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Abstract

Atomistic simulation for molecular property calculation and elucidation of structure-
property relationships is limited in scope due to constraints on system sizes, time scales, and
energy landscapes. For many relevant processes in biology and chemistry, a sampling of the
phase space sufficient for accurate property calculations cannot be obtained. Here, we introduce
a novel formalism that utilizes supervised learning to reduce the complexity of simulations
required for property calculation in complex processes. In contrast to traditional informatics
approaches utilized for studies on proteins or small molecules, learning is achieved based on
molecular descriptions that are rooted in the physics of dynamic intermolecular forces. We
demonstrate the efficacy of the approach with calculations of the binding affinity of small

organics to proteins based on molecular dynamics simulations.



Introduction

The problem of molecular property prediction is central to many fields within biology
and chemistry including protein engineering and function prediction, prediction of environmental
fate and toxicity, and the design of novel drugs and materials. Despite the differences in the
ultimate goals in fields such as bioinformatics and molecular biophysics, cheminformatics and
computational chemistry, environmental science and materials design, all share a fundamental
objective: identifying the relationship between molecular structure and a given property. Finding
this relationship facilitates quantification without the cost of synthesis and/or assay and likewise
facilitates the design of novel molecules with desired properties. For toxic or pathogenic
molecules, the need for accurate computational methods is paramount for safe, low-cost
investigations.

Traditionally, there has been a dichotomous approach towards the problem of molecular
property prediction. Simulation methods on the one hand, obtain results from a quantum or
classical formulation of molecular mechanics applied to an atomistic model. By employing
equations fit at the particle level, these approaches provide a general method for property
prediction with atomic detail. Often, however, the system size and/or time-scale of relevant
processes preclude an ergodic sampling from simulation, forcing a limited sampling of the
phase-space and predictions based on insufficient statistics. Novel methods for improving the
sampling of phase space are therefore an area of active research for both Monte Carlo (MC) and
Molecular Dynamics (MD) simulations (1-11).

Informatics approaches on the other hand, can circumvent the time-scale problem by
fitting equations for a given property using higher level abstractions for molecular description

that are correlated directly to a given property. The tradeoffs, when compared to simulation,



include 1) the requirement for training data on every property for which a prediction is to be
made and 2) a more limited domain of applicability for a given model as determined by the
training molecules. An important issue in the informatics approach is the selection of appropriate
molecular descriptors composing the feature space. Descriptors based on the molecular graph
(whether atom connectivity or protein primary sequence) are commonly employed in informatics
models. However, studies investigating model accuracy suggest that such models may only be
accurate for calculations on molecules similar in structure to those used for training (12).
Descriptors based on 3-dimensional structure might offer the potential for more general models
due to their ability to encode information more closely related to molecular interaction; however,
such models require the selection of an “active conformation”. While methods for automating
this approach have been developed, the concept of a static molecular conformation responsible
for activity is somewhat nebulous.

Here, we present a new formalism, Kernel Molecular Dynamics (kMD), that utilizes both
simulation and informatics approaches for molecular property prediction. We address the
sampling problem in MD by shrinking the system size down to the molecule in question. In
trade, training data is required in order to quantify molecule properties in terms of dynamical
molecular interaction fields, rather than specific intermolecular interactions with the system. The
approach has roots in comparative molecular field analysis (CoMFA) (13) due to its use of
interaction fields and in 4D-QSAR (14), the first method to explicitly utilize MD simulation for
regression on molecular properties. It holds advantages in that it does not assume or require a
static active conformation as in CoMFA and does not require a similar scaffold for alignment as

is typical in 4D-QSAR. While the method is intended to be general in scope, we have chosen to



validate the approach in a context relevant to the current National Institute of Health initiative for
molecular library screening by using prediction of small organic ligand activity.

Methodology

The Problem of Property Prediction

Perhaps the most intuitive approach for understanding how molecular structure relates to
function or activity would be based on a derivation from first principles using particle
simulations intended to represent an accurate reflection of the physical processes involved.
Unfortunately, the complexity of such calculations based on our current understanding of physics
precludes accurate analysis for many processes of interest within a reasonable time. A typical
approach to handling such difficulties is to seek higher level formulations based on empirical
analysis at a higher level than the physics of individual particles within a system. With this
regard, we face the problem of describing the dynamic interactions of a molecule in question
with other molecules in the system in a manner that allows for the calculation of desired
properties. This description must be canonical in the sense that it allows for a unique and general
quantification for any molecule of interest (regardless of the size or structure of the molecule).
Also, the description should involve as little information loss as possible.

In kMD, we approach this problem by reducing the complexity of the particle simulation
such that it involves only the conformation of the molecule in question; therefore the approach is
built on the idea of 4D-QSAR (14). We address the problem of intermolecular interaction by
considering a probe atom, fragment, or molecule; therefore the approach is also built on the idea
of CoMFA (13). For a given probe, we measure the energy of interaction of the probe with the
molecule. By calculating this energy for different probes at all positions surrounding the

molecule and for different conformations of the molecule, we obtain a basis for comparison of



the differences in how molecules will interact with other molecules in the system. We then seek
equations that relate these “dynamic molecular interaction fields” to a property of interest based
on existing measurements for a set of molecules. We have illustrated this approach in Fig. 1 and
give a formal description below.

Analytic kMD

We consider the case where we have a single assay for a given molecular property P that

we would like to quantify. Denote by M = { m;, m, ..., } the set of all molecules. For a given

molecule mc M, we assume that any molecular property can be quantified based on its’

dynamic interactions with other molecules in the system. While a traditional simulation approach

assumes a function utilizing a subset of M intended to represent a system of interest, we take

advantage of an observation central to the study of quantitative structure-property relationships
(QSPR) — for a given assay, the interacting molecules within a system are identical aside from

the molecule in question. Therefore, any changes affecting the property P should be inherent to

the molecule m itself. This suggests the existence of a function f: M — R for property

prediction such that /' (m) gives P without the requirement for analysis of other molecules in the
system. Because it is unlikely that such a function can be derived directly from thermodynamics
equations, we trade a reduction in the size of the system for training data such that f'can be
learned empirically.

In order to obtain computational efficiency, we do not look at explicit interactions
between m and molecules in a system, but rather the potential for interaction with other
molecules as probed by molecular interaction fields. We therefore consider a smaller set Q = {

q1, q2, --., qx } of probe molecules, atoms or fragments that are intended to provide, in some



sense, a canonical basis for elucidating differences in how molecules interact with any system.

The molecular interaction field is given by a function ®, R’ x[0,¢,]—> R that represents the
energy of interaction between m and a probe g, as a function of Cartesian space. Because @, s

dependent on the conformation of m, it is a function of the molecule’s dynamic conformation,
denoted here by r,(¢) with ¢ in [0, #,] for a range of conformations between 0 and ¢,, for each
molecule m. We solve for r,, (f) with simulation.

In order to obtain f, we consider kernel methods for learning and therefore require a
kernel function k: M x M — R that gives the similarity between two molecules m; and m; in

terms of @, (r,¢) and ®,  (r,?). Because we do not impose any limitations on the initial

conformation for m or on #,, the comparison of ®,  (r,r) with @, (r,f) over {is not trivial.
e

m;.q,

We therefore use a canonical transformation of ®,  (r,?) to provide a function that is

independent of ¢ and facilitates comparison with an inner product. Two obvious choices include
transformation into a frequency domain and transformation into a probabilistic domain. Here, we

use the latter and denote by p,,  (r,¢) the probability density function for probe interaction

potential such that .[d Py (E,0)=Pr(c <@, (r,1)<d). We can then define a similarity
p=c’ Ty A

kernel,
kynzmom)="[ [ p, . (L®).0)p, , (T,),p)drdo, [1]
@p=—0 1
that compares at each point in space surrounding the two molecules the probability that a probe
molecular interaction potential takes on each value for negative interaction energies. In this

function, e,<0 is a parameter that restricts interaction potential to a finite volume surrounding the

molecules. The integral over r introduces a frame of reference problem which requires alignment



between molecules. We address this issue by enforcing the Eckart conditions in the form of

holonomic restraints in order to separate rotations and translations of the molecules from those

due to internal vibrations (15). Additionally, we parameterize the kernel with transformations 7;

and 7; that represent translation and rotation of the probe atom (or, equivalently, the molecule).
In order to consider all probes, we introduce a summation over v and normalize the

similarity to lie between 0 and 1,

k .,.(m,-,m.)
K (o) = 37— = 2]

g1.1, (M), 7y (m, m.i)’
where y, gives a constant weight specifying the relative importance of probe g,. The problem of
choosing appropriate transformations is a difficult one. Perhaps the most intuitive approach, in
terms of the idea of a pair-wise molecular similarity, is to choose transformations independently
for each pair such that the similarity is maximized:

k'(m;,m;) =max,k, .(m,,m,). [3]
Unfortunately, this is not necessarily a true inner product (a necessary condition for a kernel
function) because it is not linear. An alternative approach, that facilitates a true inner product, is
to use a fixed frame of reference such that the transformation for each molecule is fixed. Thus,
for a set of molecules {m,, my, ..., m,} there is a corresponding set of transformations {7}, 7>, ...
, T,} that define

k(mi:mj)zkri,f,(miamj)- [4]

We describe one approach for calculating transformations for each molecule below.
The similarity metrics presented allow us to obtain equations for a given property in

terms of a molecule’s dynamic probe interaction fields, provided that data is available where a



property has been measured for a set of training molecules. Here we utilize support vector

machines (SVMs) (16) for learning to provide an equation for f of the form
f(m)zZaik(mi,m)er, [5]

where 7 indexes the molecules in the training set chosen as support vectors and a; and b are
determined during training. SVMs can be utilized for either regression (where f(m) gives the
property) or for classification (where the sign of frepresents an assigned class for a given
property). Here, we apply both approaches. An additional advantage of SVMs is their ability to
obtain non-linear functions for a property using derived kernels. Here, we consider, in addition to
the kernel in Eq. 4, an RBF kernel defined as

kg(m,,m,) = exp(—(k(m;,m,)—2k(m,,m,)+ k(mj,mj))/272). [6]

The ability to calculate an unknown property is useful for screening; however, further

intuition into how the structure of a molecule relates to a given property is beneficial for design
problems. For the linear SVM, the model can be projected into Cartesian space to allow for
visualization in a manner analogous to that used for COMFA. This can be seen more clearly by

rearranging Eq. 5 for a single probe; neglecting normalization, we obtain

f(m)= ] J.[Za[pm“%jpm,qurdgo+b [7]

@p=—0 1 4
In this form, it becomes clear that the contribution to f over a range of space dr and a range of
probe interaction potentials dp can be isolated. If we choose ¢, such that it represents solely a

van der Waals interaction potential, we can extract information in the form of key steric

interactions in a given region of space. If we add a separate probe that is charged, we can extract



information on coulombic interaction potential. By plotting isosurfaces of the Shannon entropy

of p

g, » WE Can obtain insight into how thermal motion influences a given model.
Numerical Approximation to kMD

Here, we obtain the dynamic representation of molecular conformation r,(¢) for a
molecule in isolation using molecular dynamics, such that ¢ represents time. For the first dataset,
MD was performed using the Tinker implementation of the MM3 force-field (17). Specifically,
Beeman integration with a Berendsen thermostat was performed for 200,000 femtoseconds (fs)
using a time step of 1 fs with a temperature of 300K and a pressure of 1 atmosphere. For the
second dataset, the Sybyl implementation of the MMFF94 force-field (18) was used due to the
generality of the force-field in terms of small organic atom types. Starting conformations for the
MD simulations for each molecule were generated using BFGS minimization to an RMS
gradient of 0.01.

In order to perform efficient calculations of intermolecular interaction fields @ we 1)

g, ®
limit the probes to single atoms, taking advantage of the pair-wise nature of the intermolecular
interaction energies in MM3 and MMFF94 and 2) utilize cubic B-splines (19) to represent
energy. B-splines were chosen so that the time complexities for integration (Eq. 1) and alignment
(Egs. 2 and 3) are independent of the number of atoms in the molecule and because the resulting
interpolation is C” continuous allowing for derivative calculation during alignment. Three probe
atoms were used: a neutral atom, an atom with a +0.5 charge, and an atom with a -0.5 charge all
with a constant van der Waals radius equal to that of carbon in the respective force fields. For
each probe atom, the interaction field corresponding to a given conformation was calculated
utilizing B-splines on a uniform grid with a 1A resolution and with dimensions equal to the

bounding box of r,,(7) plus 15A.
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Because MD calculations are performed with numerical integration using discrete time

steps, we must estimate the underlying probability density p, for a given interaction field.

This was performed using Parzen windows (20) with a Gaussian function such that

I 1 ~(p-0(r,0)) 125 (8]

r "y (r,(p) B ?; 0'\/% ¢

where 7 ranges over a random set of MD time points. Because the integral product in Eq. 1 has a
time complexity of O(z *), we also considered a more efficient approach for alignment whose

complexity is independent of 7. We did this by calculating a vector of discrete probabilties

W, = {a)m’qwl D seees Doy } from the probability density between a minimum and maximum

energy (@min and @max) such that

Cin +(i+1)(A@) /s
W= [ o, (r0)d, B

Punin +i(A9)/ 5

for 0 <7 <s-1, where Ap = @max - Pmin. In this case, the integration of p, . p,  over ¢ inEq. 1is

replaced with a dot product w, -w and the interpolating B-splines calculate a given

g,
probability rather than a given potential energy. For the investigations here, s=10 was used with
a range of -1 to -0.1 for the uncharged probe and -20 to -2 for the charged probes.

The integrals in Eq. 1 were calculated using Vegas integration (21) with 5 stages utilizing
a total of 100,000 function evaluations. In this case, the integration intervals must be finite,
however, if the approach is parameterized correctly, non-zero probabilities outside the
integration ranges will be negligible and the integrals will be equivalent to a certain precision. In
order to achieve this, we integrated over ¢ using two times the smallest potential found as the
lower limit of integration. We integrated over r using the bounding box of the interpolation grids

plus 50% of the largest interpolation grid. Because the Vegas integration is expensive and an
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analytic form for the derivative of Eq. 2 has not been obtained, during alignment we evaluated
Eq. 2 by replacing the integral over r with a summation over uniform grid points with a 1A
spacing over the same integration range. In this case analytic similarities and derivatives can be
calculated to allow for efficient alignment.

We performed the alignments represented by Eq. 3 using a hybrid genetic algorithm (GA)
with a local search operator that enforced a .02 probability of performing 3 iterations of BFGS
conjugate gradient minimization. A consistent initial positioning for each trajectory was obtained
using principal-axes transformations. An initial population size of 50 was used and the
population was seeded with 8 genomes that result in no translation of the trajectory and all
permutations of 0° and 180° rotations along each of the principal axes. This asserted that the
optimization would evaluate similarities with each trajectory centered at the origin and rotated
onto its principal axes. Power law scaling with an exponent of 1.5 was utilized for fitness
evaluation and the probabilities for crossover and mutation were set to 0.9 and 0.02 respectively.
The GA was evaluated for 50 generations followed by full BFGS minimization to a gradient of
0.001 with a maximum of 100 iterations.

In order to evaluate Eq. 4, a single transformation for each trajectory was calculated
based on the full pair-wise similarity matrix given by Eq. 3. In this process, each molecule is
placed into a unique set. Sets are merged by aligning each of the molecules in one set to another
set using the single transformation identified to align the two molecules in the respective sets that
have the highest similarity as calculated using Eq. 3. The process is repeated until only one set
remains. Eq. 5 was obtained using the SVM implementation in SVM"€" (16) which was
modified to accept a pre-calculated kernel matrix and to compute full cross-validation statistics

for both regression and classification. Finally, model visualization was accomplished based on

12



Eq. 7, by calculating coefficients for each probe on a regular 1A grid. Isosurfaces were
calculated using the Marching Cubes algorithm with cubic B-spline interpolation for vertex and
normal placement. Surface triangulations and molecular conformations were rendered using the
software Pymol 0.97.

Results

For the first dataset, we analyzed corticosteroid binding globulin (CBG) binding affinity
for a set of steroids as described in Ref. (22). This dataset was first compiled for evaluation of
CoMFA (13) and has since become a benchmark for 3D-QSPR approaches. The dataset consists
of 31 compounds with pK values ranging from -5 to -7.881. We chose the MM3 force-field for
MD and kMD calculations for this dataset. However, parameters for 114, 17, 21-trihydroxy-2a-
methyl-9a-fluoro-4-pregnene-3,20-dione were not available and therefore this compound was
not included in initial tests. Because this compound has also been identified as an outlier (22), we
felt it was important to include the steroid in final tests as described below, taking torsion
parameters from an atom type with the same hybridization.

Initially, we used molecular conformations taken from the work in Ref. (22) as the
starting point for MD calculations. Conformations at 50 random time points were taken for
continuous PDF calculation (Eq. 8). The dynamics trajectories were aligned by hand based on
the initial conformation. Alignment and similarity calculations were performed using only local
BFGS minimization. The resulting SVM model had a leave-one-out cross validation squared
correlation coefficient (¢°) of 0.86 using a regularization parameter (c) of 2.8. A SVM regression
tube width of 1-10”7 was used for all calculations. The squared correlation coefficient (**) when
trained on all molecules was 0.9. For the non-linear model generated with the RBF kernel, a ¢* of

0.86 and an »* of 0.93 were obtained (¢=3.8, y=1.3). We next tested the discrete probability
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approximation (Eq. 9), repeating the above procedure. For this case, we saw only a small loss in
accuracy with a ¢g° of 0.84 and an »* of 0.89 (¢=1.45) for the linear kernel and a ¢* of 0.84 and an
r* of 0.9 (¢=2.2, y=1.5) for the RBF.

Finally, we tested the approach as intended, with no user intervention in selection of the
starting conformation or alignment. In this case, each steroid was subjected to conjugate gradient
minimization in the MM3 force-field to generate initial conformations for MD. Each trajectory
was centered at the origin and transformed onto its principal axes. Full global alignment was
performed using the hybrid GA followed by full local minimization. The resulting model had a
¢” of 0.88 and an #* of 0.9 (c=5.8) for the linear kernel and a ¢* of 0.94 and an 7% of 0.96 (¢=5.2,
y=0.3) for the RBF. When the full dataset is used (31 instead of 30), a ¢* of 0.76 and an * of
0.83 (¢=2.7) is obtained for the linear kernel and a ¢* of 0.86 and an »* of 0.93 (¢=5.42, y=0.3) is
obtained for the RBF. We believe the decrease in accuracy is not due to parameterization, but
rather the unique substitution of the steroid ring within this compound. A correlation plot for the
RBF model on the full dataset is shown in Fig. 2.

Visualization of the resulting model is important for interpretation and there are various
approaches that might be used to map the model into a space suitable for visualization. Here, we
have used an approach similar to that applied in COMFA by utilizing Eq. 7 and averaging the
contribution of probe interaction potential over the integration range used for model
development. The result for the steroid model is shown in Fig. 3. In this example, we have
interpolated an isosurface showing the locations where negative interaction potentials of the
uncharged probe enhance binding affinity according to the model. This surface is then colored
red or blue based on the degree to which a positively or negatively charged probe increases

binding affinity. It is important to note that figures such as this do not simply illustrate how a
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probe interacts with a molecule, but rather, how probes are able to differentiate accuracy between
molecules. In an ideal case, this surface should be representative of binding pocket structure and
electrostatics simply because it is this structure that is truly determining binding affinity. An
alternative approach for isosurface visualization is given in the example below.

The steroid molecules are relatively rigid and share a common scaffold (the
cyclophenanthrene nucleus). For this reason, this dataset is very amenable to 3D-QSPR
approaches; there is little ambiguity in the selection of molecular conformations and alignments.
In fact, increasing the number of MD samples from 50 to 500 offers little improvement in the
model accuracy as obtained by kMD. Nonetheless, most 3D-QSPR approaches have accuracies
that are sensitive to steroid conformation and kMD results are comparable or superior to previous
methods. A thorough review of QSPR results on the steroid dataset with a variety of methods is
given in Ref. (23). The ¢* of 0.86 on the full dataset is directly comparable to a value of 0.63 for
Spatial Autocorrelation and 0.63 for Molecular Similarity. CoMFA was originally benchmarked
on a subset of the first 21 steroids to produce a ¢* of 0.734 (after correction of errors in the
original dataset). For this same dataset, we are able to achieve a q2 of 0.90 (+*=0.99). Direct
comparisons to other methods are not possible due to differences in the datasets or methods;
however, a discussion of these results has been given (23).

The fact that kMD offers improved accuracy in the calculation of steroid binding affinity
is not the sole point of this work. The steroid dataset has been carefully analyzed with
conformations and alignments selected to produce accurate results for 3D-QSPRs. Our approach
does not require user-bias in the selection of active conformation or alignment, but rather
considers the dynamic nature of molecular structure. For many realistic applications, this should

be advantageous in that it is not straightforward to limit flexible molecules with different
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structures to static conformations. Therefore, for the second application we chose a much more
difficult problem: classification of high-throughput screening results. These molecules are
unlikely to be limited in flexibility and unlikely to share a common substructure or scaffold
because they are not obtained from a limiting synthetic scheme.

Here, we have used screening results from the formylpeptide receptor (FPR) ligand
binding assay and the MLSCN 10K ST1 compound set. The FPR family of G-protein coupled
receptors contributes to the localization and activation of tissue-damaging leukocytes at sites of
chronic inflammation and has been proposed as a prospective target for therapeutic intervention
against malignant gliomas. Details on the assay are available through the National Library of
Medicine PubChem site (assay ID 440). The assay identified 17 active compounds and 9965
inactive compounds (from which 17 were chosen at random). The resulting set of compounds is
illustrated in the Supporting Information. For this dataset, we implemented MMFF94 capabilities
into kMD and took conformations from 5000 MD time points for PDF generation.

Despite the high flexibility and variation in structure, we were able to predict ligand
binding activity with a leave-one-out accuracy of 82%. In this case, both the specificity and the
sensitivity were 0.85 corresponding to 3 false positives and 3 false negatives. We obtained an
accuracy of 100% when all molecules were used for training. A visualization of the impact of
probe interaction potential on steroid activity for the final model is shown in Fig. 4. In this case,
we have calculated isosurfaces for each probe independently in order to clearly illustrate regions
where probe electrostatic and steric interactions influence activity.

Discussion
kMD is intended to provide an approach for the calculation of molecular properties that is

more efficient than traditional MD simulation and more accurate than traditional informatics
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approaches due to the explicit consideration of dynamic molecular conformation. Aside from
efficiency, there are several advantages of kMD over traditional simulation. First, specifics of the
interacting system are not directly relevant and therefore the approach is not sensitive to initial
configurations of the system; in fact, the structures of interacting molecules do not need to be
known. Second, although molecular mechanics force-fields are utilized for simulation and to
quantify interaction potentials, molecular properties are not directly derived from energies that
result from atom type parameterization. Therefore, this “learning” aspect of property prediction
in kMD might allow for calculations that are robust in the face of parameter uncertainty. At the
least, problems due to atom type extrapolation should reveal themselves during training in the
form of poor accuracies. Generating such statistics using traditional simulation is often too
expensive.

Of course, these advantages do not come without trade-offs. First is the requirement for
training data. We do not know the amount of training data required for model development;
however, we certainly expect an increase in accuracy with an increase in the amount of data. For
certain problems, enough data will not be available. The increase in publicly available databases
and high-throughput methods should help with many cases. Second, kMD achieves efficient
calculations at the cost of atomic-detail in time-resolved intermolecular interactions within a
system. While we have implemented methods for identifying key interactions in the model that
contribute to activity, it is important to note that kMD utilizes a simulation where a given
molecule is unperturbed by interacting molecules within the system. While kMD can reveal
interactions that differentiate accuracy, these interactions are not necessarily a reflection of
actual interactions within a given system. Nonetheless, these models reveal information

pertaining to how the structure of a given molecule relates to activity and likewise, information
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useful for the design of novel molecules with desired traits. Consider, for example, the problem
of engineering a protein with improved ligand selectivity. A kMD model can be trained by
assigning desired ligands into one-class and problem ligands into another. The resulting model
can identify important intermolecular interactions (in the form of probe interaction energies) that
differentiate the two classes and can be used to guide the design of improved binding pockets.
kMD addresses the sampling problem in simulation approaches by reducing the
complexity of the simulation — the problem of rough energy landscapes might still be an issue. In
this regard, MD and MC approaches that offer improved phase-space sampling should also
benefit conformational studies in kMD. Sampling problems resulting from local minima traps
can be identified in kMD studies by assessing self-similarity. That is, the kernel computed with
simulations of the same molecule at different starting conformations should be approximately 1.
We have performed initial studies of kMD on the binding affinity of small ligands to
proteins because it facilitates comparison to alternative informatics approaches and because it is
an important component of a current NIH Roadmap. Analysis of the FPR screening results
represents a difficult problem for informatics approaches due to the small size of the dataset and
the variation in chemical structure. For simulation approaches, the dataset is very large;
simulation of ligand binding for a single molecule remains a challenge with MC and MD
approaches on modern high-performance computers. Despite the small size of the simulations
used in this study, the approach is also potentially applicable to more ambitious problems such as
protein engineering. Assuming that the interaction fields can be limited to a region of interest
(e.g. a binding pocket), kMD calculations can be performed for large proteins. Given
conformational data, the time complexity of the alignment and similarity calculations are

independent of the number of atoms. kMD can also potentially be applied to the molecular
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recognition problem. By including positive interaction potentials and inverting the sign of the
potentials for one of the molecules involved, the kernel presented represents an objective
function for the docking problem allowing for ligand and receptor flexibility.
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Figure 1. Calculation of dynamic molecular interaction fields in kMD. We measure the potential
energy (®) of interaction between the probe (blue sphere) at a position relative to a molecule
(sticks). This is performed for every conformation of the molecule as identified by simulation to
give the upper plot. This plot is not canonical in the sense that the ordering of conformational
change is not unique. We therefore transform this function. Here, we have illustrated
transformation into a probability density (p). Analysis of the probability density for different
types of probes at every position surrounding the molecule can be utilized to identify differences
in how two molecules will interact with a system. This, in turn, can be utilized to quantify

molecular properties of interest.
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Figure 2. Correlation plot of experimental versus calculated binding affinities resulting from
cross-validation using kMD with the RBF kernel on 31 steroids. The resulting ¢* is 0.86. Units

are —log K.

Figure 3. Visualization of the contribution of probe interaction potentials to the binding affinity
of steroids with CBG. The surface represents an interpolation of equation coefficients projected
onto a grid based on Eq. 7. The surface is interpolated using the uncharged probe and represents

locations of probe atom centers where negative interaction potentials increase binding affinity.
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The surface is shaded blue in regions where positive probe interactions increase binding and is
shaded red where negative probe interactions increase binding. The initial conformation of

cortisone is shown as a stick model.

Figure 4. Visualization of the contribution of probe interaction potentials to the binding affinity
of ligands with FPR. In this case, surfaces are interpolated for each probe separately. Wheat
represents key uncharged probe interactions, blue represents key interactions for the positive

probe, and red represents key interactions for the negative probe.
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Active and inactive compounds used for kMD studies as taken from the FPR high-throughput
screening results (PubChem Assay ID 440).
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