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ABSTRACT 
Summary:  This online supplement contains pseudo-code and addi-
tional explanation for the network inference algorithms, as well as a 
comparison of the effect of different clustering algorithms on meta-
gene discretization. 
Availability & Contact:  For questions and code, please contact 
Jean-Loup Faulon at jfaulon@sandia.gov. 

1 NETWORK INFERENCE PSUEDO-CODE 
In this section we describe in detail the algorithms used to infer 
networks from gene expression profiles. These algorithms count, 
sample, enumerate, identify attractors, and simulate the dynamics 
of all the possible networks matching a given set of discretized 
expression profiles.  Networks are counted, sampled, and enumer-
ated at the node (meta-gene) level.  For every node we determine 
all the possible sets of nodes that might control the expression 
profile of that node.  Expression profiles are given over time and 
the algorithms can accept several time courses corresponding to 
different initial conditions.  These initial conditions can be differ-
ent stimuli, or various knockouts experiments. 

The algorithms take as input a set of n nodes {v1, v2, …, vn} 
which correspond to the meta-genes, and a set c profiles {P1, P2, 
…, Pc}, where each profile is a binary matrix of gene expression 
for a given initial condition.  Pl is an n × ml matrix with entry Pl

i,j 
= 1 if gene i is up-regulated at time j, or Pl

i,j = 0 if gene i is down-
regulated at time j.  Typically each profile matrix Pl has the same 
number of time points m (so that ml = m for all l) but we can allow 
different profiles to have different numbers of time points.  Fur-
ther, different nodes typically have different time series expres-
sions, although this requirement is also not necessary to run the 
algorithms.  

The fundamental code used in all the algorithms is 
INFER_FUNCTION.  This routine determines if a set of nodes 
v1,v2,…,vq with q ≤ n can explain the expression profile of a given 
node vi.  In other words, INFER_FUNCTION returns the Boolean 
function by which v1,v2,…,vq control the expression of vi. This 
function is empty if v1,v2,…,vq do not control vi.  A further check is 
performed to determine whether or not the function is an activia-
tion-inhibition function of the type vi(t) = (v1(t) OR v2(t) OR …) 
AND NOT (vj(t) OR vj+1(t) OR …), where v1(t), v2(t), … are acti-
vators and vj(t), vj+1(t), … are inhibitors. 
 
 
  
*To whom correspondence should be addressed.  

INFER_FUNCTION (P1,…,Pc,vi,v1,…,vq) 
define f = **…* (string of 2k characters) 
for each profile Pl in {P1,…,Pc} do 
  for each time t in profile Pl do 
    input = Pl1,tP

l
2,t…P

l
q,t 

    (input is an integer in binary format) 
    if f(input) = *  
      then f(input) = Pli,t+1 
      else if f(input) ≠ Pli,t+1 return(∅) 
  done 
done 
if f is activation-inhibition return(f) 
  else return(∅) 
 

As an example of INFER_FUNCTION, suppose we are given a 
time series with 6 time points for 3 genes v1, v2, and v3, as shown in 
Table 1, where we write 1 when the gene is up-regulated and 0 
when down-regulated. 
 

Time  
1 2 3 4 5 6 

v1 0 0 1 1 0 0 
v2 1 0 0 1 1 0 

G
en

e 

v3 1 0 0 1 0 0 
 
Table 1.  An example of discrete time course with 3 genes and 6 time 
points.  Zero (red) denotes down-regulation and 1 (green) denotes up-
regulation. 
 
We are interested in determining an activation-inhibition function 
for v3 assuming that v1 and v2 are potential inputs.  Can we explain 
v3 expression profile using v1 as the only input?  Consider the rele-
vant information, as extracted in Table 2. 

 
Time  
1 2 3 4 5 6 

v1       
                     

G
en

e 

v3       
 

Table 2.  The effect of the gene expression of v1 on the gene expression of 
v3 at the next time step. 
 
In Table 2 we see that v3 is down-regulated when v1 is down-
regulated at the previous time step.  However, v3 can be either up- 
or down-regulated when v1 is up-regulated at the previous time 
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step.  Thus v1 cannot explain v3.  The same is true when v2 is con-
sidered as input for v3.  What if both v1 and v2 are considered as 
inputs of v3?  In this case we have the situation shown in Table 3. 

 
Time  
1 2 3 4 5 6 

v1       
v2       
                     

G
en

e 

v3       
 

Table 3.  The effect of both v1 and v2 on v3. 

From Table 3 we see that v3 is down-regulated when v2 is up-
regulated at the previous time step (v2 inhibits v3), and that v3 is up-
regulated when v1 is up-regulated at the previous time step (v1 
activates v3).  In the parlance of the pseudo-code for 
INFER_FUNCTION we have a Boolean function f such that f(00) 
= 0, f(01) = 0, f(10) = 1, and f(11) = 0.  Or, written in a more con-
ventional notation we have v3(t+1) = v1(t) AND NOT v2(t).  

Using INFER_FUNCTION, inferring networks can easily be 
done by processing each node in order.  The code for performing 
this inference is called INFER_NETWORKS.  INFER_NETWORKS 
takes as input the profiles P1, P2, …, Pc; the nodes v1, v2, …, vn; 
and the maximum number Q ≤ n of connections allowed for a 
given node.  INFER_NETWORKS returns as output the possible 
connections and associated Boolean functions for each node vi.  
This information is stored in a set NETWORKS(vi).  This set is 
composed of a sequence of (q+1)-tuples, where q is variable but q 
≤ Q.  Each tuple contains the list of q inputs as well as the associ-
ated Boolean function returned by INFER_FUNCTION. 
 
INFER_NETWORKS (P

1,P2,…,Pc,v1,v2,…,vn,Q) 
for each node vi do 
  NETWORKS(vi) = ∅ 
  for k = 1 to Q do 
    for all k-tuples v1,…,vk do 
      f = INFER_FUNCTION(P1,P2,…,Pc,vi,v1,…,vk) 
        if f ≠ ∅ then  
          add (v1,…,vk,f) to NETWORKS(vi) 
    done  
  done 
done 
return(NETWORKS) 
 

Using INFER_NETWORKS it is quite easy to count the number 
of possible networks matching a given set of expression profiles.  
Note that the number of possible networks is simply the product of 
the number of possible inputs for each node. 
  
COUNT_NETWORKS (v1,v2,…,vn,NETWORKS) 
P = 1 
for each node vi do 
     P = P*|NETWORKS(vi)| 
done 
return(P) 
 

Next, we can select at random possible networks for the set 
NETWORKS using the SAMPLE_NETWORKS. 
 
 
 

SAMPLE_NETWORKS (v1,v2,…,vn,NETWORKS) 
for each node vi do 
  select at random f from NETWORKS(vi) 
  print vi, f 
done 
 

Now, to enumerate all networks, we run INFER_NETWORKS 
then list and print all possible inputs for each node.  Recall that 
INFER_NETWORKS generates for each node a list of possible 
inputs and associated Boolean functions. In order to enumerate all 
possible networks it is enough to simply enumerate all possible 
inputs in order.  This necessitates maintaining a variable for each 
node called I#(vi), which is the current input number for node vi. 
The enumeration algorithm essentially prints the input of each 
node for all possible values of the vector I#, and thus reduces to an 
enumeration of all possible I# vectors. 
 
ENUMERATE_NETWORKS (v1,v2,…,vn,NETWORKS) 
set I#(vi) = 1 for all nodes vi 
while I# ≤ (|NETWORKS(v1)|,…,|NETWORKS(vn)|) 
do 
  for each node vi do 
      f = I#(vi) element of NETWORKS(vi) 
      print vi, f 
  done 
  next(I#) 
done 
 

Using SAMPLE_NETWORKS or ENUMERATE_NETWORKS, we 
are now in a position to consider the dynamics of the different 
possible networks.  These dynamics are analyzed by running the 
networks and analyzing the attractors. 

We first generate a gene expression profile P* by running a 
given network NETWORK taken from the set NETWORKS inferred 
using the SAMPLE_NETWORKS or ENUMERATE_NETWORKS 
routines.  The RUN_NETWORK routine takes one of the initial con-
dition profiles Pl from P1, P2, …, Pc; the nodes v1, v2, …, vn;  a 
specific network NETWORK; and a maximum time T for the output 
profile P*. 
 
RUN_NETWORK (P

l,v1,v2,…,vn,NETWORK,T) 
t1 = second time step (first is t0) 
for t = t1 to T do 
  for each node vi do 
    let v1,…,vk,f be the input nodes and 
        associated Boolean function for node 
        vi as recorded in NETWORK(vi) 
    P*i,t = f(P*v1,t-1,…,P*vk,t-1) 
  done 
done 
for each vi do 
  print P*i,t0,…,P*i,T 
done 
 

Using RUN_NETWORK, we can now analyze the attractors of the 
network.  An attractor is a cyclic pattern of expression that any 
network will eventually exhibit due to the finite nature of Boolean 
networks.  Assuming a profile P* is given up to a predefined time 
T, the following routine will return the time step t1 at which an 
attractor is found.  The time step t1 is the first time step such that 
the expression profile of the nodes at time t1 is the same as the 
expression profile of the nodes at time T. 
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ATTRACTOR (P*,v1,v2,…,vn,T) 
for t1 = 0 to T-1 do (loop 1) 
  for each node vi do (loop 2) 
    if P*i,t1 ≠ P*i,T then 

break (loop 1) 
  done 
  if P*:,t1 = P*:,T then 
    break (loop 2) 
    (note P*:,t1 is the t1 column of P

j) 
done 
if P*:,t1 = P*:,T  
   then return(t1) 
   else return(∞) 

2 ALTERNATE CLUSTERING ALGORITHMS 
Going from a full set of microarray to a reduced set of discrete 
meta-genes is sure to involve some loss of information and/or in-
troduction of error.  In our case, the most likely source of error is 
the clustering step.  Not only did we choose k-means from a host of 
algorithms, we also chose a value for k, and a random starting con-
dition for k-means.  To examine the effect of these choices, we 
compared k-means with itself using different initial starting condi-
tions, with SOMs (Tamayo, Slonim et al. 1999), and with hierar-
chical clustering (Eisen, Spellman et al. 1998).  We made these 
comparisons by repeating our entire discretization procedure using 
k-means, SOMs, and hierarchical clustering, each using a range of 
values for k, and (in the case of k-means) a number of random 
starting conditions.  We then discretized the resulting meta-genes 
using SVR as described in the manuscript for each algorithm, each 
k, and each random starting condition.  We compared the different 
discretizations using a simple measure of set agreement. 

Our measure is computed by considering a discretization to be a 
set of discrete time courses, where each time course is a vector, so 
that a discretization is a set of vectors.  If we have two such sets A 
and B, then we can compute their similarity by computing 

,   where  max ,   denotes the
| || |

i j
ji

i j

a bA B A B A
A B a b

⋅⋅
⋅ = ∑

cardinality of A, and we assume that |A| ≤ |B|.  We note that this 
measure is between 0 and 1 (inclusive), and is 1 if and only if A = 
B. 

We used the IL-2 stimulated T cell immune response dataset to 
examine the robustness of our discretization relative to different 
clustering algorithms and different random starting conditions for 
k-means.  We compared k-means with SOMs and hierarchical clus-
tering.  Each of these algorithms can be used to partition a dataset, 
but each requires different input and provides different results.  For 
k-means, we provide the number k of clusters that will be produced 
as well as the initial (random) locations of the cluster centers.  In 
this experiment, we let k vary from 2 to 40 and we re-started the 
algorithm (with random initial conditions) 25 times for each value 
of k. 

A SOM provides both a partition of a dataset and a visualization 
of that dataset in two or three dimensions.  Both the partition and 
visualization are provided by specifying a topology in advance.  
This topology is given by, for example, a w × h matrix of cells.  
The SOM is then a map for the original input space to the w × h 
grid.  This map is computed to preserve both similarity between 
both data points mapped into the cells and similarity between data 
in nearby cells.  An SOM computed using a 5 × 5 rectangular grid 
on the IL-2 dataset is shown in Figure 1.  The data points within 

the cells are considered to be clusters and therefore partition the 
dataset.  In our case we used SOMs generated by GeneCluster 
(Tamayo, Slonim et al. 1999) with rectangular grid topologies of 
size w × h, where w ≤ 2h and 2 ≤ w × h ≤ 40. 
 

 
 
Figure 1.  A SOM generated by GeneCluster on a 5 × 5 rectangular 
grid using the IL-2 microarray data.  Each cell of the grid contains a cluster 
whose average profile is given by the blue line, with standard deviation 
given by the red lines.  The SOM organizes the cells so that adjacent cells 
have similar cluster profiles. 
 
Hierarchical clustering produces a dendrogram tree as shown in 
Figure 2.  Each leaf in this tree corresponds to a gene and gene 
clusters are given by subtrees, so that larger clusters are obtained 
as we traverse towards the root of the tree.  This tree can be used to 
partition a dataset by partitioning the tree into a set of subtrees 
below a given vertical cutoff.  We used Euclidean distance and 
complete linkage to obtain the dendrogram and partitioned the tree 
using different cutoffs to obtain partitions with 2 to 40 clusters. 
 

 
Figure 2.  A dendrogram tree generated by hierarchical clustering using 
Euclidean distance and complete linkage with the IL-2 microarray data.  
The leaves correspond to genes and the subtrees correspond to gene clus-
ters (meta-genes). 
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The above clustering methods yielded 25 × 39 (random iterations × 
values of k) different partitions of the IL-2 dataset using k-means, 1 
× 18 partitions using SOMs, and 1 × 39 partitions using hierarchi-
cal clustering, all with number of clusters k between 2 and 40.  
(For SOMs there were 18 values of k = w × h using our criterion w 
≤ 2h and 2 ≤ w × h ≤ 40.)  These partitions were compared using 
our similarity measure described previously.  In particular, we 
computed the average similarity measure for each of the algo-
rithms (relative to k-means) for each value of k.  The resulting 
curves are shown in Figure 3. 

 
Figure 3.  Average similarity values versus k for k-means with itself using 
25 random re-starts, SOM with k-means, and hierarchical clustering with k-
means. 
 
The curves in Figure 3 show that that k-means is stable with regard 
to random initial conditions for k above 20 and that SOM and hier-
archical clustering give results very similar to k-means as k in-
creases.  Hence the random initial starting conditions and choice of 
clustering algorithm is somewhat arbitrary for our chosen value of 
k = 23 in the case of the IL-2 dataset.  At k = 23 we had >80% 
agreement between discretizations in all clustering algorithms.   

These curves may also indicate that we could have selected an 
even larger value for k (e.g. 40).  We chose k = 23 as a compromise 
between increased agreement between the clustering algorithms 
and increased computational complexity associated with having 
additional meta-genes. 
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