
© Oxford University Press 2005 1

Online Supplement

Boolean Dynamics of Genetic Regulatory Networks Inferred from
Microarray Time Series Data
Shawn Martin1, Zhaoduo Zhang2, Anthony Martino3 and Jean-Loup Faulon4,*
1Sandia National Laboratories, Computational Biology Dept., P.O. Box 5800, Albuquerque, NM, 87185-1316, USA; 2Sandia
National Laboratories, Biosystems Research, P.O. Box 969, Livermore, CA 94551-9291, USA; 3Sandia National Laborato-
ries, Biomolecular Analysis and Imaging, P.O. Box 5800, Albuquerque, NM 87185-0895, USA; 4Sandia National Laborato-
ries, Computational Biosciences Dept., P.O. Box 5800, Albuquerque, NM 87185-1413, USA.

ABSTRACT
Summary: This online supplement contains pseudo-code and addi-
tional explanation for the network inference algorithms, as well as a
comparison of the effect of different clustering algorithms on meta-
gene discretization.
Availability & Contact: For questions and code, please contact
Jean-Loup Faulon at jfaulon@sandia.gov.

1 NETWORK INFERENCE PSUEDO-CODE
In this section we describe in detail the algorithms used to infer
networks from gene expression profiles. These algorithms count,
sample, enumerate, identify attractors, and simulate the dynamics
of all the possible networks matching a given set of discretized
expression profiles. Networks are counted, sampled, and enumer-
ated at the node (meta-gene) level. For every node we determine
all the possible sets of nodes that might control the expression
profile of that node. Expression profiles are given over time and
the algorithms can accept several time courses corresponding to
different initial conditions. These initial conditions can be differ-
ent stimuli, or various knockouts experiments.

The algorithms take as input a set of n nodes {v1, v2, …, vn}
which correspond to the meta-genes, and a set c profiles {P1, P2,
…, Pc}, where each profile is a binary matrix of gene expression
for a given initial condition. Pl is an n × ml matrix with entry Pl

i,j
= 1 if gene i is up-regulated at time j, or Pl

i,j = 0 if gene i is down-
regulated at time j. Typically each profile matrix Pl has the same
number of time points m (so that ml = m for all l) but we can allow
different profiles to have different numbers of time points. Fur-
ther, different nodes typically have different time series expres-
sions, although this requirement is also not necessary to run the
algorithms.

The fundamental code used in all the algorithms is
INFER_FUNCTION. This routine determines if a set of nodes
v1,v2,…,vq with q ≤ n can explain the expression profile of a given
node vi. In other words, INFER_FUNCTION returns the Boolean
function by which v1,v2,…,vq control the expression of vi. This
function is empty if v1,v2,…,vq do not control vi. A further check is
performed to determine whether or not the function is an activia-
tion-inhibition function of the type vi(t) = (v1(t) OR v2(t) OR …)
AND NOT (vj(t) OR vj+1(t) OR …), where v1(t), v2(t), … are acti-
vators and vj(t), vj+1(t), … are inhibitors.

*To whom correspondence should be addressed.

INFER_FUNCTION (P1,…,Pc,vi,v1,…,vq)
define f = **…* (string of 2k characters)
for each profile Pl in {P1,…,Pc} do
 for each time t in profile Pl do
 input = Pl1,tP

l
2,t…P

l
q,t

 (input is an integer in binary format)
 if f(input) = *
 then f(input) = Pli,t+1
 else if f(input) ≠ Pli,t+1 return(∅)
 done
done
if f is activation-inhibition return(f)
 else return(∅)

As an example of INFER_FUNCTION, suppose we are given a
time series with 6 time points for 3 genes v1, v2, and v3, as shown in
Table 1, where we write 1 when the gene is up-regulated and 0
when down-regulated.

Time
1 2 3 4 5 6

v1 0 0 1 1 0 0
v2 1 0 0 1 1 0

G
en

e

v3 1 0 0 1 0 0

Table 1. An example of discrete time course with 3 genes and 6 time
points. Zero (red) denotes down-regulation and 1 (green) denotes up-
regulation.

We are interested in determining an activation-inhibition function
for v3 assuming that v1 and v2 are potential inputs. Can we explain
v3 expression profile using v1 as the only input? Consider the rele-
vant information, as extracted in Table 2.

Time
1 2 3 4 5 6

v1

G
en

e

v3

Table 2. The effect of the gene expression of v1 on the gene expression of
v3 at the next time step.

In Table 2 we see that v3 is down-regulated when v1 is down-
regulated at the previous time step. However, v3 can be either up-
or down-regulated when v1 is up-regulated at the previous time

SAND2007-0438J

S. Martin et al.

2

step. Thus v1 cannot explain v3. The same is true when v2 is con-
sidered as input for v3. What if both v1 and v2 are considered as
inputs of v3? In this case we have the situation shown in Table 3.

Time
1 2 3 4 5 6

v1
v2

G
en

e

v3

Table 3. The effect of both v1 and v2 on v3.

From Table 3 we see that v3 is down-regulated when v2 is up-
regulated at the previous time step (v2 inhibits v3), and that v3 is up-
regulated when v1 is up-regulated at the previous time step (v1
activates v3). In the parlance of the pseudo-code for
INFER_FUNCTION we have a Boolean function f such that f(00)
= 0, f(01) = 0, f(10) = 1, and f(11) = 0. Or, written in a more con-
ventional notation we have v3(t+1) = v1(t) AND NOT v2(t).

Using INFER_FUNCTION, inferring networks can easily be
done by processing each node in order. The code for performing
this inference is called INFER_NETWORKS. INFER_NETWORKS
takes as input the profiles P1, P2, …, Pc; the nodes v1, v2, …, vn;
and the maximum number Q ≤ n of connections allowed for a
given node. INFER_NETWORKS returns as output the possible
connections and associated Boolean functions for each node vi.
This information is stored in a set NETWORKS(vi). This set is
composed of a sequence of (q+1)-tuples, where q is variable but q
≤ Q. Each tuple contains the list of q inputs as well as the associ-
ated Boolean function returned by INFER_FUNCTION.

INFER_NETWORKS (P

1,P2,…,Pc,v1,v2,…,vn,Q)
for each node vi do
 NETWORKS(vi) = ∅
 for k = 1 to Q do
 for all k-tuples v1,…,vk do
 f = INFER_FUNCTION(P1,P2,…,Pc,vi,v1,…,vk)
 if f ≠ ∅ then
 add (v1,…,vk,f) to NETWORKS(vi)
 done
 done
done
return(NETWORKS)

Using INFER_NETWORKS it is quite easy to count the number
of possible networks matching a given set of expression profiles.
Note that the number of possible networks is simply the product of
the number of possible inputs for each node.

COUNT_NETWORKS (v1,v2,…,vn,NETWORKS)
P = 1
for each node vi do
 P = P*|NETWORKS(vi)|
done
return(P)

Next, we can select at random possible networks for the set
NETWORKS using the SAMPLE_NETWORKS.

SAMPLE_NETWORKS (v1,v2,…,vn,NETWORKS)
for each node vi do
 select at random f from NETWORKS(vi)
 print vi, f
done

Now, to enumerate all networks, we run INFER_NETWORKS
then list and print all possible inputs for each node. Recall that
INFER_NETWORKS generates for each node a list of possible
inputs and associated Boolean functions. In order to enumerate all
possible networks it is enough to simply enumerate all possible
inputs in order. This necessitates maintaining a variable for each
node called I#(vi), which is the current input number for node vi.
The enumeration algorithm essentially prints the input of each
node for all possible values of the vector I#, and thus reduces to an
enumeration of all possible I# vectors.

ENUMERATE_NETWORKS (v1,v2,…,vn,NETWORKS)
set I#(vi) = 1 for all nodes vi
while I# ≤ (|NETWORKS(v1)|,…,|NETWORKS(vn)|)
do
 for each node vi do
 f = I#(vi) element of NETWORKS(vi)
 print vi, f
 done
 next(I#)
done

Using SAMPLE_NETWORKS or ENUMERATE_NETWORKS, we
are now in a position to consider the dynamics of the different
possible networks. These dynamics are analyzed by running the
networks and analyzing the attractors.

We first generate a gene expression profile P* by running a
given network NETWORK taken from the set NETWORKS inferred
using the SAMPLE_NETWORKS or ENUMERATE_NETWORKS
routines. The RUN_NETWORK routine takes one of the initial con-
dition profiles Pl from P1, P2, …, Pc; the nodes v1, v2, …, vn; a
specific network NETWORK; and a maximum time T for the output
profile P*.

RUN_NETWORK (P

l,v1,v2,…,vn,NETWORK,T)
t1 = second time step (first is t0)
for t = t1 to T do
 for each node vi do
 let v1,…,vk,f be the input nodes and
 associated Boolean function for node
 vi as recorded in NETWORK(vi)
 P*i,t = f(P*v1,t-1,…,P*vk,t-1)
 done
done
for each vi do
 print P*i,t0,…,P*i,T
done

Using RUN_NETWORK, we can now analyze the attractors of the
network. An attractor is a cyclic pattern of expression that any
network will eventually exhibit due to the finite nature of Boolean
networks. Assuming a profile P* is given up to a predefined time
T, the following routine will return the time step t1 at which an
attractor is found. The time step t1 is the first time step such that
the expression profile of the nodes at time t1 is the same as the
expression profile of the nodes at time T.

Boolean Dynamics of Genetic Regulatory Networks Inferred from Microarray Time Series Data

3

ATTRACTOR (P*,v1,v2,…,vn,T)
for t1 = 0 to T-1 do (loop 1)
 for each node vi do (loop 2)
 if P*i,t1 ≠ P*i,T then

break (loop 1)
 done
 if P*:,t1 = P*:,T then
 break (loop 2)
 (note P*:,t1 is the t1 column of P

j)
done
if P*:,t1 = P*:,T
 then return(t1)
 else return(∞)

2 ALTERNATE CLUSTERING ALGORITHMS
Going from a full set of microarray to a reduced set of discrete
meta-genes is sure to involve some loss of information and/or in-
troduction of error. In our case, the most likely source of error is
the clustering step. Not only did we choose k-means from a host of
algorithms, we also chose a value for k, and a random starting con-
dition for k-means. To examine the effect of these choices, we
compared k-means with itself using different initial starting condi-
tions, with SOMs (Tamayo, Slonim et al. 1999), and with hierar-
chical clustering (Eisen, Spellman et al. 1998). We made these
comparisons by repeating our entire discretization procedure using
k-means, SOMs, and hierarchical clustering, each using a range of
values for k, and (in the case of k-means) a number of random
starting conditions. We then discretized the resulting meta-genes
using SVR as described in the manuscript for each algorithm, each
k, and each random starting condition. We compared the different
discretizations using a simple measure of set agreement.

Our measure is computed by considering a discretization to be a
set of discrete time courses, where each time course is a vector, so
that a discretization is a set of vectors. If we have two such sets A
and B, then we can compute their similarity by computing

, where max , denotes the
| || |

i j
ji

i j

a bA B A B A
A B a b

⋅⋅
⋅ = ∑

cardinality of A, and we assume that |A| ≤ |B|. We note that this
measure is between 0 and 1 (inclusive), and is 1 if and only if A =
B.

We used the IL-2 stimulated T cell immune response dataset to
examine the robustness of our discretization relative to different
clustering algorithms and different random starting conditions for
k-means. We compared k-means with SOMs and hierarchical clus-
tering. Each of these algorithms can be used to partition a dataset,
but each requires different input and provides different results. For
k-means, we provide the number k of clusters that will be produced
as well as the initial (random) locations of the cluster centers. In
this experiment, we let k vary from 2 to 40 and we re-started the
algorithm (with random initial conditions) 25 times for each value
of k.

A SOM provides both a partition of a dataset and a visualization
of that dataset in two or three dimensions. Both the partition and
visualization are provided by specifying a topology in advance.
This topology is given by, for example, a w × h matrix of cells.
The SOM is then a map for the original input space to the w × h
grid. This map is computed to preserve both similarity between
both data points mapped into the cells and similarity between data
in nearby cells. An SOM computed using a 5 × 5 rectangular grid
on the IL-2 dataset is shown in Figure 1. The data points within

the cells are considered to be clusters and therefore partition the
dataset. In our case we used SOMs generated by GeneCluster
(Tamayo, Slonim et al. 1999) with rectangular grid topologies of
size w × h, where w ≤ 2h and 2 ≤ w × h ≤ 40.

Figure 1. A SOM generated by GeneCluster on a 5 × 5 rectangular
grid using the IL-2 microarray data. Each cell of the grid contains a cluster
whose average profile is given by the blue line, with standard deviation
given by the red lines. The SOM organizes the cells so that adjacent cells
have similar cluster profiles.

Hierarchical clustering produces a dendrogram tree as shown in
Figure 2. Each leaf in this tree corresponds to a gene and gene
clusters are given by subtrees, so that larger clusters are obtained
as we traverse towards the root of the tree. This tree can be used to
partition a dataset by partitioning the tree into a set of subtrees
below a given vertical cutoff. We used Euclidean distance and
complete linkage to obtain the dendrogram and partitioned the tree
using different cutoffs to obtain partitions with 2 to 40 clusters.

Figure 2. A dendrogram tree generated by hierarchical clustering using
Euclidean distance and complete linkage with the IL-2 microarray data.
The leaves correspond to genes and the subtrees correspond to gene clus-
ters (meta-genes).

S. Martin et al.

4

The above clustering methods yielded 25 × 39 (random iterations ×
values of k) different partitions of the IL-2 dataset using k-means, 1
× 18 partitions using SOMs, and 1 × 39 partitions using hierarchi-
cal clustering, all with number of clusters k between 2 and 40.
(For SOMs there were 18 values of k = w × h using our criterion w
≤ 2h and 2 ≤ w × h ≤ 40.) These partitions were compared using
our similarity measure described previously. In particular, we
computed the average similarity measure for each of the algo-
rithms (relative to k-means) for each value of k. The resulting
curves are shown in Figure 3.

Figure 3. Average similarity values versus k for k-means with itself using
25 random re-starts, SOM with k-means, and hierarchical clustering with k-
means.

The curves in Figure 3 show that that k-means is stable with regard
to random initial conditions for k above 20 and that SOM and hier-
archical clustering give results very similar to k-means as k in-
creases. Hence the random initial starting conditions and choice of
clustering algorithm is somewhat arbitrary for our chosen value of
k = 23 in the case of the IL-2 dataset. At k = 23 we had >80%
agreement between discretizations in all clustering algorithms.

These curves may also indicate that we could have selected an
even larger value for k (e.g. 40). We chose k = 23 as a compromise
between increased agreement between the clustering algorithms
and increased computational complexity associated with having
additional meta-genes.

REFERENCES

Eisen, M. B., P. T. Spellman, et al. (1998). "Cluster analysis and display of

genome-wide expression patterns." Proc Natl Acad Sci U S A 95(25):
14863-8.

Tamayo, P., D. Slonim, et al. (1999). "Interpreting patterns of gene expres-
sion with self-organizing maps: methods and application to hemato-
poietic differentiation." Proc Natl Acad Sci U S A 96(6): 2907-12.

