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Abstract

Sharing low-level functionality between software packsageables more rapid development of
new capabilities and reduces the duplication of work ambaggelopment groups. Using the com-
ponent approach advocated by the Common Component Artimigeleorum, we have designed a
flexible interface for sharing integrals between quantuenuistry codes. Implementation of these
interfaces has been undertaken within the Massively Rhilantum Chemistry package, expos-
ing both the IntV3 and Cints integrals packages to compoapplications. Benchmark timings
for Hartree-Fock calculations demonstrate that the owatlulele to the added interface code varies
significantly, from less than 1% for small molecules withgkabasis sets, to nearly 10% for larger
molecules with smaller basis sets. Correlated calculateord density functional approaches en-
counter less severe performance overheads of less than bite hese overheads are acceptable,
additional performance losses occur when arbitrary implaattion details, such as integral order-
ing within buffers, must be handled. Integral reorderingbserved to add an additional overhead
as large as 12%, making the agreement on and adoption ofstEnd requirement for improved

future performance of interoperable codes.
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1 Introduction

Historically, efforts to combine functionality from quamh chemistry software packages have
been limited in scope and consisted of package-specifictimoee solutions. Such one-to-one
code integration suffers from poor scaling of programmifiigre the effort to share features from
n packages grows a3(n?). Consequently, the integration of codes from various pgekas fre-
guently considered tedious and not worthwhile, regarddéssy advances in methods and capa-
bilities which might become available. Considering thgéanumber of noncommercial packages
existing within the quantum chemistry community, each witlique capabilities and deficiencies,
this situation is unfortunate.

The future high performance computers on which quantum @tenpackages will run may
depend on advanced processor architectures. Regardlegsettier such systems contain co-
processors which augment conventional general purposegsors or contain entirely unfamiliar
processor architecturég, wide adoption of such technology will be impractical with@com-
munity code base. It is clear that a scalable approach taigeateroperable software must be
adopted both to enable rapid development of advanced guarttemical methods and to ensure
such methods run reliably on the latest hardware.

Component-based software approaches break up complexitdskoosely coupled subprob-
lems, encouraging the definition of standardized intedaar®d enabling collaboration between
research groups. The Common Component Architecture (COA)rf is a consortium dedicated
to the development and adoption of a component architedturscientific softwaré=> Work
within the CCA includes the development of standards andifevdare’2as well as component

toolkits within numerous scientific domains. Developmewiugps adopting component technology



for scientific codes span such diverse domains as optiraizatd linear algebra, combustion and
quantum chemistry, accelerator design, fire and explosiaeling, and climate simulatiod:*’

Previously, several of the authors participated in workaiayg a quantum chemistry component
toolkit, using development practices advocated by the COAIfR %8 Using CCA components
to manage multiple levels of parallelism, significant imgments in machine utilization were
demonstrateé® Through the development of an application for molecularcttire optimization,
it was demonstrated that domain scientists adopting CCAcagpes are able to integrate soft-
ware packages from multiple scientific disciplif€sMolecular structure optimization required
the functionality of each major mathematics and chemiséigkpge to be encapsulated in a set
of components and classes. There was, however, no attemmpptement low-level interfaces
between chemistry packages. Thus, wimlierchangeabilitywas shown, substantial progress to-
wardsinteroperabilitywas not demonstrated.

Here we make a first step toward deeper component-basedatntegof quantum chemistry
packages. In this work we develop a set of standard intesfaice data structures for evaluation of
molecular integrals, and we demonstrate a component ingsl&ation of this design. Molecular
integral evaluation is a natural low-level capability tasd through components because it is the
fundamental subproblem of all traditional quantum chemisbmputations. As quantum chemical
studies grow in sophistication, advanced capabilitiesh s explicit electron correlatiéand the
inclusion of relativistic effect$?-?*introduce the need for new types of integrals. The integral f
cilities available within each individual quantum chemygbackage typically lack these advanced
features, limiting the range of methods which are availablgsers of the package. Because writ-
ing efficient code for computing a new type of molecular inggequires significant development

effort, it is natural to share the integral facilities as gunents. The obvious benefit of sharing

3



integral capabilities between various packages is thé&wtmlimplement new theoretical methods
very rapidly. For instance, in an early application of therkvdescribed here, combining inte-
gral capabilities from multiple packages allowed the lateglicitly correlated methods to take
into account scalar relativistic effec@&While the scientific benefits of sharing low-level capabil-
ities such as molecular integrals capabilities are strémg potential performance impact of the
component interface and data layout can grow beyond addegtmits. Thus, this work serves
as an important first test of the performance of CCA appraaeiteen deeply integrated within
performance-critical sections of code. Although we foumel performance overhead of CCA ap-
proaches for the integral evaluation to be acceptable, g@otbrmance does require common

standards for data format.

2 The Common Component Architecture

Some of the authors have previously described in détdithe CCA model in the context of
guantum chemistry applications. We will only briefly summatrit here.

Component® are similar to objects in that they implement some functiibpand provide an
interface for using it. A programmer composes applicatioasof objects by writing computer
code which instantiates objects and combines their funstiélthough such applications can vary
some of their functionality at runtime, via polymorphismetfull functionality of the application
is determined once and for all at compile-time, istatically.

In contrast, components conform to a particular envirortrapacification which allows com-
position of applications at runtime, i.@lynamically The runtime environment which makes such

composition possible is the compondéramework The framework provides a simple (scripting



or graphical) interface which allows each end user to comghly customized software from
plug-and-play components. The CCA specificatidias been developed specifically to meet
the requirements of high-performance scientific codesssing high performance and respecting
parallel execution.

The Babel todi*1?is used within the CCA community to compose applicationsoofiponents
written in different languages. While not strictly requddey the CCA specification, all components
described herein utilize Babel. Babel is a code generatahwirovides implementation stubs and
glue code in a collection of languages, based on interfaiieitilens provided using the Scientific
Interface Definition Language (SIDL). Babel/SIDL implent®ia set of fundamental data types,
including complex and array types, and an object-orientegamming model for Fortran 77,
Fortran 90, C, C++, Python, and Java. A Sliterfacedeclares methods based on these data
types, and a SIDkclassimplements one or more interfaces. SIDL classes may be meiéed in
any supported language and may be used by applicationemnitany other supported language.

A CCA componenin Babel is a SIDL class that implements themponent interface defined
by the CCA specification and one or more programmer-definedfactes. Th&Component in-
terface simply defines theetServices() method, which is used by the framework to provide
aServices object to the component during its instantiation. Bervices object handles the
interaction between the framework and the component. Itst ingportant role is to inform the
framework of interface implementations that the compoméher provides or requires. As illus-
trated in Figure 1, the component expos@savides portwhich specifies an abstract interface and
provides an implementation of the interface, to the franméwsing theaddProvidesPort()
services method. A component can also requeses por{an interface implementation) from the

framework using theegisterUsesPort() services method. Following the user’s directives,
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the framework builds a component application by instamatomponents and connecting uses
ports with provides ports. ldeally, any well written soft@acan be packaged into a component
by adding a thin wrapper layer which handles interactiomhie framework. Just like the object
model, the component model tends to break down as deepés Hvmtegration expose imple-
mentation details at interfaces and lead to the propagafionplicit dependencies throughout the

application.

3 Integral Component Interfaces

Here we overview the component interfaces which we haveldesd. A detailed description of
the interfaces is found in Appendix A.

Figure 2 illustrates the component integral evaluatiohiéecture. The key abstractions repre-
sented by the component interfaces are the integral fa¢hotggralFactoryinterface )
and integral evaluatoftrftegralEvaluatorinterface ). Integral evaluator objects compute
molecular integrals. Currently, we specify integral eedtu interfaces for computing integrals in-
volving one, two, three, and four Gaussian centbrefralEvaluatorlinterface , etc.).

Of course, integral evaluator interfaces can be easilynebete to allow more centers. Each integral
evaluator provideseompute() method which, given a shell multiplet, prompts the compatat
of the integrals.

In contrast to the use of the evaluator objects, their ilmBdéion can be very complicated, as
it depends on the implementation details of the particwaituator. The purpose of the integral
factory is to hide the complexity of the initialization oftegral evaluators. To create an integral

evaluator, the factory must at a minimum receive the motecbésis set data. However, many



integral types require the specification of additional datarivative information, origin of the
reference frame for dipole integrals, or exponents for Gansgeminals, to name a few. The
purpose of an integral descriptdn{egralDescriptorinterface ) objectis to encapsulate
such data. A set of descriptors must be provided to the fattoproduce corresponding integral
evaluators.

The only implementation detail which had to be reflected mititerface design was how to
return buffers of computed integrals to client codes. Eatiuallocated buffers are filled when
the compute() method is called on an integral evaluator. In monolithiceodsing pass-by-
reference (Fortran family) or pointer-aware (C family)daages, buffer references or pointers are
typically passed to the integrals client code, giving botiegral evaluators and clients fast access
to the buffer. Babel supports aipaque type, allowing integral evaluators to return the buffer
pointer from a call toget _buffer() . Since non-pointer-aware languages (Java and Python)
are supported by Babel and may be useful for prototypingintieeface supports an alternative to
passing pointers. An additional compute methamimpute _array() , is specified which returns
a SIDL array with the contents of the integral buffer. Whie SIDL array can be created without
copying from the evaluator-allocated buffer, wrapper ctatantegrals clients will need to copy
each SIDL array into the client’s native buffers unless thent code is modified to operate on
SIDL arrays. Both theompute() andcompute _array() interfaces have been implemented

and the performance impact of this copy operation will ben@ixad in the following section.



4 Implementation and Benchmarking

The integrals interfaces we have developed have been ineplexhin the Massively Parallel Quan-
tum Chemistry (MPQC) packadé:2® This is currently the only implementation of CCA integral
evaluators, though NWChem and GAMESS implementationsapeagress. While the capabili-
ties this adds to the MPQC package are minimal (the natiegrat packages can now be mixed),
other packages may take advantage of these evaluatorsedodpance benchmarks will be valu-
able for evaluation of our approach and guidance in furtegetbpment. Within the native MPQC
code base, two integrals packages are supported. The l@idKage is distributed with MPQC and
performs integral evaluations needed for energies andagrcbf conventional quantum methods.
An additional package, Cints (based on the Libi€ package), performs integral evaluations re-
quired for explicitly correlated methods in addition to sleorequired for conventional methods.
Both MPQC and Libint are open source, distributed under thikJ&eneral Public License and
Library GNU General Public License.

While the integral evaluation interfaces provide a framewia which to implement evalua-
tor components, additional specifications must be imposeith® layout of data which is passed
through these interfaces. We propose standards for intdgta in Appendix B. The layout of
integrals within buffers is of particular importance. Whihe Cints buffer layout does conform to
the proposed CCA standard, the IntV3 buffer layout does @Gotles cannot be expected to flexi-
bly handle different buffer layouts, and translation casts significant. The CCA IntV3 integral
evaluator includes the option to translate integral bsffieto the standard CCA format.

As a general principle, larger amounts of time spent in MPQ@ternal integral routines off-

set the overhead associated with the CCA interface layachnddds several function calls and



language interoperability code to eamtmpute() call. Larger basis sets result in larger average
buffer sizes, requiring more work per buffer computatiod aecreasing overhead. The bounds
computations used in integral screening make up largeioptiops of the computation as molecule
size increases and more buffers are screened out. Thesdsboamputations require a compatr-
atively small amount of work per call. Thus, smaller molesutend to have lower overhead.
Similarly, gradient computations require more work perfeuthan energy computations and tend
to have reduced overhead. The test cases in the followihgstaloe arranged in a manner which
highlights these trends.

Tables I-A, I-B and I-C report average wall clock times foramber of energy and gradient cal-
culations using either the native MPQC integral interfamm@be CCA component interfaces. Since
Cints derivative integrals have not been exposed within [@PiQese calculations were performed
using the IntV3 integrals package. The IntV3 native bufégmut is used for these calculations,
thus yielding a measure of the performance of the CCA intégierfaces when integral reordering
is not required, the highest performance case. The CCA ewaedhfor Hartree-Fock calculations
in optimum, small molecule, big basis set cases, exemplifyegtie water calculations in Table I-A,
are under 1% and entirely insignificant. At the other end efgpectrum for Hartree-Fock meth-
ods, larger molecules with small basis sets can have signtfmverheads. In the benchmark suite
for this study, the worst CCA overhead observed for the ldarffock method was the isoprene/6-
311++G** energy calculation, with an overhead of 8.2%. @tated calculations, such as the MP2
calculations in Table I-B, generally require greater cotapanal effort subsequent to atomic or-
bital integral evaluation and, thus, experience moderddvaer CCA overheads which are below
5%. Density functional approaches, as surveyed in Tabledx@end significant computational

effort in numerical integration which is not currently pemned through a CCA interface. Conse-
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guently, overheads for the B3LYP calculations in Table 1¥€ aniformly low, with the greatest
overhead of 3.1% seen in the water energy calculation.

Tables II-A, 1I-B and II-C compare average wall clock times fest cases using CCA inter-
faces and IntV3 integrals, comparing the use of the IntV&adtuffer layout with the CCA buffer
layout (including buffer translation overhead). This dwemd, which is in addition to the CCA
interface overhead, is substantial, with Hartree-Fockdeooverheads as high 11.8% and MP2
reorder overheads as high as 10.3%. As in the CCA overheansitgifunctional approaches have
moderately lower overheads for reordering with a maximurseoled overhead of 3.8% for the
isoprene/6-311++G** energy evaluation. Deeply nestegépmefficient memory access patterns
and logic to handle contractions, derivatives and difigangular types are unavoidable and result
in a substantially expensive reorder algorithm. Maintagrgood performance with low-level inter-
faces requires minimizing such translation costs and,esth overhead is undoubtedly unavoid-
able when using legacy codes, we strongly advocate stasmddaption for any new development
efforts.

As discussed previously, the use of SIDL arrays rather thgatoe types to access integral
buffers, while obviously reducing performance, is necgsgasupport Java and Python. To assess
the impact of the added client-side copying from SIDL to vetuffers, Table Ill reports timings
for calculations comparing the opaque and SIDL array amtres The overhead due to using
SIDL arrays for integral buffers follows the same patterrC&A interface and integral reorder-
ing overheads. Hartree-Fock methods again show the gteatdsrmance loss, with the difficult
isoprene/cc-pVDZ energy incurring a 14.4% overhead whemguSIDL arrays. Reduced over-
head was seen for MP2 and, more significantly, density fanatiapproaches, with a maximum

observed overhead of 5.7% for the isoprene/cc-pVDZ gradienbefore, the water/aug-cc-pV5Z
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cases exemplify the high performance which can be expectexrfall molecule calculations using
large basis sets, with a maximum observed overhead of 2.4%ddHartree-Fock energy.

Since integral packages are now interchangeable throegB@A interfaces, the source pack-
age for each of a calculation’s integral types can be salaatdividually. New packages imple-
menting advanced integral types no longer need to duplgtatelard integral capabilities, as these
are available from a growing number of CCA implementaticasdal on mature integral packages.
Table 1V provides timings for several MP2-R12/A test cademonstrating this flexibility. For the
first set of tests, Cints integrals were used throughout.cBorparison, the second set uses Cints
for two-electron integrals while IntV3 is used to providesdap and core Hamiltonian integrals.
Though reordering of the IntV3 buffers was required for theand set of calculations, very lit-
tle overhead is observed since the cost of one-electrogradteis minor. These calculations also
highlight opportunities for quality of service improventenvhich the CCA architecture enables.
With a large set of interchangeable integral evaluator @m@ntations, it is possible to include
components for automated selection of the most approgrngikementation for a given integral

type, calculation type and hardware environment.

5 Embedded Frameworks

The components previously developed for geometry optitisia&' 1’ encapsulted the high-level
functionalities of various domain-specific packages. €heas no existing support for construct-
ing and configuring applications based on the disparategugsk making an entirely component-
based architecture composed and configured via the frark@mterface a natural choice. While

the flexibility afforded by direct interaction with the frawork is valuable, the assumption that
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end-users will familiarize themselves with the concepts skills necessary to properly configure
component applications may be too severe. The developrharstandard input format that gener-
ically supports quantum chemistry packages was recogmigdzbth a unique opportunity and a
daunting challenge of this design, and has not, thusfan bgempted.

Shifting some low-level functionality to components moudyf realizes the potential of com-
ponent technology to facilitate interoperable, rathentjugt interchangeable, chemistry packages,
and suggests the possibility of applications which onljiagicomponents for specific tasks. The
CCA specification and Ccaffeine framework do support emimeddf framework functionality
in stand-alone codes, allowing mixed legacy/componentiGgn architectures. Surely, each
chemistry package supports configuration of computatiand,this configuration capability can
be easily extended to support accessing low-level funatityrprovided by components. Embed-
ding component composition and configuration inside legades allows package developers to
expose to end-users only those features useful in a paticahtext. The barrier for end-users
to adopt component technology is substantially reducesisthnd-alone package is run as before
with a small number of extra parameters introduced to catmn inputs. An embedded frame-
work environment has been added along with the integralgpooent client and server code that
we have added to the MPQC package, allowing MPQC chemistdetado access integrals via
components in both exclusively component and mixed legacyponent modes. The adoption of

integrals components by MPQC users is now trivial.
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6 Conclusions

Through the design and implementation of an extendablefate for molecular integral evalu-
ation in quantum chemistry, we have demonstrated the effiohexposing low-level software
capabilities using component approaches. For integrdliatran, calls through component inter-
faces easily number in the millions and involve severalakinction calls and a fair amount of
language interoperability code, yet overheads are reasarfeor calculations on small molecules
using large basis sets, interface overheads below 1% caxpeeted. For larger molecules and
smaller basis sets, interface overheads are clearly mgréfisant but are acceptable, with all
benchmark values falling within 10%. While overheads in1&6 range are likely large enough to
discourage the use of these interfaces when high perfommative implementations are available,
the ability to share integral types and rapidly implement approaches ensures the usefulness of
integral components.

When low-level software functionality is shared betweeokages, adapting arbitrary imple-
mentation details, such as integral buffer ordering, to mrmoon standard can cause substantial
overhead which overshadows the costs of an added intedsgee lIn the case of integral buffer
ordering, our benchmarks show overheads as high as 12%diticawdto the interface overhead
due to the CCA layer. While such significant overheads wiknfoe unavoidable when adapting
legacy codes for component implementations, the developarel adoption of standards in new
work is critical to reducing such inefficiencies in the lomgrn, allowing for a high performance
community code base.

As our efforts in developing a chemistry component toolkivé progressed, it has become

evident that the CCA approach is about much more than cormp@n&he true strength of the
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CCA is as a comprehensive approach to scientific softwareneagng. Holding as much or
more importance than component concepts are the appro@acimésrface and data standards, lan-
guage and package interoperability, and collaborativenanity-based development which have
naturally evolved along with component standards and rewddie. In our view, the component
concept has functioned as a catalyst which has focused e dargmunity of computational and
computer scientists on solving the problems of large saallaborative, scientific software de-
velopment. While improving usability and maintenance a$ tihcreasingly complex chemistry
software project remains a challenge, this work is signifigarogress in developing an interoper-

able code base for quantum chemistry.
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Calculation Details

The codes implementing CCA integral interfaces are culyramder development and will be
available in forthcoming releases. Source code for thecbean-generic packadé which pro-
vides interface definitions and some implementations whrehgenerally useful, was a snapshot
of the babel-1-0 branch as of 11/3/2006. MP®€® source code was a snapshot of MPQC’s
babel-1-0 branch as of 11/7/2006. Bdbeéf source code was a snapshot of Babel’s 1.1 develop-
ment branch as of 12/21/2006. Source code for the cca-taclsagé was the 0.6.1c2 release,
with slight modifications to allow building against Babel 1.Ccaffeine®, one of several frame-
works 10 that comply with the CCA specification, was used. All codesensuilt using the gcc
3.4.3 compiler with the default x864 processor target and -O2 optimization. Benchmarks were
performed in single process, single thread mode on Inteh)X&®60 CPU’s (Core 2 / Woodcrest

architecture) clocked at 3.00 GHz, running Red Hat Entsegrinux AS release 4.
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Table I-A. Average wall times (seconds) for Hartree-Foclcuations performed using native
and CCA integral interfaces. The IntV3 integral package wsed with native buffer layouts
throughout. Calculations were repeated three times.

Native Buffer Layout
Native Interfacg CCA Interface
Test Case Basis Set Wall Time Wall Time | CCA Overhead
HF Energy
isoprene 6-311++G** 184 199 8.2%
cc-pvDZ 33.5 36.1 7.8%
cc-pvVTZ 904 941 4.1 %
phosphosering cc-pVDZ 254 265 4.3 %
aniline cc-pvVTZ 915 947 35%
water aug-cc-pVvs5Z 950 956 0.6 %
HF Gradient
isoprene 6-311++G** 364 389 6.9 %
cc-pvDz 92.4 97.8 5.8%
cc-pVvVTZ 2236 2316 3.6 %
phosphosering cc-pVDZ 669 694 3.7%
aniline cc-pVvTZ 1790 1845 3.1%
water aug-cc-pV5Z 1757 1769 0.7%
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Table I-B. Average wall times (seconds) for MP2 calculasigrerformed using native and CCA
integral interfaces. The IntV3 integral package was uset native buffer layouts throughout.
Calculations were repeated three times.

Native Buffer Layout
Native Interfacel CCA Interface

Test Case Basis Set Wall Time Wall Time | CCA Overhead
MP2 Energy
isoprene 6-311++G** 117 120 2.6 %
cc-pvDz 42.4 43.3 2.1%
cc-pVvTZ 581 591 1.7 %
phosphosering cc-pVDZ 585 591 0.2%
aniline cc-pVvVTZ 1168 1175 0.6 %
water aug-cc-pVvs5Z 258 260 0.8%
MP2 Gradient
isoprene 6-311++G** 688 717 4.2 %
cc-pvDz 235 244 3.8%
cc-pvVTZ 4182 4277 2.3%
phosphosering cc-pVDZ 2993 3034 1.4%
aniline cc-pVvTZ 5883 5960 1.3%
water aug-cc-pV5Z 3838 3820 negligible
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Table I-C. Average wall times (seconds) for B3LYP calcwas performed using native and CCA
integral interfaces. The IntV3 integral package was uset native buffer layouts throughout.
Calculations were repeated three times.

Native Buffer Layout
Native Interface CCA Interface
Test Case Basis Set Wall Time Wall Time | CCA Overhead
B3LYP Energy
isoprene 6-311++G** 645 659 2.2%
cc-pvDz 208 210 1.0 %
cc-pvVTZ 1852 1891 2.1%
phosphosering 6-311G** 968 984 1.7 %
aniline 6-311++G** 956 966 1.0 %
water 6-311++G(3df,3pd 12.8 13.2 3.1%
B3LYP Gradient
isoprene 6-311++G** 1602 1622 1.2%
cc-pvDz 723 725 0.3%
cc-pVvTZ 4411 4481 1.6%
phosphosering 6-311G** 2288 2314 1.1%
aniline 6-311++G** 1987 2007 1.0%
water 6-311++G(3df,3pd 46.6 47.1 1.1%
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Table II-A. Average wall times (seconds) for Hartree-Foakcalations performed using CCA in-
tegral interfaces. IntV3 integals are used throughout,panng native and CCA buffer orderings.
Calculations were repeated three times.

CCA Interface

Native Buffer Layout

CCA Buffer Layout

Test Case Basis Set Wall Time Wall Time Reorder Overhea
HF Energy
isoprene 6-311++G** 199 220 10.6 %
cc-pvDz 36.1 39.6 9.7 %
cc-pVvTZ 941 1002 6.5 %
phosphosering cc-pVDZ 265 280 57%
aniline cc-pvVTZ 947 999 55%
water aug-cc-pVvs5Z 956 982 2.7%
HF Gradient
isoprene 6-311++G** 389 435 11.8 %
cc-pvDz 97.8 105.7 8.1%
cc-pvVTZ 2316 2474 6.8 %
phosphosering cc-pVDZ 694 728 4.9 %
aniline cc-pvVTZ 1845 1947 55%
water aug-cc-pVvsZ 1769 1830 3.4 %
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Table 1I-B. Average wall times (seconds) for MP2 calculaigerformed using CCA integral
interfaces. IntV3 integals are used throughout, comparattye and CCA buffer orderings. Cal-
culations were repeated three times.

CCA Interface

Native Buffer Layout

CCA Buffer Layout

Test Case Basis Set Wall Time Wall Time Reorder Overhea
MP2 Energy
isoprene 6-311++G** 120 127 5.8%
cc-pvDz 43.3 44.6 3.0%
cc-pVvTZ 591 610 3.2%
phosphosering cc-pVDZ 591 595 0.7%
aniline cc-pVTZ 1175 1255 6.8 %
water aug-cc-pVvs5Z 260 265 19%
MP2 Gradient
isoprene 6-311++G** 717 791 10.3 %
cc-pvDz 244 258 5.7 %
cc-pvVTZ 4277 4547 6.3 %
phosphosering cc-pVDZ 3034 3113 2.6 %
aniline cc-pvVTZ 5960 6276 5.3%
water aug-cc-pVvsZ 3820 3956 3.6 %
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Table 1I-C. Average wall times (seconds) for B3LYP calcidas performed using CCA integral
interfaces. IntV3 integals are used throughout, comparattye and CCA buffer orderings. Cal-
culations were repeated three times.

CCA Interface

Native Buffer Layout

CCA Buffer Layout

Test Case Basis Set Wall Time Wall Time Reorder Overhea
B3LYP Energy
isoprene 6-311++G** 659 684 3.8%
cc-pvDz 210 214 19%
cc-pvVTZ 1891 1962 3.8%
phosphosering 6-311G** 984 1019 3.6 %
aniline 6-311++G** 966 991 2.6 %
water 6-311++G(3df,3pd 13.2 13.4 1.5 %
B3LYP Gradient
isoprene 6-311++G** 1622 1667 2.8%
cc-pvDz 725 736 15%
cc-pvVTZ 4481 4628 3.3%
phosphosering 6-311G** 2314 2387 3.2%
aniline 6-311++G** 2007 2040 1.6 %
water 6-311++G(3df,3pd 47.1 47.6 1.1%
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Table IIl. Average wall times (seconds) for calculationsfpemed using CCA integral interfaces.
Intv3 integals with native buffer layouts are used throughoomparing opaque and SIDL array
buffer access. Calculations were repeated three times.

Opaque Acces

5 SIDL Array Access

SIDL Array Access

Test Case Basis Set Wall Time Wall Time Overhead
HF Energy

isoprene cc-pvDz 36.1 41.3 14.4 %

water aug-cc-pVvs5Z 956 979 24 %
HF Gradient

isoprene cc-pvDz 97.8 107 9.4 %

water aug-cc-pV5Z 1769 1781 0.7 %
MP2 Energy

isoprene cc-pvDZz 43.3 455 51%

water aug-cc-pVvs5Z 260 265 1.9%
MP2 Gradient

isoprene cc-pvDz 244 258 5.7%

water aug-cc-pVvs5Z 3820 3840 0.5%
B3LYP Energy

isoprene 6-311++G** 659 694 5.3%

water 6-311++G(3df,3pd 13.2 13.3 0.8%
B3LYP Gradient

isoprene 6-311++G** 1622 1673 3.1%

water 6-311++G(3df,3pd 47.1 47.3 0.4 %
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Table IV. Average wall times (seconds) for calculation@ened using CCA integral interfaces.
Calculations using Cints integals throughout and usingsCiwo-electron integrals along with

IntV3 one-electron integrals are compared. CCA buffer tagdidentical to Cints buffer layouts)
were used throughout. Calculations were repeated thresstim

Cints Cints/Intv3 IntV3
Test Case Basis Set Wall Time | Wall Time | Overhead

MP2-R12 Energy

isoprene cc-pvDZz 245.9 245.9 0.0%
water aug-cc-pV5Z| 1549 1551 0.1%
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Figure Captions:

Figure 1. A schematic representation of ports in the CCA @ggin. Component A provides a
port, PortA , for whichComponent B gains access.

Figure 2. A schematic representation of the componentiategaluator architecture.
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Appendix A: Integral Evaluation Interfaces

Interfaces concerned with integral evaluation over Ganmdsasis functions are described in the
following sections. Babel's Scientific Interface DesdoptLanguage (SIDLY is a neutral choice
for this description. The SIDL code for the following intades resides in the
Chemistry.QC.GaussianBasis package, a subsection of thikeemistry.sidl file dis-
tributed with thecca-chem-generic software.

For convenience, an enumeration for function angular tygopsovided.

enum AngularType { CARTESIAN, SPHERICAL, MIXED }

Codes which utilize integral evaluator components muss @@@ussian basis set data to the
evaluators. This task is performed by copying basis set id&baclass implementations of the
Shellinterface , Atomiclnterface , and Molecularinterface and passing the
Molecularinterface object to the integral evaluatorsiélecularinterface objectis
any SIDL class which implements tiMolecularinterface ). A Molecularinterface
object, representing a molecular basis set, contains d sepmicinterface objects, each of
which contains a set @hellinterface objects.

Shellinterface

int get_n_contraction()
Get the number of contractions in the shell.
Returns:
number of contractions

int get_n_primitive()
Get the number of primitives in the shell.
Returns:
number of primitives

double getcontraction_coef(in int connum, in int expnum)
Get the coefficient for an unnormalized primitive.
Returns:
contraction coefficient
Parameters:
connum contraction number
expnum primitive number
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double getexponent(in int expnum)
Get the exponent for a primitive.
Returns:
exponent
Parameters:
expnum primitive number

int get_angular_momentum(in int connum)
Get the angular momentum for a single contraction.
Returns:
angular momentum value
Parameters:
connum contraction number

int get_max_angular_-momentum()
Get the max angular momentum, considering all contractinrike shell.
Returns:
maximum angular momentum value

AngularType get_contraction_angular_type(in int connum)
Get the angular type for a single contraction.
Returns:
angular type
Parameters:
connum contraction number

AngularType get.angular_type()
Get the shell angular type.
Returns:
angular type

void print _shell()
Print the shell data.

Atomicinterface

string get.-name()
Get the canonical basis set name.
Returns:
canonical name

int get_n_basis()
Get the number of basis functions.
Returns:
number of functions
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int get_n_shell()
Get the number of shells.
Returns:
number of shells

int get_max_angular_-momentum()
Get the max angular momentum for any shell on the atom.
Returns:
max angular momentum value

AngularType get.angular_type()
Get the angular type for the atom.
Returns:
angular type

Shellinterface getshell(in int shellnum)
Get a gaussian shell.
Returns:
object implementinghellinterface
Parameters:
shellnum shell number

void print _atomic()
Print the atomic basis data.

Molecularinterface

string get label()
Get the user specified name.
Returns:
name

long getn_basis()
Get the number of basis functions.
Returns:
number of functions

long getn_shell()
Get the number of shells.
Returns:
number of shells
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int get_max_angular_-momentum()
Get the max angular momentum for any contraction in the bsetis
Returns:
max angular momentum value

AngularType get.angular_type()
Get the angular type.
Returns:
angular type

Atomiclnterface get atomic(in long atomnum)
Get an atomic basis set.
Returns:
object implementing thatomiclnterface
Parameters:
atomnum atom number

Moleculelnterface getmolecule()
Get the molecule.
Returns:
object implementing thigloleculelnterface

void print _-molecular()
Print the molecular basis data.

Many integral types require data in addition to integraférgto be shared between servers and
clients. A number of data container utility interfaces getivis function, and this collection will
grow as client/server components with additional capadsliare implemented. The first such util-
ity interface we describe is tHeerivCentersinterface , used to specify details for nuclear
derivative calculations. Code utilizing an integral exr must passBerivCentersinterface
object to the evaluator. For derivatives with operatorsclvhare independent of nuclear coordi-
nates, translational invariance allows derivatives wa$pect to one center to be ommitted, and de-
tails about omitted centers are shared through this irderfieor derivatives of operators which are
dependent upon nuclear coordinates, derivatives witretgp every atom must be taken, and the
derivative atom information is shared using #e¢ _deriv _atom() andget _deriv _atom()
methods. Thesegmennumber, defined as the number of basic buffer segments a lsifem-
posed of, is also shared through this interface. As an exaoipthe buffer segment concept, a
dipole integral buffer consists of one buffer segement &mheof X, y, and z, yielding a segment
number of 3.
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DerivCentersinterface

void clear()
Clear the list of centers.
Returns:
list of centers

void add_center(in long center, in long atom)
Add a center for which derivatives will be computed.
Parameters:
center center number (between 0 and 3 inclusive)
atom atom number corresponding to center

void add_omitted(in long center, in long atom)
Add a center for which derivatives will not be computed.
Parameters:
center center number (between 0 and 3 inclusive)
atom atom number corresponding to center

long n()
Returns the number of centers for which derivatives will aputed.
Returns:
number of centers

long center(in long i)
Returns center number.
Returns:
center number (between 0 and 3 inclusive)
Parameters:
i computed center index (between 0 and n()-1 inclusive)

long atom(in long i)
Returns atom number.
Returns:
atom number
Parameters:
i computed center index (between 0 and n()-1 inclusive)

long omitted_center()
Returns the omitted center number.
Returns:
omitted center number
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int has_omitted_center()
Returns 1 if there is an omitted center.
Returns:
1 (true) or O (false)

long omitted_atom()
Returns atom that is omitted from the integral buffer.
Returns:
omitted atom number

void setderiv_atom(in int deriv _atom)
Set the atom a derivative is taken with respect to.
Parameters:
deriv_atom atom number

int get_deriv_atom()
Get the atom a derivative is taken with respect to.
Returns:
atom number

Currently, the only additional data container utility irfeece is theDipoleDatalnterface
which provides origin information for dipole and quadrupaitegrals.

DipoleDatalnterface

void setorigin(in array <double> origin)
Set the dipole origin.
Parameters:
origin Cartesian coordinate array

array <double> getorigin()
Get the dipole origin.
Returns:
Cartesian coordinate array

When an integral evaluator is requested, a compositetefiralDescrinterface ob-
jects for the requested integral types is passed to theataaltactory. This action provides both
the list of required integral types and any additional daquired. The object oriented fea-
tures of Babel allow a collection of derived integral destois to be upcast to a collection of
base descriptors which are passed througtetveduatorFactoryinterface . The evalu-
ator factory then checks descriptor types, performs angsszgy downcasts and thereby obtains
the auxilliary data. Thé&valuatorFactoryinterface is thus generic and extendable for
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all possible integral types, requiring only the implemdiotaof a new derived integral descrip-
tor for types requiring additional data. We now describe IltitegralDescrinterface :
CompositelntegralDescrinterface ,andintegralEvaluatorFactoryinterface

along with an example derived descriptor interface RiflelntegralDescrinterface

IntegralDescrinterface

string get_type()
Get integral type.

Returns:
type

int get_n_segment()
Get number of segments.
Returns:
number of segments

void setderiv_IvI(in int deriv )
Set derivative level.
Parameters:
deriv derivative level

int get_deriv _Ivl()
Get derivative level.
Returns:
derivative level

void setderiv_centers( in DerivCentersinterface dc )
Set derivative centers object.
Parameters:
dc derivative centers object

DerivCentersinterface getderiv_centers()
Get derivative centers object.
Returns:
derivative centers object
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DipolelntegralDescrinterface
extenddntegralDescrinterface

void setdipole_data( in DipoleDatalnterface dipole data )
Set the dipole data.
Parameters:
dipole_data dipole data

DipoleDatalnterface getdipole_data()
Get the dipole data.
Returns:
dipole data

CompositelntegralDescrinterface

void add_descr( in IntegralDescrinterface desc)
Add an integral descriptor.
Parameters:
descintegral descriptor

int get_n_descr()
Get number of descriptors contained.
Returns:
number of descriptors

IntegralDescrinterface getdescr(inintn)
Get an integral descriptor.
Returns:
integral descriptor
Parameters:
n descriptor index

int is_contained( in IntegralDescrinterface desc )
Query if a descriptor with matching type and derivative légeontained.
Returns:
1 (true) or O (false)
Parameters:
descintegral descriptor

void clear()
Clear all descriptors.
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IntegralEvaluatorFactorylnterface

string get.name()
Get factory name.
Returns:
name

CompositelntegralDescrinterface getdescriptor()
Get composite of descriptors for supported integrals.
Returns:
composite integral descriptor

bool is supported( in IntegralDescrinterface desc)
Query if a type and derivative level is supported.
Returns:
true or false
Parameters:
descintegral descriptor

void set storage(in long storage )
Set storage that the factory is allowed to utilize.
Parameters:
storageallowed storage in bytes

IntegralEvaluatorlinterface
getevaluatorl(
in CompositelntegralDescrinterface desc,
in Molecularinterface bsl
)
Get a 1-center integral evaluator.
Returns:
1-center evaluator
Parameters:
desccomposite integral descriptor
bs1 basis set for center 1
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IntegralEvaluator2interface
getevaluator2(
in CompositelntegralDescrinterface desc,
in Molecularinterface bsl,
in Molecularinterface bs2
)
Get a 2-center integral evaluator.
Returns:
2-center evaluator
Parameters:
desccomposite integral descriptor
bslbasis set for center 1
bs2basis set for center 2

IntegralEvaluator3interface
get evaluator3(
in CompositelntegralDescrinterface desc,
in Molecularinterface bsl,
in Molecularlnterface bs2,
in MolecularInterface bs3
)
Get a 3-center integral evaluator.
Returns:
3-center evaluator
Parameters:
desccomposite integral descriptor
bslbasis set for center 1
bs2basis set for center 2
bs3basis set for center 3

IntegralEvaluator4interface
getevaluator4(
in CompositelntegralDescrinterface desc,
in Molecularlnterface bs1,
in Molecularlnterface bs2,
in Molecularlnterface bs3,
in MolecularInterface bs4
)
Get a 4-center integral evaluator.
Returns:
4-center evaluator
Parameters:
desccomposite integral descriptor
bslbasis set for center 1
bs2basis set for center 2
bs3basis set for center 3
bs4basis set for center 4
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int finalize()
This should be called when the object is no longer needed tiNr members may be called after finalize.
Returns:
0 on success
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The IntegralSuperFactorylnterface provides a management layer for simplifying
the use of multiple integral evaluator factories (follogithe Abstract Factory Pattern). Once client
code provides rules for the routing of integral evaluatguests, the super factory acts as a single
evaluator factory enveloping the capapbilities of all cected factories.

IntegralSuperFactorylnterface
extenddntegralEvaluatorFactoryInterface

array <string,1> add_usesports(in int n)
Add uses ports to component implementation.
Returns:
array of uses port names
Parameters:
n number of additional uses ports

void remove_port(in int portid)
Remove uses port.
Parameters:
portid portindex

array <string,1> get.port_names()
Get uses port names.
Returns:
array of uses port names

array <string,1> getfactory_names()
Get attached evaluator factory names.
Returns:
array of factory names

array <CompositelntegralDescrinterface, 1> get descriptors()
Get composite of available integral descriptors for eaattday.
Returns:
array of composite integral descriptors

void setdefault_subfactory(in string fac )
Set the default factory for integral evaluator requests.
Parameters:
fac name of default factory
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void
set subfactory_config(
in array <string,1> types,
in array <string,1> derivs,
in array <string,1> facs
)
Configure which factory handles specific integral type rexsie
Parameters:
typesarray of integral types
derivs array of derivative levels (integer or "n” for wildcard)
facsarray of factory names

The remaining interfaces specify the integral evaluat@rfaces themselves. A base interface,
IntegralEvaluatorinterface , Is extended for one, two, three, and four-center integrals
We describe the two-center interface here; extension traihmbers of centers is obvious.

IntegralEvaluatorinterface

opaque getbuffer(in IntegralDescrinterface desc)
Get buffer pointer for given type.
Returns:
buffer pointer
Parameters:
descintegral descriptor

CompositelntegralDescrinterface getdescriptor()
Get composite of descriptors for integral types supported.
Returns:
composite integral descriptor

int finalize()
This should be called when the object is no longer needed tiNg members may be called after finalize.
Returns:
0 on success

IntegralEvaluator2Interface

void compute(in long shellnum1, in long shellnum2)
Compute all buffers for specified shell multiplet.
Parameters:
shellnumlshell 1 index
shellnum2shell 2 index
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array <double,1>
compute array/(
in string type,
in int deriv _lvl,
in long shellnum1,
in long shellnum2
)
Compute buffer for specified type, deriv level and shellipielt and return as SIDL array.
Returns:
SIDL buffer
Parameters:
type integral type
deriv_lvl derivative level
shellnumlshell 1 index
shellnum2shell 2 index

double computebounds(in long shellnum1, in long shellnum2)
Compute max integral bound.
Returns:
max integral bound for all computed types
Parameters:
shellnumlshell 1 index
shellnum2shell 2 index

array <double> compute_bounds array(in long shellnum1, in long shellnum2);
Compute integral bounds for each computed type.
Returns:
SIDL array of integral bounds
Parameters:
shellnumlshell 1 index
shellnum2shell 2 index
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Appendix B: Proposed Integral Standards

While the integral interfaces we have proposed define a siination calls which may be
used to obtain, initialize, and utilize molecular integegbluators, standards must specified for
implementational details, namely buffer layout and noiragion conventions.

Buffer Layout

The most intuitive algorithm for the ordering of cartesiandtions is proposed. Given angular
momentun, the cartesian functionsy’z¢ are ordered as follows

starting with
a =

b=c=0

the next function is given by

if(c<l—a) {
b=b—1
c=c+1

¥

else {
a=a—1
c=0
b=[0l—a

¥

For example, & shell is ordered

2 2 2
r=, xy, Tz, Yy, Yz, 2

For indexing within a cartesian shell multiplet buffer, fimst center is treated as the most sig-
nificant, with each subsequent center receiving less sogniie.

For app shell doublet the ordering is
<zlr> <zly> <zx|]z >

<ylr> <yly> <ylz>
<zlr> <zly> <zlz>
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For anspppshell quartet the ordering is

< lzlzx > <lzlzy > < lz|zz >
< lzlyr > <lzlyy > < lz|lyz >
< lzlzz > <lrlzy > < lz|zz>
< lylzz > < lylzy > < lylzz >
< lylyx > <lylyy > < lylyz >
< lylzx > < lylzy > < lylzz >
< lzlzz > <lzlzy > < lz|lzz >
< lzlyx > < lzlyy > < lzlyz >
<lzlzx > <lzlzy > <1z|zz>

Note that redundant integrals may be included. The ordemtign a pure angular momentum
buffer follows the same significance rule, with functiondened in decreasing,; (I,1—1, ..., —1).

For ann-center multiplet, a first derivative buffer contains a sethoee derivative multiplets

(2, 8%, 2 for each of up tow — 1 unique centers (at least one center omitted due to tramiséti

invariance).

For ansssifirst derivative shell quartet (omitting derivatives wittspect to center four) the order-
ing is

(< 11]lz > <111y > < 11|1z >)

(< 1lz > < 11]ly > < 11|1z >)

(< 1lz > < 11jly > < 11|1z >)

(< 11]lz > < 1l]ly > < 11|1z >)

ar(< Ml > <11y > <11[1z >)

(< 1lz > < 11]ly > < 11|1z >)

(< 1lz > <1y > <111z >)

(< 1lx > <111y > <111z >)

5 (< 1lz > <1fly > <111z >)

Similarly, for second derivatives the ordering is

(< 1llr > <1lly > <111z >)

(< 1lflz > <1ly > <111z >

<1lz > <11|ly > <111z >
<1lz > <11|ly > <111z >
<1lz > <11|ly > <111z >

<1lz > <11|ly > <111z >
(< 11lz > <111y > <111z >

)
)
)
)
)
)
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Bmay (< 1lz > <111y > < 11|1z >)

8m182 (< 111lz > < 11|ly > < 111z >)
(< 1|lz > <11|ly > <111z >)

aylaz <11z > <11|ly > <111z >

8y8m <Ilz > <11|ly > <111z >

¥

8y8y <11z > <11|ly > <111z >

)

8y 82

)

8y8m <1z > <11|ly > <111z >

w

8y8y <11z > <11ly > <111z >

w

( )
( )
( )
(<1llx > < 11|ly > < 11|1z >)
( )
( )
( )

ay% <11z > <11|ly > <111z >

(< Hle > <11|ly > < 111z >)

<1lz > <11|ly > <111z >
<11z > <11|ly > <111z >

82 am

0z ay

)

<lz > <11|ly > <111z >
<1lz > <11|ly > <111z >
<11z > <11|ly > <111z >

82 az

)

82 am

w

8218y

w

( )
( )
( )
( )
( )
( )

8218z <1lz > <11|ly > <111z >
(< |l > <111y > < 11|1z >)

Bmay <1z > <11|ly > <111z >

<1lz > <11|ly > <111z >

( )
52 7 ( )
(< 1lz > < 11|ly > < 111z >)
( )
( )

)

8m am

w

Bmay <1lz > <11|ly > <111z >

w

am282 <1lz > <11|ly > <111z >

8y L (<11l > <111y > <111z >)
2

82
O0y2022

C_(<11lz > <111y > <111z >

<11z > <11|ly > <111z >

-(< 1|1z > < 11|1ly > < 111z >

)
)
)
)

(< 1l[lz > <111y > <11flz >
(< 1lz > <1lfly > <111z >)
2

82
82 am

(< 1lz > <1l]ly > < 11|1z >)
(< 11]lz > < 1l]ly > < 111z >)

3223?}3

a228z3(< Hlz > < 11ljly > < 111z >)
(< 11z > < 11|ly > < 11]1z >)

aiﬂgay (< 11]lz > <111y > < 11]1z >)

82

a€33z3(< 1le > <111y > < 11|12 >)
(< 1[le > <1lfly > <111z >)
3
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2o (<1flz > <11y > <111z >)

Z(<1lle > <111y > <111z >)
3

and likewise for higher order derivatives.
Normalization

Gaussian integral packages can have significantly differermalization conventions for the
target integrals. The convention often depends on impl¢atien details, such as the evaluation
method. The normalization convention we adopted is “néitéioa the majority of integral pack-
ages aimed at basis sets with segmented contractions.

Cartesian Gaussian functions in a shell of angular momettirave the same normalization
factorN. N is determined such that the Cartesian functiohg,”, andz* are normalized to unity.
The norm of a Cartesian Gaussiah,’z¢ is therefore

(2a 4+ 2b + 2¢ — 1!
(2a — D26 — D!(2¢ — D!

lay"ze|| =

All spherical harmonic Gaussians are normalized to unitgn$formation from Cartesian to spher-
ical harmonics Gaussians was described in detail by SdrdegeFrisch°
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