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1.  Introduction 
 

The initial purpose of this paper was to validate previously (unpublished) discovered 

relationships to a definitive case where excellent and credible data exist to demonstrate that the 

physical relationships have a more general validity.  The previous work suggested a relationship 

between the de Broglie wave and Coulomb potential which is further developed in this paper 

along with additional results including a new quantum relation and a new application of special 

relativity.  These combined new developments result in a tractable methodology for calculation 

of principal spectra and fine-structure energy splits for any atomic electron, single or multi, in a 

theoretically justified, accurate and reliable way.  The results of this paper far exceeded the 

original expectations.   

The reported accuracies are determined by comparison of calculation to data, when it exists, 

reported in the National Institute of Standards and Technology (NIST) atomic spectra database 

[1].  The development of the equations follow from a specific set of ideas that draw on well-

established and accepted physics constructs but assembled in an unconventional way.  It is felt 

the successful outcome of the work should be published given that it is a theoretical development 

that might be of deeper interest and on a practical level can be used to calculate electron energy 

states with good accuracy requiring no fitted parameters.  Given the simplicity, reliability and 

accuracy, it could also be useful for first order calculation of principal and fine-structure spectra 

for cases where data does not exist which could be of interest in spectroscopic and/or 

astronomical applications. 

From a theoretical perspective, some intriguing discoveries and principles emerged that lead 

directly to the equations presented.  The most important of these relates to the nature of the Dirac 

solution for hydrogen.  It can be definitively shown that one characteristic of the Dirac solution 

is a special relativistic mass/wave correction or defect.  This would be at least interesting, except 

that it leads to extension of the new equations for principal spectra developed in this paper to 

atomic fine-structure, with applicability to the fine-structure of multi-electron atoms.   

Current methods for calculating spectra are described in papers published by the National 

Institute of Standards and Technology (NIST) [2,3]    The methods are largely based on an 

empirical Rydberg-Ritz equation fitted to an expanded quantum defect with a host of individual 

corrections applied in bookkeeping fashion.  They can be relatively complicated making them 

cumbersome and in most cases impractical to use [3,4].  The first equation presented in this 

paper for the principal spectral lines results in a non-fitted theoretically definitive Rydberg-Ritz 

type equation, eliminating the quantum defect.  The new equation is consistently accurate 

compared to the NIST spectral database [1], single or multi-electron.  For single electron 

principal lines and associated fine-structure the results are comparable in accuracy to the Dirac 

solution for single electrons, but, importantly, the equations prove accurate for multi-electron 

cases where the Dirac equation cannot be used in any direct way.   
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It is hoped these results provide increased opportunity for a simple, accurate and tractable 

method when used alone or when coupled with Quantum Electrodynamic (QED) corrections, 

depending on application.  

2.  General Calculation of Single or Multi-Electron Principal 

Spectral Lines 
 

A new equation consistent with the Rydberg-Ritz form is presented for the moment without 

justification.    

 

𝐸𝑠𝑝𝑒𝑐𝑡𝑟𝑎 = 𝐼𝑒 −
𝐼𝑒𝑅∞

(√𝑅∞ + (
𝑥
𝑎) √𝐼𝑒)

2                                                     (1) 

 

Unlike the Rydberg-Ritz equation, Eq. 1 does not require or utilize any fitted parameters such as 

a quantum defect or 𝑍𝑒𝑓𝑓.  It is applicable to any electron state for any single or multi-electron 

atom.  It can be used to calculate the principal quantum number states or principal spectral lines 

and can be used in conjunction with relativistic and/or QED corrections which require a principal 

quantum number solution as a starting point.  The derivation of Eq. 1 will be presented in 

Appendix A. The derivation is somewhat lengthy but richer in content than Eq. 1’s simplicity 

suggests.  A small sample of principal spectral line results for Eq. 1 are presented and compared 

to single-electron NIST experimental and Dirac solution results in Tables 1 and 2 and compared 

to NIST multi-electron experimental results in Table 3 of Section 3.  More extensive results are 

presented in Appendix B. 

The following parameters are used in Eq. (1), 

𝑥 = the principal energy transition – 1st transition 𝑥 = 1; 2nd transition 𝑥 = 2; and so on 

𝑎  =  the electron number.  For the outer electron 𝑎 = 1; 𝑎 ranges from Z to 1 

𝐼𝑒 = the Ionization energy for the electron of interest (eV).  The Ionization energy is the 

principal ground state in this approach and is labeled 𝐼𝑒 for that reason.  

𝑅∞= the Rydberg constant or ‘reduced’ Rydberg constant (eV) 

Equation (1) has the form of the Rydberg-Ritz combination principle which is currently used to 

fit spectral results, by interpolation or extrapolation.  The current and standard form of the 

Rydberg-Ritz equation is typically written [5], 
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𝑇 = 𝐴 −
(𝑍 − 𝛿𝑜)2𝑅∞

(𝑚 + 𝑎)2
  

            

where A is empirically but not theoretically justified to be the Ionization Potential and (𝑍 – 𝛿𝑜) is 

essentially a 𝑍𝑒𝑓𝑓 or more commonly referred to as the quantum defect and can be expanded to 

higher powers.  The Rydberg-Ritz equation is currently used to fit some spectral data in the 

NIST database and/or other calculations where measured values do not exist [2,3,4]. 

The accuracy of Eq. 1 without correction is quite good and the calculation obviously very 

simple.  In fact, for hydrogen and helium, as shown in Tables 1 through 3 of the next section, the 

accuracy compared to NIST spectral lines is comparable to the Dirac equation for the single 

electron case and is very accurate compared to the NIST database for the helium multi-electron 

case where the Dirac equation cannot be used for comparison.  Another immediate observation is 

the convergence with zero deviation on the NIST line as the transition number increases.   

Importantly, Eq. (1) can be applied to multi-electron atoms.  The accuracy of Equation (1) is 

very good for any single or multi-electron atom where data was available for comparison.  

  

3.  Example:  Principal Spectral Lines for H I, He II, and Multi-

Electron He I Compared to the Dirac Equation and NIST 
 

Results calculated using Equation (1) are presented in Tables 1., 2. and 3. for Hydrogen, and 

both Helium electrons.  The single electron cases for H I and He II are compared to both NIST 

and the Dirac equation.  The multi-electron case for Helium I is compared to NIST but not the 

Dirac equation.   

In the case of H I and He II, Transitions 100 and 1000 are included for both Eq (1) and the Dirac 

equation to demonstrate that they converge and do not diverge as transitions increase.  The 

principal spectral line for He I is the midpoint energy of the triplet and singlet states.  This 

convention is used throughout for multiple electron atoms.  There is not a direct correspondence 

between standard nomenclature and Equation (1).  The principal line split for a two-electron 

atom was not explored, but if explored in the context of this paper, would most likely be 

characterized as an energy level split resulting from a special relativistic relationship for the two 

electrons in the same period.  This type of relationship is explored in subsequent sections of this 

paper and leads to the fine-structure energy splits for single and multi-electron atoms. 
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Table 1:  Principal Spectral Lines - H (eV) 

 

Table 2:  Principal Spectral Lines – He II (eV) 

 

Table 3:  Principal Spectral Lines – He I (eV) 

Principal 

Atomic 

Transition 

Number (x) 

1 2 3 7 100 1000 

Eq. 1 𝑰𝒆𝑹∞ 10.19791879 12.08695976 12.74819214 13.38585972 13.59710073 13.59842091 

Δ  8.9E-04 5.4E-04 3.4E-04 1.0E-04 - - 

NIST 10.19881044 12.08749486 12.74853289 13.38596004 - - 

Dirac 𝑰𝒆𝒎𝒆 10.19695475 12.08667075 12.74806951 13.38584426 13.59710073 13.59842091 

Δ  1.9E-03 8.2E-04 4.6E-04 1.2E-04 - - 

𝑰𝒆 =  𝟏𝟑. 𝟓𝟗𝟖𝟒𝟑𝟒𝟒𝟖𝟔 (eV) 

𝒎𝒆 = 𝟗. 𝟏𝟎𝟗𝟑𝟖𝟐𝟗𝟏𝐄−31 (kg)  

𝑹∞ = 𝟏𝟑. 𝟔𝟎𝟓𝟔𝟗𝟐𝟓𝟑 (eV) 

Δ = the Absolute Difference between the calculated result and the NIST [1] value. 

The Principal Atomic Transition Number is x.  The Principal Quantum Number is n = x+1  

Principal 

Atomic 

Transition 

Number (x) 

1 2 3 7 100 1000 

Eq. 1 𝑰𝒆𝑹∞ 40.81269816 48.37097595 51.01642011 53.56741902 54.41242999 54.41771072 

Δ  3.9E-04 3.4E-04 2.5E-04 8.7E-05 - - 

NIST  40.81308859 48.37131431 51.01666808 53.56750616 - - 

Dirac 𝑰𝒆 𝑹∞ 40.81117123 48.37047597 51.01620051 53.56738873 54.41242998 54.41771072 

Δ  1.9E-03 8.4E-04 4.7E-04 1.2E-04 - - 

𝑰𝒆 =  𝟓𝟒. 𝟒𝟏𝟕𝟕𝟔𝟓𝟎𝟑 (eV) 

𝒎𝒆 = 𝟗. 𝟏𝟎𝟗𝟑𝟖𝟐𝟗𝟏𝑬 − 𝟑𝟏 (kg) 

𝑹∞ = 𝟏𝟑. 𝟔𝟎𝟓𝟔𝟗𝟐𝟓𝟑 (eV) 

Principal 

Atomic 

Transition 

Number (x) 

1 2 3 7 8 9 

Eq. 1 𝑰𝒆𝑹∞ 20.11348748 22.78025732 23.61670827 24.36050516 24.40943304 24.44408537 

Δ  1.0E-01 3.9E-02 1.7E-02 2.1E-03 1.5E-03 1.1E-03 

NIST  20.2176948 22.8193920 23.6337648 24.3626422 24.4109319 24.4451768 

𝑰𝒆 =  𝟐𝟒. 𝟓𝟖𝟕𝟑𝟖𝟖𝟖𝟎𝟒 (eV) 

𝑹∞ = 𝟏𝟑. 𝟔𝟎𝟓𝟔𝟗𝟐𝟓𝟑 (eV) 
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4.  The Principal Transition Energy and the Dirac Equation in 

the context of a Relativistic Mass Defect, Photon Wavelength 

Defect or De Broglie Wavelength Defect  
 

The Dirac solution for the energy of an electron state is written as  

 

𝐸𝑒 = 𝑚𝑒𝑐2 [1 − (1 + [
𝑍𝛼

𝑛 − 𝑗 − ½ + √(𝑗 + ½)2 − 𝑍2𝛼2
]

2

)

−½

] 

 

The Dirac solution can be used a priori for calculating the principal states and fine-structure 

energy splits for single-electron but not multi-electron atoms given its reliance on the atomic 

number Z.  The Dirac solution is very accurate for single-electron atoms.  The Dirac equation is 

relativistic, unlike the Schrodinger equation, given that its derivation starts with the relativistic 

energy-momentum equation, and it is first order in both time and space coordinates, treating time 

and space on the same basis, a requirement of special relativity.   

A key result of this paper is an even stronger more direct connection between the Dirac solution 

and special relativity which leads to new and intriguing results.  It can be shown that the Dirac 

solution calculates the relativistic mass change of the transition energy due to the long held 

special relativistic requirement that any change in energy is equivalent to a change in mass. The 

most interesting finding is that the identical mass change can also be calculated based on the 

linear kinetic velocity using the state to state transition energy.   This is demonstrated in Tables 

4. And 5 for hydrogen and helium.  As discussed in Appendix A, this is supported by 

calculations showing that a mass change or binding energy mass defect could well be the source 

of the ground state or ionization energy of hydrogen (and all other atoms by extension although 

the nuclear binding energy or mass defect of multi-nucleon atoms masks the small effect of the 

ionization energy), and suggests that succeeding transitions could/should also result from a 

change in mass or binding energy.  This will be explored further. 

The results of Tables 4 and 5 are calculated as follows.  A term identified as Dirac γ in the tables 

is calculated according to  

 

Dirac 𝛾 = (1 + [
𝑍𝛼

𝑛 − 𝑗 − ½ + √(𝑗 + ½)2 − 𝑍2𝛼2 
]

2

)

½

 

 

which is by inspection the principle part of the Dirac equation. 
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The term γ is the traditional special relativistic velocity dependent term with velocity calculated 

from the transition energy as a linear kinetic velocity.  Angular velocity was explored but clearly 

did not give reasonable results.  There does not appear to be any angular character in this 

methodology. 

𝛾 =
1

√1 − (
𝑣
𝑐)

2
 

 

Which is identical to 

SR 𝛾 =
1

√1 −
2𝐸𝑒

𝑚𝑒𝑐2

 

 

where 𝐸𝑒 is the transition energy between states. 

The values for Dirac γ and SR γ are compared for H I and He II in Tables 4 and 5. 

Table 4:  Dirac γ compared to SR γ – H I (eV) 

 

Table 5:  Dirac γ compared to SR γ – He II (eV) 

Principal 

Atomic 

Transition 

Number (x) 

1 2 3 4 9 19 

NIST 𝑬𝒆
 3.399624046 1.510939626 0.849901596 0.543936136 0.135983505 0.033995746 

Dirac 𝜸 1.000006657 1.000002959 1.000001664 1.000001065 1.000000266 1.000000067 

SR 𝜸 1.000006653 1.000002957 1.000001663 1.000001064 1.000000266 1.000000067 

𝑰𝒆 =  𝟏𝟑. 𝟓𝟗𝟖𝟒𝟑𝟒𝟒𝟖𝟔 
𝐦𝐞 = 𝟗. 𝟏𝟎𝟗𝟑𝟖𝟐𝟗𝟏𝐄 − 𝟑𝟏 

NIST – the NIST [1} values for the Principal Spectral Line subtracted from the Ionization Energy. 

The Principal Atomic Transition Number is x.  The Principal Quantum Number is n = x+1 

Principal 

Atomic 

Transition 

Number (x) 

1 2 3 4 9 19 

NIST 𝑬𝒆
 13.60467644 6.04645072 3.40109695 2.17668761 0.54416338 0.1360383 

Dirac 𝜸 1.000026628 1.000011835 1.000006657 1.000004260 1.000001065 1.000000266 

SR 𝜸 1.000026625 1.000011833 1.000006656 1.000004260 1.000001065 1.000000266 

𝑰𝒆 =  𝟓𝟒. 𝟒𝟏𝟕𝟕𝟔𝟓𝟎𝟑 
𝐦𝐞 = 𝟗. 𝟏𝟎𝟗𝟑𝟖𝟐𝟗𝟏𝐄 − 𝟑𝟏 

NIST – Is the NIST [1} values for the Principal Spectral Line subtracted from the Ionization Energy. 

The Principal Atomic Transition Number is x.  The Principal Quantum Number is n = x+1 



10 
 

 

Following this methodology, the Dirac solution for the transition energies can be written as, 

 

𝐸𝑒 = 𝑚𝑒𝑐2 (1 −
1

Dirac 𝛾
) = 𝑚𝑒𝑐2 (1 −

1

 𝛾
) 

 

or 

 

𝐸𝑒 = 𝑚𝑒𝑐2 −
𝑚𝑒𝑐2

𝛾
                                                                (2) 

 

which is identical to the Dirac equation and directly states that the transition energy is due to a 

change in mass or mass defect. 

 

This can also be written as 

 

𝐸𝑒 =
ℏ𝑐

ƛ𝑐𝑜𝑚𝑝
(1 −

1

𝛾
) 

 

or 

 

𝐸𝑒 =
ℏ𝑐

ƛ𝑐𝑜𝑚𝑝
−

ℏ𝑐

ƛ𝑐𝑜𝑚𝑝𝛾
                                                             (3) 

 

 

The change in energy between atomic states can be written as a relativistic photon wavelength 

defect evaluated at the reduced Compton wavelength corresponding to the mass defect of Eq. 2. 

 Equations 2 and 3 and the results presented in Tables 4 and 5 make a strong case that the Dirac 

equation can be understood as a relativistic mass or wave defect equation.   

 

Further equivalency of the Dirac solution can also be written in the form of a de Broglie wave as 

follows, 

 

Dirac 𝛾2 = 1 + [
𝑍𝛼

𝑛 − 𝑗 − ½ + √(𝑗 + ½)2 − 𝑍2𝛼2
]

2

 

 

 

The transition energy can be written 
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𝐸𝑒 = ½𝑚𝑒𝑐2 (1 −
1

𝛾2
) 

 

or 

 

𝐸𝑒 =
ℏ2

2𝑚𝑒ƛ𝑐𝑜𝑚𝑝
2

(1 −
1

𝛾2
) 

 

or 

 

𝐸𝑒 =
ℏ2

2𝑚𝑒ƛ𝑐𝑜𝑚𝑝
2

−
ℏ2

2𝑚𝑒ƛ𝑐𝑜𝑚𝑝
2 𝛾2

 

 

Either a photon form or de Broglie form are interchangeable with the power of 𝛾 naturally 

agreeing with the power of the reduced Compton wavelength.  The transition energy can be 

interchangeably written as a mass defect (Dirac equation), photon wavelength defect or de 

Broglie wavelength defect.   

 

Using this methodology does not directly permit calculation of multi-electron fine-structure 

given the Dirac Equation depends on Z.  However, the concept of using a relativistic wavelength 

defect discussed here will lead to calculation of the fine-structure energy splits for single and 

multi-electron atoms.  

  

5.  Calculating p, d, f, g and h, etc. Energy Splits using the 

Relativistic Wave Defect 
 

The results of Section 4 demonstrating the idea of a wave defect and the principal spectral line 

results of Section 1 and detailed in Appendix A will lead to the derivation of a coulombic de 

Broglie wave methodology for calculating the fine-structure for single and multi-electron atoms. 

In the case of hydrogen and other single electron atoms, when using the Dirac equation, the 

principal state is represented by the total angular momentum 𝐽 =
1

2
.  The  p states in the case of 

hydrogen are represented by 𝐽 =
1

2
 and 

3

2
 with the principal “s” state and first “p” state being 

theoretically degenerate, both calculated as 𝐽 = ½.  In fact, the principal and first p state are not 

degenerate.  It is well known that the Dirac equation predicts the principal state and the p state 

energy split, the difference between 𝐽 =
1

2
 and 

3

2
,  not the absolute values of the non-degenerate 

principal and first p state which is currently the domain of Quantum Electrodynamics (QED) [6].  

The non-degeneracy of the s and first p-state is attributed to the lamb shift corrections (which can 

have several different meanings) [6] and is not predicted by the Dirac equation.  This is the 
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accepted understanding but emphasizes that it is the 𝐽 = ½ and second or 𝐽 =
3

2
  p-state energy 

difference that is calculated with the Dirac equation.  Calculation of this energy split is the 

subject of this section and is identical to the calculated product of the Dirac equation with the 

exception that the derivation developed in this section can be extended to multi-electron fine-

structure.  

To write the relevant equation for the fine-structure energy splits, an equation must be introduced 

that will be discussed in more detail in Appendix A.  The equation is in essence a new quantum 

relation, although not strictly speaking a traditional one.  The reason for introducing this equation 

at this point is that Eq. 1 does not have an obvious wave-like structure for application of the 

results of Section 4, although it turns out that Eq. 1 does have an implicit wave-like structure. 

Section 4 demonstrated that a special relativistic change in wavelength based on the linear 

velocity change corresponding to the transition energy will give the same result as the Dirac 

equation.  The following equation is directly equivalent to Eq. 1 and can be used to calculate 

principal spectra transitions, unmodified by the results of Section 4.  The equivalency between 

Eq. 1 and Eq. 4 will be demonstrated in detail in Appendix A establishing that the Rydberg-Ritz 

equation as represented by Eq. 1 has a quantum basis. 

 

ƛ𝑒 =
ℏ

√2𝑚𝑒𝐼𝑒 𝑒
+ (

𝑥

𝑎
) (

ℏ𝑐

𝐸𝑟ƛ𝑐𝑜𝑚𝑝

)                                                       (4) 

 

𝐸𝑟ƛ𝑐𝑜𝑚𝑝
= (

𝑒2

4𝜋𝜀𝑜ƛ𝑐𝑜𝑚𝑝
) 

 

A very interesting characteristic of Eq.4 is that the second term is a constant and is written as a 

phonon characteristic length based on a constant coulombic energy evaluated at the Compton 

wavelength.  The equation is essentially a photon interacting with an electron or electron state 

represented by a de Broglie wave with the ground state the de Broglie wave evaluated at the 

Ionization energy.  The Coulomb energy coupling with photon’s or de Broglie waves appears 

repeatedly and will be discussed in more detail in Appendix A.  Equation 4 also states that the 

change in binding energy is a constant regardless of the actual energy of interaction which is the 

same situation seen in the Compton effect for a photon and free electron interaction.  Both Eq. 4 

and the Compton effect indicate a constant change based on the Compton wavelength regardless 

of input.  This will also be discussed and explored further in Appendix A including a derivation 

of Compton scattering using the Energy-Momentum equation and a combined photon and de 

Broglie wave.  



13 
 

Applying the results of Section 4, Eq. 4 can be modified through multiplication by a relativistic 

factor that will be labeled 𝛾∆. This multiplication will create a wave defect as discussed in 

Section 4.   

 

ƛ∆ = [
ℏ

√2𝑚𝑒𝐼𝑒 𝑒
+ (

𝑥

𝑎
) (

ℏ𝑐

𝐸𝑟ƛ𝑐𝑜𝑚𝑝

)] 𝛾∆                                                 (5) 

 

This theoretically will result in the p, d, f, g, and h, (and so on) energy splits if the correct energy 

can be identified that gives a correct 𝛾∆ a priori.  When this approach was first recognized it was 

purely theoretical given that such an energy may not exist.   

The details of finding the correct energy will not be given, but it turns out that there is an energy 

giving the correct 𝛾∆, and it is completely consistent with the more global principles presented in 

this paper.  The relativistic linear kinetic energy factor 𝛾∆ can be evaluated from the coulombic 

energy of the transition using 

𝛾∆ =
1

√1 −
2𝐸𝑐

𝑚𝑒𝑐2 

 evaluated at 𝐸𝑐 =
𝑒2

4𝜋𝜀𝑜 ƛ𝑒
                                        (6) 

 

with ƛ𝑒 the principal spectral line transition.  The simple coulombic energy appears naturally 

again. 

 

After some development, the final form for 𝛾∆ is 

 

𝛾∆ =
1

√1 − (
𝑎

4𝑆) (
2𝐸𝑐

 𝑚𝑒𝑐2)

                                                             (7) 

 

with the energy corresponding to energy split 𝐸∆ for the fine-structure as a function of ƛ∆ 

evaluated as 

                                         

𝐸∆ =
ℏ2

2𝑚𝑒ƛ∆
2                                                                        (8) 

 

If S turns out to be a constant for the fine-structure of any electron in any atom, then this 

methodology can be used predictively.   
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The “4” in Eq.6 is a normalizing factor which makes S for the p energy split equal to one when 

maintaining the linear kinetic energy form.  The constant 𝑎 is the electron number as defined in 

Section 1. 

Table 6. shows the hydrogen principal state results and the results for S using the NIST database 

[1] and Eq. 7.  Table 6 demonstrates that S is in fact a constant, almost exactly an integer 

constant suggesting fundamental validity of the approach.  The values also follow a natural 

arithmetic progression. 

 

Table 6:  H I (ev); S (Eq.7) 

𝒑 (𝑬
(

𝟑

𝟐
)

− 𝑬
(

𝟏

𝟐
)
); 𝒅 (𝑬

(
𝟓

𝟐
)

− 𝑬
(

𝟑

𝟐
)
);  𝒇 (𝑬

(
𝟕

𝟐
)

− 𝑬
(

𝟓

𝟐
)
 ); etc. 

n 2s 3s 4s 5s 6s  

𝑬𝒏 (ev) 10.19791879 12.08695976 12.74819214 13.05426487 13.22053220  

NIST 10.19881044 12.08749486 12.74853289 13.05449835 13.22070151  

∆% 8.74E-03 4.43E-3 2.67E-3 1.79E-3 1.28E-03  

𝑬𝒆 (ev) 3.400515695 1.511474726 0.8502423419 0.5441696181 0.3779022902 S 

S 

Calc. 

2p 3p 4p 5p 6p  

0.9978119708 0.997939608 0.998026562 0.9978091436 0.9980653593 1 

 3d 4d 5d 6d  

𝑺𝒑 + 𝟐  2.994157487 2.995556122 2.995268032 2.994860048 3 

  4f 5f 6f  

 𝑺𝒅 + 𝟑  6.005091586 6.047301226 5.988491964 6 

   5g 6g  

  𝑺𝒇 + 𝟒 9.980449447 9.980713037 10 

    6h  

   𝑺𝒈 + 𝟓 15.97066886 15 

 

 

Table 6 establishes the value for S and Table 7 presents the calculated results for hydrogen a 

priori using S.  The percent difference between calculation using Eq. 7 and the NIST database is 

presented.  The accuracy is very good. 

When applied to multi-electron atoms, it turns out that the results hold for at least the inner 3 

electrons for any atom, with the inner 1st and 3rd in very close agreement and the 2nd not quite as 

good but still very good accuracy.  The close agreement of the 1st and 3rd, but slightly different 

2nd, may be a meaningful result given that the 1st and 3rd electron are the first electron in a period 

and the 2nd should be different in character, being it is the 2nd electron in a period.  It is possible 

that for any atom and the same electron number, such as the inner 4th or 10th, etc. that a specific S 

exists.  It is also possible that there may be a consistent S for the 2nd electron of a period and the 

3rd and so on.  Unfortunately, the data is relatively sparse in these cases, but sufficient data exists 
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for the inner 3 electrons of a sufficient number of atoms to demonstrate this uniformity and the 

correspondence between the all 1st and 3rd inner electrons and all 2nd inner electrons.  Additional 

results for multi-electron cases supporting these statements are presented in Appendix C. 

 

Table 7:  H I (ev); 𝑬∆ (Eq. 7) 

𝒑 (𝑬
(

𝟑

𝟐
)

− 𝑬
(

𝟏

𝟐
)
); 𝒅 (𝑬

(
𝟓

𝟐
)

− 𝑬
(

𝟑

𝟐
)
);  𝒇 (𝑬

(
𝟕

𝟐
)

− 𝑬
(

𝟓

𝟐
)
 ); etc. 

𝑰𝒆 = 𝟏𝟑. 𝟓𝟎𝟗𝟒𝟑𝟒𝟒𝟖𝟔 𝒆𝒗 

n 2s 3s 4s 5s 6s 

NIST 10.19881044 12.08749486 12.74853289 13.05449835 13.22070151 

Eq. A.10 3.400515695 1.511474726 0.8502423419 0.5441696181 0.3779022902 

𝑬𝒏 (ev) 10.19791879 12.08695976 12.74819214 13.05426487 13.22053220 

∆% 0.00874% 0.00443% 0.00267% 0.00179% 0.00128% 

S=1 2p 3p 4p 5p 6p 

NIST 4.536434E-5 1.34413E-5 5.67042E-6 2.904E-6 1.68016E-6 

Eq. B.5. 4.526458E-5 1.34135E-5 5.65726E-6 2.898E-6 1.67687E-6 

∆% 0.22% 0.21% 0.23% 0.21% 0.20% 

S=3  3d 4d 5d 6d 

NIST  4.4799E-6 1.8892E-6 9.674E-7 5.5993E-7 

Eq. B.5.  4.4712E-6 1.8864E-6 9.659E-7 5.5893E-7 

∆%  0.19% 0.15% 0.16% 0.18% 

S=6   4f 5f 6f 

NIST   9.424E-7 4.7916E-7 2.80022E-7 

Eq. B.5.   9.432E-7 4.8292E-7 2.79440E-7 

∆%   0.085% 0.78% 0.20% 

S=10    5g 6g 

NIST    2.9033E-7 1.68015E-7 

Eq. B.5.    2.8975E-7 1.67647E-7 

∆%    0.20% 0.22% 

S=15     6h 

NIST     1.12013E-7 

Eq. B.5.     1.11750E-7 

∆%     0.24% 

 

 

6.  Conclusion 
 

The initial purpose of this paper was to validate principles and relationships discovered in 

previous work (unpublished) through application to a very definitive case (atomic spectra) for 

comparison with accurate and available data (NIST database).  As the title indicates, this work 
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can be summarized as an interrelationship between the de Broglie wave, the Coulomb potential 

and special relativity applied to a new quantum relation.   

Several key results emerge in a consistent and quite natural way. 

For example, Eq. (1) presented in Section 1 and derived in Appendix A, emerges as a Rydberg-

Ritz type equation in a natural and unexpected way.  There is nothing about the development and 

derivation that suggested at the outset that this would be the result.  The result demonstrates that 

the Rydberg-Ritz equation has a quantum basis.  

Throughout the paper, fundamental algebraic length relationships play a significant role.  Three 

fundamental forms consistently emerge: the de Broglie wave; the photon; and the coulomb 

potential.  The fundamental interactions occur between the lengths/wavelengths with the energy 

appearing as a result of the interaction.   

The fine-structure of the atom emerges as a special relativistic mass defect or wave defect 

applied to the principal state quantum algebraic wavelength relation, Eq. 4, which itself is 

equivalent to Eq. 1 (see Appendix A).  This is supported by the Dirac equation. 

Example results for single and multi-electron principal and fine-structure spectra are presented in 

the main body of this paper.  Additional results are presented in Appendix B and C. 

The general accuracy of the principal spectra and fine-structure energy splits for single and 

multi-electron cases compared to the NIST database supports the general validity of the 

concepts.  There are other unpublished applications where these same concepts have also led to 

excellent and tractable results, but it was first necessary to establish a very clear case for this, 

which, it is submitted, has been accomplished in this paper. 
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10.  Appendix A 
 

The derivation of Eq. (1) along with additional observations and considerations applicable to its 

use and validity will be discussed.  

 

A.1. A Preliminary Semi-Classical Result 
 

First, the simple development of a semi-classical equation is required.  In this sub-section and 

throughout, certain assumptions will be made and assembled with the result of this process 

judged valid or in-valid based on utility in comparison to NIST measured principal spectral lines 

[4] for hydrogen without concern for the perceived a priori validity of the assumptions.  Units of 

electron volts are used. 

It is assumed that for any electron, any atom. 

𝐸𝑠𝑝𝑒𝑐𝑡𝑟𝑎 = 𝐸𝑜 − 𝐸𝑒                                                                 (𝐴. 1)    
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𝐸𝑜 and 𝐸𝑒 are unknown with 𝐸𝑠𝑝𝑒𝑐𝑡𝑟𝑎 representing the principal spectral line energy for any 

electron, any atom, for the transition between the ground state and the nth principal excited state.   

It will be assumed that 𝐸𝑜 is the Ionization Energy (𝐼𝑒) since in the sense of a binding energy 

determined from the mass defect for a proton and electron, the binding energy is virtually equal 

to the Ionization Energy of atomic hydrogen.  It remains to determine a general relation for an 

electron transition energy 𝐸𝑒. 

It will be assumed that 𝐸𝑒 represents the energy of a non-specific electron state and can be 

evaluated as a de Broglie energy,   

𝐸𝑒 =
ℏ2

(2𝑚𝑒 ƛ𝑒
2 )𝑒

 

The de Broglie energy is evaluated as a function of the Coulombic characteristic length 𝑟 which 

itself is evaluated at the Ionization Energy. 

𝑟 =
𝑒

4𝜋𝜀𝑜𝐼𝑒
 

Arbitrarily, at this point, the function of r chosen is given by ƛ𝑒 = ½𝑟, with ƛ𝑒 representing the 

de Broglie wavelength of a general electron state.  There is a theoretical reason that ƛ𝑒 = ½𝑟 is 

selected, but this will not be addressed here to keep the development moving along.  These 

assumptions, and for what are at this point arbitrary considerations, leads to, 

  𝐸𝑒 =
ℏ2

(2𝑚𝑒 (
𝑟
2

)
2

) 𝑒
 

which results in, 

𝐸𝑒 = (
32𝜋2𝜀𝑜

2ℏ2𝐼𝑒
2

𝑚𝑒𝑒3
) =

𝐼𝑒
2

𝑅∞
                                                (𝐴. 2) 

 

In these equations, 𝑅∞  represents  (𝑅∞ℎ𝑐)/𝑒 = 13.60569253 (𝑒𝑣). 

To calculate the spectra for any transition, any electron, in any atom with Eq. A.2, 𝑍𝑒𝑓𝑓 and 𝑛 

must be inserted artificially, which does not fundamentally improve things compared to existing 

methods.  (However,  𝑍𝑒𝑓𝑓, 𝑛 and 𝑅∞ will drop out naturally, as the development proceeds, after 

which, R∞ will reemerge (𝑍𝑒𝑓𝑓 and 𝑛 drop out permanently) in a form expected for the Ritz 

equation).  This results in,   

𝐸𝑠𝑝𝑒𝑐𝑡𝑟𝑎 = 𝐼𝑒 − (
𝐼𝑒

2

𝑍𝑒𝑓𝑓
2  𝑛2 𝑅∞

)                                         (𝐴. 3) 

The semi-classical Eq. A.3, while not particularly useful, is a preliminary and new result that will 

have use in the development that follows.  It is very distinct from the Bohr equation and it is the 
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precursor to results that will have stand-alone utility.  The results discussed in the next section 

will have an unexpected relationship to the Dirac equation.  This relationship is discussed in 

Appendix B.   

 

A.2. Interaction of the Bound State with a Photon 
 

The assumptions and developments contained in this section are independent of Section A.1, 

resulting in two distinct equations for calculating the same result, which when combined, results 

in an equation of the form of the Rydberg-Ritz Combination principle.  This combined result can 

be used explicitly to calculate principal spectral lines without the need for a 𝑍𝑒𝑓𝑓 or a quantum 

defect or any fitted parameter.   

A second relationship for atomic bound state transitions can be written that is directly related to 

Compton scattering for a radiation interaction with a ‘free’ electron.  The key characteristic of 

Compton scattering to be applied is that the Compton wavelength represents a constant change in 

radiation wavelength, when a photon interacts with an electron, regardless of the wavelength of 

the input radiation. 

In this section, it will be assumed that the wavelength of the ground state of an electron can be 

represented by the de Broglie wave evaluated at the Ionization Energy of the electron for any 

electron, any atom. 

𝐸𝑜 = 𝑎𝑡𝑜𝑚𝑖𝑐 𝑔𝑟𝑜𝑢𝑛𝑑 𝑠𝑡𝑎𝑡𝑒 = 𝐼𝑒 

ƛ𝑜 =
ℏ

√2𝑚𝑒𝐼𝑒𝑒 
                                                              (𝐴. 4) 

It will be assumed that for a bound electron the change of the electron state responding to a 

radiation input will be evaluated as a constant change in wavelength corresponding to the Bohr 

radius (𝑎𝑜) in the same manner as the Compton effect for a “free” electron is constant in terms of 

the Compton wavelength.   

The first principal state is equal to the ground state de Broglie wave, plus one Bohr radius.  

The second principal state is equal to the ground state plus two Bohr radii, and so on.   

ƛ𝑒 = ƛ𝑜 + (
𝑥

𝑎
) 𝑎𝑜                                                             (𝐴. 5) 

𝑥 =  the principal energy transition – 1st transition 𝑥 = 1; 2nd transition 𝑥 = 2; and so on  

 𝑎  =  the electron number.  For the outer electron 𝑎 = 1; 𝑎 ranges from Z to 1 

ƛ𝑒 = the de Broglie wavelength of the excited principal state. 

ƛ𝑜 = the de Broglie wavelength evaluated at the Ionization Energy of the electron state 

representing the ground state. 
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𝑎𝑜 = the constant change in electron state wavelength, regardless of energy input. is equal 

to the Bohr radius. 

To demonstrate the interaction between the electron state and photon as a type of 

wave/particle interaction, depending on interpretation, the Bohr radius and Compton 

wavelength can be related using the following identity, 

𝐸𝑟𝑎𝑑𝑎𝑜

𝐸𝑟ƛ𝑐𝑜𝑚𝑝

=

ℏ𝑐
𝑎𝑜

𝑒2

4𝜋𝜀𝑜ƛ𝑐𝑜𝑚𝑝

= 1                                                       (𝐴. 6) 

permitting Eq. (A.5) to be rewritten as, 

 

                                                        ƛ𝑒 =
ℏ

√2𝑚𝑒𝐼𝑒 𝑒
+ (

𝑥

𝑎
) (

ℏ𝑐

𝐸𝑟ƛ𝑐𝑜𝑚𝑝

)                                                    (4) 

 

Equation 4 was first introduced in Section 4. as essential to the calculation of fine-structure. 

The first term of Eq. 4 is generally considered a wave form and the second term is 

generally considered a particle form. 

Equation A.5 and Eq. 4 are equivalent and general.  Equation A.5 will be used for further 

development leading to the equation corresponding to the Rydberg-Ritz Combination 

Principle, but Eq. 4 establishes a relationship between the bound state and a radiation 

‘packet’ evaluated at an energy dependent on the Compton wavelength.   This algebraic 

and therefore intrinsically discrete interaction of the electron state and radiation as a 

wave/particle interaction explicitly defines an atomic electron transition as the algebraic 

addition of a photon to an electron state (or electron) in a natural way.  In other words, the 

addition of a wave form and particle form reduces to the addition of two lengths. 

Another implication of Eq. 4, that ƛ𝑐𝑜𝑚𝑝 is fundamental to radiation interaction with a de Broglie 

wave, is that the constant ½𝑚𝑒𝑐2 in the Energy-Momentum equation can be written, 

½𝑚𝑒𝑐2 =
ℏ𝑐

2ƛ𝑐𝑜𝑚𝑝
=

ℏ2

2𝑚𝑒ƛ𝑐𝑜𝑚𝑝
2

 

or 

𝑚𝑒𝑐2 =
ℏ𝑐

2ƛ𝑐𝑜𝑚𝑝
+

ℏ2

2𝑚𝑒ƛ𝑐𝑜𝑚𝑝
2

                                                  (𝐴. 8) 

Either the de Broglie form or photon form or both can be substituted into the Energy-Momentum 

equation.  The forms are interchangeable and demonstrates a type of interchangeable duality in 
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that either individually or both can be concurrently substituted and simply added, giving the 

same result.   

If Eq. A.8 is used and both are substituted concurrently, a derivation of Compton scattering 

follows (a prime means post-scattering), 

𝐸𝑒
′ = 𝐸𝛾 − 𝐸𝛾

′ + 𝑚𝑒𝑐2             (𝐶𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐸𝑛𝑒𝑟𝑔𝑦) 

𝑝𝑒
′ = 𝑝𝛾 − 𝑝𝛾

′             (𝐶𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚) 

𝐸𝑒
′ = √(𝑝𝑒

′ 𝑐)2 + (𝑚𝑒𝑐2)2                                (𝐸˗𝑀 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛) 

substitution of appropriate terms, including Eq. A.8, and rearranging, 

𝑝𝑒𝑐2 = (
ℏ𝑐

ƛ
+

ℏ𝑐

2ƛ𝑐𝑜𝑚𝑝
+

ℏ2

2𝑚𝑒ƛ𝑐𝑜𝑚𝑝
2

+
ℏ𝑐

ƛ′
)

2

− (
ℏ𝑐

2ƛ𝑐𝑜𝑚𝑝
+

ℏ2

2𝑚𝑒ƛ𝑐𝑜𝑚𝑝
2

)

2

         (𝐴. 9) 

𝑝𝑒𝑐2 = (𝑝 · 𝑝)𝑐2 = (
ℏ𝑐

ƛ
)

2

+ (
ℏ𝑐

ƛ′
)

2

−
2ℏ2𝑐2

ƛƛ′
𝑐𝑜𝑠𝜃 

setting these equal and simplifying, 

ℏ2𝑐2

ƛ𝑐𝑜𝑚𝑝
(

1

ƛ
−

1

ƛ′
) +

ℏ3𝑐

𝑚𝑒ƛ𝑐𝑜𝑚𝑝
2

(
1

ƛ
−

1

ƛ′
) =

2ℏ2𝑐2

ƛƛ′
(1 − 𝑐𝑜𝑠𝜃) 

½
1

ƛ𝑐𝑜𝑚𝑝
(

1

ƛ
−

1

ƛ′
) + ½ (

ℏ

𝑚𝑒𝑐
) (

1

ƛ𝑐𝑜𝑚𝑝
2

) (
1

ƛ
−

1

ƛ′
) =

1

ƛƛ′
 (1 − 𝑐𝑜𝑠𝜃) 

1

ƛ𝑐𝑜𝑚𝑝
(

1

ƛ
−

1

ƛ′
) =

1

ƛƛ′
(1 − 𝑐𝑜𝑠𝜃) 

ƛ′ − ƛ = ƛ𝑐𝑜𝑚𝑝(1 − 𝑐𝑜𝑠𝜃)                   (𝐶𝑜𝑚𝑝𝑡𝑜𝑛 𝑆𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔) 

This demonstrates that at the Compton wavelength, the radiation or photon energy form or the de 

Broglie energy form are equivalent and strongly supports that they are in general additive as Eq. 

A.7 demonstrates when addressing the interaction of radiation with the bound state. 

Given that the derivation of the Compton effect was developed based on one photon (not a wave-

train) interacting with one ‘free’ electron, it suggests that the Compton wavelength could be 

thought of as a constant fundamental to the change in characteristic length of either a photon 

(Compton scattering) or electron Eq. A.7.  In some respects, Compton scattering or Eq. A.7 

represents a conservation of wavelength principle between a photon and electron.   
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A.3. Eliminating the Effective Atomic Number or Quantum Defect 
 

The next step is to develop a relationship for 𝑍𝑒𝑓𝑓  that will enable writing the simplest expression 

for the equation representing the Rydberg-Ritz Combination Principle. 

Using the original assumption that an electron can be represented as a de Broglie wave and 

using Eq. A.5, the energy of the electron state for any electron, any atom, can be written,  

𝐸𝑒 =
ℏ2

2𝑚𝑒ƛ𝑒
2

                                                                   (𝐴. 10) 

𝐸𝑠𝑝𝑒𝑐𝑡𝑟𝑎 = 𝐼𝑒 −
ℏ2

2𝑚𝑒 (ƛ𝑜 +
𝑥
𝑎 𝑎𝑜)

2                                                (𝐴. 11) 

Equation A.11 can be used to calculate the principal spectral line for any electron, any atom, 

although this is still not the final form.  

 

Substituting 𝐸𝑒 from Eq. A.2 into ƛ𝑒 of Eq. A.5, 

ℏ

(
2𝑚𝑒𝐼𝑒

2

𝑍𝑒𝑓𝑓
2 𝑛2𝑅∞

)

½ =
ℏ

(2𝑚𝑒𝐼𝑒)½
+ (

𝑥

𝑎
) 𝑎𝑜 

Rearranging,  

𝑍𝑒𝑓𝑓 = (
1

𝑛
) (

𝐼𝑒

𝑅∞
)

½

(1 + (
𝑥

𝑎
) (

𝑎𝑜

𝜆𝑜
))                                          (𝐴. 12) 

Substituting Eq. A.12 into Eq. A.3 eliminates 𝑍𝑒𝑓𝑓, 𝑛 and 𝑅∞ naturally, resulting in, 

𝐸𝑠𝑝𝑒𝑐𝑡𝑟𝑎 = 𝐼𝑒 −
𝐼𝑒

(1 + (
𝑥
𝑎) (

𝑎𝑜

ƛ𝑜
) )

2                                           (𝐴. 13) 

Using Eq. A.13, any principal spectra can be calculated for any electron and for any atom, single 

or multi-electron, using the correct value of x and a.  It is important to note that a positive energy 

frame of reference is used which is the natural frame for this analysis.  Electron states lose 

energy (wavelength or characteristic length of the electron state becomes longer) as the transition 

number increases. 

 

 
 



23 
 

A.4. A New Rydberg-Ritz Equation 
    

The following result from Section A.2.  

 

½𝑚𝑒𝑐2 =
ℏ2

2𝑚𝑒ƛ𝑐𝑜𝑚𝑝
2

 

 

is equivalent to the identity, 

(
𝐼𝑒

𝑅∞
)

½

=
𝑎0

ƛ𝑜
                                                               (𝐴. 14) 

 

and substituting A. 14 into Eq. A.13 results in, 

 

𝐸𝑠𝑝𝑒𝑐𝑡𝑟𝑎 = 𝐼𝑒 −
𝐼𝑒𝑅∞

(√𝑅∞ + (
𝑥
𝑎) √𝐼𝑒)

2                                           (1) 

 

which has the identical form of the Rydberg-Ritz equation typically written as,2 

 

𝑇 = 𝐴 −
(𝑍 − 𝛿𝑜)2𝑅∞

(𝑚 + 𝑎)2
  

            

where A is empirically determined to be the Ionization Potential and (𝑍 – 𝛿𝑜) is essentially 

a 𝑍𝑒𝑓𝑓 or more commonly referred to as the quantum defect.  The Rydberg-Ritz equation is 

currently used to fit some of the spectral data in the National Institute of Standards and 

Technology (NIST) database.1 

 

A.5. Two Equivalent Calculations 
 

Calculations for the first hydrogen transition using Eq. A.13 and Eq. 1 demonstrate that despite 

their very different appearance they give the same result. 
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Using Eq. A.13, 

 

𝐼𝑒 = 13.598434486 𝑒𝑣 

 

𝑚𝑒 = 9.10938291𝐸˗31 𝑘𝑔 

  

𝑎𝑜 =  
4𝜋𝜀𝑜 ℏ2

𝑚𝑒 𝑒2
=  5.2917721092𝐸˗11 𝑚 

 

ƛ𝑜 =
ℏ

√2𝑚𝑒𝐼𝑒𝑒
= 5.293184138𝐸˗11 𝑚 

 

𝐸𝑠𝑝𝑒𝑐𝑡𝑟𝑎 = 𝐼𝑒 −
𝐼𝑒

(1 + (
𝑥
𝑎) (

𝑎𝑜

𝜆𝑜 
))

2                                             (𝐴. 13) 

 

 

𝐸_𝑠𝑝𝑒𝑐𝑡𝑟𝑎 (𝐻) = 13.598434486 −
13.598434486

(1 + (
1
1) (

5.2917721092𝐸˗11
5.293184138𝐸˗11

))

2  

 

𝐸𝑠𝑝𝑒𝑐𝑡𝑟𝑎(𝐻 𝐼) = 10.19791879 𝑒𝑉 

 

Using equation A.1, 

 

𝐼𝑒 = 13.598434486 𝑒𝑣 

 

𝑅∞ = 13.60560253 

𝐸𝑠𝑝𝑒𝑐𝑡𝑟𝑎 = 𝐼𝑒 −
𝑅𝜇𝐼𝑒

(√𝑅𝜇 + (
𝑥
𝑎) √𝐼𝑒)

2                                                 (1) 

 

𝐸𝑠𝑝𝑒𝑐𝑡𝑟𝑎  (𝐻) = 13.598434486 −
(13.60569253)(13.5984344869)

((√13.60569253 + (
1
1) √13.598434486))

2  

 

𝐸𝑠𝑝𝑒𝑐𝑡𝑟(𝐻 𝐼) =  10.19791879 𝑒𝑉 
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A.6. Conclusion 
 

The derivation of the equation for Compton scattering from the Energy-Momentum equation 

using an additive photon and de Broglie wave indicates the compatibility and interchangeability 

of the two physical entities.  Appendix A details additional examples of this algebraic 

compatibility between physical entities that may not be a priori considered interchangeable, but 

are. 

A first key principle is application of the Compton scattering result to the bound state that the 

change in wavelength is constant (Compton wavelength) regardless of input.  This principle 

emerges in the interaction of the photon with a bound electron state and leads to calculation of 

the principal energy spectra and ultimately Eq. 1. 

A second key principle is that the Coulomb energy is an implicit part of both the de Broglie wave 

(Eq. A.2) and the photon (Eq. 4).  Essentially a coulombic de Broglie wave or a coulombic 

photon results.  In the first case, the Coulomb energy is the energy term of the semi-classical 

result, and in the second, it is the energy term of a quantum result.  The combination of the semi-

classical and quantum result leads to Eq. 1 calculation of the principal spectra.  Combination of 

the quantum and special relativistic result (Eq.5) leads to calculation of fine-structure.  

  

11.  Appendix B - Multi-Electron Results for Principal Spectral 

Lines  

 
Calculations using Eq. (1) are presented for multi-electron atoms (with a few single electron 

results included).  The criteria for selection was based on including representative Periods where 

adequate data existed in the NIST database.  It should be noted that data does not exist for most 

electrons and when it does exist, it is usually limited to a few transitions.  In some cases, such as 

Ba I, Cs II and Fr II, data for a large number of transitions does exist providing a good 

comparison of results where trends can be identified.  Another consideration is a focus on the 

first electron in a period where the principal spectral line can be very clearly identified.  As more 

electrons fill the period, it becomes increasingly unclear what is a principal spectral line (of 

course the Dirac equation 𝐽 = ½ does not help for multi-electron cases).  Some calculations were 

done for cases that include more than one electron in a period with the resulting accuracy well 

within reasonable limits, but, in fact, it was impossible to determine if the error was relative to a 

principal spectral line or due to the inability to identify a principal spectral line so they are not 

included due to ambiguity.  Calculations are therefore presented for the first electron of a period 

where ambiguity did not exist.  These calculations are presented in Tables B.1 through B.26.  

In the case of the first transition of the principal spectral lines, the Eq. (1) accuracy is on the 

order of 0.1% for multi-electron Period 2 light elements and on the order of at most 2 to 4% for 

multi-electron Period 6 & 7 elements including the francium valence electron.  The accuracy in 
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virtually all cases improves dramatically from this result for the first transition as transition 

number increases.  There is no divergence at higher transition numbers, but very strong 

convergence, which is somewhat remarkable given the lines become increasingly closer and 

harder to separate as the transition number increases.   

All energy values are in electron volts. 

 

Second Period 
 

Table B.1:  Li I  

Li Z  a  

1 3  1  

Configuration NIST (eV) X Equation (1) ∆% 

1s22s 0.0000000    

1s23s 3.3731290 1 3.3613130 0.35030 

1s24s 4.3409420 2 4.3352811 0.13041 

1s25s 4.7485330 3 4.7455834 0.06212 

1s26s 4.9578350 4 4.9561346 0.03430 

1s27s 5.0793700 5 5.0783264 0.02055 

1s28s 5.1561400 6 5.1554809 0.01278 

1s29s 5.2077500 7 5.2072906 0.00882 

1s210s 5.2443000 8 5.2437529 0.01043 

1s211s 5.2706000 9 5.2703811 0.00415 

Li I IP 5.3917150       

 

Table B.2:  C IV  

C Z Rμ a  

4 6 13.60445788 4  

Configuration NIST (eV) X Equation (1) ∆% 

1s22s 0.0000000    

1s23s 37.5484900 1 37.4514908 0.25833 

1s24s 49.7608200 2 49.7097353 0.10266 

1s25s 55.2186600 3 55.1905062 0.05099 

1s26s 58.1218100 4 58.1049920 0.02894 

1s27s 59.8479200 5 59.8371004 0.01808 

1s28s 60.9569300 6 60.9495841 0.01205 

1s29s 61.7114900 7 61.7062591 0.00848 

C IV IP 64.4935200    
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Table B.3:  N V  

 

Table B.4:  O VI  

O Z  a  

6 8  6  

Configuration NIST (eV) X Equation (1) ∆% 

1s22s 0.0000000    

1s23s 79.3548200 1 79.1967907 0.19914 

1s24s 105.7208000 2 105.6371447 0.07913 

1s25s 117.6230000 3 117.5786947 0.03767 

1s26s 123.9940000 4 123.9680299 0.02094 

1s27s 127.8000000 5 127.7811231 0.01477 

1s28s 130.2507000 6 130.2375426 0.01010 

O VI IP 138.1189000    

 
 

 
 

 
 

 
 

 
 

N Z  a  

5 7  5  

Configuration NIST (eV) X Equation (1) ∆% 

1s22s 0.00000    

1s23s 56.55249 1 56.4249766 0.22548 

1s24s 75.17767 2 75.1100981 0.08988 

1s25s 83.55124 3 83.5140350 0.04453 

1s26s 88.02124 4 87.9991403 0.02511 

1s27s 90.68519 5 90.6712008 0.01543 

1s28s 92.39992 6 92.3904173 0.01028 

1s29s 93.56802 7 93.5613332 0.00715 

1s210s 94.39942 8 94.3945420 0.00517 

N V IP 97.89014    
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Table B.5:  F VII 

 

 

Fourth Period 

 

Table B.6:  Fe XXIV  

Fe Z  a  

24 26  24  

Configuration NIST (eV) X Equation (1) ∆% 

1s22s 0.00000    

1s23s 1149.64300 1 1149.6381437 0.00042 

1s24s 1545.38900 2 1545.3172772 0.00464 

1s25s 1726.53570 3 1726.8567799 0.01860 

Fe XXIV IP 2045.75900    

 

Table B.7:  Fe XVI  

Fe Z  a  

16 26  16  

Configuration NIST (eV) X Equation (1) ∆% 

2p63s 0.00000    

2p64s 231.57020 1 230.4327577 0.49119 

2p65s 330.05000 2 329.4691354 0.17599 

2p66s 381.38000 3 380.8956802 0.12699 

2p67s 412.00000 4 410.9757570 0.24860 

Fe XVI IP 489.31200    

 
 

F Z  a  

7 9  7  

Configuration NIST (eV) X Equation (1) ∆% 

1s22s 0.00000    

1s23s 105.95950 1 105.7726280 0.17636 

1s24s 141.39550 2 141.2974970 0.06931 

1s25s 157.44520 3 157.3913456 0.03421 

1s26s 166.05070 4 166.0186012 0.01933 

1s27s 171.19430 5 171.1738391 0.01195 

F VII IP 185.18680    
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Table B.8:  Cu XXVIX  

Cu Z  a  

29 29  29  

Configuration NIST (eV) X Equation (1) ∆% 

1s 0.000    

2s 8666.838 1 8691.454 0.28403 

3s 10281.955 2 10291.640 0.09419 

4s 10845.942 3 10850.529 0.04230 

5s 11106.427 4 11108.929 0.02253 

Cu XXIX IP 11567.613    

 

Table B.9:  Cu XXVII  

Cu Z  a  

27 29  27  

Configuration NIST (eV) X Equation (1) ∆% 

2s 0    

3s 1452.398 1 1453.440981 0.07181097 

4s 1952.9668 2 1953.849193 0.045182188 

5s 2182.891 3 2183.478903 0.026932323 

Cu XXVII IP 2586.954    

 

Table B.10:  Cu XIX  

Cu Z  a   

19 29  19   

Configuration NIST (eV) X  Equation (1) ∆% 

3s 0    
4s 314.3545 1 313.0559918 0.413071295 

Cu XIX IP        
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Table B.11:  Cu I  

Cu 

1 

Z 

29 
 a 

1 
 

Configuration NIST (eV) X Equation (1) ∆% 

d104s 0.00    

d105s 5.3483347 1 5.2101096 2.58445 

3d106s 6.5524100 2 6.4929944 0.90677 

3d107s 7.0263552 3 6.9953249 0.44163 

3d108s 7.2616180 4 7.2424841 0.26349 

3d109s 7.3953930 5 7.3820376 0.18059 

3d1020s 7.6815300 16 7.6765545 0.06477 

3d1021s 7.6862500 17 7.6813647 0.06356 

3d1022s 7.6902600 18 7.6854478 0.06258 

3d1023s 7.6937200 19 7.6889432 0.06209 

3d1024s 7.6966850 20 7.6919585 0.06141 

3d1025s 7.6992800 21 7.6945779 0.06107 

3d1026s 7.7015710 22 7.6968677 0.06107 

3d1027s 7.7035200 23 7.6988809 0.06022 

3d1028s 7.7052990 24 7.7006604 0.06020 

3d1029s 7.7068520 25 7.7022410 0.05983 

3d1030s 7.7082700 26 7.7036513 0.05992 

3d1031s 7.7095210 27 7.7049149 0.05975 

3d1032s 7.7106470 28 7.7060515 0.05960 

3d1033s 7.7116600 29 7.7070775 0.05942 

3d1034s 7.7125940 30 7.7080068 0.05948 

3d1035s 7.7134200 31 7.7088512 0.05923 

3d1036s 7.7142000 32 7.7096207 0.05936 

3d1037s 7.7148500 33 7.7103240 0.05867 

3d1038s 7.7155100 34 7.7109684 0.05886 

3d1039s 7.7160900 35 7.7115603 0.05870 

3d1040s 7.7166200 36 7.7121053 0.05851 

3d1041s 7.7171200 37 7.7126082 0.05846 

Cu I IP 7.7218700    
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Fifth Period 

 

Table B.12:  Cs LV  

Cs Z  a  

55 55  55  

Configuration NIST (eV) X Equation (1)  

1s 0    

2s 32064.58 1 32407.70424 1.070103641 

3s 38142.88 2 38276.31978 0.349841908 

Cs LV IP 42912.99    

 

Table B.13:  Cs LIII  

Cs Z  a  

53 55  53  

Configuration NIST (eV) X Equation (1) ∆% 

2s 0    

3s 5752.7 1 5771.707674 0.330413092 

4s 7734.4 2 7740.400652 0.077583933 

5s 8641.1 3 8639.428169 0.019347437 

Cs LIII IP 10208.78    

 

Table B.14:  Cs XLV  
Cs Z  a  

45 55  45  

Configuration NIST (eV) X Equation (1) ∆% 

3s 0    

4s 1588.99 1 1588.715537 0.017272788 

5s 2295.21 2 2295.008322 0.008786905 

6s 2668.7 3 2669.292047 0.022184855 

Cs XLV IP 3485    

 

Table B.15:  Cs XXVII  

Cs Z  a  

27 55  27  

Configuration NIST (eV) X Equation (1) ∆% 

4s 0    

5s 380.72 1 377.277716 0.904151091 

Cs XXVII IP 916.1    
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Table B.16:  Cs IX  

Cs Z  a  

9 55  9  

Configuration NIST (eV) X Equation (1) ∆% 

4d105s 0    

4d106s 56.8737 1 55.40514274 2.582137717 

4d107s 81.8689 2 80.85066297 1.243740948 

4d108s 95.268 3 94.60627133 0.694596996 

4d109s 103.402 4 102.8731479 0.511452445 

Cs IX IP 125.61    

 

Table B.17:  Cs I  

Cs Z  a  

1 55  1  

Configuration NIST (eV) X Equation (1) ∆% 

5p66s 0.0000000    

5p67s 2.2981126 1 2.2412511 2.47427 

5p68s 3.0149423 2 2.9851134 0.98937 

5p69s 3.3364969 3 3.3200619 0.49258 

5p610s 3.5087811 4 3.4989464 0.28029 

5p611s 3.6118742 5 3.6055698 0.17455 

5p612s 3.6784628 6 3.6741953 0.11601 

5p613s 3.7239631 7 3.7209466 0.08100 

5p614s 3.7564292 8 3.7542210 0.05878 

5p615s 3.7804051 9 3.7787414 0.04401 

5p616s 3.7986133 10 3.7973294 0.03380 

5p617s 3.8127663 11 3.8117552 0.02652 

5p618s 3.8239848 12 3.8231745 0.02119 

5p619s 3.8330276 13 3.8323684 0.01720 

5p620s 3.8404230 14 3.8398795 0.01415 

5p621s 3.8465482 15 3.8460950 0.01178 

5p622s 3.8516783 16 3.8512964 0.00991 

5p623s 3.8560177 17 3.8556930 0.00842 

5p624s 3.8597210 18 3.8594426 0.00721 

5p625s 3.8629068 19 3.8626663 0.00623 

Cs I IP 3.8939057 9.109292709E-31   
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Table B.18:  Ba LVI  

Ba Z   a  

56 56 13.60556021 56  

Configuration NIST (eV) X Equation (1) ∆% 

1s 0    

2s 33291.52 1 33661.76414 1.112127486 

3s 39607.93 2 39752.04057 0.363842711 

Ba LVI IP 44561.47       

 

Table B.19:  Ba LIV  

Ba Z  a  

54 56  54  

Configuration NIST (eV) X Equation (1) ∆% 

2s 0    

3s 5984.296 1 6004.955576 0.345229849 

4s 8045.099 2 8051.785325 0.083110534 

5s 8987.8 3 8986.158157 0.018267461 

Ba LIV IP 10616.42    

 

Table B.20:  Ba XLVI  

Ba Z  a  

46 56  46  

Configuration NIST (eV) X Equation (1) ∆% 

3s 0    

4s 1659.59 1 1659.145921 0.026758371 

5s 2397.4 2 2396.853327 0.022802734 

6s 2787.7 3 2787.817797 0.004225595 

Ba XLVII IP 3640    

 

Table B.21:  Ba XXVIII  

Ba Z  a  

28 56  28  

Configuration NIST (eV) X Equation (1) ∆% 

4s 0    

5s 404.62 1 401.0291837 0.887453987 

Ba XXIX IP 976.62    
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Table B.22:  Ba X  

Ba Z  a  

10 56  10  

Configuration NIST (eV) X Equation (1) ∆% 

5s 0    

6s 65.1051 1 63.46032086 2.526344536 

7s 94.2824 2 93.11312529 1.240183442 

Ba XI IP 146.5212    

 

Table B.23:  Ba II  

Ba Z  a  

2 56  2  

Configuration NIST (eV) X Equation (1) ∆% 

6s 0.000000    

7s 5.2513724 1 5.1031137 2.8232381 

8s 7.1942092 2 7.1043665 1.2488202 

9s 8.1437341 3 8.0898824 0.6612653 

10s 8.6807020 4 8.6466437 0.3923449 

11s 9.0143060 5 8.9915877 0.2520253 

12s 9.2357850 6 9.2199723 0.1712113 

20s 9.8020720 14 9.7998046 0.0231322 

21s 9.8245700 15 9.8226676 0.0193636 

22s 9.8434940 16 9.8418923 0.0162716 

23s 9.8595930 17 9.8582116 0.0140109 

24s 9.8733670 18 9.8721827 0.0119945 

25s 9.8852630 19 9.8842355 0.0103938 

35s 9.9487110 29 9.9483904 0.0032226 

36s 9.9520600 30 9.9517665 0.0029494 

37s 9.9551070 31 9.9548433 0.0026492 

38s 9.9579060 32 9.9576552 0.0025190 

39s 9.9604560 33 9.9602317 0.0022521 

40s 9.9627940 34 9.9625984 0.0019632 

41s 9.9649570 35 9.9647775 0.0018013 

42s 9.9669480 36 9.9667883 0.0016024 

43s 9.9687920 37 9.9686477 0.0014479 

44s 9.9705030 38 9.9703705 0.0013293 

45s 9.9721000 39 9.9719697 0.0013064 

46s 9.9735750 40 9.9734570 0.0011831 

47s 9.9749590 41 9.9748425 0.0011678 

48s 9.9762470 42 9.9761353 0.0011195 

49s 9.9774400 43 9.9773435 0.0009671 

Ba III IP 10.003826    
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Sixth Period 
 

Table B.24:  Au I  

Au Z  a  

1 79  1  

Configuration NIST (eV) X Equation (1) ∆% 

5d106s 0.0000000    

5d107s 6.7553081 1 6.4509271 4.50580 

5d108s 8.0270300 2 7.9087620 1.47337 

5d109s 8.5153000 3 8.4595242 0.65501 

5d1010s 8.7554300 4 8.7251640 0.34568 

5d1011s 8.8913800 5 8.8732489 0.20392 

5d1012s 8.9759500 6 8.9641472 0.13149 

5d1013s 9.0319400 7 9.0239191 0.08881 

5d1014s 9.0709400 8 9.0653094 0.06207 

Au I IP 9.2255540    

 

Table B.25:  Hg II  

Hg Z  a  

2 80  2  

Configuration NIST (eV) X Equation (1) ∆% 

5d106s 0.0000000    

5d107s 11.8670738 1 11.3101139 4.69332 

5d108s 15.0537429 2 14.7887592 1.76025 

5d109s 16.4354134 3 16.2967310 0.84380 

5d1010s 17.1637129 4 17.0837974 0.46561 

5d1011s 17.5948783 5 17.5457380 0.27929 

Hg II IP 18.75687    
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Seventh Period 
 

Table B.26:  Fr I  

Fr  Z  a  

1  87  1  

Configuratio

n 

 
NIST (eV) X Equation (1) ∆% 

7s  0.0000000    

8s  2.4474460 1 2.3712193 3.11454 

9s  3.1827980 2 3.1441340 1.21478 

10s  3.5100691 3 3.4889877 0.60060 

11s  3.6846751 4 3.6721355 0.34032 

12s  3.7888956 5 3.7808885 0.21133 

13s  3.8560994 6 3.8506942 0.14017 

14s  3.9019643 7 3.8981514 0.09772 

15s  3.9346611 8 3.9318737 0.07084 

16s  3.9587893 9 3.9566919 0.05298 

17s  3.9771021 10 3.9754855 0.04065 

18s  3.9913304 11 3.9900578 0.03188 

19s  4.0026042 12 4.0015844 0.02548 

20s  4.0116877 13 4.0108585 0.02067 

21s  4.0191139 14 4.0184310 0.01699 

22s  4.0252631 15 4.0246940 0.01414 

23s  4.0304130 16 4.0299330 0.01191 

24s  4.0347670 17 4.0343596 0.01010 

25s  4.0384830 18 4.0381334 0.00866 

26s  4.0416790 19 4.0413769 0.00748 

27s  4.0444480 20 4.0441848 0.00651 

28s  4.0468620 21 4.0466319 0.00569 

29s  4.0489790 22 4.0487774 0.00498 

30s  4.0508480 23 4.0506689 0.00442 

Fr I IP 4.0727410        
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12.  Appendix C - Single and Multi-Electron Results for Fine-

Structure Energy Splits 𝑬∆ (Eq. 6)  
 

 

It will be shown in Appendix C that the fine-structure energy splits will be more accurate for 

heavier elements (on the order of 3%) with accuracy decreasing, with still acceptable accuracy, 

to the multi-electron He I.  This is the reverse of the case for the principal lines.     

All energies are in electron volts. 

 

Table C.1:  Ge XXXII 

𝒑 (𝑬
(

𝟑

𝟐
)

− 𝑬
(

𝟏

𝟐
)
); 𝒅 (𝑬

(
𝟓

𝟐
)

− 𝑬
(

𝟑

𝟐
)
);  𝒇 (𝑬

(
𝟕

𝟐
)

− 𝑬
(

𝟓

𝟐
)
 ); 

𝑰𝒆 = 𝟏𝟒𝟏𝟏𝟗. 𝟒𝟑𝟎 

n 2s 3s 4s 5s 6s 

NIST 10576.4097 12550.1052 13238.9431 13556.9386 - 

Eq. A.10 3506.3403 1554.9126 873.6674 558.7748 - 

𝑬𝒏 (ev) 10613.0897 12564.5174 13245.7626 13560.6552 - 

∆% 0.35% 0.11% 0.052% 0.027%  

S=1 2p 3p 4p 5p 6p 

NIST 49.2599 14.6092 6.1562 3.148 - 

Eq. B.5. 47.9592 14.1628 5.9650 3.051 - 

∆% 2.6% 3.1% 3.1% 3.1%  

S=3  3d 4d 5d 6d 

NIST  4.7451 2.0042 1.0264 - 

Eq. B.5.  4.7209 1.9883 1.0170 - 

∆%  0.51% 0.79% 0.92%  

S=6   4f 5f 6f 

NIST   0.9958 0.5102 - 

Eq. B.5.   0.9941 0.5085 - 

∆%   0.17% 0.33%  

S=10    5g 6g 

NIST    0.3054 - 

Eq. B.5.    0.3051 - 

∆%    0.098%  
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Table C.2:  Ge XXXI 

𝒑 (𝑬(𝟐) − 𝑬(𝟎)); 𝒅 (𝑬(𝟑) − 𝑬(𝟐)) 

𝑰𝒆 = 𝟏𝟑𝟓𝟓𝟕. 𝟒𝟐𝟎𝟕 

n 2s 3s 4s 5s 6s 

NIST 10201.12935 12075.7019 - - - 

Eq. A.10 3328.2424 1470.3282 -  - 

𝑬𝒏 (ev) 10229.17834 12087.0925 - - - 

∆% 0.27% 0.094%    

S=1 2p 3p 4p 5p 6p 

NIST 40.7251 12.1207 - - - 

Eq. B.5. 42.9660 12.6161 - - - 

∆% 5.5% 4.1%    

S=3  3d 4d 5d 6d 

NIST  4.0815 - - - 

Eq. B.5.  4.2054 - - - 

∆%  3.0%    

 

 

Table C.3:  Ge XXX 

𝒑 (𝑬
(

𝟑

𝟐
)

− 𝑬
(

𝟏

𝟐
)
); 𝒅 (𝑬

(
𝟓

𝟐
)

− 𝑬
(

𝟑

𝟐
)
);  𝒇 (𝑬

(
𝟕

𝟐
)

− 𝑬
(

𝟓

𝟐
)
 ) 

𝑰𝒆 = 𝟑𝟏𝟗𝟒. 𝟐𝟗𝟑 

n 2s 3s 4s 5s 6s 

NIST 3194.293 1792.19 - - - 

Eq. A.10 - 1399.56 781.6816 - - 

𝑬𝒏 (ev) - 1794.73 2412.6114 - - 

∆%  0.14%    

S=1 2p 3p 4p 5p 6p 

NIST 39.1402 11.40 - - - 

Eq. B.5. 39.0952 11.34 - - - 

∆% 0.11% 0.53%    

S=3  3d 4d 5d 6d 

NIST  3.10 1.3 - - 

Eq. B.5.  3.78 1.58 - - 

∆%  21.9% 21.5%   

S=6   4f 5f 6f 

NIST   0.12 - - 

Eq. B.5.   0.79 - - 

∆%   84.8%   
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Table C.4:  Ga XXXI 

𝒑 (𝑬
(

𝟑

𝟐
)

− 𝑬
(

𝟏

𝟐
)
); 𝒅 (𝑬

(
𝟓

𝟐
)

− 𝑬
(

𝟑

𝟐
)
);  𝒇 (𝑬

(
𝟕

𝟐
)

− 𝑬
(

𝟕

𝟐
)
 ); 

𝑰𝒆 = 𝟏𝟑𝟑𝟐𝟗. 𝟒𝟖𝟗 

n 2s 3s 4s 5s 6s 

NIST 9918.0286 11767.9837 10845.9417 12711.9130 - 

Eq. A.10 3289.2236 1458.8372 717.0939 524.3083 - 

𝑬𝒏 (ev) 9950.8322 11780.6518 10849.8036 12715.1807 - 

∆% 0.33% 0.11% 0.036% 0.026%  

S=1 2p 3p 4p 5p 6p 

NIST 43.2913 12.8387 5.4095 2.7668 - 

Eq. B.5. 42.2126 12.4634 5.2519 2.6864 - 

∆% 2.5% 2.9% 2.9% 2.9%  

S=3  3d 4d 5d 6d 

NIST  4.17675 1.76395 0.90325 - 

Eq. B.5.  4.15615 1.75064 0.89549 - 

∆%  0.49% 0.75% 0.86%  

S=6   4f 5f 6f 

NIST   0.87679 0.44919 - 

Eq. B.5.   0.87532 0.44774 - 

∆%   0.17% 0.32%  

S=10    5g 6g 

NIST    0.26889 - 

Eq. B.5.    0.26865 - 

∆%    0.089%  
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Table C.5:  Ga XXX 

𝒑 (𝑬(𝟐) − 𝑬(𝟎)); 𝒅 (𝑬(𝟑) − 𝑬(𝟐)) 

𝑰𝒆 = 𝟏𝟐𝟔𝟗𝟔. 𝟓𝟓𝟕𝟑 

n 2s 3s 4s 5s 6s 

NIST 9555.27675 11309.76885 11919.5555 - - 

Eq. A.10 3116.94402 1376.9876 772.2311  - 

𝑬𝒏 (ev) 9579.61328 11319.56989 11924.3262 - - 

∆% 0.25% 0.087% 0.040%   

      

S=1 2p 3p 4p 5p 6p 

NIST 35.6095 10.5846 4.564 - - 

Eq. B.5. 37.6838 11.0652 4.647 - - 

∆% 5.8% 4.5% 1.8%   

S=3  3d 4d 5d 6d 

NIST  3.5671 1.500 - - 

Eq. B.5.  3.6884 1.549 - - 

∆%  3.4% 3.3%   

 

 

Table C.6:  Ga XXIX 

𝒑 (𝑬
(

𝟑

𝟐
)

− 𝑬
(

𝟏

𝟐
)
); 𝒅 (𝑬

(
𝟓

𝟐
)

− 𝑬
(

𝟑

𝟐
)
);  𝒇 (𝑬

(
𝟕

𝟐
)

− 𝑬
(

𝟕

𝟐
)
 ) 

𝑰𝒆 = 𝟐𝟗𝟖𝟒. 𝟒𝟐𝟔 

n 2s 3s 4s 5s 6s 

NIST 2984.426 1675.0798 2252.7234 2518.0682 - 

Eq. A.10 - 1307.6760 730.3819 465.4699 - 

𝑬𝒏 (ev) - 1676.7500 2254.0441 2518.9561 - 

∆%  0.10% 0.059% 0.035%  

S=1 2p 3p 4p 5p 6p 

NIST 34.1403 10.1072 4.2588 2.1784 - 

Eq. B.5. 34.1295 9.8990 4.1320 2.1022 - 

∆% 0.032% 2.1% 3.0% 3.5%  

S=3  3d 4d 5d 6d 

NIST  3.1913 1.3468 0.6893 - 

Eq. B.5.  3.3000 1.3773 0.7008 - 

∆%  3.4% 2.3% 1.7%  
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Table C.7:  Cu XXIX 

𝒑 (𝑬
(

𝟑

𝟐
)

− 𝑬
(

𝟏

𝟐
)
); 𝒅 (𝑬

(
𝟓

𝟐
)

− 𝑬
(

𝟑

𝟐
)
);  𝒇 (𝑬

(
𝟕

𝟐
)

− 𝑬
(

𝟓

𝟐
)
 ); 

𝑰𝒆 = 𝟏𝟏𝟓𝟔𝟕. 𝟔𝟏𝟑 

n 2s 3s 4s 5s 6s 

NIST 8666.8376 10281.9549 10845.9417 11106.4270 - 

Eq. A.10 2876.1862 1275.9892 717.0939 458.6908 - 

𝑬𝒏 (ev) 8691.4268 10291.6239 10849.8036 11108.9222 - 

∆% 0.28% 0.094% 0.036% 0.022%  

S=1 2p 3p 4p 5p 6p 

NIST 33.0195 9.797 4.1262 2.111 - 

Eq. B.5. 32.2897 9.541 4.0198 2.056 - 

∆% 2.2% 2.6% 2.6% 2.6%  

S=3  3d 4d 5d 6d 

NIST  3.1951 1.349 0.6912 - 

Eq. B.5.  3.1805 1.340 0.6855 - 

∆%  0.46% 0.67% 0.82%  

S=6   4f 5f 6f 

NIST   0.6716 0.3437 - 

Eq. B.5.   0.6700 0.3428 - 

∆%   0.24% 0.26%  

S=10    5g 6g 

NIST    0.2058 - 

Eq. B.5.    0.2057 - 

∆%    0.049%  

 
 

 
 

 
 

 
 

 
 

 
 



42 
 

Table C.8:  Cu XXVIII 

𝒑 (𝑬(𝟐) − 𝑬(𝟎)); 𝒅 (𝑬(𝟑) − 𝑬(𝟐)) 

𝑰𝒆 = 𝟏𝟏𝟎𝟔𝟐. 𝟒𝟑𝟏𝟐 

n 2s 3s 4s 5s 6s 

NIST 8329.2801 9855.7205 10386.212 10630.715 - 

Eq. A.10 2715.4866 1199.5290 672.734 429.770 - 

𝑬𝒏 (ev) 8346.9446 9862.8392 10389.697 10632.661 - 

∆% 0.21% 0.072% 0.034% 0.018%  

S=1 2p 3p 4p 5p 6p 

NIST 26.7831 7.961 3.359 - - 

Eq. B.5. 28.6002 8.334 3.527 - - 

∆% 6.8% 4.7% 5.0%   

S=3  3d 4d 5d 6d 

NIST  2.691 1.14 - - 

Eq. B.5.  2.736 1.18 - - 

∆%  1.7% 3.5%   

 

 

Table C.9:  Cu XXVII 

𝒑 (𝑬
(

𝟑

𝟐
)

− 𝑬
(

𝟏

𝟐
)
); 𝒅 (𝑬

(
𝟓

𝟐
)

− 𝑬
(

𝟑

𝟐
)
);  𝒇 (𝑬

(
𝟕

𝟐
)

− 𝑬
(

𝟓

𝟐
)
 ) 

𝑰𝒆 = 𝟐𝟓𝟖𝟔. 𝟗𝟓𝟒 

n 2s 3s 4s 5s 6s 

NIST 2586.954 1452.3980 1952.9668 2182.891 - 

Eq. A.10 - 1133.520215 633.1108 403.480 - 

𝑬𝒏 (ev) - 1453.4338 1953.8432 2183.474 - 

∆%  0.071% 0.045% 0.027%  

S=1 2p 3p 4p 5p 6p 

NIST 25.6091 7.5829 3.1963 1.6339 - 

Eq. B.5. 25.6441 7.4379 3.1047 1.5799 - 

∆% 0.14% 1.9% 2.9% 3.3%  

S=3  3d 4d 5d 6d 

NIST  2.3954 1.0119 0.5561 - 

Eq. B.5.  2.4793 1.0349 0.5268 - 

∆%  3.5% 2.3% 5.3%  

S=6   4f 5f 6f 

NIST   0.451 - - 

Eq. B.5.   0.517 - - 

∆%   14.6%   
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Table C.10:  Ne X 

𝒑 (𝑬
(

𝟑

𝟐
)

− 𝑬
(

𝟏

𝟐
)
); 𝒅 (𝑬

(
𝟓

𝟐
)

− 𝑬
(

𝟑

𝟐
)
);  𝒇 (𝑬

(
𝟕

𝟐
)

− 𝑬
(

𝟓

𝟐
)
 ); etc. 

𝑰𝒆 = 𝟏𝟑𝟔𝟐. 𝟏𝟗𝟗𝟏𝟓 

n 2s 3s 4s 5s 6s 

NIST 1021.51777 1210.83257 1277.07570 1307.72927 1324.37741 

Eq. A.10 340.34596 151.23469 85.06103 54.43580 37.80113 

𝑬𝒏 (ev) 1021.85319 1210.96446 1277.13812 1307.76335 1324.39802 

∆% 0.033% 0.011% 0.0049% 0.0026% 0.0016% 

S=1 2p 3p 4p 5p 6p 

NIST 0.45534561 0.13492953 0.05691743 0.02913814 0.01686049 

Eq. B.5. 0.45323265 0.13425095 0.05662865 0.02899127 0.01677636 

∆% 0.21% 0.50% 0.51% 0.50% 0.50% 

S=3  3d 4d 5d 6d 

NIST  0.04486734 0.01893052 9.69259E-3 5.60904E-3 

Eq. B.5.  0.04475029 0.01887621 9.66376E-3 5.59212E-3 

∆%  0.26% 0.29% 0.30% 0.30% 

S=6   4f 5f 6f 

NIST   9.4595E-3 4.84357E-3 2.80303E-3 

Eq. B.5.   9.4381E-3 4.83188E-3 2.79606E-3 

∆%   0.23% 0.24% 0.25% 

S=10    5g 6g 

NIST    2.90543E-3 1.68145E-3 

Eq. B.5.    2.89913E-3 1.67764E-3 

∆%    0.22% 0.23% 

S=15     6h 

NIST     1.12082E-3 

Eq. B.5.     1.11843E-3 

∆%     0.21% 
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Table C.11:  Ne IX 

𝒑 (𝑬(𝟐) − 𝑬(𝟎)); 𝒅 (𝑬(𝟑) − 𝑬(𝟏)) 

𝑰𝒆 = 𝟏𝟏𝟗𝟓. 𝟖𝟎𝟕𝟖𝟑 

n 2s 3s 4s 5s 6s 

NIST 910.20645 1070.47210 1125.73065 1151.12195 - 

Eq. A.10 286.87496 125.78292 70.27727 44.79628 - 

𝑬𝒏 (ev) 908.93287 1070.02491 1125.53056 1151.01155 - 

∆% 0.14% 0.042% 0.018% 0.0096%  

S=1 2p 3p 4p 5p 6p 

NIST 0.2294 0.0694 0.0286 0.0149 - 

Eq. B.5. 0.3157 0.0916 0.0383 0.0195 - 

∆% 37.6% 32.0% 33.9% 30.9%  

S=3  3d 4d 5d 6d 

NIST  0.0236 0.0112 - - 

Eq. B.5.  0.0306 0.0128 - - 

∆%  29.7% 14.3%   

 

 

Table C.12:  Ne VIII 

𝒑 (𝑬
(

𝟑

𝟐
)

− 𝑬
(

𝟏

𝟐
)
); 𝒅 (𝑬

(
𝟓

𝟐
)

− 𝑬
(

𝟑

𝟐
)
);  𝒇 (𝑬

(
𝟕

𝟐
)

− 𝑬
(

𝟓

𝟐
)
 ) 

𝑰𝒆 = 𝟐𝟑𝟗. 𝟎𝟗𝟕𝟎 

n 2s 3s 4s 5s 6s 

NIST 239.0970 136.36848 182.2092 203.0192 214.1925 

Eq. A.10 - 102.94384 57.0044 36.1431 24.9439 

𝑬𝒏 (ev) - 136.15316 182.0926 202.9539 214.1531 

∆%  0.16% 0.064% 0.032% 0.018% 

S=1 2p 3p 4p 5p 6p 

NIST 0.20449 0.06053 0.0255 0.0129 7.5E-3 

Eq. B.5. 0.21350 0.06032 0.0248 0.0125 7.2E-3 

∆% 4.4% 0.35% 2.7% 3.1% 4.0% 

S=3  3d 4d 5d 6d 

NIST  0.0182 7.7E-3 4.0E-3 2.2E-3 

Eq. B.5.  0.0201 8.3E-3 4.2E-3 2.4E-3 

∆%  10.4% 7.8% 5.0% 9.1% 

S=6   4f 5f 6f 

NIST   3.9E-3 - - 

Eq. B.5.   4.1E-3 - - 

∆%   5.1%   
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Table C.13:  He II 

𝒑 (𝑬
(

𝟑

𝟐
)

− 𝑬
(

𝟏

𝟐
)
); 𝒅 (𝑬

(
𝟓

𝟐
)

− 𝑬
(

𝟑

𝟐
)
);  𝒇 (𝑬

(
𝟕

𝟐
)

− 𝑬
(

𝟓

𝟐
)
 ); etc. 

𝑰𝒆 = 𝟓𝟒. 𝟒𝟏𝟕𝟕𝟔𝟓𝟎𝟑 

n 2s 3s 4s 5s 6s 

NIST 40.813088586 48.3713143135 51.0166680830 52.2410774239 52.9061837689 

Eq. A.10 13.60506687 6.046789074 3.401344923 2.176870761 1.511720441 

𝑬𝒏 (ev) 40.81269816 48.37097596 51.01642011 52.24089427 52.9061837689 

∆% 0.00096% 0.00070% 0.00046% 0.00035% 0.00022% 

S=1 2p 3p 4p 5p 6p 

NIST 7.26195E-4 2.1516979E-4 9.077428E-5 4.64762E-5 2.68959E-5 

Eq. B.5 7.24472E-4 2.1466296E-4 9.056200E-5 4.63678E-5 2.68335E-5 

∆% 0.24% 0.24% 0.23% 0.23% 0.22% 

S=3  3d 4d 5d 6d 

NIST  7.1716397E-5 3.02555E-5 1.54909E-5 8.9647E-6 

Eq. B.5  7.1554170E-5 3.01873E-5 1.54557E-5 8.9445E-6 

∆%  0.23% 0.23% 0.23% 0.23% 

S=6   4f 5f 6f 

NIST   1.51273E-5 7.7452E-6 4.4821E-6 

Eq. B.5   1.50936E-5 7.7277E-6 4.4723E-6 

∆%   0.22% 0.23% 0.22% 

S=10    5g 6g 

NIST    4.64709E-6 2.6893E-6 

Eq. B.5    4.63651E-6 2.6834E-6 

∆%    0.23% 0.22% 

S=15     6h 

NIST     1.79286E-6 

Eq. B.5     1.78892E-6 

∆%     0.22% 
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Table C.14:  He I 

𝒑(𝑬(𝟎) − 𝑬(𝟐)); 𝒅(𝑬(𝟏) − 𝑬(𝟑));  𝒇(𝑬(𝟐) − 𝑬(𝟒) );𝒈(𝑬(𝟑) − 𝑬(𝟓) ); 𝒉(𝑬(𝟒) − 𝑬(𝟔) ) 

𝑰𝒆 = 𝟐𝟒. 𝟓𝟖𝟕𝟑𝟖𝟖𝟖𝟎𝟒 

n 2s 3s 4s 5s 6s 

NIST 20.21769482 22.81939202 23.63376478 23.99159333 24.18007937 

Eq. A.10 4.473901323 1.807131482 0.970680532 0.604578744 0.412391414 

𝑬𝒏 (ev) 20.11348748 22.78025732 23.61670827 23.98281006 24.17499739 

∆% 0.52% 0.17% 0.072% 0.037% 0.021% 

S=1 2p 3p 4p 5p 6p 

NIST 1.3196141E-4 3.62802E-5 1.47942E-5 7.4351E-6 4.25353E-6 

Eq. B.5 6.8307282E-5 1.75354E-5 6.90351E-6 3.3932E-6 1.91145E-6 

∆% 48.2% 51.7% 53.3% 54.4% 55.1% 

S=3  3d 4d 5d 6d 

NIST  5.79175E-6 2.44521E-6 1.252202E-6 7.24682E-7 

Eq. B.5  5.84485E-6 2.30133E-6 1.130987E-6 6.37027E-7 

∆%  0.92% 5.9% 9.7% 12.1% 

S=6   4f 5f 6f 

NIST   1.953759E-6 9.28482E-7 5.152993E-7 

Eq. B.5   1.150787E-6 5.65440E-7 3.184214E-7 

∆%   41.1% 39.1% 38.2% 

S=10    5g 6g 

NIST    6.558024E-7 3.793168E-7 

Eq. B.5    3.392218E-7 1.909791E-7 

∆%    48.3% 49.7% 

S=15     6h 

NIST     2.469686E-7 

Eq. B.5     1.272579E-7 

∆%     48.5% 

 

 

  


