Online Supplement

SAND2007-0438J

Boolean Dynamics of Genetic Regulatory Networks Inferred from

Microarray Time Series Data

Shawn Martin', Zhaoduo Zhang®, Anthony Martino® and Jean-Loup Faulon®"

'Sandia National Laboratories, Computational Biology Dept., P.O. Box 5800, Albuquerque, NM, 87185-1316, USA; ’Sandia
National Laboratories, Biosystems Research, P.O. Box 969, Livermore, CA 94551-9291, USA; 3Sandia National Laborato-
ries, Biomolecular Analysis and Imaging, P.O. Box 5800, Albuquerque, NM 87185-0895, USA; “Sandia National Laborato-
ries, Computational Biosciences Dept., P.O. Box 5800, Albuquerque, NM 87185-1413, USA.

ABSTRACT

Summary: This online supplement contains pseudo-code and addi-
tional explanation for the network inference algorithms, as well as a
comparison of the effect of different clustering algorithms on meta-
gene discretization.

Availability & Contact: For questions and code, please contact

Jean-Loup Faulon at jfaulon@sandia.gov.

1 NETWORK INFERENCE PSUEDO-CODE

In this section we describe in detail the algorithms used to infer
networks from gene expression profiles. These algorithms count,
sample, enumerate, identify attractors, and simulate the dynamics
of all the possible networks matching a given set of discretized
expression profiles. Networks are counted, sampled, and enumer-
ated at the node (meta-gene) level. For every node we determine
all the possible sets of nodes that might control the expression
profile of that node. Expression profiles are given over time and
the algorithms can accept several time courses corresponding to
different initial conditions. These initial conditions can be differ-
ent stimuli, or various knockouts experiments.

The algorithms take as input a set of »n nodes {v, v, ..., v,}
which correspond to the meta-genes, and a set ¢ profiles {P', P%,
..., P}, where each profile is a binary matrix of gene expression
for a given initial condition. P'is an n x m; matrix with entry P][L/
= 1 if gene i is up-regulated at time j, or P'; ;= 0if gene i is down-
regulated at time j. Typically each profile matrix P’ has the same
number of time points m (so that m; = m for all /) but we can allow
different profiles to have different numbers of time points. Fur-
ther, different nodes typically have different time series expres-
sions, although this requirement is also not necessary to run the
algorithms.

The fundamental code used in all the algorithms is
INFER_FUNCTION. This routine determines if a set of nodes
Vi,V2,...,V, With ¢ < n can explain the expression profile of a given
node v;. In other words, INFER_FUNCTION returns the Boolean
function by which v;,v,,...,v, control the expression of v;. This
function is empty if v|,v5,...,v, do not control v;. A further check is
performed to determine whether or not the function is an activia-
tion-inhibition function of the type vi(f) = (vi(f) OR v,(¢) OR ...)
AND NOT (vj(t) OR vj:1(f) OR ...), where v (), (%), ... are acti-
vators and vj(?), vj41(£), ... are inhibitors.

“To whom correspondence should be addressed.

INFER_FUNCTION (Pl,m,PC,Vi,leu,V@
define ¥ = **_* (string of 2k characters)
for each profile P! in (P, ..,P°} do
for each time t in profile P! do
input = Pll,tPIZ,t...qu,t
(input is an integer in binary format)
if F(input) = *
then f(input) = Pli’tarl
else if F(input) = PILtﬂ return (Q)
done
done
if ¥ is activation-inhibition return ()
else return (J)

As an example of INFER_FUNCTION, suppose we are given a
time series with 6 time points for 3 genes v, v,, and v;, as shown in
Table 1, where we write 1 when the gene is up-regulated and 0
when down-regulated.

Gene

Table 1. An example of discrete time course with 3 genes and 6 time
points. Zero (red) denotes down-regulation and 1 (green) denotes up-
regulation.

We are interested in determining an activation-inhibition function
for vy assuming that v; and v, are potential inputs. Can we explain
v3 expression profile using v, as the only input? Consider the rele-
vant information, as extracted in Table 2.

Time
112|3]|4]|5]6

Vi

NONCON NN

Gene

V3

Table 2. The effect of the gene expression of v, on the gene expression of
vy at the next time step.

In Table 2 we see that vy is down-regulated when v, is down-
regulated at the previous time step. However, v; can be either up-
or down-regulated when v, is up-regulated at the previous time

© Oxford University Press 2005

S. Martin et al.

step. Thus v; cannot explain v3. The same is true when v, is con-
sidered as input for v;. What if both v; and v, are considered as
inputs of v3? In this case we have the situation shown in Table 3.

Time

NONCON NN

Gene

V3

Table 3. The effect of both v, and v, on vj.

From Table 3 we see that v; is down-regulated when v, is up-
regulated at the previous time step (v inhibits v;), and that vs is up-
regulated when v, is up-regulated at the previous time step (v,
activates v3). In the parlance of the pseudo-code for
INFER _FUNCTION we have a Boolean function f such that f{00)
=0,f01)=0,/10)=1, and f{11) = 0. Or, written in a more con-
ventional notation we have v3(++1) = v;(£) AND NOT vy().

Using INFER_FUNCTION, inferring networks can easily be
done by processing each node in order. The code for performing
this inference is called INFER_NETWORKS. INFER NETWORKS
takes as input the profiles P' P% ..., P the nodes vy, va, ..., Vu:
and the maximum number Q < n of connections allowed for a
given node. INFER_NETWORKS returns as output the possible
connections and associated Boolean functions for each node v;.
This information is stored in a set NETWORKS(v;). This set is
composed of a sequence of (¢g+1)-tuples, where ¢ is variable but ¢
< Q. Each tuple contains the list of ¢ inputs as well as the associ-
ated Boolean function returned by INFER FUNCTION.

INFER_NETWORKS (P, P?,..,P%, Vi, Vs, .., V,,Q)
for each node Vv; do
NETWORKS (Vi) = &
for K =1 to Q do
for all k-tuples Vi,.., Vg do
f = INFER FUNCTION (P, P, .., P, Vi, Vi, .., Vy)
if F # & then
add (Vi,..,Vy,F) to NETWORKS (V;)
done
done
done
return (NETWORKS)

Using INFER_NETWORKS it is quite easy to count the number
of possible networks matching a given set of expression profiles.
Note that the number of possible networks is simply the product of
the number of possible inputs for each node.

COUNT_NETWORKS
P=1
for each node Vv; do

P = P*|NETWORKS (Vj) |

(V1,Vs, .., V,,, NETWORKS)

done
return (P)

Next, we can select at random possible networks for the set
NETWORKS using the SAMPLE_NETWORKS.

SAMPLE_NETWORKS (v, V;, .., V,, NETWORKS)
for each node Vv; do
select at random F from NETWORKS (V;)
print v;, F
done

Now, to enumerate all networks, we run INFER_NETWORKS
then list and print all possible inputs for each node. Recall that
INFER NETWORKS generates for each node a list of possible
inputs and associated Boolean functions. In order to enumerate all
possible networks it is enough to simply enumerate all possible
inputs in order. This necessitates maintaining a variable for each
node called I#(v;), which is the current input number for node v;.
The enumeration algorithm essentially prints the input of each
node for all possible values of the vector I#, and thus reduces to an
enumeration of all possible I# vectors.

ENUMERATE_NETWORKS (Vvy, V5, ..., V,,, NETWORKS)

set I#(Vj) = 1 for all nodes Vj
while I# < (|NETWORKS (Vi) |,.., INETWORKS (Vy) |)
do
for each node Vv; do
f = I#(V;j) element of NETWORKS (V;)
print v;, F
done
next (I#)
done

UﬁngSAMPLE_NETWORKSOrENUMERATE_NETWORKS,WG
are now in a position to consider the dynamics of the different
possible networks. These dynamics are analyzed by running the
networks and analyzing the attractors.

We first generate a gene expression profile P* by running a
given network NETWORK taken from the set NETWORKS inferred
using the SAMPLE NETWORKS or ENUMERATE NETWORKS
routines. The RUN_NETWORK routine takes one of the initial con-
dition profiles P’ from P', P?, ..., P%; the nodes vi, v, ..., vy, @
specific network NETWORK; and a maximum time 7 for the output
profile P*.

RUN_NETWORK (P',v,,V,, .., V,, NETWORK, T)
t, = second time step (first is ty)
for t = t; to T do
for each node Vv; do
let Vi,.., Vi, F be the input nodes and
associated Boolean function for node
Vj as recorded in NETWORK (Vj)
P*ie = F(P 1, t-1/ s P vk, t-1)
done
done
for each v; do
print P*j tos..
done

*
IP i,T

Using RUN_NETWORK, we can now analyze the attractors of the
network. An attractor is a cyclic pattern of expression that any
network will eventually exhibit due to the finite nature of Boolean
networks. Assuming a profile P* is given up to a predefined time
T, the following routine will return the time step #, at which an
attractor is found. The time step #, is the first time step such that
the expression profile of the nodes at time #; is the same as the
expression profile of the nodes at time 7.

Boolean Dynamics of Genetic Regulatory Networks Inferred from Microarray Time Series Data

ATTRACTOR (P*,v,,V,,..,V,, T)
for t;, = 0 to T-1 do (loop 1)
for each node V; do (loop 2)
if P*iml # P*LT then
break (loop 1)
done
if P*:,tl = P*:’T then
break (loop 2) .
(note P*. ¢ is the t; column of PY)
done
if I:)*:,tl = F)*:,T
then return(t,)
else return (=)

2 ALTERNATE CLUSTERING ALGORITHMS

Going from a full set of microarray to a reduced set of discrete
meta-genes is sure to involve some loss of information and/or in-
troduction of error. In our case, the most likely source of error is
the clustering step. Not only did we choose k-means from a host of
algorithms, we also chose a value for &, and a random starting con-
dition for k-means. To examine the effect of these choices, we
compared k-means with itself using different initial starting condi-
tions, with SOMs (Tamayo, Slonim et al. 1999), and with hierar-
chical clustering (Eisen, Spellman et al. 1998). We made these
comparisons by repeating our entire discretization procedure using
k-means, SOMs, and hierarchical clustering, each using a range of
values for £, and (in the case of k-means) a number of random
starting conditions. We then discretized the resulting meta-genes
using SVR as described in the manuscript for each algorithm, each
k, and each random starting condition. We compared the different
discretizations using a simple measure of set agreement.

Our measure is computed by considering a discretization to be a
set of discrete time courses, where each time course is a vector, so
that a discretization is a set of vectors. If we have two such sets 4
and B, then we can compute their similarity by computing

A-B a-b.
—_— h A-B=)
5 where zimax/ /'—a, bj ,

cardinality of 4, and we assume that |4| < |B]. We note that this
measure is between 0 and 1 (inclusive), and is 1 if and only if 4 =
B.

A| denotes the

We used the IL-2 stimulated T cell immune response dataset to
examine the robustness of our discretization relative to different
clustering algorithms and different random starting conditions for
k-means. We compared k-means with SOMs and hierarchical clus-
tering. Each of these algorithms can be used to partition a dataset,
but each requires different input and provides different results. For
k-means, we provide the number £ of clusters that will be produced
as well as the initial (random) locations of the cluster centers. In
this experiment, we let £ vary from 2 to 40 and we re-started the
algorithm (with random initial conditions) 25 times for each value
of k.

A SOM provides both a partition of a dataset and a visualization
of that dataset in two or three dimensions. Both the partition and
visualization are provided by specifying a topology in advance.
This topology is given by, for example, a w x & matrix of cells.
The SOM is then a map for the original input space to the w x &
grid. This map is computed to preserve both similarity between
both data points mapped into the cells and similarity between data
in nearby cells. An SOM computed using a 5 X 5 rectangular grid
on the IL-2 dataset is shown in Figure 1. The data points within

the cells are considered to be clusters and therefore partition the
dataset. In our case we used SOMs generated by GeneCluster
(Tamayo, Slonim et al. 1999) with rectangular grid topologies of
size w x h, where w <2h and 2 <w x h <40.

o a4 4 279 10: 233 14 83 c20: 60

=
o
o

7
Vi
-
.
p

o

1: 264 A 431 11: 380 16: 373 c21: 140

=
=
=
=

s
&
!
Iy
p!

A] 7 464 12: 457 17 210

o
o
o
o
o
[
&)
[
o
~1

fald
i
LA

104 g 304 13 178 18 129

=
=
=
=

4. 55 9 172 14:

w0
(=]
o

19: B4

=
o
o

-
<
&
.

Figure 1. A SOM generated by GeneCluster on a 5 X 5 rectangular
grid using the IL-2 microarray data. Each cell of the grid contains a cluster
whose average profile is given by the blue line, with standard deviation
given by the red lines. The SOM organizes the cells so that adjacent cells
have similar cluster profiles.

Hierarchical clustering produces a dendrogram tree as shown in
Figure 2. Each leaf in this tree corresponds to a gene and gene
clusters are given by subtrees, so that larger clusters are obtained
as we traverse towards the root of the tree. This tree can be used to
partition a dataset by partitioning the tree into a set of subtrees
below a given vertical cutoff. We used Euclidean distance and
complete linkage to obtain the dendrogram and partitioned the tree
using different cutoffs to obtain partitions with 2 to 40 clusters.

Figure 2. A dendrogram tree generated by hierarchical clustering using
Euclidean distance and complete linkage with the IL-2 microarray data.
The leaves correspond to genes and the subtrees correspond to gene clus-
ters (meta-genes).

S. Martin et al.

The above clustering methods yielded 25 x 39 (random iterations x
values of k) different partitions of the IL-2 dataset using k-means, 1
x 18 partitions using SOMs, and 1 x 39 partitions using hierarchi-
cal clustering, all with number of clusters £ between 2 and 40.
(For SOMs there were 18 values of k = w x h using our criterion w
<2hand 2 <w x h <40.) These partitions were compared using
our similarity measure described previously. In particular, we
computed the average similarity measure for each of the algo-
rithms (relative to k-means) for each value of k. The resulting
curves are shown in Figure 3.

0.85H B
AN
. A
+ .Y H i
ey N H AN
= ‘\\ 'll
£ Y
& 085} Ny 1
@ Lot ™~
o
o
E -
% 038 g
1 b
]l k-means
I E R SOM
0 7; 25 L Hierarchical |
5 10 15 20 25 30 35 40

k
Figure 3. Average similarity values versus & for k-means with itself using

25 random re-starts, SOM with k-means, and hierarchical clustering with £-
means.

The curves in Figure 3 show that that k-means is stable with regard
to random initial conditions for & above 20 and that SOM and hier-
archical clustering give results very similar to k-means as k& in-
creases. Hence the random initial starting conditions and choice of
clustering algorithm is somewhat arbitrary for our chosen value of
k = 23 in the case of the IL-2 dataset. At k£ =23 we had >80%
agreement between discretizations in all clustering algorithms.

These curves may also indicate that we could have selected an
even larger value for & (e.g. 40). We chose k = 23 as a compromise
between increased agreement between the clustering algorithms
and increased computational complexity associated with having
additional meta-genes.

REFERENCES

Eisen, M. B., P. T. Spellman, et al. (1998). "Cluster analysis and display of
genome-wide expression patterns." Proc Natl Acad Sci U S A 95(25):
14863-8.

Tamayo, P., D. Slonim, et al. (1999). "Interpreting patterns of gene expres-
sion with self-organizing maps: methods and application to hemato-
poietic differentiation." Proc Natl Acad Sci U S A 96(6): 2907-12.

