKSTART3, IJKEND3 
      IF(.NOT.IS_ON_myPE_wobnd(I_OF(IJK), J_OF(IJK), K_OF(IJK))) CYCLE 
        IF (FLUID_AT(IJK)) THEN 
          Linf_norms(1) = DMAX1(Linf_norms(1), DABS(P_G(ijk)-P_GO(IJK))) 
          Linf_norms(2) = DMAX1(Linf_norms(2), DABS(U_G(ijk)-U_GO(IJK))) 
          Linf_norms(3) = DMAX1(Linf_norms(3), DABS(V_G(ijk)-V_GO(IJK))) 
          Linf_norms(4) = DMAX1(Linf_norms(4), DABS(W_G(ijk)-W_GO(IJK))) 
        END IF 
       END DO 
 
      CALL GLOBAL_MAX(Linf_norms(1), Linf_norms_global(1), PE_IO, ierr) 
      CALL GLOBAL_MAX(Linf_norms(2), Linf_norms_global(2), PE_IO, ierr) 
      CALL GLOBAL_MAX(Linf_norms(3), Linf_norms_global(3), PE_IO, ierr) 
      CALL GLOBAL_MAX(Linf_norms(4), Linf_norms_global(4), PE_IO, ierr) 
 
  805 FORMAT (5(E16.8, 2x)) 
      IF (myPE .EQ. PE_IO) THEN 
! normalize 
        Linf_norms(1)     = Linf_norms_global(1)/DT*norm_dpdt   
        Linf_norms(2:4)   = Linf_norms_global(2:4)/DT*norm_dudt 
! write out 



 

 

        OPEN(UNIT=801, FILE='norms.dat', ACCESS='APPEND', STATUS='OLD') 
        WRITE(801,805) TIME, Linf_norms(1), Linf_norms(2), & 
                       Linf_norms(3), Linf_norms(4) 
        CLOSE(801) 
! stop if max Linf and previous max Linf meet tolerance 
        old_max_Linf_norm = max_Linf_norm 
        max_Linf_norm     = MAXVAL(Linf_norms) 
        IF ((max_Linf_norm + old_max_Linf_norm)/2.0 & 
            .LE. TOL_TRANS_MAX) THEN 
          TSTOP=0.0 
          WRITE(*,*) 'Convergence tolerances met: ' 
          WRITE(*,*) 'old_max_Linf_norm = ', old_max_Linf_norm 
          WRITE(*,*) '    max_Linf_norm = ', max_Linf_norm 
        END IF 
      END IF 
 
! send PE_IO's TSTOP to all processors 
      CALL BCAST(TSTOP, PE_IO) 
 
 
      RETURN 
      END SUBROUTINE USR1 
 

 

A.2  BASELINE INPUT DECK FOR BURSTING BUBBLE CASE 

! attempte at fixed bed cfd-dem simulation  
! wdf 7/2017 
 
! Run-control 
  RUN_NAME              = 'fixbed' 
  DESCRIPTION           = 'fixed (static) bed' 
  RUN_TYPE              = 'new' 
  UNITS                 = 'cgs' 
  TIME                  = 0.0 
  TSTOP                 = 10000.0 
  DT                    = 1.0d-4 
  DT_MIN                = 2.0d-12 
  DT_MAX                = 100.0d0 
  DT_FAC                = 0.75d0 
 
  ENERGY_EQ             = .FALSE. 
  SPECIES_EQ            = .FALSE.    .FALSE. 
 
  MOMENTUM_X_EQ(0) = .true. 
  MOMENTUM_Y_EQ(0) = .true. 
  MOMENTUM_Z_EQ(0) = .true. 
  MOMENTUM_X_EQ(1) = .FALSE. 
  MOMENTUM_Y_EQ(1) = .FALSE. 
  MOMENTUM_Z_EQ(1) = .FALSE. 
 
  DRAG_TYPE = 'BVK' 
 
  GRAVITY = 0 
 



 

 

  MAX_NIT = 500 
  DETECT_STALL = .FALSE. 
  NORM_G = 0 
  TOL_RESID = 1.0d-5 
  LEQ_TOL(1:9) = 9*1.0d-8 
  LEQ_IT(1:9)  = 9*20 
  LEQ_TOL(10)  = 1.0d-10 
  LEQ_IT(10)   = 100 
  LEQ_PC(10)  = 'NONE' 
  Max_Inlet_Vel_Fac = 10000.0 
  DISCRETIZE(1:10) = 10*2 
!  UR_FAC(1:10) = 10*0.75 
 
! Domain 
  COORDINATES           = 'cartesian' 
  XLENGTH               =   0.3d0 
!runtime  IMAX                  =   KMAX x3 
  YLENGTH               =   2.0d0 
!runtime  JMAX                  =   KMAX x20 
  ZLENGTH               =   0.1d0 
!runtime  KMAX                  =   (4, 5, 6, 7) x2 x2 x2 x2 
 
! DES Domain 
!runtime  DESGRID = FLUID GRID 
 
! Gas properties 
  MU_g0                 = 2.0d-4 
  RO_g0                 = 1.0d-3 
 
! Particle properties 
  RO_s0                 = 1.0d0 
  D_p0                  = 0.01d0 
 
! Initial Conditions Section 
  IC_X_w(1)             =  0.0 
  IC_X_e(1)             =  0.3 
  IC_Y_s(1)             =  0.0 
  IC_Y_n(1)             =  2.0 
  IC_Z_b(1)             =  0.0 
  IC_Z_t(1)             =  0.1 
 
  IC_EP_g(1)            =  0.82 
  IC_U_g(1)             =  0.0 
  IC_V_g(1)             =  24.4 
  IC_W_g(1)             =  0.0 
  IC_U_s(1,1)           =  0.0 
  IC_V_s(1,1)           =  0.0 
  IC_w_s(1,1)           =  0.0 
  IC_P_star(1)          =  0.0 
  IC_THETA_M(1,1)       =  0.0 
 
!  Boundary Conditions Section 
! 1. Distributor flow 
  BC_X_w(1)             =  0.0 
  BC_X_e(1)             =  0.3 
  BC_Y_s(1)             =  0.0 



 

 

  BC_Y_n(1)             =  0.0 
  BC_Z_b(1)             =  0.0 
  BC_Z_t(1)             =  0.1 
  BC_TYPE(1)            = 'MI' 
 
  BC_EP_g(1)            =  1.0 
  BC_U_g(1)             =  0.0 
  BC_V_g(1)             = 20.0 
  BC_W_g(1)             =  0.0 
  BC_P_g(1)             =  0.0 
 
! 2. Exit 
  BC_X_w(2)             =  0.0 
  BC_X_e(2)             =  0.3 
  BC_Y_s(2)             =  2.0 
  BC_Y_n(2)             =  2.0 
  BC_Z_b(2)             =  0.0 
  BC_Z_t(2)             =  0.1 
  BC_TYPE(2)            =  'PO' 
  BC_P_g(2)             =  0.0 
 
! x- and z-periodic 
  CYCLIC_X = .T. 
  CYCLIC_Z = .T. 
 
 
! DEM parameters 
  SOLIDS_MODEL = 'DEM' 
  DES_INTERP_ON = .F. 
  DES_EXPLICITLY_COUPLED = .T. 
  DES_DIFFUSE_WIDTH = 0.06 
  NFACTOR = 0 
  PARTICLES = 5181 
  KN = 10.0 
  MEW = 0.0d0 
  DES_EN_INPUT = 0.8 
  DES_ETAT_FAC = 0.5 
  KN_W  = 10.0 
  MEW_W = 0.0d0 
  DES_EN_WALL_INPUT = 0.8 
  DES_ETAT_W_FAC    = 0.5d0 
 
  DES_NEIGHBOR_SEARCH = 4 
  NEIGHBOR_SEARCH_N = 999 
  GENER_PART_CONFIG = .F. 
  PRINT_DES_DATA = .F. 
!  DES_OUTPUT_TYPE = 'TECPLOT' 
 
! Output Control 
  RESID_STRING = 'P0' 'U0' 'V0' 'W0' 
  FULL_LOG = .t. 
!rm  OUT_DT = 20000 
  RES_DT = 20000 
!  SPX_DT = 0.01 0.01 0.01 100.  100. 100. 100. 100. 100. 100. 100. 
  SPX_DT = 11*20000. 
 



 

 

  CALL_USR = .T. 
 
! Decomposition in I, J, and K directions for parallel run 
!runtime  NODESI = 2  NODESJ = 8  NODESK = 1 
!runtime  NODESI = 1  NODESJ = 1  NODESK = 1 
! 

 

A.3  PARTICLE GENERATOR SOURCE FOR BURSTING BUBBLE CASE  

!****************************************************************** 
! 
!  DES input generator 
!  Sample generator to generate particle positions and outputs in DES readable format 
!  Please use this as a basis and perform any additional customizations as 
!  needed and this module does not come with any guarantees 
! 
!  The particles generated by this code are greater than or equal to specified np and 
!  MFIX will pick up the correct particles according to value of np specified in the code 
! 
!  TO DO: 
!  1) Fix so that only np particle information is created 
!  2) In MFIX read the entire input file and if the number of particles does not correspond to 
!     the input deck, than flag an error.  
! 
!  Author: Jay Boyalakuntla  (May-12-06) 
! Modified: S. Pannala (Nov-21-06) 
! Modified: wdf (6-28-2017) 
! 
!****************************************************************** 
! 
! 
      PROGRAM DES_Particle_Genrator  
! 
! 
        IMPLICIT NONE 
! 
        DOUBLE PRECISION, PARAMETER :: PI = 4.0d0*ATAN(1.0d0) 
! 
        INTEGER :: seedno 
        INTEGER :: accept, touch, ia 
        INTEGER :: ii, jj, kk, ijk 
        INTEGER :: npdense, npdilute, np 
! 
        DOUBLE PRECISION :: xp, yp, zp 
        DOUBLE PRECISION :: xl, yl, zl 
        DOUBLE PRECISION :: diameter, radius, density 
        DOUBLE PRECISION :: rbub, ysurf, x0, y0, z0  
        DOUBLE PRECISION :: phidilute, Vdilute, phidense, Vdense 
        DOUBLE PRECISION :: ru1, ru2, ru3, ru4 
        DOUBLE PRECISION :: dist, mindist 
        DOUBLE PRECISION :: T_0, temp 
! 
        DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: x, y, z 
        DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: u, v, w 
        DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: gridx, gridy,gridz 



 

 

        LOGICAL, DIMENSION(:,:,:), ALLOCATABLE :: deltrue 
! 
!io        OPEN(unit=10, file="Pgen.in", status='old') 
        OPEN(unit=20, file="particle_input.dat", status='replace') 
! 
        WRITE(*,*) '  ' 
        WRITE(*,*) ' Enter the seed no ' 
        WRITE(*,*) '  ' 
        READ(*,*) seedno 
        diameter = 0.01d0 
        radius   = diameter/2.0d0 
        density  = 1.0d0 
        xl = DBLE(30)*diameter 
        zl = DBLE(10)*diameter 
        yl = DBLE(50)*diameter 
        phidilute = 0.01d0 
        phidense  = 0.30d0 
        ysurf = xl 
        rbub =  DBLE(5)*diameter 
        x0 = xl/2.0d0 
        y0 = ysurf - rbub 
        z0 = zl/2.0d0 
        T_0 = 0.25d0 
 
! calc the number of particles in each region 
        Vdense   = (0.0962497 - PI*rbub**2)*zl !area under gaussian from wolframalpha.com 
        Vdilute  = xl*yl*zl - Vdense 
        npdense  = INT(phidense*Vdense/(PI/6.0d0*diameter**3)) 
        npdilute = INT(phidilute*Vdilute/(PI/6.0d0*diameter**3)) 
        np = npdense + npdilute 
        WRITE(*,*) 'np dilute, dense, tot = ', npdilute, npdense, np 
  
!       alloc 
        ALLOCATE(x(np),y(np),z(np),u(np),v(np),w(np)) 
 
!       set random generator 
        CALL RANDOM_SEED 
        DO jj = 1, seedno - 1 
          DO ii = 1, np 
            CALL RANDOM_NUMBER(ru1) 
          END DO 
        END DO 
 
! generate dense region first 
        DO ii = 1, npdense 
 100      CONTINUE 
          CALL random_particle(radius,xp,yp,zp,xl,yl,zl)  
!    in freeboard or bubble? 
          IF ((yp .GT. ysurf+rbub*DEXP(-(xp-x0)**2/(2.0d0*rbub**2))) & 
        .OR. ((xp-x0)**2 + (yp-y0)**2 .LT. rbub**2)) GOTO 100  !failed, in dilute region, try again 
!   touching other particles? 
          dist = 0.0d0 
          DO jj = 1, ii-1 
              dist = DSQRT((xp-x(jj))**2 + (yp-y(jj))**2 +& 
                           (zp-z(jj))**2)  
              IF (dist .LE. diameter + 1.0d-6) GOTO 100 !failed, touching another particle, try again 



 

 

          END DO 
!  passed, keep particle 
          x(ii) = xp 
          y(ii) = yp 
          z(ii) = zp 
          WRITE(*,*) 'particle ', ii, ' seeded' 
        END DO 
 
!       generate dense region first 
        DO ii = npdense+1, np 
 101      CONTINUE 
          CALL random_particle(radius,xp,yp,zp,xl,yl,zl) 
!         in freeboard or bubble? 
          IF ((yp .LT. ysurf+rbub*DEXP(-(xp-x0)**2/(2.0d0*rbub**2))) & 
        .AND. ((xp-x0)**2 + (yp-y0)**2 .GT. rbub**2)) GOTO 101  !failed, not in dilute region, try again 
!         touching other particles? 
          dist = 0.0d0 
          DO jj = 1, ii-1 
              dist = DSQRT((xp-x(jj))**2 + (yp-y(jj))**2 +& 
                           (zp-z(jj))**2) 
              IF (dist .LE. diameter + 1.0d-6) GOTO 101 !failed, touching another particle, try again 
          END DO 
!       passed, keep particle 
          x(ii) = xp 
          y(ii) = yp 
          z(ii) = zp 
          WRITE(*,*) 'particle ', ii, ' seeded' 
        END DO 
        WRITE(*,*) np, 'particles generated successfully' 
 
! calc min separation distance 
        WRITE(*,*) 'double checking min separation >= diameter' 
        mindist = xl 
        DO ii = 1, np 
          DO jj = 1, ii-1 
              dist = DSQRT((x(ii)-x(jj))**2 + (y(ii)-y(jj))**2 +& 
                           (z(ii)-z(jj))**2) 
              mindist = MIN(mindist,dist) 
          END DO 
        END DO 
        mindist = mindist/diameter 
        WRITE(*,*) 'min separation distance normalized by dp is', mindist  
 
 
!       generate random particle velocities  
        DO ii = 1, np 
          CALL RANDOM_NUMBER(ru1) 
          CALL RANDOM_NUMBER(ru2) 
          CALL RANDOM_NUMBER(ru3) 
          CALL RANDOM_NUMBER(ru4) 
!         random velocities uniform -> standard normal via Box-Muller  
          u(ii) = DSQRT(-2.0d0*DLOG(DBLE(ru1)))*COS(2.0d0*PI*ru2) 
          v(ii) = DSQRT(-2.0d0*DLOG(DBLE(ru1)))*SIN(2.0d0*PI*ru2) 
          w(ii) = DSQRT(-2.0d0*DLOG(DBLE(ru3)))*COS(2.0d0*PI*ru4) 
        END DO 
 



 

 

!       Calc mean granular temperature  
        temp = 0.0d0 
        DO ii = 1, np 
          temp = temp + (u(ii)**2 + v(ii)**2 + w(ii)**2)/3.0d0 
        END DO 
        temp = temp/DBLE(np) 
 
!       Adjust velocities so that the mean granular temperature is equal 
!       to the desired initial granular temperature from the input 
        u = u*DSQRT(T_0/temp)  
        v = v*DSQRT(T_0/temp)  
        w = w*DSQRT(T_0/temp)  
 
 
!       Print to particle_input.dat 
! 12     FORMAT (8(d10.4,2x)) 
 12     FORMAT (8(e24.16,2x)) 
! 12     FORMAT (3(d24.16,2x),2(d12.4,2x),3(d24.16,2x)) 
        DO ii = 1, np 
             WRITE(20,12) x(ii), y(ii), z(ii), radius, density, u(ii), v(ii), w(ii) 
        END DO 
 
 
        STOP 
 
        !DEALLOCATE(x,y,z,u,v,w) 
      END PROGRAM  
! 
! 
!^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 
! Random particle  
!^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 
! 
      SUBROUTINE random_particle(rad, xp1, yp1, zp1, xl1, yl1, zl1) 
!---------------------------------------------------------------------- 
! Dummy arguements 
!---------------------------------------------------------------------- 
        DOUBLE PRECISION, INTENT(IN)  ::  rad, xl1, yl1, zl1 
        DOUBLE PRECISION, INTENT(OUT) ::  xp1, yp1, zp1 
!---------------------------------------------------------------------- 
! Local variables 
!---------------------------------------------------------------------- 
        INTEGER ::  i, Nfail 
        DOUBLE PRECISION ::  rad1  
        DOUBLE PRECISION ::  pxy(3) 
 
        Nfail = 100000 
        DO i = 1, Nfail 
          call random_number(pxy) 
          xp1 = dble(pxy(1))*xl1   
          yp1 = dble(pxy(2))*yl1 
          zp1 = dble(pxy(3))*zl1 
          rad1 = (1.0d0 + 1.0d-2)*rad 
          IF((xp1.GE.rad1).AND.(xp1.LE.xl1-rad1).AND.(yp1.GE.rad1)& 
                .AND.(yp1.LE.yl1-rad1).AND.(zp1.GE.rad1)& 
                .AND.(zp1.LE.zl1-rad1)) EXIT 



 

 

        END DO 
 
        IF(i .GT. Nfail) THEN 
          WRITE(*,*) 'error in subroutine random_particle' 
          WRITE(*,*) 'not able to place particle, i>Nfail' 
          STOP 
        ENDIF 
            
        RETURN 
      END SUBROUTINE random_particle 
! 
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