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Abstract

Sharing low-level functionality between software packages enables more rapid development of

new capabilities and reduces the duplication of work amongst development groups. Using the com-

ponent approach advocated by the Common Component Architecture Forum, we have designed a

flexible interface for sharing integrals between quantum chemistry codes. Implementation of these

interfaces has been undertaken within the Massively Parallel Quantum Chemistry package, expos-

ing both the IntV3 and Cints integrals packages to componentapplications. Benchmark timings

for Hartree-Fock calculations demonstrate that the overhead due to the added interface code varies

significantly, from less than 1% for small molecules with large basis sets, to nearly 10% for larger

molecules with smaller basis sets. Correlated calculations and density functional approaches en-

counter less severe performance overheads of less than 5%. While these overheads are acceptable,

additional performance losses occur when arbitrary implementation details, such as integral order-

ing within buffers, must be handled. Integral reordering isobserved to add an additional overhead

as large as 12%, making the agreement on and adoption of standards a requirement for improved

future performance of interoperable codes.
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1 Introduction

Historically, efforts to combine functionality from quantum chemistry software packages have

been limited in scope and consisted of package-specific, one-to-one solutions. Such one-to-one

code integration suffers from poor scaling of programming effort; the effort to share features from

n packages grows asO(n2). Consequently, the integration of codes from various packages is fre-

quently considered tedious and not worthwhile, regardlessof any advances in methods and capa-

bilities which might become available. Considering the large number of noncommercial packages

existing within the quantum chemistry community, each withunique capabilities and deficiencies,

this situation is unfortunate.

The future high performance computers on which quantum chemistry packages will run may

depend on advanced processor architectures. Regardless ofwhether such systems contain co-

processors which augment conventional general purpose processors or contain entirely unfamiliar

processor architectures,1,2 wide adoption of such technology will be impractical without a com-

munity code base. It is clear that a scalable approach to creating interoperable software must be

adopted both to enable rapid development of advanced quantum chemical methods and to ensure

such methods run reliably on the latest hardware.

Component-based software approaches break up complex tasks into loosely coupled subprob-

lems, encouraging the definition of standardized interfaces and enabling collaboration between

research groups. The Common Component Architecture (CCA) Forum is a consortium dedicated

to the development and adoption of a component architecturefor scientific software.3–5 Work

within the CCA includes the development of standards and middleware,6–12 as well as component

toolkits within numerous scientific domains. Development groups adopting component technology
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for scientific codes span such diverse domains as optimization and linear algebra, combustion and

quantum chemistry, accelerator design, fire and explosivesmodeling, and climate simulation.13–17

Previously, several of the authors participated in work towards a quantum chemistry component

toolkit, using development practices advocated by the CCA Forum.16–18 Using CCA components

to manage multiple levels of parallelism, significant improvements in machine utilization were

demonstrated.18 Through the development of an application for molecular structure optimization,

it was demonstrated that domain scientists adopting CCA approaches are able to integrate soft-

ware packages from multiple scientific disciplines.16 Molecular structure optimization required

the functionality of each major mathematics and chemistry package to be encapsulated in a set

of components and classes. There was, however, no attempt toimplement low-level interfaces

between chemistry packages. Thus, whileinterchangeabilitywas shown, substantial progress to-

wardsinteroperabilitywas not demonstrated.

Here we make a first step toward deeper component-based integration of quantum chemistry

packages. In this work we develop a set of standard interfaces and data structures for evaluation of

molecular integrals, and we demonstrate a component implementation of this design. Molecular

integral evaluation is a natural low-level capability to share through components because it is the

fundamental subproblem of all traditional quantum chemistry computations. As quantum chemical

studies grow in sophistication, advanced capabilities, such as explicit electron correlation? and the

inclusion of relativistic effects,19–21 introduce the need for new types of integrals. The integral fa-

cilities available within each individual quantum chemistry package typically lack these advanced

features, limiting the range of methods which are availableto users of the package. Because writ-

ing efficient code for computing a new type of molecular integral requires significant development

effort, it is natural to share the integral facilities as components. The obvious benefit of sharing
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integral capabilities between various packages is the ability to implement new theoretical methods

very rapidly. For instance, in an early application of the work described here, combining inte-

gral capabilities from multiple packages allowed the latest explicitly correlated methods to take

into account scalar relativistic effects.22 While the scientific benefits of sharing low-level capabil-

ities such as molecular integrals capabilities are strong,the potential performance impact of the

component interface and data layout can grow beyond acceptable limits. Thus, this work serves

as an important first test of the performance of CCA approaches when deeply integrated within

performance-critical sections of code. Although we found the performance overhead of CCA ap-

proaches for the integral evaluation to be acceptable, goodperformance does require common

standards for data format.

2 The Common Component Architecture

Some of the authors have previously described in detail16,17 the CCA model in the context of

quantum chemistry applications. We will only briefly summarize it here.

Components23 are similar to objects in that they implement some functionality and provide an

interface for using it. A programmer composes applicationsout of objects by writing computer

code which instantiates objects and combines their functions. Although such applications can vary

some of their functionality at runtime, via polymorphism, the full functionality of the application

is determined once and for all at compile-time, i.e.,statically.

In contrast, components conform to a particular environment specification which allows com-

position of applications at runtime, i.e.,dynamically. The runtime environment which makes such

composition possible is the componentframework. The framework provides a simple (scripting
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or graphical) interface which allows each end user to compose highly customized software from

plug-and-play components. The CCA specification3–5 has been developed specifically to meet

the requirements of high-performance scientific codes, stressing high performance and respecting

parallel execution.

The Babel tool11,12 is used within the CCA community to compose applications of components

written in different languages. While not strictly required by the CCA specification, all components

described herein utilize Babel. Babel is a code generator which provides implementation stubs and

glue code in a collection of languages, based on interface definitions provided using the Scientific

Interface Definition Language (SIDL). Babel/SIDL implements a set of fundamental data types,

including complex and array types, and an object-oriented programming model for Fortran 77,

Fortran 90, C, C++, Python, and Java. A SIDLinterfacedeclares methods based on these data

types, and a SIDLclassimplements one or more interfaces. SIDL classes may be implemented in

any supported language and may be used by applications written in any other supported language.

A CCA componentin Babel is a SIDL class that implements theComponent interface defined

by the CCA specification and one or more programmer-defined interfaces. TheComponent in-

terface simply defines thesetServices() method, which is used by the framework to provide

aServices object to the component during its instantiation. TheServices object handles the

interaction between the framework and the component. Its most important role is to inform the

framework of interface implementations that the componenteither provides or requires. As illus-

trated in Figure 1, the component exposes aprovides port, which specifies an abstract interface and

provides an implementation of the interface, to the framework using theaddProvidesPort()

services method. A component can also request auses port(an interface implementation) from the

framework using theregisterUsesPort() services method. Following the user’s directives,
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the framework builds a component application by instantiating components and connecting uses

ports with provides ports. Ideally, any well written software can be packaged into a component

by adding a thin wrapper layer which handles interaction with the framework. Just like the object

model, the component model tends to break down as deeper levels of integration expose imple-

mentation details at interfaces and lead to the propagationof implicit dependencies throughout the

application.

3 Integral Component Interfaces

Here we overview the component interfaces which we have developed. A detailed description of

the interfaces is found in Appendix A.

Figure 2 illustrates the component integral evaluation architecture. The key abstractions repre-

sented by the component interfaces are the integral factory(IntegralFactoryInterface )

and integral evaluator (IntegralEvaluatorInterface ). Integral evaluator objects compute

molecular integrals. Currently, we specify integral evaluator interfaces for computing integrals in-

volving one, two, three, and four Gaussian centers (IntegralEvaluator1Interface , etc.).

Of course, integral evaluator interfaces can be easily extended to allow more centers. Each integral

evaluator provides acompute() method which, given a shell multiplet, prompts the computation

of the integrals.

In contrast to the use of the evaluator objects, their initialization can be very complicated, as

it depends on the implementation details of the particular evaluator. The purpose of the integral

factory is to hide the complexity of the initialization of integral evaluators. To create an integral

evaluator, the factory must at a minimum receive the molecular basis set data. However, many
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integral types require the specification of additional data: derivative information, origin of the

reference frame for dipole integrals, or exponents for Gaussian geminals, to name a few. The

purpose of an integral descriptor (IntegralDescriptorInterface )object is to encapsulate

such data. A set of descriptors must be provided to the factory to produce corresponding integral

evaluators.

The only implementation detail which had to be reflected in the interface design was how to

return buffers of computed integrals to client codes. Evaluator-allocated buffers are filled when

the compute() method is called on an integral evaluator. In monolithic codes using pass-by-

reference (Fortran family) or pointer-aware (C family) languages, buffer references or pointers are

typically passed to the integrals client code, giving both integral evaluators and clients fast access

to the buffer. Babel supports anopaque type, allowing integral evaluators to return the buffer

pointer from a call toget buffer() . Since non-pointer-aware languages (Java and Python)

are supported by Babel and may be useful for prototyping, theinterface supports an alternative to

passing pointers. An additional compute method,compute array() , is specified which returns

a SIDL array with the contents of the integral buffer. While the SIDL array can be created without

copying from the evaluator-allocated buffer, wrapper codefor integrals clients will need to copy

each SIDL array into the client’s native buffers unless the client code is modified to operate on

SIDL arrays. Both thecompute() andcompute array() interfaces have been implemented

and the performance impact of this copy operation will be examined in the following section.
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4 Implementation and Benchmarking

The integrals interfaces we have developed have been implemented in the Massively Parallel Quan-

tum Chemistry (MPQC) package.24–26 This is currently the only implementation of CCA integral

evaluators, though NWChem and GAMESS implementations are in progress. While the capabili-

ties this adds to the MPQC package are minimal (the native integral packages can now be mixed),

other packages may take advantage of these evaluators, and performance benchmarks will be valu-

able for evaluation of our approach and guidance in further development. Within the native MPQC

code base, two integrals packages are supported. The IntV3 package is distributed with MPQC and

performs integral evaluations needed for energies and gradients of conventional quantum methods.

An additional package, Cints (based on the Libint27,28 package), performs integral evaluations re-

quired for explicitly correlated methods in addition to those required for conventional methods.

Both MPQC and Libint are open source, distributed under the GNU General Public License and

Library GNU General Public License.

While the integral evaluation interfaces provide a framework in which to implement evalua-

tor components, additional specifications must be imposed on the layout of data which is passed

through these interfaces. We propose standards for integral data in Appendix B. The layout of

integrals within buffers is of particular importance. While the Cints buffer layout does conform to

the proposed CCA standard, the IntV3 buffer layout does not.Codes cannot be expected to flexi-

bly handle different buffer layouts, and translation costsare significant. The CCA IntV3 integral

evaluator includes the option to translate integral buffers into the standard CCA format.

As a general principle, larger amounts of time spent in MPQC’s internal integral routines off-

set the overhead associated with the CCA interface layer, which adds several function calls and
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language interoperability code to eachcompute() call. Larger basis sets result in larger average

buffer sizes, requiring more work per buffer computation and decreasing overhead. The bounds

computations used in integral screening make up larger proportions of the computation as molecule

size increases and more buffers are screened out. These bounds computations require a compar-

atively small amount of work per call. Thus, smaller molecules tend to have lower overhead.

Similarly, gradient computations require more work per buffer than energy computations and tend

to have reduced overhead. The test cases in the following tables are arranged in a manner which

highlights these trends.

Tables I-A, I-B and I-C report average wall clock times for a number of energy and gradient cal-

culations using either the native MPQC integral interfacesor the CCA component interfaces. Since

Cints derivative integrals have not been exposed within MPQC, these calculations were performed

using the IntV3 integrals package. The IntV3 native buffer layout is used for these calculations,

thus yielding a measure of the performance of the CCA integral interfaces when integral reordering

is not required, the highest performance case. The CCA overheads for Hartree-Fock calculations

in optimum, small molecule, big basis set cases, exemplifiedby the water calculations in Table I-A,

are under 1% and entirely insignificant. At the other end of the spectrum for Hartree-Fock meth-

ods, larger molecules with small basis sets can have significant overheads. In the benchmark suite

for this study, the worst CCA overhead observed for the Hartree-Fock method was the isoprene/6-

311++G** energy calculation, with an overhead of 8.2%. Correlated calculations, such as the MP2

calculations in Table I-B, generally require greater computational effort subsequent to atomic or-

bital integral evaluation and, thus, experience moderately lower CCA overheads which are below

5%. Density functional approaches, as surveyed in Table I-C, expend significant computational

effort in numerical integration which is not currently performed through a CCA interface. Conse-
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quently, overheads for the B3LYP calculations in Table I-C are uniformly low, with the greatest

overhead of 3.1% seen in the water energy calculation.

Tables II-A, II-B and II-C compare average wall clock times for test cases using CCA inter-

faces and IntV3 integrals, comparing the use of the IntV3 native buffer layout with the CCA buffer

layout (including buffer translation overhead). This overhead, which is in addition to the CCA

interface overhead, is substantial, with Hartree-Fock reorder overheads as high 11.8% and MP2

reorder overheads as high as 10.3%. As in the CCA overheads, density functional approaches have

moderately lower overheads for reordering with a maximum observed overhead of 3.8% for the

isoprene/6-311++G** energy evaluation. Deeply nested loops, inefficient memory access patterns

and logic to handle contractions, derivatives and differing angular types are unavoidable and result

in a substantially expensive reorder algorithm. Maintaining good performance with low-level inter-

faces requires minimizing such translation costs and, while such overhead is undoubtedly unavoid-

able when using legacy codes, we strongly advocate standards adoption for any new development

efforts.

As discussed previously, the use of SIDL arrays rather than opaque types to access integral

buffers, while obviously reducing performance, is necessary to support Java and Python. To assess

the impact of the added client-side copying from SIDL to native buffers, Table III reports timings

for calculations comparing the opaque and SIDL array approaches. The overhead due to using

SIDL arrays for integral buffers follows the same pattern asCCA interface and integral reorder-

ing overheads. Hartree-Fock methods again show the greatest performance loss, with the difficult

isoprene/cc-pVDZ energy incurring a 14.4% overhead when using SIDL arrays. Reduced over-

head was seen for MP2 and, more significantly, density functional approaches, with a maximum

observed overhead of 5.7% for the isoprene/cc-pVDZ gradient. As before, the water/aug-cc-pV5Z
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cases exemplify the high performance which can be expected for small molecule calculations using

large basis sets, with a maximum observed overhead of 2.4% for the Hartree-Fock energy.

Since integral packages are now interchangeable through the CCA interfaces, the source pack-

age for each of a calculation’s integral types can be selected individually. New packages imple-

menting advanced integral types no longer need to duplicatestandard integral capabilities, as these

are available from a growing number of CCA implementations based on mature integral packages.

Table IV provides timings for several MP2-R12/A’ test casesdemonstrating this flexibility. For the

first set of tests, Cints integrals were used throughout. Forcomparison, the second set uses Cints

for two-electron integrals while IntV3 is used to provide overlap and core Hamiltonian integrals.

Though reordering of the IntV3 buffers was required for the second set of calculations, very lit-

tle overhead is observed since the cost of one-electron integrals is minor. These calculations also

highlight opportunities for quality of service improvements which the CCA architecture enables.

With a large set of interchangeable integral evaluator implementations, it is possible to include

components for automated selection of the most appropriateimplementation for a given integral

type, calculation type and hardware environment.

5 Embedded Frameworks

The components previously developed for geometry optimization16,17 encapsulted the high-level

functionalities of various domain-specific packages. There was no existing support for construct-

ing and configuring applications based on the disparate packages, making an entirely component-

based architecture composed and configured via the framework interface a natural choice. While

the flexibility afforded by direct interaction with the framework is valuable, the assumption that
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end-users will familiarize themselves with the concepts and skills necessary to properly configure

component applications may be too severe. The development of a standard input format that gener-

ically supports quantum chemistry packages was recognizedas both a unique opportunity and a

daunting challenge of this design, and has not, thusfar, been attempted.

Shifting some low-level functionality to components more fully realizes the potential of com-

ponent technology to facilitate interoperable, rather than just interchangeable, chemistry packages,

and suggests the possibility of applications which only utilize components for specific tasks. The

CCA specification and Ccaffeine framework do support embedding of framework functionality

in stand-alone codes, allowing mixed legacy/component application architectures. Surely, each

chemistry package supports configuration of computations,and this configuration capability can

be easily extended to support accessing low-level functionality provided by components. Embed-

ding component composition and configuration inside legacycodes allows package developers to

expose to end-users only those features useful in a particular context. The barrier for end-users

to adopt component technology is substantially reduced; the stand-alone package is run as before

with a small number of extra parameters introduced to calculation inputs. An embedded frame-

work environment has been added along with the integrals component client and server code that

we have added to the MPQC package, allowing MPQC chemistry models to access integrals via

components in both exclusively component and mixed legacy/component modes. The adoption of

integrals components by MPQC users is now trivial.
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6 Conclusions

Through the design and implementation of an extendable interface for molecular integral evalu-

ation in quantum chemistry, we have demonstrated the efficacy of exposing low-level software

capabilities using component approaches. For integral evaluation, calls through component inter-

faces easily number in the millions and involve several extra function calls and a fair amount of

language interoperability code, yet overheads are reasonable. For calculations on small molecules

using large basis sets, interface overheads below 1% can be expected. For larger molecules and

smaller basis sets, interface overheads are clearly more significant but are acceptable, with all

benchmark values falling within 10%. While overheads in the10% range are likely large enough to

discourage the use of these interfaces when high performance native implementations are available,

the ability to share integral types and rapidly implement new approaches ensures the usefulness of

integral components.

When low-level software functionality is shared between packages, adapting arbitrary imple-

mentation details, such as integral buffer ordering, to a common standard can cause substantial

overhead which overshadows the costs of an added interface layer. In the case of integral buffer

ordering, our benchmarks show overheads as high as 12%, in addition to the interface overhead

due to the CCA layer. While such significant overheads will often be unavoidable when adapting

legacy codes for component implementations, the development and adoption of standards in new

work is critical to reducing such inefficiencies in the long term, allowing for a high performance

community code base.

As our efforts in developing a chemistry component toolkit have progressed, it has become

evident that the CCA approach is about much more than components. The true strength of the
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CCA is as a comprehensive approach to scientific software engineering. Holding as much or

more importance than component concepts are the approachesto interface and data standards, lan-

guage and package interoperability, and collaborative, community-based development which have

naturally evolved along with component standards and middleware. In our view, the component

concept has functioned as a catalyst which has focused a large community of computational and

computer scientists on solving the problems of large scale,collaborative, scientific software de-

velopment. While improving usability and maintenance of this increasingly complex chemistry

software project remains a challenge, this work is significant progress in developing an interoper-

able code base for quantum chemistry.
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Calculation Details

The codes implementing CCA integral interfaces are currently under development and will be

available in forthcoming releases. Source code for the cca-chem-generic package,17 which pro-

vides interface definitions and some implementations whichare generally useful, was a snapshot

of the babel-1-0 branch as of 11/3/2006. MPQC24–26 source code was a snapshot of MPQC’s

babel-1-0 branch as of 11/7/2006. Babel11,12 source code was a snapshot of Babel’s 1.1 develop-

ment branch as of 12/21/2006. Source code for the cca-tools package5 was the 0.6.1rc2 release,

with slight modifications to allow building against Babel 1.1. Ccaffeine,6 one of several frame-

works6–10 that comply with the CCA specification, was used. All codes were built using the gcc

3.4.3 compiler with the default x8664 processor target and -O2 optimization. Benchmarks were

performed in single process, single thread mode on Intel Xeon 5160 CPU’s (Core 2 / Woodcrest

architecture) clocked at 3.00 GHz, running Red Hat Enterprise Linux AS release 4.
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Table I-A. Average wall times (seconds) for Hartree-Fock calculations performed using native
and CCA integral interfaces. The IntV3 integral package wasused with native buffer layouts
throughout. Calculations were repeated three times.

Native Buffer Layout
Native Interface CCA Interface

Test Case Basis Set Wall Time Wall Time CCA Overhead

HF Energy
isoprene 6-311++G** 184 199 8.2 %

cc-pVDZ 33.5 36.1 7.8 %
cc-pVTZ 904 941 4.1 %

phosphoserine cc-pVDZ 254 265 4.3 %
aniline cc-pVTZ 915 947 3.5 %
water aug-cc-pV5Z 950 956 0.6 %

HF Gradient
isoprene 6-311++G** 364 389 6.9 %

cc-pVDZ 92.4 97.8 5.8 %
cc-pVTZ 2236 2316 3.6 %

phosphoserine cc-pVDZ 669 694 3.7 %
aniline cc-pVTZ 1790 1845 3.1 %
water aug-cc-pV5Z 1757 1769 0.7 %
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Table I-B. Average wall times (seconds) for MP2 calculations performed using native and CCA
integral interfaces. The IntV3 integral package was used with native buffer layouts throughout.
Calculations were repeated three times.

Native Buffer Layout
Native Interface CCA Interface

Test Case Basis Set Wall Time Wall Time CCA Overhead

MP2 Energy
isoprene 6-311++G** 117 120 2.6 %

cc-pVDZ 42.4 43.3 2.1 %
cc-pVTZ 581 591 1.7 %

phosphoserine cc-pVDZ 585 591 0.2 %
aniline cc-pVTZ 1168 1175 0.6 %
water aug-cc-pV5Z 258 260 0.8 %

MP2 Gradient
isoprene 6-311++G** 688 717 4.2 %

cc-pVDZ 235 244 3.8 %
cc-pVTZ 4182 4277 2.3 %

phosphoserine cc-pVDZ 2993 3034 1.4 %
aniline cc-pVTZ 5883 5960 1.3 %
water aug-cc-pV5Z 3838 3820 negligible
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Table I-C. Average wall times (seconds) for B3LYP calculations performed using native and CCA
integral interfaces. The IntV3 integral package was used with native buffer layouts throughout.
Calculations were repeated three times.

Native Buffer Layout
Native Interface CCA Interface

Test Case Basis Set Wall Time Wall Time CCA Overhead

B3LYP Energy
isoprene 6-311++G** 645 659 2.2 %

cc-pVDZ 208 210 1.0 %
cc-pVTZ 1852 1891 2.1 %

phosphoserine 6-311G** 968 984 1.7 %
aniline 6-311++G** 956 966 1.0 %
water 6-311++G(3df,3pd) 12.8 13.2 3.1 %

B3LYP Gradient
isoprene 6-311++G** 1602 1622 1.2 %

cc-pVDZ 723 725 0.3 %
cc-pVTZ 4411 4481 1.6 %

phosphoserine 6-311G** 2288 2314 1.1 %
aniline 6-311++G** 1987 2007 1.0 %
water 6-311++G(3df,3pd) 46.6 47.1 1.1 %
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Table II-A. Average wall times (seconds) for Hartree-Fock calculations performed using CCA in-
tegral interfaces. IntV3 integals are used throughout, comparing native and CCA buffer orderings.
Calculations were repeated three times.

CCA Interface
Native Buffer Layout CCA Buffer Layout

Test Case Basis Set Wall Time Wall Time Reorder Overhead

HF Energy
isoprene 6-311++G** 199 220 10.6 %

cc-pVDZ 36.1 39.6 9.7 %
cc-pVTZ 941 1002 6.5 %

phosphoserine cc-pVDZ 265 280 5.7 %
aniline cc-pVTZ 947 999 5.5 %
water aug-cc-pV5Z 956 982 2.7 %

HF Gradient
isoprene 6-311++G** 389 435 11.8 %

cc-pVDZ 97.8 105.7 8.1 %
cc-pVTZ 2316 2474 6.8 %

phosphoserine cc-pVDZ 694 728 4.9 %
aniline cc-pVTZ 1845 1947 5.5 %
water aug-cc-pV5Z 1769 1830 3.4 %
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Table II-B. Average wall times (seconds) for MP2 calculations performed using CCA integral
interfaces. IntV3 integals are used throughout, comparingnative and CCA buffer orderings. Cal-
culations were repeated three times.

CCA Interface
Native Buffer Layout CCA Buffer Layout

Test Case Basis Set Wall Time Wall Time Reorder Overhead

MP2 Energy
isoprene 6-311++G** 120 127 5.8 %

cc-pVDZ 43.3 44.6 3.0 %
cc-pVTZ 591 610 3.2 %

phosphoserine cc-pVDZ 591 595 0.7 %
aniline cc-pVTZ 1175 1255 6.8 %
water aug-cc-pV5Z 260 265 1.9 %

MP2 Gradient
isoprene 6-311++G** 717 791 10.3 %

cc-pVDZ 244 258 5.7 %
cc-pVTZ 4277 4547 6.3 %

phosphoserine cc-pVDZ 3034 3113 2.6 %
aniline cc-pVTZ 5960 6276 5.3 %
water aug-cc-pV5Z 3820 3956 3.6 %
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Table II-C. Average wall times (seconds) for B3LYP calculations performed using CCA integral
interfaces. IntV3 integals are used throughout, comparingnative and CCA buffer orderings. Cal-
culations were repeated three times.

CCA Interface
Native Buffer Layout CCA Buffer Layout

Test Case Basis Set Wall Time Wall Time Reorder Overhead

B3LYP Energy
isoprene 6-311++G** 659 684 3.8 %

cc-pVDZ 210 214 1.9 %
cc-pVTZ 1891 1962 3.8 %

phosphoserine 6-311G** 984 1019 3.6 %
aniline 6-311++G** 966 991 2.6 %
water 6-311++G(3df,3pd) 13.2 13.4 1.5 %

B3LYP Gradient
isoprene 6-311++G** 1622 1667 2.8 %

cc-pVDZ 725 736 1.5 %
cc-pVTZ 4481 4628 3.3 %

phosphoserine 6-311G** 2314 2387 3.2 %
aniline 6-311++G** 2007 2040 1.6 %
water 6-311++G(3df,3pd) 47.1 47.6 1.1 %
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Table III. Average wall times (seconds) for calculations performed using CCA integral interfaces.
Intv3 integals with native buffer layouts are used throughout, comparing opaque and SIDL array
buffer access. Calculations were repeated three times.

Opaque Access SIDL Array Access SIDL Array Access
Test Case Basis Set Wall Time Wall Time Overhead

HF Energy
isoprene cc-pVDZ 36.1 41.3 14.4 %
water aug-cc-pV5Z 956 979 2.4 %

HF Gradient
isoprene cc-pVDZ 97.8 107 9.4 %
water aug-cc-pV5Z 1769 1781 0.7 %

MP2 Energy
isoprene cc-pVDZ 43.3 45.5 5.1 %
water aug-cc-pV5Z 260 265 1.9 %

MP2 Gradient
isoprene cc-pVDZ 244 258 5.7 %
water aug-cc-pV5Z 3820 3840 0.5 %

B3LYP Energy
isoprene 6-311++G** 659 694 5.3 %
water 6-311++G(3df,3pd) 13.2 13.3 0.8 %

B3LYP Gradient
isoprene 6-311++G** 1622 1673 3.1 %
water 6-311++G(3df,3pd) 47.1 47.3 0.4 %
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Table IV. Average wall times (seconds) for calculations performed using CCA integral interfaces.
Calculations using Cints integals throughout and using Cints two-electron integrals along with
IntV3 one-electron integrals are compared. CCA buffer layouts (identical to Cints buffer layouts)
were used throughout. Calculations were repeated three times.

Cints Cints/IntV3 IntV3
Test Case Basis Set Wall Time Wall Time Overhead

MP2-R12 Energy
isoprene cc-pVDZ 245.9 245.9 0.0 %
water aug-cc-pV5Z 1549 1551 0.1 %

25



Figure Captions:

Figure 1. A schematic representation of ports in the CCA approach.Component A provides a
port,PortA , for whichComponent B gains access.

Figure 2. A schematic representation of the component integral evaluator architecture.
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Figure 1.
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Figure 2.
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Appendix A: Integral Evaluation Interfaces

Interfaces concerned with integral evaluation over Gaussian basis functions are described in the
following sections. Babel’s Scientific Interface Description Language (SIDL)11 is a neutral choice
for this description. The SIDL code for the following interfaces resides in the
Chemistry.QC.GaussianBasis package, a subsection of thechemistry.sidl file dis-
tributed with thecca-chem-generic software.

For convenience, an enumeration for function angular typesis provided.

enum AngularType { CARTESIAN, SPHERICAL, MIXED }

Codes which utilize integral evaluator components must pass Gaussian basis set data to the
evaluators. This task is performed by copying basis set datainto class implementations of the
ShellInterface , AtomicInterface , and MolecularInterface and passing the
MolecularInterface object to the integral evaluators (aMolecularInterface objectis
any SIDL class which implements theMolecularInterface ). A MolecularInterface
object, representing a molecular basis set, contains a set of AtomicInterface objects, each of
which contains a set ofShellInterface objects.

ShellInterface

int get n contraction()
Get the number of contractions in the shell.

Returns:
number of contractions

int get n primitive()
Get the number of primitives in the shell.

Returns:
number of primitives

double getcontraction coef(in int connum, in int expnum)
Get the coefficient for an unnormalized primitive.

Returns:
contraction coefficient

Parameters:
connum contraction number
expnum primitive number
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double getexponent(in int expnum)
Get the exponent for a primitive.

Returns:
exponent

Parameters:
expnum primitive number

int get angular momentum(in int connum)
Get the angular momentum for a single contraction.

Returns:
angular momentum value

Parameters:
connum contraction number

int get max angular momentum()
Get the max angular momentum, considering all contractionsin the shell.

Returns:
maximum angular momentum value

AngularType get contraction angular type(in int connum)
Get the angular type for a single contraction.

Returns:
angular type

Parameters:
connum contraction number

AngularType get angular type()
Get the shell angular type.

Returns:
angular type

void print shell()
Print the shell data.

AtomicInterface

string get name()
Get the canonical basis set name.

Returns:
canonical name

int get n basis()
Get the number of basis functions.

Returns:
number of functions
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int get n shell()
Get the number of shells.

Returns:
number of shells

int get max angular momentum()
Get the max angular momentum for any shell on the atom.

Returns:
max angular momentum value

AngularType get angular type()
Get the angular type for the atom.

Returns:
angular type

ShellInterface getshell(in int shellnum)
Get a gaussian shell.

Returns:
object implementingShellInterface

Parameters:
shellnumshell number

void print atomic()
Print the atomic basis data.

MolecularInterface

string get label()
Get the user specified name.

Returns:
name

long get n basis()
Get the number of basis functions.

Returns:
number of functions

long get n shell()
Get the number of shells.

Returns:
number of shells
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int get max angular momentum()
Get the max angular momentum for any contraction in the basisset.

Returns:
max angular momentum value

AngularType get angular type()
Get the angular type.

Returns:
angular type

AtomicInterface get atomic(in long atomnum)
Get an atomic basis set.

Returns:
object implementing theAtomicInterface

Parameters:
atomnum atom number

MoleculeInterface getmolecule()
Get the molecule.

Returns:
object implementing theMoleculeInterface

void print molecular()
Print the molecular basis data.

Many integral types require data in addition to integral buffers to be shared between servers and
clients. A number of data container utility interfaces serve this function, and this collection will
grow as client/server components with additional capabilities are implemented. The first such util-
ity interface we describe is theDerivCentersInterface , used to specify details for nuclear
derivative calculations. Code utilizing an integral evaluator must pass aDerivCentersInterface
object to the evaluator. For derivatives with operators which are independent of nuclear coordi-
nates, translational invariance allows derivatives with respect to one center to be ommitted, and de-
tails about omitted centers are shared through this interface. For derivatives of operators which are
dependent upon nuclear coordinates, derivatives with respect to every atom must be taken, and the
derivative atom information is shared using theset deriv atom() andget deriv atom()
methods. Thesegmentnumber, defined as the number of basic buffer segments a buffer is com-
posed of, is also shared through this interface. As an example of the buffer segment concept, a
dipole integral buffer consists of one buffer segement for each of x, y, and z, yielding a segment
number of 3.
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DerivCentersInterface

void clear()
Clear the list of centers.

Returns:
list of centers

void add center(in long center, in long atom)
Add a center for which derivatives will be computed.

Parameters:
center center number (between 0 and 3 inclusive)
atom atom number corresponding to center

void add omitted(in long center, in long atom)
Add a center for which derivatives will not be computed.

Parameters:
center center number (between 0 and 3 inclusive)
atom atom number corresponding to center

long n()
Returns the number of centers for which derivatives will be computed.

Returns:
number of centers

long center(in long i)
Returns center number.

Returns:
center number (between 0 and 3 inclusive)

Parameters:
i computed center index (between 0 and n()-1 inclusive)

long atom(in long i)
Returns atom number.

Returns:
atom number

Parameters:
i computed center index (between 0 and n()-1 inclusive)

long omitted center()
Returns the omitted center number.

Returns:
omitted center number
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int has omitted center()
Returns 1 if there is an omitted center.

Returns:
1 (true) or 0 (false)

long omitted atom()
Returns atom that is omitted from the integral buffer.

Returns:
omitted atom number

void set deriv atom(in int deriv atom)
Set the atom a derivative is taken with respect to.

Parameters:
deriv atom atom number

int get deriv atom()
Get the atom a derivative is taken with respect to.

Returns:
atom number

Currently, the only additional data container utility interface is theDipoleDataInterface
which provides origin information for dipole and quadrupole integrals.

DipoleDataInterface

void set origin( in array <double> origin )
Set the dipole origin.

Parameters:
origin Cartesian coordinate array

array<double> get origin()
Get the dipole origin.

Returns:
Cartesian coordinate array

When an integral evaluator is requested, a composite ofIntegralDescrInterface ob-
jects for the requested integral types is passed to the evaluator factory. This action provides both
the list of required integral types and any additional data required. The object oriented fea-
tures of Babel allow a collection of derived integral descriptors to be upcast to a collection of
base descriptors which are passed through theEvaluatorFactoryInterface . The evalu-
ator factory then checks descriptor types, performs any necessary downcasts and thereby obtains
the auxilliary data. TheEvaluatorFactoryInterface is thus generic and extendable for
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all possible integral types, requiring only the implementation of a new derived integral descrip-
tor for types requiring additional data. We now describe theIntegralDescrInterface ,
CompositeIntegralDescrInterface , andIntegralEvaluatorFactoryInterface ,
along with an example derived descriptor interface, theDipoleIntegralDescrInterface .

IntegralDescrInterface

string get type()
Get integral type.

Returns:
type

int get n segment()
Get number of segments.

Returns:
number of segments

void set deriv lvl( in int deriv )
Set derivative level.

Parameters:
deriv derivative level

int get deriv lvl()
Get derivative level.

Returns:
derivative level

void set deriv centers( in DerivCentersInterface dc )
Set derivative centers object.

Parameters:
dc derivative centers object

DerivCentersInterface getderiv centers()
Get derivative centers object.

Returns:
derivative centers object
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DipoleIntegralDescrInterface

extendsIntegralDescrInterface

void set dipole data( in DipoleDataInterface dipole data )
Set the dipole data.

Parameters:
dipole data dipole data

DipoleDataInterface getdipole data()
Get the dipole data.

Returns:
dipole data

CompositeIntegralDescrInterface

void add descr( in IntegralDescrInterface desc )
Add an integral descriptor.

Parameters:
descintegral descriptor

int get n descr()
Get number of descriptors contained.

Returns:
number of descriptors

IntegralDescrInterface get descr( in int n )
Get an integral descriptor.

Returns:
integral descriptor

Parameters:
n descriptor index

int is contained( in IntegralDescrInterface desc )
Query if a descriptor with matching type and derivative level is contained.

Returns:
1 (true) or 0 (false)

Parameters:
descintegral descriptor

void clear()
Clear all descriptors.
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IntegralEvaluatorFactoryInterface

string get name()
Get factory name.

Returns:
name

CompositeIntegralDescrInterface getdescriptor()
Get composite of descriptors for supported integrals.

Returns:
composite integral descriptor

bool is supported( in IntegralDescrInterface desc )
Query if a type and derivative level is supported.

Returns:
true or false

Parameters:
descintegral descriptor

void set storage( in long storage )
Set storage that the factory is allowed to utilize.

Parameters:
storageallowed storage in bytes

IntegralEvaluator1Interface
get evaluator1(

in CompositeIntegralDescrInterface desc,
in MolecularInterface bs1

)
Get a 1-center integral evaluator.

Returns:
1-center evaluator

Parameters:
desccomposite integral descriptor
bs1 basis set for center 1
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IntegralEvaluator2Interface
get evaluator2(

in CompositeIntegralDescrInterface desc,
in MolecularInterface bs1,
in MolecularInterface bs2

)
Get a 2-center integral evaluator.

Returns:
2-center evaluator

Parameters:
desccomposite integral descriptor
bs1basis set for center 1
bs2basis set for center 2

IntegralEvaluator3Interface
get evaluator3(

in CompositeIntegralDescrInterface desc,
in MolecularInterface bs1,
in MolecularInterface bs2,
in MolecularInterface bs3

)
Get a 3-center integral evaluator.

Returns:
3-center evaluator

Parameters:
desccomposite integral descriptor
bs1basis set for center 1
bs2basis set for center 2
bs3basis set for center 3

IntegralEvaluator4Interface
get evaluator4(

in CompositeIntegralDescrInterface desc,
in MolecularInterface bs1,
in MolecularInterface bs2,
in MolecularInterface bs3,
in MolecularInterface bs4

)
Get a 4-center integral evaluator.

Returns:
4-center evaluator

Parameters:
desccomposite integral descriptor
bs1basis set for center 1
bs2basis set for center 2
bs3basis set for center 3
bs4basis set for center 4
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int finalize()
This should be called when the object is no longer needed. No other members may be called after finalize.

Returns:
0 on success
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The IntegralSuperFactoryInterface provides a management layer for simplifying
the use of multiple integral evaluator factories (following the Abstract Factory Pattern). Once client
code provides rules for the routing of integral evaluator requests, the super factory acts as a single
evaluator factory enveloping the capapbilities of all connected factories.

IntegralSuperFactoryInterface

extendsIntegralEvaluatorFactoryInterface

array<string,1> add usesports(in int n)
Add uses ports to component implementation.

Returns:
array of uses port names

Parameters:
n number of additional uses ports

void remove port(in int portid)
Remove uses port.

Parameters:
portid port index

array<string,1> get port names()
Get uses port names.

Returns:
array of uses port names

array<string,1> get factory names()
Get attached evaluator factory names.

Returns:
array of factory names

array<CompositeIntegralDescrInterface,1> get descriptors()
Get composite of available integral descriptors for each factory.

Returns:
array of composite integral descriptors

void set default subfactory(in string fac )
Set the default factory for integral evaluator requests.

Parameters:
fac name of default factory

40



void
set subfactory config(

in array <string,1> types,
in array <string,1> derivs,
in array <string,1> facs

)
Configure which factory handles specific integral type requests.

Parameters:
typesarray of integral types
derivs array of derivative levels (integer or ”n” for wildcard)
facsarray of factory names

The remaining interfaces specify the integral evaluator interfaces themselves. A base interface,
IntegralEvaluatorInterface , is extended for one, two, three, and four-center integrals.
We describe the two-center interface here; extension to other numbers of centers is obvious.

IntegralEvaluatorInterface

opaque getbuffer(in IntegralDescrInterface desc)
Get buffer pointer for given type.

Returns:
buffer pointer

Parameters:
descintegral descriptor

CompositeIntegralDescrInterface getdescriptor()
Get composite of descriptors for integral types supported.

Returns:
composite integral descriptor

int finalize()
This should be called when the object is no longer needed. No other members may be called after finalize.

Returns:
0 on success

IntegralEvaluator2Interface

void compute(in long shellnum1, in long shellnum2)
Compute all buffers for specified shell multiplet.

Parameters:
shellnum1shell 1 index
shellnum2shell 2 index
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array<double,1>
compute array(

in string type,
in int deriv lvl,
in long shellnum1,
in long shellnum2

)
Compute buffer for specified type, deriv level and shell multiplet, and return as SIDL array.

Returns:
SIDL buffer

Parameters:
type integral type
deriv lvl derivative level
shellnum1shell 1 index
shellnum2shell 2 index

double computebounds(in long shellnum1, in long shellnum2)
Compute max integral bound.

Returns:
max integral bound for all computed types

Parameters:
shellnum1shell 1 index
shellnum2shell 2 index

array<double> compute bounds array(in long shellnum1, in long shellnum2);
Compute integral bounds for each computed type.

Returns:
SIDL array of integral bounds

Parameters:
shellnum1shell 1 index
shellnum2shell 2 index
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Appendix B: Proposed Integral Standards

While the integral interfaces we have proposed define a set offunction calls which may be
used to obtain, initialize, and utilize molecular integralevaluators, standards must specified for
implementational details, namely buffer layout and normalization conventions.

Buffer Layout

The most intuitive algorithm for the ordering of cartesian functions is proposed. Given angular
momentuml, the cartesian functionsxaybzc are ordered as follows

starting with

a = l

b = c = 0

the next function is given by

if(c < l − a) {
b = b − 1
c = c + 1
}

else {
a = a − 1
c = 0
b = l − a

}

For example, ad shell is ordered

x2, xy, xz, y2, yz, z2

For indexing within a cartesian shell multiplet buffer, thefirst center is treated as the most sig-
nificant, with each subsequent center receiving less significance.

For app shell doublet the ordering is

< x|x > < x|y > < x|z >

< y|x > < y|y > < y|z >

< z|x > < z|y > < z|z >
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For anspppshell quartet the ordering is

< 1x|xx > < 1x|xy > < 1x|xz >

< 1x|yx > < 1x|yy > < 1x|yz >

< 1x|zx > < 1x|zy > < 1x|zz >

< 1y|xx > < 1y|xy > < 1y|xz >

< 1y|yx > < 1y|yy > < 1y|yz >

< 1y|zx > < 1y|zy > < 1y|zz >

< 1z|xx > < 1z|xy > < 1z|xz >

< 1z|yx > < 1z|yy > < 1z|yz >

< 1z|zx > < 1z|zy > < 1z|zz >

Note that redundant integrals may be included. The orderingwithin a pure angular momentum

buffer follows the same significance rule, with functions ordered in decreasingml (l, l− 1, ...,−l).

For ann-center multiplet, a first derivative buffer contains a set of three derivative multiplets
( ∂
∂x

, ∂
∂y

, ∂
∂z

) for each of up ton − 1 unique centers (at least one center omitted due to translational
invariance).

For anssspfirst derivative shell quartet (omitting derivatives with respect to center four) the order-
ing is

∂
∂x1

(< 11|1x > < 11|1y > < 11|1z >)
∂

∂y1

(< 11|1x > < 11|1y > < 11|1z >)
∂

∂z1

(< 11|1x > < 11|1y > < 11|1z >)
∂

∂x2

(< 11|1x > < 11|1y > < 11|1z >)
∂

∂y2

(< 11|1x > < 11|1y > < 11|1z >)
∂

∂z2

(< 11|1x > < 11|1y > < 11|1z >)
∂

∂x3

(< 11|1x > < 11|1y > < 11|1z >)
∂

∂y3

(< 11|1x > < 11|1y > < 11|1z >)
∂

∂z3

(< 11|1x > < 11|1y > < 11|1z >)

Similarly, for second derivatives the ordering is

∂2

∂x2

1

(< 11|1x > < 11|1y > < 11|1z >)
∂2

∂x1∂y1

(< 11|1x > < 11|1y > < 11|1z >)
∂2

∂x1∂z1

(< 11|1x > < 11|1y > < 11|1z >)
∂2

∂x1∂x2

(< 11|1x > < 11|1y > < 11|1z >)
∂2

∂x1∂y2

(< 11|1x > < 11|1y > < 11|1z >)
∂2

∂x1∂z2

(< 11|1x > < 11|1y > < 11|1z >)
∂2

∂x1∂x3

(< 11|1x > < 11|1y > < 11|1z >)
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∂2

∂x1∂y3

(< 11|1x > < 11|1y > < 11|1z >)
∂2

∂x1∂z3

(< 11|1x > < 11|1y > < 11|1z >)
∂2

∂y2

1

(< 11|1x > < 11|1y > < 11|1z >)
∂2

∂y1∂z1

(< 11|1x > < 11|1y > < 11|1z >)
∂2

∂y1∂x2

(< 11|1x > < 11|1y > < 11|1z >)
∂2

∂y1∂y2

(< 11|1x > < 11|1y > < 11|1z >)
∂2

∂y1∂z2

(< 11|1x > < 11|1y > < 11|1z >)
∂2

∂y1∂x3

(< 11|1x > < 11|1y > < 11|1z >)
∂2

∂y1∂y3

(< 11|1x > < 11|1y > < 11|1z >)
∂2

∂y1∂z3

(< 11|1x > < 11|1y > < 11|1z >)
∂2

∂z2

1

(< 11|1x > < 11|1y > < 11|1z >)
∂2

∂z1∂x2

(< 11|1x > < 11|1y > < 11|1z >)
∂2

∂z1∂y2

(< 11|1x > < 11|1y > < 11|1z >)
∂2

∂z1∂z2

(< 11|1x > < 11|1y > < 11|1z >)
∂2

∂z1∂x3

(< 11|1x > < 11|1y > < 11|1z >)
∂2

∂z1∂y3

(< 11|1x > < 11|1y > < 11|1z >)
∂2

∂z1∂z3

(< 11|1x > < 11|1y > < 11|1z >)
∂2

∂x2

2

(< 11|1x > < 11|1y > < 11|1z >)
∂2

∂x2∂y2

(< 11|1x > < 11|1y > < 11|1z >)
∂2

∂x2∂z2

(< 11|1x > < 11|1y > < 11|1z >)
∂2

∂x2∂x3

(< 11|1x > < 11|1y > < 11|1z >)
∂2

∂x2∂y3

(< 11|1x > < 11|1y > < 11|1z >)
∂2

∂x2∂z3

(< 11|1x > < 11|1y > < 11|1z >)
∂2

∂y2

2

(< 11|1x > < 11|1y > < 11|1z >)
∂2

∂y2∂z2

(< 11|1x > < 11|1y > < 11|1z >)
∂2

∂y2∂x3

(< 11|1x > < 11|1y > < 11|1z >)
∂2

∂y2∂y3

(< 11|1x > < 11|1y > < 11|1z >)
∂2

∂y2∂z3

(< 11|1x > < 11|1y > < 11|1z >)
∂2

∂z2

2

(< 11|1x > < 11|1y > < 11|1z >)
∂2

∂z2∂x3

(< 11|1x > < 11|1y > < 11|1z >)
∂2

∂z2∂y3

(< 11|1x > < 11|1y > < 11|1z >)
∂2

∂z2∂z3

(< 11|1x > < 11|1y > < 11|1z >)
∂2

∂x2

3

(< 11|1x > < 11|1y > < 11|1z >)
∂2

∂x3∂y3

(< 11|1x > < 11|1y > < 11|1z >)
∂2

∂x3∂z3

(< 11|1x > < 11|1y > < 11|1z >)
∂2

∂y2

3

(< 11|1x > < 11|1y > < 11|1z >)
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∂2

∂y3∂z3

(< 11|1x > < 11|1y > < 11|1z >)
∂2

∂z2

3

(< 11|1x > < 11|1y > < 11|1z >)

and likewise for higher order derivatives.

Normalization

Gaussian integral packages can have significantly different normalization conventions for the
target integrals. The convention often depends on implementation details, such as the evaluation
method. The normalization convention we adopted is “natural” for the majority of integral pack-
ages aimed at basis sets with segmented contractions.

Cartesian Gaussian functions in a shell of angular momentumL have the same normalization
factorN . N is determined such that the Cartesian functionsxL, yL, andzL are normalized to unity.
The norm of a Cartesian Gaussianxaybzc is therefore

||xaybzc|| =
(2a + 2b + 2c − 1)!!

(2a − 1)!!(2b − 1)!!(2c − 1)!!

All spherical harmonic Gaussians are normalized to unity. Transformation from Cartesian to spher-
ical harmonics Gaussians was described in detail by Schlegel and Frisch.30
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