SAND2007-8078J

Minimum Variance Direct Methods for the TOA Geolocation
Equations

L.A. Romero *and Jeff Mason T
December 13, 2007

Abstract

We present two methods for solving overdetermined systems of the Time of Arrival (TOA) geolocation
equations that achieve the minimum possible variance in all cases, not just when the satellites are at
large equal radii. One of these techniques gives two solutions, and the other gives four solutions.

1 Introduction

There have been numerous algorithms proposed for solving overdetermined systems of equations for
TOA (Time of Arrival) geolocation. These systems arise when using the Global Positioning System
(GPS) or when locating an RF emitter using multiple receivers. Before Bancroft [4] presented a direct
(non-iterative) method, these equations were solved iteratively [18, 13] using a variant of the Gauss-
Newton method [14] for solving non-linear least squares problems. A drawback of the Gauss-Newton
method is that it requires a sufficiently accurate initial guess to achieve convergence. Since Bancroft’s
paper, alternative direct methods [5, 19, 10, 17] have been presented, but we believe Bancroft’s algorithm
remains the standard direct method for the TOA equations.

If the noise level is small enough, and the configuration of the satellites is not degenerate, all of
the solution techniques mentioned in the previous paragraph yield accurate location estimates [6]. To go
beyond this most obvious requirement we suggest the following criteria be used to evaluate the superiority
of one technique over another.

Criterion I The algorithm should readily allow a numerically stable computer implementation.

Criterion IT The algorithm should achieve the Cramer Rao Lower Bound (CRLB) for the position error
variance.

Criterion IIT The algorithm should produce all of the low residual local minima of the objective func-
tion when more than one exists.

Criterion IV The algorithm should be as robust as possible with respect to degenerate geometries.

To illustrate some of the issues involved in evaluating techniques according to these criteria, we
first discuss them without regard to any specific set of equations. Suppose we are trying to solve an
over-determined system of equations with m equations -+, and n unknowns z (m > n). We write

+(z,d) = 0 (L1)

where z is the solution, and d is an m x 1 vector of data. For the GPS problem, z is a vector containing
the solution variables, the receiver position x and clock bias 7, while d is the pseudorange data.

A common way of solving this overdetermined system of equations is to minimize the objective
function P(z,d) = %’yT (z,d)W~(z,d), where W is a weighting matrix. Requiring that the gradient of
P(z,d) vanishes gives us the equations
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F(z,d) =T (z,d)W~(z,d) =0 (1.2)

where I is the Jacobian of 4. That is, I';; = gz; The equation F(z,d) = 0 is a system of n equations
in 7 unknowns. We refer to these equations as the Full Least Squares (FLS) equations.

In [15] we showed that the FLS equations for TOA geolocation problems have nine critical points,
and we give a procedure for finding all of these. However, the procedure suffers from numerical stability
problems that we have not been able to completely eliminate. Hence, the algorithm for finding all roots
of the FLS equations fails criterion I (numerical stability).

To avoid this pitfall rather than using the equations (1.2), it may be preferable to solve a system of
the form

Fa(z,d) =T} (z,d)W~y(z,d) =0 (1.3)

where I' 4 is in some sense an approximate Jacobian. We now discuss what properties I' 4 must have in
order to satisfy criterion II (that the CRLB is achieved).

We suppose that in the absence of noise the data is given by do, and that in that case a solution zg
exactly solves our overdetermined system, giving

’Y(Zo7d0) =0 (14)

This guarantees we will also have F(zo,do) = Fa(2zo0,do) = 0, no matter what matrix I'4 we use. Note
that I"'4 could be a random m X n matrix, so there is no shortage of algorithms that produce correct
answers for no noise yet are statistically suboptimal in noise. We now assume that the data is given by

d=do+dd (1.5)

where dd is a small perturbation to the data. If the change in the computed solution is §z, then in the
linear approximation Eqn. (1.2) can be approximated as

g—§6z:—g—§5d (1.6)
In the above, all partial derivatives are evaluated at z = zo, and d = dp. We are also using the notation
‘?9—1; to denote the Jacobian of F' with respect to the variable z, and g—g to be the Jacobian with respect
to the variable d.

Similarly, Eqn. (1.3) can be approximated as

8;A5z=—%5d (1.7)

The statistics of a method can be evaluated by analyzing these linearized equations. The variance of
the solution dz of the linearized FLS equations (1.6) are minimized for a particular choice of the weighting
matrix that depends on the covariance matrix of the data. In general, the optimal weighting matrix is
not known until we know the solution. Strictly speaking Eqn. (1.2) was derived assuming that W was
independent of z, but for small noise, there is little error in assuming that Eqn. (1.2) holds even though
it is not the gradient of P(z) when W depends on z. If we choose the proper weighting, our solution is
said to be minimum variance. If the noise is Gaussian, this is equivalent to the solutions satisfying the
CRLB. In general [15], the variance of the solution ¢z to the equations (1.7) will be greater than that for
the equations (1.6). However, if we choose our approximate Jacobian so the two sets of linear equations
are identical, then they will have the same small noise statistics.

In order to satisfy our first two criteria for a superior method, a reasonable goal is to choose an
approximate Jacobian I'4 so the linearized equations (1.7) are identical to the equations (1.6), but the
equations (1.3) are simpler to solve than the equations (1.2). In §2 we will see that the Jacobian for the
TOA equations is linear in the solution z, and the Bancroft method is obtained by ignoring this linear
term. In our notation, this can be written as

Ta(z d) = T(0,d) (1.8)

In §3 we see that the linearized Bancroft equations are not identical to the linearized FLS equations.
Thus, Bancroft’s method satisfies the first of our criteria, but not the second. The fact that Bancroft’s



method does not satisfy the second criterion has been missed by most researchers in the field due to the
fact that the method performs well under the conditions that are most common in GPS. In particular,
in [15] it was shown that assuming the satellites satisfy the LER (Large Equal Radii) conditions, then
the Bancroft method produces solutions whose statistics are close to those from the FLS equations. Here
the LER conditions require that the satellites all be at the same radius from the center of the earth, and
that they are many earth radii away. For many (but not all) GPS applications, this holds sufficiently,
and the statistics from the Bancroft method are almost identical to those from the FLS. In [15] and §6 an
example is given where the LER conditions are violated by having four satellites at MEO (Middle Earth
Orbit) radius, and one at GEO (Geosynchronous Orbit). In this example, which models the addition of
a WAAS satellite, the standard deviation of the Bancroft solution is about 12 times larger than that of
the FLS solution.

In this paper we present two methods for solving overdetermined systems of TOA equations. Both of
these methods have the property that when we linearize the equations about a zero noise solution, the
linearized equations agree with the linearization of the FLS equations. This implies that they will have
the same statistical properties as the FLS equations whether or not the LER conditions hold.

The first of our techniques called the MVLS (Minimum Variance Least Squares) solution is describe
in §(4 . This uses some non-CRLB technique to get an initial estimate for the position. For example,
we could use what we call the RLS (Reduced Least Squares) [19] to find the initial estimate to the
overdetermined system, or we could use Bancroft’s method. If the RLS method is used, a single estimate
for the initial position is given, but if Bancroft’s method is used, two estimates are given, and the
algorithm splits into two branches. The initial estimate does not have good statistical properties, but
it does have the property that in the absence of noise we have 2 = zo. Using this solution we form
equations F 4(z,d) = 0 as in Eqn. (1.3) where

Ta(z,d) =T(2,4d) (1.9)

At this stage we end up with a system of equations that can be solved in a manner almost identical to
that used by Bancroft. As with Bancroft’s technique, the method gives two solutions. However, it gives
solutions that achieve minimum variance even when the LER conditions are not satisfied.

We call the second solution technique the QMVLS (Quartic Minimum Variance Least Squares) tech-
nique. This technique yields four solutions rather than two as does Bancroft’s or the MVLS method. A
natural question is if the additional solutions provided by the QMVLS method ever yield answers that
cannot be found by the MVLS or Bancroft technique. This leads us to our third and fourth criteria for
judging a solution technique.

The fact that the FLS equations have nine critical points may leave us with the idea that we are
missing something if we are not aware of each of these solutions. For example, the Bancroft method gives
us two solutions, though in the over-determined case it is likely that one of these solutions will have a
much smaller residual than the other. However, it is possible for the Bancroft equations to give two low
residual solutions that are widely separated from each other. Though it is not unreasonable to expect
that the FLS equation could give three or more widely separated low residual solutions, in section 7 we
will see that this is not possible. However, in section §7 we show that it is possible for the FLS equations
to have three low residual solutions that are close to each other. This occurs when the FLS equations are
singular, which we will see is equivalent to the GDOP (Geometrical Dilution of Precision) being infinite.

In §8 we show that in the singular configurations described in the last paragraph the QMVLS faithfully
gives the three low residual solutions given by the FLS equations. The authors are not certain if this is
merely an interesting mathematical curiosity, or if it can actually be used to give more robust algorithms
near such singularities.

An honest discussion of direct methods for the TOA equations should include some discussion of how
Newton’s method compares with these techniques. If Newton’s method is not given a good initial guess,
then it will not compare favorably to a good direct method. However, if we use a non-CRLB method
such as Bancroft to give an initial guess to Newtons’s method, it will perform extremely well in almost
all cases. However, if we are near a singular configuration, then Newton’s method may have trouble
converging.

We now summarize the rest of this paper. In §2 we introduce the equations and notation that we will
use throughout the paper. In §3 we discuss the linearization of the FLS and Bancroft equations. In §4
and §5 we present the MVLS and QMVLS algorithms. In §6 we give examples illustrating the minimum
variance properties of the two methods, and compare them to the Bancroft algorithm. In §7 we discuss



how to find singular configurations of satellites, and discuss how many roots we really need out of a good
method. In §8 we give numerical examples involving singular situations. In §9 we give our conclusions.

2 Problem Formulation

We begin by reviewing the basic equations for TOA geolocation. The equations describe both the satellite
navigation application where the receiver is on the earth and the emitter tracking application where the
transmitter is on the earth [12, 11]. Suppose that a receiver attempting to determine its position x
measures N pseudoranges {7x }5_; to satellites with positions {sj}5_;. Assuming the signal travels at
light speed ¢ we have,

[|x=skl|=m—7, 1<k<N (2.1)

where T = ct is the range equivalent receiver clock bias. Alternatively, from the emitter tracking point of
view, Eqn (2.1) equates the distance between the emitter and the kth receiver with the range-equivalent
kth TOA minus the emitter transmit time. The N equations (2.1) are used to determine four unknowns,
the three dimensional vector x, and 7. At least four satellites are required to determine x and 7. In
practice the pseudoranges (or TOAs) are corrupted with measurement noise and Eqn (2.1) is inconsistent.
We will assume that an estimate of the variance of the measurement noise for each pseudorange is
available. This allows us to calculate the minimum variance least squares solution to Eqn (2.1), which
we consider to be the most desirable solution of an inconsistent over-determined system.

Instead of working with the Eqns (2.1), it will be convenient to work with the equations obtained by
squaring both sides.

[[x — skl =(r —7)?, 1<k<N (2.2)
If we introduce the vector
X
z = ( - ) (2.3)
we can write the equations (2.2) as
Sz=pe+b (2.4)
where
p=z"Lz=1>-x"x, (2.5)
-1 0
L ( L0 ) , (2.6)
—2sT 27
—255 272
S = (2.7)
—25% 2TN
e’ =(1,1,1,..,1), (2.8)
and
b” = (b1,b2,..bn) by =717 — st sk (2.9)

Ideally we would like to satisfy the system of equations
v¥(z) =Sz — u(z)e—b=0 (2.10)

When we have more than four satellites, this will give us an over-determined system of equations that
we will satisfy in the least squares sense. This motivates the definition of the objective function

P(2) = 37" ()W () (2.11)

where W is a weighting matrix. At any value of z that minimizes this objective function, we must have
VP(z) = 0, which is equivalent to requiring that to first order we have 6P = 6z” VP = 0.
To first order we have
0y = Sdz — 2e (ZTLéz) (2.12)



It follows that we can write
6P = 5z" (ST — 2LzeT) Wy

If we require that this vanish for all values of §zT, this gives us what we will refer to as the FLS (Full
Least Squares) equations.

Definition 1 (Full Least Squares Equations). The FLS equations are given by
I (z)W~(z) =0 (2.13a)
where p is defined as in Eqn. (2.5), v(z) as in (2.10), and

I['(z) =S —2ez"L (2.13b)

Eqn. (2.13) gives four equations for the four unknowns in the vector z. Since the matrix I' depends
linearly on z, and the vector v has a quadratic dependence, these equations have a cubic nonlinearity.
In [15] we showed that this equation can be converted to a ninth order eigenvalue problem, and hence
has nine roots.

The Bancroft algorithm is obtained by ignoring the last term in Eqn. (2.13b).

Definition 2 (The Bancroft Equations). The Bancroft equations are defined as
S"TW~y =0 (2.14)

where ~y is defined as in Eqn. (2.10).

In the notation of the last section, this is equivalent to setting I' 4 (z) = I'(0).

Although the Bancroft algorithm has been described elsewhere [4, 15], we give a brief description of
the algorithm here, because the MVLS and QMVLS algorithms use it. Using Eqn. (2.10) the solution
to Eqn. (2.14) can be written as

z = po+ 3 (2.15)

where
STWSa = S"We (2.16a)
s"wsg =s"Wb (2.16b)

If we substitute the expression in Eqn. (2.15) into the Eqn. (2.5) defining u, we get a quadratic
equation for p. The two roots of this quadratic when substituted back into Eqn. (2.15) give us the two
roots of the Bancroft algorithm.

We now briefly describe an alternative solution technique that can give an initial (though non-CRLB)
estimate of a solution. In particular, we can view p in Eqn. (2.4) as a new variable that is not a function
of z. We can then solve this (possibly over-determined) system of equations for z and u. After finding
this solution, we then discard p. Rather than using this algorithm, we use the almost identical algorithm
described in [19]. We will call this technique the RLS (Reduced Least Squares) algorithm. If we define
the N X N projection matrix E as

T
E=1-— 2.1
oTo (2.17)
it has the properties that Ee = 0, and Ex = x if xTe = 0. For this reason if we multiply Eqn. (2.4) by
E, we get
ESz = Eb, (2.18)

thus eliminating p from the equations. The RLS (reduced Least Squares) solution arises from doing a
weighted least squares solution to these equations.



Definition 3 (Reduced Least Squares Equations). The RLS equations are the linear system

(ES)"WESz — (ES)"WEb = 0 (2.19)
These can also be written as
'YW~ (z) =0 (2.20)
where
r's = E"WES (2.21)

and ~(z) is defined as in Eqn. (2.10).

In practice, it is best to do a QR factorization of ES in Eqn. (2.19) and factor out the matrix R”
(which is a 4 x 4 matrix, such as returned by MATLAB’s economy sized QR decomposition) from both
sides of this equation. In cases where (ES)TWES is poorly conditioned, this will considerably improve
the conditioning of the matrices ([7], [9]).

3 Linearization of the FLS and Bancroft Equations

In order to determine the statistics of the solutions obtained from a particular solution method, we
linearize the equations about the zero noise case, and determine the statistics of the linearized solutions.
In Eqn. (2.10) we will suppose that the residual depends on the data d giving the pseudoranges or TOAs
Tk, ie d is the fourth column of S. In the absence of noise, we suppose that the data is given by do, and
that for this value of the data there is a solution zo that satisfies the equations exactly. That is, we have

’7(Z0,d0) =0 (31)

Here we have included the functional dependence of < on the data d . Ths solution zg clearly satisfies
the FLS equations (2.13) and the Bancroft equations (2.14) when d = dg. We are interested in finding
how the solution changes when we add a small amount of noise n to the data. That is when

d=do+n (3.2)
We will write the change in the solution as €. That is , we have
z=120+¢& (3.3)

The linearized FLS equations are obtained by expanding the equations (2.13) about the solution
(z,d) = (2o, do), only keeping terms that are linear in £ and n. We can write

[(zo +&,do +n) =T + 6T (3.4)
and
v(zo + &, do +n) =7, + & (3.5)
where
I‘() = ]._‘(Zo7 do) (36)

Yo = ¥(20,do) =0

and 6T, and & are corrections to I' and . We can explicitly compute §v to first order using

Oy o~
oy = g oz + 8d6d (3.8)
giving
v =T (z0,do)é — Nn + ... (3.9)
where Oy (20, do)
_ “Y\Zo, do
N = —ad (3.10)

We could also compute 6I" to first order, but as we will see, there is no need to have this term in the
linear approximation.
The linearized equations are obtained by keeping the linear terms in the equation



(To 4 0T)" W (v, 4 67) = 0, (3.11)

giving

ST "Wry, + T Wiy =T Wéy =0 (3.12)
Note that we do not need the term 6I" in the linear approximation because v, = 0. Substituting our

expression for v from Eqn. (3.9) into this last equation gives us the linearized FLS equations.

Definition 4 (The Linearized FLS Equations). The linearized FLS equations are given by
IiWIo¢ = 'y WNn (3.13)
All of the alternatives to the FLS equations that we consider will have the form

I (z,d)W~(z,d) =0 (3.14)

where I' 4 is defined by the specific alternate procedure. Any equations of this form have the property
that z = zo will be a solution to these equations in the absence of noise since v, = 0. When we linearize
this system of equations about (z,d) = (zo,do) we will once again be able to ignore the first order
correction 0I' 4 to I'4, since 7, = 0. This gives us the following lemma.

Lemma 3.1. When we linearize the equations (3.14) about the solution (z,d) = (zo,do), we get the
linearized equations
iy WLt = I'{yWNn (3.15)

where
T'a0 =T a(zo,do) (3.16)

When we apply this procedure to the Bancroft equations we get the following.

Definition 5 (Linearized Bancroft Equations). We define the linearized Bancroft equations as
STWTIo¢ = S"WNn (3.17)

When solving an overdetermined system of equations I'é = Nd, we usually weight the equations with
a matrix W, and then multiply through by T'". In [15] we show that in order to minimize the covariance
matrix C = (££¢7) of the output, we need to choose the weighting such that W = (NEJNT)f1 where X
is the covariance matrix of the data n. Furthermore, we could obtain solutions to the overdetermined
system by solving the equations TTWT'¢ = TTWNE¢. That is, we could multiply through by a matrix
T other than I'. However, if we want to minimize the covariance matrix C, we must use T = T" [15].

This shows us that in general the Bancroft solutions will not give minimum variance solutions. How-
ever, in [15] it was shown that for the case of satellites all at the same radius and far from the center of
the Earth (LER conditions), the Bancroft equations come close to giving minimum variance solutions.
However, when this restriction is dropped, they can be far from minimum variance.

4 The MVLS Algorithm

The Bancroft equations differ from the FLS equations in that they ignore the term —2Lze” W+ in Eqn.
(2.13a). In the MVLS algorithm, rather than ignoring this term, we will approximate the term Lz by L2
where 2 is a non-CRLB solution such as the RLS equations in Eqn. (2.19), or the Bancroft equations as
in Eqn. (2.14).

Definition 6 ( The MVLS Equations). We define the MVLS equations as
r\T
(s s L) Wy =0 (4.1)

where % satisfies Eqn. (2.19).



The MVLS equations can be solved in a manner almost identical to the Bancroft equations. In
particular, if we know u, we can once again write the solution as in Eqn. (2.15), z = pa + 3, where in
this case we have

ST WSa = ST We (4.2)

sTwspg = sTwb

and
S1=S-2z"L (4.4)

If we substitute the expression (2.15) for z into the equation (2.5) defining p, we once again get a
quadratic equation for u. This gives us two roots to the MVLS equations.

For optimal numerical robustness, when solving for a and 3, in Eqn. (4.2) and (4.3), it is best to do
a QR factorization of the matrix Si. That is we write S; = Qi1R1 = S1, and then factor out the matrix
RT from the left hand side of both sides of Eqn.(4.2) and (4.3).

The next lemma shows that the MVLS algorithm will be CRLB.

Lemma 4.1. If we linearize the MVLS equations about a zero noise solution, we get the linearized FLS
equations as in Eqn. (8.13).

Proof. In the notation of lemma (3.1) we have I'4(z,d) = S — 2ezL, where 2 is a function of the data
d. In the absence of noise we have Z = zo, and hence I'490 = I'g. Hence the linearized equations are the
same as the linearized FLS equations. O

As pointed out by Hogg [8] and Aronson [3] and discussed in [15], it is not possible to determine the
weighting matrix W' a priori when finding the least squares solution of the Eqn. (2.2). This is because
the weighting matrix involves the quantities 1/(7 — %), which are not known unless we know 7, which
is part of our answer. However, in many applications 7 is much smaller than 74, and the 7¢’s are all
roughly the same. This assumption is more justifiable when the LER conditions are satisfied. In this
case, we have a good guess for the weighting matrix. In the MVLS algorithm the weighting matrix W
can be determined from the initial guess 2. In this case, the algorithm remains CRLB even when the
quantities 7 — 7 are not nearly the same.

5 The QMVLS Algorithm

The Bancroft solution ignores the term —2Lze? W+ in the FLS equation (2.13a). By doing this, the
eventual solution can be written as z = ua + 3 as in Eqn. (2.15), where o, and 3 are solutions to Eqns.
(2.16) .

In the QMVLS solution we will assume that z has the form in Eqn. (2.15) when evaluating the term
—2LzeTW~. It should be emphasized that we assume that z has the form in Eqn. (2.15), but we do
not assume that p has the value given by the Bancroft algorithm.

Definition 7 (The QMVLS Equations). We define the QM VLS Equations as
rA\T
(s — 2e (uex + B) L) Wr(z) = 0 (5.1)

where p is given by Eqn. (2.5) and ~ is given by Eqn. (2.10), and o and 3 satisfy Eqns. (2.16).
We have the lemma
Lemma 5.1. When we linearize the QM VLS equations about a zero noise solution, we get the linearized

FLS equations.

Proof. In the notation of lemma (3.1) we have T'4(z,d) = S — 2e(ua + 3)TL. In the absence of noise,
we have I'4(zo,do) = T'o. The present lemma now follows directly from lemma (3.1). a

We now show that we can solve the QMVLS equations as defined in Def. (7) by solving a quartic
equation. To do this we note that Eqn. (5.1) implies that

z=pa+pB+ (pp+a)A (5:2)
where o and 3 are defined as in Eqns. (2.16), and



p=2(S"WS) 'La (5.3)
q=2(8"WSs)'L3 (5.4)
and
A=e"W (Sz — ue —b) (5.5)
For a given value of p we can solve for A by substituting our expression (5.2) for z into our expression

(5.5) for A. This gives us
_eipteo

- dip+do (5:6)
do=1—-e"WSq (5.7)
dy = —e"WSp (5.8)
e1 =e’ WSa — e’ We (5.9)
eo=e' WS3 —e"Wb (5.10)
If we substitute the expression (5.6) into the expression (5.2), we get
2= — (821" + g1 + 20) (5.11)
dip+ do
where
g2 =eip+dix (5.12a)
g1 =eiq+ eop + dox + d13 (5.12b)
go = eoq + do B (5.12¢)
If we use the expression (5.11), the requirement that z"Lz = p can be written as
(821" + g1+ 80) " Ligan” + g2+ o) = p(dips + do)? (5.13)
which gives us a quartic equation in p. Once we have determined p, we can determine z using Eqn.

(5.11).

The Bancroft and MVLS algorithms give two solutions, whereas the QMVLS algorithm gives four
solutions. Typically the two solutions from the Bancroft and MVLS algorithms are enough to find the
answer we are looking for. However, under degenerate conditions, it is possible for the QMVLS algorithm
to find additional solutions that are not found by the other two algorithms. In section §8 we give an
example where the other two algorithms in fact miss the best solution.

6 Examples Illustrating the Minimum Variance Properties

In this section we present two simulations illustrating the minimum variance property of the MVLS and
QMVLS algorithms. In both simulations we do 10,000 trials where in each trial we choose 5 randomly
placed satellites (subject to radius and visibility constraints), and a randomly selected point on the
earth. The TOAs were perturbed with 100 ns (1-0) Gaussian noise and passed to algorithms which are
evaluated using the 50th percentile spherical error probable (SEP50), the 95th percentile error (SEP95)
and the location error standard deviation . We compare these errors for the FLS, Bancroft, MVLS, and
QMVLS algorithms.

In the first simulation the satellites are all chosen to be at the MEO radius, and hence the LER
conditions are satisfied. Table 1 shows the data for these trials, and shows that all of the algorithms
have very similar statistics. In particular, note that the Bancroft algorithm performs as well as the other
three algorithms.

In the second set of trials, four of the satellites are at MEO radius, but the fifth is at GEO. In these
trials the LER conditions are not satisfied. Table 2 shows that in this case the MVLS and QMVLS
algorithms give statistics almost identical to the FLS algorithm, but the Bancroft algorithm gives signif-
icantly different statistics. It should be noted that the difference in the statistics of Bancroft from the
other algorithms comes mostly from the tails of the probability distribution. For example, the SEP 50
of the Bancroft solution is only about 10 percent greater than for the other methods, but the SEP 95 is
about 4 times bigger, and the standard deviation is 12 times bigger. The median error of Bancroft is not
dramatically greater than for the CRLB methods but the 95th percentile error is.



SEP50 | SEP95 | o
FLS | 0.067 0.215 0.136
QMVLS | 0.067 0.216 0.136
MVLS | 0.067 0.216 0.136
Bancroft | 0.067 0.216 0.136

Table 1: 50th and 95th percentile spherical error and geolocation error standard deviation o, all in km, for
FLS, QMVLS, MVLS and Bancroft’s algorithm for a GPS simulation satisfying the LER conditions. All

algorithms perform to the CRLB.

SEP50 | SEP95 | o
FLS | 0.071 0.234 0.190
QMVLS | 0.071 0.234 0.190
MVLS | 0.071 0.234 0.190
Bancroft | 0.087 0.803 2.446

Table 2: 50th and 95th percentile spherical error and geolocation error standard deviation o for FLS, QMVLS,

MVLS and Bancroft’s algorithm for a GPS+GEQO simulation violating the LER conditions.
algorithm’s standard deviation is a factor of 12 above the others.

Bancroft’s

7 Singular Configurations of Satellites

In [15] we showed that there are 9 solutions to the FLS equations, i.e. a maximum of 9 critical points of
the square error objective function. The QMVLS algorithm gives four solutions, the Bancroft and MVLS
algorithms give two, and the RLS algorithm gives one. The question arises, do we gain anything from
methods that have more solutions ?

One could argue that we should be able to get close enough to any solution of interest using the
RLS algorithm to provide an initial guess for the Gauss-Newton method. Similar reasoning suggests that
using the Bancroft algorithm to find two initial guesses for Gauss-Newton should also be sufficient. We
will now carefully analyze the justification for these statements, and find that they in fact break down
under certain singular configurations of the satellites. In the next section we give an example where the
FLS and QMVLS algorithms agree closely with the two solutions produced by Bancroft or MVLS, but
the best solution is in fact a third root not found by the Bancroft or MVLS algorithms.

To begin with, we ask the question: what must be true for an over-determined system of TOA
equations to have more than one low residual solution ? To answer this question we consider the case
where there is no noise, and find the condition for there to be two solutions with zero residual. When
the noise is small, these zero residual solutions will get perturbed to low residual solutions. Any zero
residual solution z must satisfy the equation (2.18) exactly. It follows that if there is more than one zero
residual solution, then the matrix ES must have a non-trivial null vector ¢, that is, the RLS equations
must be singular. Since we are assuming that we have noiseless data, this means that the system in Eqn.
(2.18) has at least one solution z;. Assuming there is only one linearly independent null vector ¢ of ES,
then the general solution to Eqn. (2.18) can be written as

zZ =171+ K (7.1)

When we require that z satisfies the condition zT Lz = p, this gives us a quadratic equation for , and in
this case we see that we expect to see only two zero residual soluitons, as would be found by Bancroft’s
method.

In a typical situation, we do not expect the matrix ES to be singular. However, if we have five
satellites, it is generic (not atypical) for a system of satellites to pass through a configuration where
the matrix ES is singular. The more satellites we have, the less likely we are to encounter such a
configuration.

We now ask if it is possible to have more than two low residual solutions that are all widely separated
from each other. Suppose we write the FLS equations as
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F(z) =T (2)W~(z) =0 (7.2)
Then using S W+~ = F(z) + 2Lze™ W~ the Bancroft equations, ST W~ = 0, can be written as

F(z) = —2Lze" W~ (z) (7.3)

If we have a solution zg to the FLS equations that has a low residual ( «(zo) is small) then for
||z — zo|| << 1 the Bancroft equations can be considered as a small perturbation to the FLS equations.
That is, we can write the Bancroft equations as

F(z) = 6f(z) (7.4)

where 0f(z) is small. The implicit function theorem from multi-variable calculus [1] tells us that if we
have a system of equations F(z) = 0, that has a solution zg, satisfying F(zo) = 0, and if the Jacobian
%—S(Zo) is non-singular at zp, then when we perturb this equation by a small amount, there will be a
unique solution to the perturbed equations in the neighborhood of zo that is close to zo. This implies
that if the Jacobian of all of our small residual solutions of the FLS equations are non-singular, then
all of these solutions should be close to solutions of the Bancroft equations. More precisely, we should
require that not only is the Jacobian non-singular, but it is sufficiently far away from being singular.

This suggests that if we are to look for configurations of satellites where the simpler methods are
inadequate (even after using Gauss-Newton to polish their solutions), we should look for singular con-
figurations of satellites. In particular, we look for configurations where the Jacobian is singular when we
linearize about a noiseless solution. Eqn. (3.13) shows that the Jacobian is given by TEWTy. If this is
singular it means that there must be a vector ¢ such that I's WI'g¢ = 0. and hence ¢p"T§ WT'z¢ = 0.
However, since W is positive definite, this implies that T'o¢ = 0.

If we linearize v(z) about a solution z = (x3 ,70), that satisfies v(zo) = 0, we find that v(zo + z) =
Todz. If we let 6z = (6x7,67), this gives us

2(xo —si)" 6x —2(70 — %) 07 =  kth component of I'dz (7.5)

This expression for I'dz could also be obtained using the explicit formula for I' given by Eqn. (2.13b).
If the system is singular, this implies that there is a vector ¢ such that I'¢p = 0. If we write

= < > ) (7.6)

this implies that we have

(Sk — X())T P = (To — Tk)a (77)
This can be written as
eflp=a fork=1N (7.8)
where
ek:Sk_XO _ Sk — Xo (79)
To—Tk | X0o—Sk

Geometrically, Eqn. (7.8) implies that the satellites all lie on a cone whose vertex is at the receiver x,
where p orients the cone’s axis and « is a constant.

A natural question is: how likely are such configurations to occur 7 We answer this question by
finding how many parameters we would need to adjust to make such a configuration generic. Here we
are using generic in a sense that is used in singularity theory [2] . In singularity theory we say a property
is generic if it persists under a small perturbation of our equations. Essentially, if a property is generic
it means that we expect to see it in typical systems that are not merely mathematically contrived. For
example, we say that it is generic for a system of N equations in N unknowns to have isolated solutions.
It is easy to find systems of N equations in N unknowns that do not have any solutions (especially if
we limit ourselves to real solutions), but if we find a system that has a solution, when we perturb it, we
expect to see it still have a solution. On the other hand, if we have systems with N + 1 equations in N
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unknowns, we can find systems that have solutions, but when we apply arbitrary perturbations to such
systems, they no longer have a solution.

The more satellites in our system that are constantly in view, the less likely that we will encounter
a singular configuration. With this in mind, we suppose we have five satellites in view, and hence the
matrix I" will be a 5 X 4 dimensional matrix. By adjusting two parameters we can make it generic to
have a non-trivial solution I'¢p = 0, That is, by adjusting two parameters it is not unreasonable to be
able to solve the equations I'¢p = 0, ¢~ ¢ = 1. This will give us 6 equations in the six unknowns ¢ and
the two parameters we are adjusting.

When applied to GPS systems, this means that at any point in time, it would be generic to have a
singular configuration somewhere on the surface of the earth, since the surface of the earth gives us two
parameters to adjust. Similarly, if we let time vary, then at some point in time, we might expect to see
such a configuration on a one dimensional curve such as the equator.

8 Example at a Singular Configuration

In this section we will show that when the satellites are in a singular configuration the QMVLS technique
finds very nearly the three solutions that are found by the FLS technique. We believe that this is
somewhat of an academic point, but it does illustrate that the QMVLS algorithm has sacrificed very
little over doing the more difficult and less robust FLS solve.

In [15] we showed that there is something special about systems of satellites where they are all at
equal radii from the center of the earth. It turns out that this property also effects the equations when
they become singular. For this reason, we will choose our example from a case where the satellites are
not all at the same radius. In particular, we will suppose that four of the satellites are at the GPS radius,
and that the fifth satellite is at a GEO radius. The period of GEO satellites is twice the period of GPS
satellites, and hence using Keplers third law of motion, the GEO radius is 2%/® times the GPS radius. If
we use a length scale based on the radius of the earth, four of the satellites have a radius of 4.16, and
the fifth has a radius of 2%/% times this.

In our example we arrange for the satellites to satisfy the cone condition (7.8). We have been able
to encounter such situations by looking at enough GPS configurations, but in this example we have
explicitly put the satellites in such a singular configuration. The positions of the satellites are given by

s (.87299, 1.87293, 6.27191)
s3 (2.13601, 0.55425, 3.52644)
si | =] (2.39458,0.13330, 3.39908) (8.1)
s (2.00895, 0.68732, 3.57732)
st (2.22186, 0.44388, 3.48882)

In this example, we have the receiver at the location x7 = (0,0, 1). With the satellites and receiver in
these positions, we compute the times 71, and then add noise to them. We have added random noise at
the level of 1.e —5 earth radii. We then use the Bancroft, QMVLS, and FLS algorithms to find solutions.
The particular vector of noise we have used is 1.e — 5n where n is given by

0.57112950
0.97354900

n=| 043808954 (8.2)
0.97092952
0.41250846

The Bancroft, QMVLS, and FLS algorithms all find two solutions that are in excellent agreement
with each other. We call these z; and zs.

0.0165660 0.0167333 0.0167332
~0.0109002 ~0.0110075 ~0.0110075

zi(Banc) = |y gsyrseg |2 @MVLS) = | | ossgsss |2 (FLS) = | 5easar
0.0498822 0.0503806 0.0503805
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—0.0166862 —0.0165168 —0.0165168

0.0112724 0.0111552 0.0111552
z2(Banc) = | g ag300 | 22(QMVLS) = | g 5073 | 22FLS) =1 (905072
~0.0511219 —0.0505974 —0.0505975

However, there is a third root that Bancroft cannot find. The QMVLS and FLS algorithms both find
this root, and give quite good agreement.

~0.0004119 ~0.0005043
0.0002131 0.0002748
z3(@MVLS) = | (9986070 | Z8(FLS) =1 (9983888
~0.0012004 —0.0014812

The QMVLS and FLS algorithms find other roots, but they all have high residuals, and are not in
agreement with each other since there is no reason for the QMVLS equations to approximate the FLS
equations unless the residuals are small.

It should be noted that the solution zs is in fact much more accurate than the solutions z; and zs.
The location error for zs is 1.7e — 3, while the location errors for the other two solutions are about
5.8¢ — 2. That is, zs is about 30 times more accurate than the other solutions. In [16] we show that it
is a general property of non-linear least squares solutions, that near a singular point we will have three
solutions. We also show that near such a point, the most accurate solutions in fact has the highest
residual. This is the case here, where the solution zz has a slightly larger residual than either z; or zs.
In [16] we show that the correct solution can in fact be found by choosing the solution that is the least
sensitive to perturbations in the data.

9 Conclusions

We have presented two new methods (the MVLS and QMVLS algorithms) for solving overdetermined
systems of TOA equations for geolocation. Similar to the Bancroft algorithm, the MVLS algorithm gives
two solutions. The QMVLS algorithm gives four solutions. Each of these algorithms can be shown to be
minimum variance, even when the satellites are not at equal radii. We have presented a situation where
neither of the two solutions coming out of the Bancroft or MVLS algorithms is the best answer, but one
of the four roots coming out of the QMVLS algorithm is in close agreement the best answer given by the
FLS algorithm.
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