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1.

Introduction

The initial purpose of this paper was to validate previously (unpublished) discovered
relationships to a definitive case where excellent and credible data exist to demonstrate that the
physical relationships have a more general validity. The previous work suggested a relationship
between the de Broglie wave and Coulomb potential which is further developed in this paper
along with additional results including a new quantum relation and a new application of special
relativity. These combined new developments result in a tractable methodology for calculation
of principal spectra and fine-structure energy splits for any atomic electron, single or multi, in a
theoretically justified, accurate and reliable way. The results of this paper far exceeded the
original expectations.

The reported accuracies are determined by comparison of calculation to data, when it exists,
reported in the National Institute of Standards and Technology (NIST) atomic spectra database
[1]. The development of the equations follow from a specific set of ideas that draw on well-
established and accepted physics constructs but assembled in an unconventional way. It is felt
the successful outcome of the work should be published given that it is a theoretical development
that might be of deeper interest and on a practical level can be used to calculate electron energy
states with good accuracy requiring no fitted parameters. Given the simplicity, reliability and
accuracy, it could also be useful for first order calculation of principal and fine-structure spectra
for cases where data does not exist which could be of interest in spectroscopic and/or
astronomical applications.

From a theoretical perspective, some intriguing discoveries and principles emerged that lead
directly to the equations presented. The most important of these relates to the nature of the Dirac
solution for hydrogen. It can be definitively shown that one characteristic of the Dirac solution
is a special relativistic mass/wave correction or defect. This would be at least interesting, except
that it leads to extension of the new equations for principal spectra developed in this paper to
atomic fine-structure, with applicability to the fine-structure of multi-electron atoms.

Current methods for calculating spectra are described in papers published by the National
Institute of Standards and Technology (NIST) [2,3] The methods are largely based on an
empirical Rydberg-Ritz equation fitted to an expanded quantum defect with a host of individual
corrections applied in bookkeeping fashion. They can be relatively complicated making them
cumbersome and in most cases impractical to use [3,4]. The first equation presented in this
paper for the principal spectral lines results in a non-fitted theoretically definitive Rydberg-Ritz
type equation, eliminating the quantum defect. The new equation is consistently accurate
compared to the NIST spectral database [1], single or multi-electron. For single electron
principal lines and associated fine-structure the results are comparable in accuracy to the Dirac
solution for single electrons, but, importantly, the equations prove accurate for multi-electron
cases where the Dirac equation cannot be used in any direct way.



It is hoped these results provide increased opportunity for a simple, accurate and tractable
method when used alone or when coupled with Quantum Electrodynamic (QED) corrections,
depending on application.

General Calculation of Single or Multi-Electron Principal
Spectral Lines

A new equation consistent with the Rydberg-Ritz form is presented for the moment without
justification.

I,Rs

(VR + () V)

(1)

Espectra =1, —

Unlike the Rydberg-Ritz equation, Eq. 1 does not require or utilize any fitted parameters such as
a quantum defect or Z¢;. Itis applicable to any electron state for any single or multi-electron
atom. It can be used to calculate the principal quantum number states or principal spectral lines
and can be used in conjunction with relativistic and/or QED corrections which require a principal
guantum number solution as a starting point. The derivation of Eq. 1 will be presented in
Appendix A. The derivation is somewhat lengthy but richer in content than Eq. 1’s simplicity
suggests. A small sample of principal spectral line results for Eq. 1 are presented and compared
to single-electron NIST experimental and Dirac solution results in Tables 1 and 2 and compared
to NIST multi-electron experimental results in Table 3 of Section 3. More extensive results are
presented in Appendix B.

The following parameters are used in Eq. (1),
x = the principal energy transition — 1st transition x = 1; 2nd transition x = 2; and so on
a = the electron number. For the outer electron a = 1; a ranges from Z to 1

I, = the lonization energy for the electron of interest (V). The lonization energy is the
principal ground state in this approach and is labeled I, for that reason.

R .= the Rydberg constant or ‘reduced’ Rydberg constant (eV)

Equation (1) has the form of the Rydberg-Ritz combination principle which is currently used to
fit spectral results, by interpolation or extrapolation. The current and standard form of the
Rydberg-Ritz equation is typically written [5],
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where A is empirically but not theoretically justified to be the lonization Potential and (Z - 6,) is
essentially a Z. s or more commonly referred to as the quantum defect and can be expanded to
higher powers. The Rydberg-Ritz equation is currently used to fit some spectral data in the
NIST database and/or other calculations where measured values do not exist [2,3,4].

The accuracy of Eq. 1 without correction is quite good and the calculation obviously very
simple. In fact, for hydrogen and helium, as shown in Tables 1 through 3 of the next section, the
accuracy compared to NIST spectral lines is comparable to the Dirac equation for the single
electron case and is very accurate compared to the NIST database for the helium multi-electron
case where the Dirac equation cannot be used for comparison. Another immediate observation is
the convergence with zero deviation on the NIST line as the transition number increases.

Importantly, Eq. (1) can be applied to multi-electron atoms. The accuracy of Equation (1) is
very good for any single or multi-electron atom where data was available for comparison.

Example: Principal Spectral Lines for H I, He 11, and Multi-
Electron He | Compared to the Dirac Equation and NIST

Results calculated using Equation (1) are presented in Tables 1., 2. and 3. for Hydrogen, and
both Helium electrons. The single electron cases for H | and He Il are compared to both NIST
and the Dirac equation. The multi-electron case for Helium | is compared to NIST but not the
Dirac equation.

In the case of H | and He II, Transitions 100 and 1000 are included for both Eq (1) and the Dirac
equation to demonstrate that they converge and do not diverge as transitions increase. The
principal spectral line for He I is the midpoint energy of the triplet and singlet states. This
convention is used throughout for multiple electron atoms. There is not a direct correspondence
between standard nomenclature and Equation (1). The principal line split for a two-electron
atom was not explored, but if explored in the context of this paper, would most likely be
characterized as an energy level split resulting from a special relativistic relationship for the two
electrons in the same period. This type of relationship is explored in subsequent sections of this
paper and leads to the fine-structure energy splits for single and multi-electron atoms.



Table 1: Principal Spectral Lines - H (eV)

Eq.11.,R, 10.19791879 12.08695976 12.74819214 13.38585972 13.59710073 13.59842091
A 8.9E-04 5.4E-04 3.4E-04 1.0E-04 - -

NIST 10.19881044 12.08749486 12.74853289  13.38596004 = =

Dirac I,m, 10.19695475 12.08667075 12.74806951 13.38584426 13.59710073 13.59842091
A 1.9E-03 8.2E-04 4.6E-04 1.2E-04 = =

I, = 13.598434486 (eV)

m, = 9.10938291E-31 (kg)

R, =13.60569253 (eV)

A = the Absolute Difference between the calculated result and the NIST [1] value.

The Principal Atomic Transition Number is x. The Principal Quantum Number is n = x+1

Table 2: Principal Spectral Lines — He 11 (eV)

Eq.11.R,, 40.81269816 48.37097595 51.01642011 53.56741902 54.41242999 54.41771072
A 3.9E-04 3.4E-04 2.5E-04 8.7E-05 - -

NIST 40.81308859 48.37131431 51.01666808 53.56750616 = =

DiracI, R, 40.81117123 48.37047597 51.01620051 53.56738873 54.41242998 54.41771072
A 1.9E-03 8.4E-04 4.7E-04 1.2E-04 = =

I, = 54.41776503 (eV)
m, = 9.10938291E — 31 (kg)
R., = 13.60569253 (eV)

Table 3: Principal Spectral Lines — He | (eV)

Eq.11.R,, 20.11348748 22.78025732 23.61670827 24.36050516 24.40943304  24.44408537
A 1.0E-01 3.9E-02 1.7E-02 2.1E-03 1.5E-03 1.1E-03

NIST 20.2176948 22.8193920 23.6337648 24.3626422 24.4109319 24.4451768

I, = 24.587388804 (V)
R,, = 13.60569253 (eV)



4. The Principal Transition Energy and the Dirac Equation in
the context of a Relativistic Mass Defect, Photon Wavelength
Defect or De Broglie Wavelength Defect

The Dirac solution for the energy of an electron state is written as

Za 2\~
E, =m,c?|1— 1+[ ]
n—j—%+(+%)?—-Z%a?

The Dirac solution can be used a priori for calculating the principal states and fine-structure
energy splits for single-electron but not multi-electron atoms given its reliance on the atomic
number Z. The Dirac solution is very accurate for single-electron atoms. The Dirac equation is
relativistic, unlike the Schrodinger equation, given that its derivation starts with the relativistic
energy-momentum equation, and it is first order in both time and space coordinates, treating time
and space on the same basis, a requirement of special relativity.

A key result of this paper is an even stronger more direct connection between the Dirac solution
and special relativity which leads to new and intriguing results. It can be shown that the Dirac
solution calculates the relativistic mass change of the transition energy due to the long held
special relativistic requirement that any change in energy is equivalent to a change in mass. The
most interesting finding is that the identical mass change can also be calculated based on the
linear kinetic velocity using the state to state transition energy. This is demonstrated in Tables
4. And 5 for hydrogen and helium. As discussed in Appendix A, this is supported by
calculations showing that a mass change or binding energy mass defect could well be the source
of the ground state or ionization energy of hydrogen (and all other atoms by extension although
the nuclear binding energy or mass defect of multi-nucleon atoms masks the small effect of the
ionization energy), and suggests that succeeding transitions could/should also result from a
change in mass or binding energy. This will be explored further.

The results of Tables 4 and 5 are calculated as follows. A term identified as Dirac vy in the tables
is calculated according to

o\ ¥
] Za
Diracy =1+ : .
n—j—%+(+%)?—Z%a?

which is by inspection the principle part of the Dirac equation.



The term vy is the traditional special relativistic velocity dependent term with velocity calculated
from the transition energy as a linear kinetic velocity. Angular velocity was explored but clearly
did not give reasonable results. There does not appear to be any angular character in this
methodology.

)= 1
- (@)
Which is identical to
SRy = —7E,
m,c?

where E, is the transition energy between states.

The values for Dirac y and SR y are compared for H | and He Il in Tables 4 and 5.
Table 4: Dirac y compared to SRy —-H | (eV)

NIST E, 3.399624046  1.510939626  0.849901596  0.543936136  0.135983505 0.033995746

Diracy 1.000006657  1.000002959  1.000001664 1.000001065 1.000000266  1.000000067
SRy 1.000006653  1.000002957 1.000001663 1.000001064 1.000000266  1.000000067

I, = 13.598434486

m, = 9.10938291E - 31

NIST — the NIST [1} values for the Principal Spectral Line subtracted from the lonization Energy.
The Principal Atomic Transition Number is x. The Principal Quantum Number is n = x+1

Table 5: Dirac y compared to SRy —He Il (eV)

NIST E, 13.60467644  6.04645072 3.40109695 2.17668761 0.54416338 0.1360383

Diracy 1.000026628 1.000011835 1.000006657  1.000004260 1.000001065 1.000000266
SRy 1.000026625 1.000011833  1.000006656  1.000004260 1.000001065 1.000000266

I, = 54.41776503

m, = 9.10938291E — 31

NIST — Is the NIST [1} values for the Principal Spectral Line subtracted from the lonization Energy.
The Principal Atomic Transition Number is X. The Principal Quantum Number is n = x+1

9



Following this methodology, the Dirac solution for the transition energies can be written as,

2 1 2 1
Ee =mec (1 " Dirac y) — MeC (1 _?>

or

mec?

14

E, =m.c?—

(2)

which is identical to the Dirac equation and directly states that the transition energy is due to a
change in mass or mass defect.

This can also be written as

or

E = hc hc 3)
¢ Kcomp 7&compy

The change in energy between atomic states can be written as a relativistic photon wavelength
defect evaluated at the reduced Compton wavelength corresponding to the mass defect of Eq. 2.

Equations 2 and 3 and the results presented in Tables 4 and 5 make a strong case that the Dirac
equation can be understood as a relativistic mass or wave defect equation.

Further equivalency of the Dirac solution can also be written in the form of a de Broglie wave as
follows,

Za
n—j—Y%+(+%)?—Z%a?

Diracy? =1+

The transition energy can be written

10
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T e ()
e_zmeXgomp VZ

or

h? h?
a 2"lexgomp - Zmexgompyz

E,

Either a photon form or de Broglie form are interchangeable with the power of y naturally
agreeing with the power of the reduced Compton wavelength. The transition energy can be
interchangeably written as a mass defect (Dirac equation), photon wavelength defect or de
Broglie wavelength defect.

Using this methodology does not directly permit calculation of multi-electron fine-structure
given the Dirac Equation depends on Z. However, the concept of using a relativistic wavelength
defect discussed here will lead to calculation of the fine-structure energy splits for single and
multi-electron atoms.

Calculating p, d, f, g and h, etc. Energy Splits using the
Relativistic Wave Defect

The results of Section 4 demonstrating the idea of a wave defect and the principal spectral line
results of Section 1 and detailed in Appendix A will lead to the derivation of a coulombic de
Broglie wave methodology for calculating the fine-structure for single and multi-electron atoms.
In the case of hydrogen and other single electron atoms, when using the Dirac equation, the
principal state is represented by the total angular momentum J = % The p states in the case of

hydrogen are represented by | = % and 2 with the principal “s” state and first “p” state being

theoretically degenerate, both calculated as /] = %. In fact, the principal and first p state are not
degenerate. It is well known that the Dirac equation predicts the principal state and the p state

energy split, the difference between | = % and % not the absolute values of the non-degenerate

principal and first p state which is currently the domain of Quantum Electrodynamics (QED) [6].
The non-degeneracy of the s and first p-state is attributed to the lamb shift corrections (which can
have several different meanings) [6] and is not predicted by the Dirac equation. This is the

11



accepted understanding but emphasizes that it is the / = %2 and second or | = % p-state energy

difference that is calculated with the Dirac equation. Calculation of this energy split is the
subject of this section and is identical to the calculated product of the Dirac equation with the
exception that the derivation developed in this section can be extended to multi-electron fine-
structure.

To write the relevant equation for the fine-structure energy splits, an equation must be introduced
that will be discussed in more detail in Appendix A. The equation is in essence a new quantum
relation, although not strictly speaking a traditional one. The reason for introducing this equation
at this point is that Eq. 1 does not have an obvious wave-like structure for application of the
results of Section 4, although it turns out that Eq. 1 does have an implicit wave-like structure.

Section 4 demonstrated that a special relativistic change in wavelength based on the linear
velocity change corresponding to the transition energy will give the same result as the Dirac
equation. The following equation is directly equivalent to Eq. 1 and can be used to calculate
principal spectra transitions, unmodified by the results of Section 4. The equivalency between
Eq. 1 and Eqg. 4 will be demonstrated in detail in Appendix A establishing that the Rydberg-Ritz
equation as represented by Eq. 1 has a quantum basis.

_.|__

5 = h x) hc @
© [2m e ‘a Er;wmp

E e
"eomp dme, 7&comp

A very interesting characteristic of Eq.4 is that the second term is a constant and is written as a
phonon characteristic length based on a constant coulombic energy evaluated at the Compton
wavelength. The equation is essentially a photon interacting with an electron or electron state
represented by a de Broglie wave with the ground state the de Broglie wave evaluated at the
Ionization energy. The Coulomb energy coupling with photon’s or de Broglie waves appears
repeatedly and will be discussed in more detail in Appendix A. Equation 4 also states that the
change in binding energy is a constant regardless of the actual energy of interaction which is the
same situation seen in the Compton effect for a photon and free electron interaction. Both Eq. 4
and the Compton effect indicate a constant change based on the Compton wavelength regardless
of input. This will also be discussed and explored further in Appendix A including a derivation
of Compton scattering using the Energy-Momentum equation and a combined photon and de
Broglie wave.

12



Applying the results of Section 4, Eq. 4 can be modified through multiplication by a relativistic
factor that will be labeled y,. This multiplication will create a wave defect as discussed in
Section 4.

Ay = L+(f) he (5)
*T | Vamd e \E, )"

This theoretically will result in the p, d, f, g, and h, (and so on) energy splits if the correct energy
can be identified that gives a correct y, a priori. When this approach was first recognized it was
purely theoretical given that such an energy may not exist.

The details of finding the correct energy will not be given, but it turns out that there is an energy
giving the correct y,, and it is completely consistent with the more global principles presented in
this paper. The relativistic linear kinetic energy factor y, can be evaluated from the coulombic
energy of the transition using
- luated at £, = —°- 6
Yp = T evaluated at E, = dme, A (6)
m,c?

with %, the principal spectral line transition. The simple coulombic energy appears naturally
again.

After some development, the final form for y, is

1
Ya = (7)

-G (E)

with the energy corresponding to energy split E, for the fine-structure as a function of %,
evaluated as

hZ
N 2m, X3

(8)

E\

If S turns out to be a constant for the fine-structure of any electron in any atom, then this
methodology can be used predictively.

13



The “4” in EQ.6 is a normalizing factor which makes S for the p energy split equal to one when
maintaining the linear kinetic energy form. The constant a is the electron number as defined in
Section 1.

Table 6. shows the hydrogen principal state results and the results for S using the NIST database
[1] and Eq. 7. Table 6 demonstrates that S is in fact a constant, almost exactly an integer
constant suggesting fundamental validity of the approach. The values also follow a natural
arithmetic progression.

Table 6: H 1 (ev); S (Eq.7)
p (B —E) a(Ee —Ep) £(Eg —Fe ) e

n 2S 3s 4s 5s 6s
E, (ev) 10.19791879 12.08695976 12.74819214  13.05426487 @ 13.22053220
NIST 10.19881044 12.08749486 12.74853289  13.05449835 13.22070151

A% 8.74E-03 4.43E-3 2.67E-3 1.79E-3 1.28E-03

E, (ev) 3.400515695 1.511474726 0.8502423419 0.5441696181 0.3779022902 S

2p 3p 4p 5p 6p
0.9978119708 0.997939608 0.998026562 0.9978091436 0.9980653593 1

3d 4d 5d 6d
S,+2 2.994157487 2.995556122  2.995268032 2.994860048 3

S 4f 5f 6f
Calc. Sa+3 6.005091586 6.047301226  5.988491964 6

5¢ 69
Sq+4 0.980449447 9.980713037 10

6h

S,+5 15.97066886 15

Table 6 establishes the value for S and Table 7 presents the calculated results for hydrogen a
priori using S. The percent difference between calculation using Eq. 7 and the NIST database is
presented. The accuracy is very good.

When applied to multi-electron atoms, it turns out that the results hold for at least the inner 3
electrons for any atom, with the inner 1% and 3" in very close agreement and the 2" not quite as
good but still very good accuracy. The close agreement of the 1%t and 3", but slightly different
2" may be a meaningful result given that the 1 and 3" electron are the first electron in a period
and the 2" should be different in character, being it is the 2" electron in a period. It is possible
that for any atom and the same electron number, such as the inner 4" or 10", etc. that a specific S
exists. It is also possible that there may be a consistent S for the 2" electron of a period and the
3" and so on. Unfortunately, the data is relatively sparse in these cases, but sufficient data exists

14



for the inner 3 electrons of a sufficient number of atoms to demonstrate this uniformity and the
correspondence between the all 1% and 3" inner electrons and all 2" inner electrons. Additional
results for multi-electron cases supporting these statements are presented in Appendix C.

NIST
Eq. A.10
E, (ev)

A%

s=1

NIST
Eq. B.5.

A%

NIST
Eqg. B.5.
A%
S=6
NIST
Eq. B.5.
A%
$=10
NIST
Eqg. B.5.
A%
s=15
NIST
Eq. B.5.
A%

2s
10.19881044
3.400515695
10.19791879

0.00874%

2p
4.536434E-5
4.526458E-5

0.22%

6. Conclusion

Table 7: H 1 (ev); E, (EQ.7)

3s

12.08749486
1.511474726
12.08695976

0.00443%
3p
1.34413E-5
1.34135E-5
0.21%
3d
4.4799E-6
4.4712E-6
0.19%

4s

12.74853289
0.8502423419
12.74819214

0.00267%
4p

5.67042E-6
5.65726E-6

0.23%
4d
1.8892E-6
1.8864E-6
0.15%
Af
9.424E-7
9.432E-7
0.085%

5s

13.05449835
0.5441696181
13.05426487

0.00179%
Sp
2.904E-6
2.898E-6
0.21%
5d
9.674E-7
9.659E-7
0.16%
5f
4.7916E-7
4.8292E-7
0.78%
50
2.9033E-7
2.8975E-7
0.20%

6s

13.22070151
0.3779022902
13.22053220

0.00128%
6p
1.68016E-6
1.67687E-6
0.20%
6d
5.5993E-7
5.5893E-7
0.18%
6f
2.80022E-7
2.79440E-7
0.20%
69
1.68015E-7
1.67647E-7
0.22%
6h
1.12013E-7
1.11750E-7
0.24%

The initial purpose of this paper was to validate principles and relationships discovered in
previous work (unpublished) through application to a very definitive case (atomic spectra) for
comparison with accurate and available data (NIST database). As the title indicates, this work
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can be summarized as an interrelationship between the de Broglie wave, the Coulomb potential
and special relativity applied to a new quantum relation.

Several key results emerge in a consistent and quite natural way.

For example, Eq. (1) presented in Section 1 and derived in Appendix A, emerges as a Rydberg-
Ritz type equation in a natural and unexpected way. There is nothing about the development and
derivation that suggested at the outset that this would be the result. The result demonstrates that
the Rydberg-Ritz equation has a quantum basis.

Throughout the paper, fundamental algebraic length relationships play a significant role. Three
fundamental forms consistently emerge: the de Broglie wave; the photon; and the coulomb
potential. The fundamental interactions occur between the lengths/wavelengths with the energy
appearing as a result of the interaction.

The fine-structure of the atom emerges as a special relativistic mass defect or wave defect
applied to the principal state quantum algebraic wavelength relation, Eq. 4, which itself is
equivalent to Eq. 1 (see Appendix A). This is supported by the Dirac equation.

Example results for single and multi-electron principal and fine-structure spectra are presented in
the main body of this paper. Additional results are presented in Appendix B and C.

The general accuracy of the principal spectra and fine-structure energy splits for single and
multi-electron cases compared to the NIST database supports the general validity of the
concepts. There are other unpublished applications where these same concepts have also led to
excellent and tractable results, but it was first necessary to establish a very clear case for this,
which, it is submitted, has been accomplished in this paper.
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10. Appendix A

The derivation of Eq. (1) along with additional observations and considerations applicable to its
use and validity will be discussed.

A.1l. A Preliminary Semi-Classical Result

First, the simple development of a semi-classical equation is required. In this sub-section and
throughout, certain assumptions will be made and assembled with the result of this process
judged valid or in-valid based on utility in comparison to NIST measured principal spectral lines
[4] for hydrogen without concern for the perceived a priori validity of the assumptions. Units of
electron volts are used.

It is assumed that for any electron, any atom.

Espectra =E, - E, (A.1)
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E, and E, are unknown with Eg, ..., representing the principal spectral line energy for any
electron, any atom, for the transition between the ground state and the n'" principal excited state.
It will be assumed that E,, is the lonization Energy (I,.) since in the sense of a binding energy
determined from the mass defect for a proton and electron, the binding energy is virtually equal
to the lonization Energy of atomic hydrogen. It remains to determine a general relation for an
electron transition energy E,.

It will be assumed that E, represents the energy of a non-specific electron state and can be
evaluated as a de Broglie energy,
hZ

Ee = Zm. 12)e

The de Broglie energy is evaluated as a function of the Coulombic characteristic length r which
itself is evaluated at the lonization Energy.

e

r= 4rte,l,

Avrbitrarily, at this point, the function of r chosen is given by A, = %r, with %, representing the
de Broglie wavelength of a general electron state. There is a theoretical reason that A, = %r is
selected, but this will not be addressed here to keep the development moving along. These
assumptions, and for what are at this point arbitrary considerations, leads to,

hZ

Eo=——=5—
T
(2me(2) )¢
which results in,
32m2e2h?I? 12
E,=|———|=— A2

In these equations, R,, represents (Rhc)/e = 13.60569253 (ev).

To calculate the spectra for any transition, any electron, in any atom with Eq. A.2, Z.sr and n
must be inserted artificially, which does not fundamentally improve things compared to existing
methods. (However, Z.r,n and R, Will drop out naturally, as the development proceeds, after

which, R will reemerge (Z,¢r and n drop out permanently) in a form expected for the Ritz
equation). This results in,

12
Espectra = le — <szf Telz R ) (A.3)
e oo

The semi-classical Eqg. A.3, while not particularly useful, is a preliminary and new result that will
have use in the development that follows. It is very distinct from the Bohr equation and it is the
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precursor to results that will have stand-alone utility. The results discussed in the next section
will have an unexpected relationship to the Dirac equation. This relationship is discussed in
Appendix B.

A.2. Interaction of the Bound State with a Photon

The assumptions and developments contained in this section are independent of Section A.1,
resulting in two distinct equations for calculating the same result, which when combined, results
in an equation of the form of the Rydberg-Ritz Combination principle. This combined result can
be used explicitly to calculate principal spectral lines without the need for a Z, ¢ or a quantum
defect or any fitted parameter.

A second relationship for atomic bound state transitions can be written that is directly related to
Compton scattering for a radiation interaction with a ‘free’ electron. The key characteristic of
Compton scattering to be applied is that the Compton wavelength represents a constant change in
radiation wavelength, when a photon interacts with an electron, regardless of the wavelength of
the input radiation.

In this section, it will be assumed that the wavelength of the ground state of an electron can be
represented by the de Broglie wave evaluated at the lonization Energy of the electron for any
electron, any atom.

E, = atomic ground state = I,

h
Ap = — (A.4)

V2melze

It will be assumed that for a bound electron the change of the electron state responding to a
radiation input will be evaluated as a constant change in wavelength corresponding to the Bohr
radius (a,) in the same manner as the Compton effect for a “free” electron is constant in terms of
the Compton wavelength.

The first principal state is equal to the ground state de Broglie wave, plus one Bohr radius.
The second principal state is equal to the ground state plus two Bohr radii, and so on.

X
X =2, + (E> a, (A.5)
x = the principal energy transition — 1st transition x = 1; 2nd transition x = 2; and so on
a = the electron number. For the outer electron a = 1; a ranges from Z to 1
A, = the de Broglie wavelength of the excited principal state.

X, = the de Broglie wavelength evaluated at the lonization Energy of the electron state
representing the ground state.
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a, = the constant change in electron state wavelength, regardless of energy input. is equal
to the Bohr radius.

To demonstrate the interaction between the electron state and photon as a type of
wave/particle interaction, depending on interpretation, the Bohr radius and Compton
wavelength can be related using the following identity,

; he
da
e o fo 4 (A.6)
Txcomp e—
41E o A comp

permitting Eq. (A.5) to be rewritten as,

R =+ (5 [ (4)
© Zmelee @/ \En_

Equation 4 was first introduced in Section 4. as essential to the calculation of fine-structure.

The first term of Eq. 4 is generally considered a wave form and the second term is
generally considered a particle form.

Equation A.5 and Eqg. 4 are equivalent and general. Equation A.5 will be used for further
development leading to the equation corresponding to the Rydberg-Ritz Combination
Principle, but Eq. 4 establishes a relationship between the bound state and a radiation
‘packet’ evaluated at an energy dependent on the Compton wavelength. This algebraic
and therefore intrinsically discrete interaction of the electron state and radiation as a
wave/particle interaction explicitly defines an atomic electron transition as the algebraic
addition of a photon to an electron state (or electron) in a natural way. In other words, the
addition of a wave form and particle form reduces to the addition of two lengths.

Another implication of Eq. 4, that Z.,,,,, is fundamental to radiation interaction with a de Broglie
wave, is that the constant ¥%m,c? in the Energy-Momentum equation can be written,

Yo, c? = hc _ h?
27&comp 2n”"eXgomp
or
hc h?
mecz B 27‘comp * 27"'e7@0mp (4.8)

Either the de Broglie form or photon form or both can be substituted into the Energy-Momentum
equation. The forms are interchangeable and demonstrates a type of interchangeable duality in
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that either individually or both can be concurrently substituted and simply added, giving the
same result.

If Eq. A.8 is used and both are substituted concurrently, a derivation of Compton scattering
follows (a prime means post-scattering),

E, =E, — Ey + mgc? (Conservation of Energy)
De =Dy — Dy (Conservation of Momentum)
EL =\ (psc)? + (m,c?)? (E-M Equation)

substitution of appropriate terms, including Eqg. A.8, and rearranging,

2

2 hc N hc N h? N hc ( hc N h? )2 (4.9)
c2=|— —| =— _

Pe A 27\comp ZmeZgomp Y Zxcomp Zmexgomp

hc

pec? = - = (2 +(

he\?  2h2c?
7) ~ cos@

setting these equal and simplifying,

h2c? (1 1)+ h3c (1 1)_2h2c2

AT A w) T T (L cos6)

2
7&comp me 7&comp

” 1 (1 1)+1/(h> 1 (1 1)_1(1 0)
Aeomp A &) T P \mge) \ By )\ W) T T

1 (1 1)_ 1 { p
Reomp L X = g (1~ cost)

X' =X = Keomp(1 — cosB) (Compton Scattering)

This demonstrates that at the Compton wavelength, the radiation or photon energy form or the de
Broglie energy form are equivalent and strongly supports that they are in general additive as Eq.
A.7 demonstrates when addressing the interaction of radiation with the bound state.

Given that the derivation of the Compton effect was developed based on one photon (not a wave-
train) interacting with one ‘free’ electron, it suggests that the Compton wavelength could be
thought of as a constant fundamental to the change in characteristic length of either a photon
(Compton scattering) or electron Eg. A.7. In some respects, Compton scattering or Eq. A.7
represents a conservation of wavelength principle between a photon and electron.
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A.3. Eliminating the Effective Atomic Number or Quantum Defect

The next step is to develop a relationship for Z, ¢ that will enable writing the simplest expression
for the equation representing the Rydberg-Ritz Combination Principle.

Using the original assumption that an electron can be represented as a de Broglie wave and
using Eq. A.5, the energy of the electron state for any electron, any atom, can be written,
hZ
E =
¢ 2m Az

(A.10)

hZ

(A4.11)

Espectra =1, — 2
X
2m, (7&0 + an)

Equation A.11 can be used to calculate the principal spectral line for any electron, any atom,
although this is still not the final form.

Substituting E, from Eq. A.2 into A, of Eq. A.5,

h h n (X)

T, 1 —)a

Zmelg /Z (Zmele) /2 a 0
Zen?Re

Rearranging,

=) ) (++GE) a1

Substituting Eg. A.12 into Eq. A.3 eliminates Z,¢¢ n and R, naturally, resulting in,
L

X a 2

XY (Lo
(1+@ )
Using Eq. A.13, any principal spectra can be calculated for any electron and for any atom, single
or multi-electron, using the correct value of x and a. It is important to note that a positive energy
frame of reference is used which is the natural frame for this analysis. Electron states lose

energy (wavelength or characteristic length of the electron state becomes longer) as the transition
number increases.

(4.13)

Espectra =1, —
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A.4. A New Rydberg-Ritz Equation

The following result from Section A.2.

hZ
1 2 -
/Zmec Zmex%omp
is equivalent to the identity,
I.\* ag
—) == A. 14
(Roo) %o ( )

and substituting A. 14 into Eg. A.13 results in,

I,Ro

(VR + () V)

(1)

Espectra =1, —

which has the identical form of the Rydberg-Ritz equation typically written as,?

(Z = 68,)?Re

T=A-
(m + a)?

where A is empirically determined to be the lonization Potential and (Z - §,)) is essentially
a Zerr or more commonly referred to as the quantum defect. The Rydberg-Ritz equation is

currently used to fit some of the spectral data in the National Institute of Standards and
Technology (NIST) database.!

A.5. Two Equivalent Calculations

Calculations for the first hydrogen transition using Eq. A.13 and Eq. 1 demonstrate that despite
their very different appearance they give the same result.
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Using Eq. A.13,
I, = 13.598434486 ev

m, = 9.10938291E-31 kg

4me, h?
a, = — = 5.2917721092E-11m
m,e
h
Ay = ———=="5.293184138E-11m
2m,l,e
I
Espectra = le — 2 (A.13)
X\ (Lo
(1 + (a) (/10 ))
13.598434486
E_spectra (H) = 13.598434486 — 5
1\ (5.2917721092E-11
1+ (1) ((o3tsam38E10 ))

Espectra(H 1) = 10.19791879 eV
Using equation A.1,
I, = 13.598434486 ev
R, = 13.60560253

R,I,
Espectra =1, — £ 2 €]
X
(VR + (2)VEe)

(13.60569253)(13.5984344869)

<(vm + (%) \/13.598434486)>2

Egpectra (H) = 13.598434486 —

Egpecer(H 1) = 10.19791879 eV
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11.

A.6. Conclusion

The derivation of the equation for Compton scattering from the Energy-Momentum equation
using an additive photon and de Broglie wave indicates the compatibility and interchangeability
of the two physical entities. Appendix A details additional examples of this algebraic
compatibility between physical entities that may not be a priori considered interchangeable, but
are.

A first key principle is application of the Compton scattering result to the bound state that the
change in wavelength is constant (Compton wavelength) regardless of input. This principle
emerges in the interaction of the photon with a bound electron state and leads to calculation of
the principal energy spectra and ultimately Eq. 1.

A second key principle is that the Coulomb energy is an implicit part of both the de Broglie wave
(Eg. A.2) and the photon (Eqg. 4). Essentially a coulombic de Broglie wave or a coulombic
photon results. In the first case, the Coulomb energy is the energy term of the semi-classical
result, and in the second, it is the energy term of a quantum result. The combination of the semi-
classical and quantum result leads to Eq. 1 calculation of the principal spectra. Combination of
the quantum and special relativistic result (Eq.5) leads to calculation of fine-structure.

Appendix B - Multi-Electron Results for Principal Spectral
Lines

Calculations using Eqg. (1) are presented for multi-electron atoms (with a few single electron
results included). The criteria for selection was based on including representative Periods where
adequate data existed in the NIST database. It should be noted that data does not exist for most
electrons and when it does exist, it is usually limited to a few transitions. In some cases, such as
Ba I, Cs Il and Fr 11, data for a large number of transitions does exist providing a good
comparison of results where trends can be identified. Another consideration is a focus on the
first electron in a period where the principal spectral line can be very clearly identified. As more
electrons fill the period, it becomes increasingly unclear what is a principal spectral line (of
course the Dirac equation J = %2 does not help for multi-electron cases). Some calculations were
done for cases that include more than one electron in a period with the resulting accuracy well
within reasonable limits, but, in fact, it was impossible to determine if the error was relative to a
principal spectral line or due to the inability to identify a principal spectral line so they are not
included due to ambiguity. Calculations are therefore presented for the first electron of a period
where ambiguity did not exist. These calculations are presented in Tables B.1 through B.26.

In the case of the first transition of the principal spectral lines, the Eq. (1) accuracy is on the
order of 0.1% for multi-electron Period 2 light elements and on the order of at most 2 to 4% for
multi-electron Period 6 & 7 elements including the francium valence electron. The accuracy in
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virtually all cases improves dramatically from this result for the first transition as transition
number increases. There is no divergence at higher transition numbers, but very strong
convergence, which is somewhat remarkable given the lines become increasingly closer and
harder to separate as the transition number increases.

All energy values are in electron volts.

Second Period

Table B.1: Lil

TableB.2: C IV

A%
0.0000000
1s%3s 3.3731290 1 3.3613130 0.35030
1s%4s 4.3409420 2 4.3352811 0.13041
1s%5s 4.7485330 3 4.7455834 0.06212
1s%6s 4.9578350 4 4.9561346 0.03430
1s%7s 5.0793700 5 5.0783264 0.02055
1s%8s 5.1561400 6 5.1554809 0.01278
1s%9s 5.2077500 7 5.2072906 0.00882
15%10s 5.2443000 8 5.2437529 0.01043
1s°11s 5.2706000 9 5.2703811 0.00415

26

A%
0.0000000
1s%3s 37.5484900 1 37.4514908 0.25833
1s%4s 49.7608200 2 49.7097353 0.10266
1s%5s 55.2186600 3 55.1905062 0.05099
1s%6s 58.1218100 4 58.1049920 0.02894
1s%7s 59.8479200 5 59.8371004 0.01808
15%8s 60.9569300 6 60.9495841 0.01205
1s%9s 61.7114900 7 61.7062591 0.00848




Table B.3: NV

0.00000
1s%3s 56.55249 1 56.4249766
1s%4s 75.17767 2 75.1100981
1s%5s 83.55124 3 83.5140350
1s%6s 88.02124 4 87.9991403
1s%7s 90.68519 5 90.6712008
1s%8s 92.39992 6 92.3904173
1s%9s 93.56802 7 93.5613332
15%10s 94.39942 8 94.3945420

0.22548
0.08988
0.04453
0.02511
0.01543
0.01028
0.00715
0.00517

Table B.4: O VI

27

0.0000000
1s%3s 79.3548200 1 79.1967907
1s%4s 105.7208000 2 105.6371447
1s%5s 117.6230000 3 117.5786947
1s%6s 123.9940000 4 123.9680299
1s%7s 127.8000000 5 127.7811231
1s%8s 130.2507000 6 130.2375426

0.19914
0.07913
0.03767
0.02094
0.01477
0.01010




Table B.5: FVII

A%
0.00000
15735 105.95950 1 105.7726280 0.17636
15%4s 141.39550 2 141.2974970 0.06931
15755 157.44520 3 157.3913456 0.03421
15%6s 166.05070 4 166.0186012 0.01933
15775 171.19430 5 171.1738391 0.01195

Fourth Period

Table B.6: Fe XXIV

0.00000
1s%3s 1149.64300 1 1149.6381437
1s%4s 1545.38900 2 1545.3172772
1726.53570 1726.8567799

0.00042
0.00464
0.01860

Table B.7: Fe XVI

0.00000
2p®4s 231.57020 1 230.4327577 0.49119
2p®5s 330.05000 2 329.4691354 0.17599
2p°6s 381.38000 3 380.8956802 0.12699
2p°7s 412.00000 4 410.9757570 0.24860
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Table B.8: Cu XXVIX

1s 0.000

2s 8666.838 1 8691.454
3s 10281.955 2 10291.640
4s 10845.942 3 10850.529
5s 11106.427 4 11108.929

0.28403
0.09419
0.04230
0.02253

3s 1452.398 1 1453.440981
4s 1952.9668 2 1953.849193
5s 2182.891 3 2183.478903

0.07181097
0.045182188
0.026932323

Table B.10: Cu XIX

| Configuation  NIST@V) X Eqution®)
3% 0 o0

4s 314.3545 1 |

29

313.0559918

0.413071295




Table B.11: Cull

‘ Cu Z a
1 29 1

d%4s 0.00
d°5s 5.3483347 1 5.2101096
3d1%s 6.5524100 2 6.4929944
3d197s 7.0263552 3 6.9953249
3d1°8s 7.2616180 4 7.2424841

H 3d'°9s | 7.3953930 5 | 7.3820376
3d1°20s 7.6815300 16 7.6765545
3d1°21s 7.6862500 17 7.6813647
3d1922s 7.6902600 18 7.6854478
3d1923s 7.6937200 19 7.6889432
3d1924s 7.6966850 20 7.6919585
3d1925s 7.6992800 21 7.6945779
3d1926s 7.7015710 22 7.6968677
3d1927s 7.7035200 23 7.6988809
3d1928s 7.7052990 24 7.7006604
3d1°29s 7.7068520 25 7.7022410
3d°30s 7.7082700 26 7.7036513
3d1°31s 7.7095210 27 7.7049149
3d1°32s 7.7106470 28 7.7060515
3d1°33s 7.7116600 29 7.7070775
3d1°34s 7.7125940 30 7.7080068
3d1°35s 7.7134200 31 7.7088512
3d1°36s 7.7142000 32 7.7096207
3d1°37s 7.7148500 33 7.7103240
3d1°38s 7.7155100 34 7.7109684
3d1°39s 7.7160900 35 7.7115603
3d1°40s 7.7166200 36 7.7121053
3d1%41s 7.7171200 37 7.7126082
CullP 7.7218700

2.58445
0.90677
0.44163
0.26349
0.18059
0.06477
0.06356
0.06258
0.06209
0.06141
0.06107
0.06107
0.06022
0.06020
0.05983
0.05992
0.05975
0.05960
0.05942
0.05948
0.05923
0.05936
0.05867
0.05886
0.05870
0.05851
0.05846
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Fifth Period

Table B.12: CsLV

32064.58 32407.70424 1.070103641
38142.88 38276.31978 0.349841908

Table B.13: Cs LIII

3s 5752.7 1 5771.707674 0.330413092
4s 7734.4 2 7740.400652 0.077583933
5s 8641.1 3 8639.428169 0.019347437

Table B.14: Cs XLV

1588.99 1588.715537 0.017272788
2295.21 2295.008322 0.008786905
2668.7 2669.292047 0.022184855

4s 0
5s 380.72 1 377.277716 0.904151091
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Table B.16: Cs IX

‘ Cs z a
9 55 9
44d'%5s 0
4d%6s 56.8737 1 55.40514274 2.582137717
4d%07s 81.8689 2 80.85066297 1.243740948
4d%8s 95.268 3 94.60627133 0.694596996
4d%9s 103.402 4 102.8731479 0.511452445
CsIXIP 125.61
Table B.17: Cs |
‘ Cs z a
1 55 1
| Configuration NISTEV) X o
5p6s 0.0000000
5p7s 2.2981126 1 2.2412511 2.47427
5p8s 3.0149423 2 2.9851134 0.98937
5p®9s 3.3364969 3 3.3200619 0.49258
5p®10s 3.5087811 4 3.4989464 0.28029
5pf11s 3.6118742 5 3.6055698 0.17455
5pt12s 3.6784628 6 3.6741953 0.11601
5p®13s 3.7239631 7 3.7209466 0.08100
5p14s 3.7564292 8 3.7542210 0.05878
5p15s 3.7804051 9 3.7787414 0.04401
5p16s 3.7986133 10 3.7973294 0.03380
5p17s 3.8127663 11 3.8117552 0.02652
5p®18s 3.8239848 12 3.8231745 0.02119
5p®19s 3.8330276 13 3.8323684 0.01720
5p20s 3.8404230 14 3.8398795 0.01415
5pé21s 3.8465482 15 3.8460950 0.01178
5p22s 3.8516783 16 3.8512964 0.00991
5p®23s 3.8560177 17 3.8556930 0.00842
5p24s 3.8597210 18 3.8594426 0.00721
5p®25s 3.8629068 19 3.8626663 0.00623
CslIP 3.8939057 9.109292709E-31
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Table B.18: Ba LVI

33291.52

33661.76414

39607.93

Table B.19: Ba LIV

39752.04057

1.112127486
0.363842711

3s 5984.296 1 6004.955576
4s 8045.099 2 8051.785325
5s 8987.8 3 8986.158157

0.345229849
0.083110534
0.018267461

Table B.20: Ba XLVI

4s 1659.59

1659.145921

5s 2397.4

2396.853327

2787.7

2787.817797

0.026758371
0.022802734
0.004225595

Table B.21: Ba XXVIII

#\!ﬁ

0
404.62 1 401.0291837 0.887453987
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Table B.22: Ba X

6s 65.1051 1 63.46032086 2.526344536
7s 94,2824 2 93.11312529 1.240183442

Ba XI IP 146.5212

Table B.23: Balll
Ba Z a
. 2 | s 4 2
Configuration | NISTY)  x Equton | a%

6s 0.000000
7s 5.2513724 1 5.1031137 2.8232381
8s 7.1942092 2 7.1043665 1.2488202
9s 8.1437341 3 8.0898824 0.6612653
10s 8.6807020 4 8.6466437 0.3923449
11s 9.0143060 5 8.9915877 0.2520253
12s 9.2357850 6 9.2199723 0.1712113
20s 9.8020720 14 9.7998046 0.0231322
21s 9.8245700 15 9.8226676 0.0193636
22s 9.8434940 16 9.8418923 0.0162716
23s 9.8595930 17 9.8582116 0.0140109
24s 9.8733670 18 9.8721827 0.0119945
25s 9.8852630 19 9.8842355 0.0103938
35s 9.9487110 29 9.9483904 0.0032226
36s 9.9520600 30 9.9517665 0.0029494
37s 9.9551070 31 9.9548433 0.0026492
38s 9.9579060 32 9.9576552 0.0025190
39s 9.9604560 33 9.9602317 0.0022521
40s 9.9627940 34 9.9625984 0.0019632
41s 9.9649570 35 9.9647775 0.0018013
42s 9.9669480 36 9.9667883 0.0016024
43s 9.9687920 37 9.9686477 0.0014479
44s 9.9705030 38 9.9703705 0.0013293
45s 9.9721000 39 9.9719697 0.0013064
46s 9.9735750 40 9.9734570 0.0011831
47s 9.9749590 41 9.9748425 0.0011678
48s 9.9762470 42 9.9761353 0.0011195
49s 9.9774400 43 9.9773435 0.0009671

Balll IP 10.003826
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Sixth Period

Table B.24: Au l

Table B.25: Hg Il

S R
s x

0.0000000
5d'°7s 6.7553081 1 6.4509271
5d'°8s 8.0270300 2 7.9087620
5d'°9s 8.5153000 3 8.4595242
5d'°10s 8.7554300 4 8.7251640
5d'°11s 8.8913800 5 8.8732489
5d1°12s 8.9759500 6 8.9641472
5d'°13s 9.0319400 7 9.0239191
5d*°14s 9.0709400 8 9.0653094

4.50580
1.47337
0.65501
0.34568
0.20392
0.13149
0.08881
0.06207

35

5d*%6s 0.0000000

5d'°7s 11.8670738 1 11.3101139
5d'°8s 15.0537429 2 14.7887592
5d°9s 16.4354134 3 16.2967310
5d°10s 17.1637129 4 17.0837974
5d™°11s 17.5948783 5 17.5457380

4.69332
1.76025
0.84380
0.46561
0.27929




Seventh Period

Table B.26: Fr |

o e x

0.0000000

8s 2.4474460 1 2.3712193 3.11454
9s 3.1827980 2 3.1441340 1.21478
10s 3.5100691 3 3.4889877 0.60060
11s 3.6846751 4 3.6721355 0.34032
12s 3.7888956 5 3.7808885 0.21133
13s 3.8560994 6 3.8506942 0.14017
14s 3.9019643 7 3.8981514 0.09772
15s 3.9346611 8 3.9318737 0.07084
16s 3.9587893 9 3.9566919 0.05298
17s 3.9771021 10 3.9754855 0.04065
18s 3.9913304 11 3.9900578 0.03188
19s 4.0026042 12 4.0015844 0.02548
20s 4.0116877 13 4.0108585 0.02067
21s 4.0191139 14 4.0184310 0.01699
22s 4.0252631 15 4.0246940 0.01414
23s 4.0304130 16 4.0299330 0.01191
24s 4.0347670 17 4.0343596 0.01010
258 4.0384830 18 4.0381334 0.00866
26S 4.0416790 19 4.0413769 0.00748
27s 4.0444480 20 4.0441848 0.00651
28s 4.0468620 21 4.0466319 0.00569
29s 4.0489790 22 4.0487774 0.00498
30s 4.0508480 23 4.0506689 0.00442

Fr1iIP 4.0727410
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12. Appendix C - Single and Multi-Electron Results for Fine-
Structure Energy Splits E, (Eg. 6)

It will be shown in Appendix C that the fine-structure energy splits will be more accurate for
heavier elements (on the order of 3%) with accuracy decreasing, with still acceptable accuracy,
to the multi-electron He I. This is the reverse of the case for the principal lines.

All energies are in electron volts.

Table C.1: Ge XXXII

n 2s 3s 4s 5s 6s
NIST 10576.4097 12550.1052 13238.9431 13556.9386 -
Eqg. A.10 3506.3403 1554.9126 873.6674 558.7748 -
E, (ev) 10613.0897 12564.5174 13245.7626 13560.6552 -
A% 0.35% 0.11% 0.052% 0.027%
S=1 2p 3p 4p 5p 6p
NIST 49.2599 14.6092 6.1562 3.148 -
Eq. B.5. 47.9592 14.1628 5.9650 3.051 -
A% 2.6% 3.1% 3.1% 3.1%
S=3 3d 4d 5d 6d
NIST 4.7451 2.0042 1.0264 -
Eq. B.5. 4.7209 1.9883 1.0170 -
A% 0.51% 0.79% 0.92%
S=6 4f 5f 6f
NIST 0.9958 0.5102 -
Eq. B.5. 0.9941 0.5085 -
A% 0.17% 0.33%
S=10 o5g 69
NIST 0.3054 -
Eq. B.5. 0.3051 -
A% 0.098%
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n
NIST
Eq. A.10
E, (ev)
A%
s=1
NIST
Eq. B.5.
A%
S=3
NIST
Eq. B.5.
A%

n
NIST
Eq. A.10
E, (ev)
A%
s=1
NIST
Eq. B.5.
A%
S=3
NIST
Eqg. B.5.
A%
S=6
NIST
Eqg. B.5.
A%

2s
10201.12935
3328.2424
10229.17834
0.27%
2p
40.7251
42.9660
5.5%

2s
3194.293

2p
39.1402
39.0952
0.11%

Table C.2: Ge XXXI

3s

12075.7019
1470.3282
12087.0925

0.094%
3p
12.1207
12.6161
4.1%
3d
4.0815
4.2054
3.0%

4s 5s 6s
4p op 6p
4d 5d 6d

Table C.3: Ge XXX

3s
1792.19
1399.56
1794.73
0.14%
3p
11.40
11.34
0.53%
3d
3.10
3.78
21.9%

43 5s 6s

781.6816 - -
2412.6114 - -

4p 5p 6p

4d 5d 6d
1.3 - -
1.58 - -
21.5%
4f 5f 6f
0.12 - -
0.79 - -
84.8%



Table C.4: Ga XXXI

n 2s 3s 4s 5s 6s
NIST 9918.0286 11767.9837 10845.9417 12711.9130 -
Eq. A.10 3289.2236 1458.8372 717.0939 524.3083 -
E, (ev) 9950.8322 11780.6518 10849.8036 12715.1807 -
A% 0.33% 0.11% 0.036% 0.026%
S=1 2p 3p 4p 5p 6p
NIST 43.2913 12.8387 5.4095 2.7668 -
Eg. B.5. 42.2126 12.4634 5.2519 2.6864 -
A% 2.5% 2.9% 2.9% 2.9%
S=3 3d 4d 5d 6d
NIST 4.17675 1.76395 0.90325 -
Eqg. B.5. 4.15615 1.75064 0.89549 -
A% 0.49% 0.75% 0.86%
S=6 4f 5f 6f
NIST 0.87679 0.44919 -
Eg. B.5. 0.87532 0.44774 -
A% 0.17% 0.32%
S=10 5g 69
NIST 0.26889 -
Eq.B.5. 0.26865 -
A% 0.089%
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n
NIST
Eq. A.10
E, (ev)
A%

s=1
NIST

Eq. B.5.
A%

NIST
Eqg. B.5.
A%

2s
9555.27675
3116.94402
9579.61328
0.25%

2p
35.6095
37.6838
5.8%

Table C.5: Ga XXX

3s 4s
11309.76885 11919.5555
1376.9876 772.2311
11319.56989 11924.3262
0.087% 0.040%
3p 4p
10.5846 4.564
11.0652 4.647
4.5% 1.8%
3d 4d
3.5671 1.500
3.6884 1.549
3.4% 3.3%

Table C.6: Ga XXIX

5s

6s

NIST

Eq. A.10

E, (ev)
A%

NIST
Eq. B.5.
A%
s=3
NIST
Eqg. B.5.
A%

2S
2984.426

2p
34.1403
34.1295

0.032%

3s 4s 5s 6s
1675.0798 2252.7234 2518.0682 -
1307.6760 730.3819 465.4699 -
1676.7500 2254.0441 2518.9561 -
0.10% 0.059% 0.035%
3p 4p 5p 6p
10.1072 4.2588 2.1784 -
9.8990 4.1320 2.1022 -
2.1% 3.0% 3.5%
3d 4d 5d 6d
3.1913 1.3468 0.6893 -
3.3000 1.3773 0.7008 -
3.4% 2.3% 1.7%

40



Table C.7: Cu XXIX

n 2s 3s 4s 5s 6s
NIST 8666.8376 10281.9549 10845.9417 11106.4270 -
Eq. A.10 2876.1862 1275.9892 717.0939 458.6908 -
E, (ev) 8691.4268 10291.6239 10849.8036 11108.9222 -
A% 0.28% 0.094% 0.036% 0.022%
S=1 2p 3p 4p 5p 6p
NIST 33.0195 9.797 4.1262 2111 -
Eg. B.5. 32.2897 9.541 4.0198 2.056 -
A% 2.2% 2.6% 2.6% 2.6%
S=3 3d 4d 5d 6d
NIST 3.1951 1.349 0.6912 -
Eqg. B.5. 3.1805 1.340 0.6855 -
A% 0.46% 0.67% 0.82%
S=6 4f 5f 6f
NIST 0.6716 0.3437 -
Eg. B.5. 0.6700 0.3428 -
A% 0.24% 0.26%
S=10 5g 69
NIST 0.2058 -
Eg. B.5. 0.2057 -
A% 0.049%
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n
NIST
Eq. A.10
E, (ev)
A%

NIST
Eq. B.5.
A%
s=3
NIST
Eq. B.5.
A%

NIST
Eq. A.10
E, (ev)
A%
s=1
NIST
Eqg. B.5.
A%

NIST
Eq. B.5.
A%

NIST
Eqg. B.5.
A%

2s
8329.2801
2715.4866
8346.9446
0.21%
2p
26.7831
28.6002
6.8%

2S
2586.954

2p
25.6091
25.6441
0.14%

Table C.8: Cu XXVIII

3s
9855.7205
1199.5290
9862.8392
0.072%
3p
7.961
8.334
4.7%
3d
2.691
2.736
1.7%

Table C.9: Cu XXVII

3s
1452.3980

1133.520215

1453.4338
0.071%
3p
7.5829
7.4379
1.9%
3d
2.3954
2.4793
3.5%
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4s

10386.212
672.734
10389.697
0.034%

4p
3.359
3.527
5.0%

4d
1.14
1.18
3.5%

4s

1952.9668
633.1108
1953.8432
0.045%

4p
3.1963
3.1047
2.9%

4d
1.0119
1.0349
2.3%

Af
0.451
0.517
14.6%

5s

10630.715
429.770
10632.661
0.018%

5p

5d

5s

2182.891
403.480
2183.474
0.027%

5p
1.6339
1.5799
3.3%

5d
0.5561
0.5268
5.3%

5f

6s

6p

6d



Table C.10: Ne X

NIST
Eq. A.10
E, (ev)

A%

s=1

NIST
Eq. B.5.

A%

NIST
Eq. B.5.
A%
S=6
NIST
Eq. B.5.
A%
$=10
NIST
Eqg. B.5.
A%
S=15
NIST
Eqg. B.5.
A%

2s

1021.51777
340.34596
1021.85319
0.033%

2p
0.45534561
0.45323265

0.21%

3s
1210.83257
151.23469
1210.96446
0.011%
3p
0.13492953
0.13425095
0.50%
3d
0.04486734
0.04475029
0.26%
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4s
1277.07570
85.06103
1277.13812
0.0049%
4p
0.05691743
0.05662865
0.51%
4d
0.01893052
0.01887621
0.29%
4f
9.4595E-3
9.4381E-3
0.23%

5s
1307.72927
54.43580
1307.76335
0.0026%
5p
0.02913814
0.02899127
0.50%
5d
9.69259E-3
9.66376E-3
0.30%
5f
4.84357E-3
4.83188E-3
0.24%
59
2.90543E-3
2.89913E-3
0.22%

6s
1324.37741
37.80113
1324.39802
0.0016%
6p
0.01686049
0.01677636
0.50%
6d
5.60904E-3
5.59212E-3
0.30%
6f
2.80303E-3
2.79606E-3
0.25%
69
1.68145E-3
1.67764E-3
0.23%
6h
1.12082E-3
1.11843E-3
0.21%



Table C.11: Ne IX

n 23 3s 4s 5s 6s
NIST 910.20645 1070.47210 1125.73065 1151.12195 -
Eq. A.10 286.87496 125.78292 70.27727 44.79628 -
E, (ev) 908.93287 1070.02491 1125.53056 1151.01155 -
A% 0.14% 0.042% 0.018% 0.0096%
S=1 2p 3p 4p 5p 6p
NIST 0.2294 0.0694 0.0286 0.0149 -
Eq. B.5. 0.3157 0.0916 0.0383 0.0195 -
A% 37.6% 32.0% 33.9% 30.9%
S=3 3d 4d 5d 6d
NIST 0.0236 0.0112 - -
Eq. B.5. 0.0306 0.0128 - -
A% 29.7% 14.3%

Table C.12: Ne VIII

n 2s 3s 4s 5s 6s
NIST 239.0970 136.36848 182.2092 203.0192 214.1925
Eg. A.10 - 102.94384 57.0044 36.1431 24.9439
E, (ev) - 136.15316 182.0926 202.9539 214.1531
A% 0.16% 0.064% 0.032% 0.018%
S=1 2p 3p 4p 5p 6p
NIST 0.20449 0.06053 0.0255 0.0129 7.5E-3
Eqg. B.5. 0.21350 0.06032 0.0248 0.0125 7.2E-3
A% 4.4% 0.35% 2.7% 3.1% 4.0%
S=3 3d 4d 5d 6d
NIST 0.0182 7.7E-3 4.0E-3 2.2E-3
Eg. B.5. 0.0201 8.3E-3 4.2E-3 2.4E-3
A% 10.4% 7.8% 5.0% 9.1%
S=6 4f 5f 6f
NIST 3.9E-3 - -
Eqg. B.5. 4.1E-3 - -
A% 5.1%
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Table C.13: He ll

n
NIST

Eq. A.10

E, (ev)
A%
s=1
NIST
Eq.B.5
A%
S=3
NIST
Eq. B.5
A%
S=6
NIST
Eq.B.5
A%
$=10
NIST
Eq.B.5
A%
S=15
NIST
Eq. B.5
A%

45

23 3s 4s 5s 6s
40.813088586 48.3713143135 51.0166680830 52.2410774239 52.9061837689
13.60506687 6.046789074 3.401344923 2.176870761 1.511720441

40.81269816 48.37097596 51.01642011 52.24089427  52.9061837689
0.00096% 0.00070% 0.00046% 0.00035% 0.00022%
2p 3p 4p 5p 6p
7.26195E-4 2.1516979E-4  9.077428E-5 4.64762E-5 2.68959E-5
7.24472E-4 2.1466296E-4  9.056200E-5 4.63678E-5 2.68335E-5
0.24% 0.24% 0.23% 0.23% 0.22%

3d 4d 5d 6d
7.1716397E-5 3.02555E-5 1.54909E-5 8.9647E-6
7.1554170E-5 3.01873E-5 1.54557E-5 8.9445E-6
0.23% 0.23% 0.23% 0.23%
4f 5f 6f
1.51273E-5 7.7452E-6 4.4821E-6
1.50936E-5 7.7277E-6 4.4723E-6
0.22% 0.23% 0.22%

59 69
4.64709E-6 2.6893E-6
4.63651E-6 2.6834E-6

0.23% 0.22%
6h
1.79286E-6
1.78892E-6
0.22%



Table C.14: He l

n
NIST
Eq. A.10
E, (ev)
A%
s=1
NIST
Eq.B5
A%

NIST
Eq. B.5
A%
S=6
NIST
Eq.B.5
A%
$=10
NIST
Eq. B.5
A%
s=15
NIST
Eq. B.5
A%

2s
20.21769482
4.473901323
20.11348748
0.52%
2p
1.3196141E-4
6.8307282E-5
48.2%

3s
22.81939202
1.807131482
22.78025732
0.17%
3p
3.62802E-5
1.75354E-5
51.7%
3d
5.79175E-6
5.84485E-6
0.92%

4s
23.63376478
0.970680532
23.61670827

0.072%
4p
1.47942E-5
6.90351E-6
53.3%

4d

2.44521E-6
2.30133E-6
5.9%

Af
1.953759E-6
1.150787E-6

41.1%

46

5s
23.99159333
0.604578744
23.98281006

0.037%
S5p
7.4351E-6
3.3932E-6
54.4%
5d
1.252202E-6
1.130987E-6
9.7%
5f
9.28482E-7
5.65440E-7
39.1%

59
6.558024E-7
3.392218E-7

48.3%

6s
24.18007937
0.412391414
24.17499739

0.021%
6p
4.25353E-6
1.91145E-6
55.1%
6d
7.24682E-7
6.37027E-7
12.1%

6f
5.152993E-7
3.184214E-7

38.2%

69
3.793168E-7
1.909791E-7

49.7%

6h
2.469686E-7
1.272579E-7

48.5%



