
A Study of Checkpoint Compression for High-Performance Computing
Systems

Kurt B. Ferreiraa, Dorian Arnoldb, Dewan Ibteshamb

aScalable System Software Department, Sandia National Laboratories 1,Albuquerque, NM 87185–1319
bDepartment of Computer Science, University of New Mexico, Albuquerque, NM 87131

1. Abstract

As high-performance computing systems continue to increase in size and complexity, higher failure rates
and increased overheads for checkpoint/restart (CR) protocols have raised concerns about the practical vi-
ability of CR protocols for future systems. Previously, compression has proven to be a viable approach for
reducing checkpoint data volumes and, thereby, reducing CR protocol overhead leading to improved appli-
cation performance. In this article, we further explore compression-based CR optimization by exploring its
baseline performance and scaling properties, evaluating whether improved compression algorithms might lead
to even better application performance and comparing checkpoint compression against and alongside other
software and hardware-based optimizations. Our results highlights are that (1) compression is a very viable
CR optimization; (2) generic, text-based compression algorithms appear to perform near optimally for check-
point data compression and faster compression algorithms will not lead to better application performance;
(3) compression-based optimizations fare well against and alongside other software-based optimizations; and
(4) while hardware-based optimizations outperform software-based ones, they are not as cost effective.

2. Introduction

Fault-tolerance (also termed reliability or resilience) is a major concern for current, large scale high-
performance computing (HPC) systems. This concern grows for future, extreme scale systems for which
increased node counts, more complex nodes and changes in chip manufacturing processes are projected to
lead to low component mean times between failures (MTBFs) [1]. In these environments, decreased MTBFs
and a confluence of other issues including increased I/O pressures and increased overheads of traditional
fault-tolerance approaches have motivated new research endeavors to understand and improve the viability
of fault-tolerance mechanisms like checkpoint/restart (CR) protocols. In particular, several studies have
raised concerns about the continued viability of checkpoint/restart-based fault tolerance [1, 2].

CR protocols [3] periodically save process state to stable storage devices. For large scale applications
comprised of many thousands or even millions of processes, checkpoint data movement can lead to perfor-
mance bottlenecks due to excessive data volumes as well as contentions for network and storage devices. As
we describe in Section 3, researchers have proposed several CR protocol performance optimizations to alle-
viate the data movement challenge, including checkpoint data compression. In this article, we focus on the
checkpoint compression optimization and reveal several insights regarding its impacts on the performance of
large scale applications.

This work aims to answer several broad questions:

• What is the general viability of checkpoint compression CR optimizations?

1Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-AC04-94AL85000.

Preprint submitted to Elsevier June 17, 2014

SAND2014-15140J

• Might better or faster compression algorithms render better overall application performance?

• How do checkpoint compression optimizations compare against other hardware and software-based
optimizations?

• How do checkpoint compression optimizations perform in conjunction with other CR optimizations?

We explored these questions guided by current system characteristics and an eye toward emerging and
new potential technologies. Using a performance model [4] based on Daly’s higher order checkpointing
model [5], we analyzed the impact of compression speeds and compression performance. We compared
these results against a number of state-of-the-art software and hardware CR optimizations. In addition, we
used information theory along with knowledge from an application-level checkpointing library to evaluate the
efficacy of standard compression utilities. Based on these studies this work offers the following contributions:

1. A viability model for checkpoint data compression that accounts for the cost and benefits of compression
for checkpoint commit and recovery operations;

2. A demonstration that checkpoint data compression can improve significantly an application’s makespan
across a wide range of scenarios;

3. A demonstration that existing, text-based compression algorithms may offer sufficient speeds and
checkpoint data compressibility such that enhanced compression algorithms likely will render little
application performance improvements;

4. A demonstration that checkpoint data compression can yield application performance improvements
when used in conjunction with other software CR protocol optimizations;

5. A demonstration that checkpoint data compression used in conjunction with other software CR protocol
optimizations may pose a viable, cost-effective alternative to hardware-based CR solutions.

The rest of this article is organized as follows. First, we provide contextual background by offering a
brief overview of CR protocols and proposed software and hardware-based CR optimizations in the next
section. Then we describe our evaluation methodology and tool chain in Section 4. We present our results
of the performance and scaling features of compression-based checkpoint optimizations in Section 5 followed
by a study of the potential benefits of enhanced compression algorithms in Section 6. Our last set of results
comprise a comparative studies of checkpoint data compression and other CR optimizations, in Section 7.
Finally, we conclude with a summary of our findings and a discussion of the implications of these results for
future HPC systems.

3. An Overview of Checkpoint/Restart

During normal operation, CR (or rollback recovery) protocols [3] periodically record or commit process
state to stable storage devices, devices that survive tolerated failures. Process state comprises all the state
necessary to run a process correctly including, for example, its address space and register files. When
processes fail, new process instances can be recovered to the intermediate state encapsulated in the failed
processes’ most recent checkpoints to avoid lost computations.

To checkpoint and recover processes in distributed applications, checkpoint data must be transferred
amongst the local nodes from where the checkpoints originate to storage nodes so that the checkpoints
can be available even when their source nodes have failed. For large scale applications comprised of many
thousands or even millions of processes, checkpoint data movement can lead to performance bottlenecks due
to excessive data volumes as well as contentions for network and storage devices.

3.1. Software-based Checkpoint/Restart Data Movement Optimizations

CR protocol performance optimizations that target the checkpoint data movement challenge can be
divided into two classes. The first class of checkpoint data movement optimizations try to hide or reduce
(perceived) commit latencies without actually reducing the amount of checkpoint data. These strategies
include:

2

• diskless and remote checkpointing : Diskless CR protocols [6] and remote CR protocols [7, 8, 9] leverage
the higher bandwidths available to the network or other storage media like RAM to mitigate the
performance of slower storage media like magnetic disks. Additionally, remotely stored checkpoints
allow systems to survive non-transient node failures.

• multi-level checkpointing : Multi-level CR protocols like SCR [10, 11] write checkpoints to RAM, Flash,
or local disk on the compute nodes in addition to the parallel file system.

• checkpointing file systems: Checkpoint-specific file systems like PLFS [12] leverage the patterns and
characteristics specific to checkpoint data to optimize checkpoint data transfers to/from parallel file
systems.

The second set of strategies reduce commit latencies by reducing checkpoint sizes. These latter strategies
include:

• memory exclusion: CR protocol optimizations based on memory exclusion leverage user-directives or
other hints to exclude portions of process address spaces from checkpoints [13].

• incremental checkpointing : CR protocols can use the operating system’s memory page protection
facilities to detect and save only pages that have been updated between consecutive checkpoints [14,
15, 16, 17, 18, 19, 20]. Page hashing techniques can also be used to avoid checkpointing pages that
have been updated but not actually changed content-wise [21].

• checkpoint compression: Various approaches for compressing checkpoints to improve CR protocol per-
formance have been suggested. Li and Fuchs implemented a compiler-based checkpointing approach,
which exploited compile time information to compress checkpoints [22]. Plank and Li proposed in-
memory checkpoint compression [23], and in a related vein, Plank et al also proposed differential
compression to reduce checkpoint sizes for incremental checkpoints [24]. Tanzima et al have shown
that similarities amongst checkpoint data from different processes can be exploited to compress and
reduce checkpoint data volumes [25].

This work extends our previous study [4] that showed the viability of using standard compression utilities
for improved CR protocol performance for extreme scale applications.

3.2. Hardware-based Checkpoint/Restart Optimizations

Improved hardware technologies have been suggested as ways to optimize CR protocol performance.
Moshovos and Kostopoulos proposed the use of hardware-based compressors for compressing checkpoints [26].
More recently, researchers have proposed the use of solid state storage devices (SSDs) for efficient local
checkpointing [27] or even in multi-level solutions [10]. At the cost of greater financial expense and other
potential issues like flash wear-out, SSDs provide higher storage bandwidth than traditional stable storage
devices such as magnetic disks.

4. Methodology: Data Collection and Performance Models

In this study, we compared checkpoint compression to other CR protocol optimizations. Figure 1 de-
picts our approach for executing this study and the set of tools that we used. Our general methodology
was to: (1) collect empirical data for the functional (amount of compression) and performance (compres-
sion/decompression speeds) behavior of different compression algorithms on real checkpoint data; and (2)
feed this data along with different application workloads and system configurations into validated perfor-
mance models to observe the resulting application performances. In this section, we offer the comprehensive
details of our approach.

3

Applica'ons	

Daly’s	
 High-­‐order	
 Model	

E
ff

ic
ie

n
cy

 (
%

)

Nodes

ickpt CPU compress
ckpt CPU compress

ickpt GPU compress
ickpt baseline

ckpt GPU compress
ckpt baseline

 0

 20

 40

 60

 80

 100

 0 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

E
ff

ic
ie

n
cy

 (
%

)

Nodes

ickpt CPU compress
ckpt CPU compress

ickpt GPU compress
ickpt baseline

ckpt GPU compress
ckpt baseline

 0

 20

 40

 60

 80

 100

 0 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

E
ff

ic
ie

n
cy

 (
%

)

Nodes

ickpt CPU compress
ckpt CPU compress

ickpt GPU compress
ickpt baseline

ckpt GPU compress
ckpt baseline

 0

 20

 40

 60

 80

 100

 0 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

E
ff

ic
ie

n
cy

 (
%

)

Nodes

ickpt CPU compress
ckpt CPU compress

ickpt GPU compress
ickpt baseline

ckpt GPU compress
ckpt baseline

 0

 20

 40

 60

 80

 100

 0 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

Compression	

Performance	

Data	

Applica3on	

Performance	

Data	

LAMMPS	

hpccg	

minife	
 phpccg	

phdmesh	

Compression	
 U'li'es	

Checkpoint	
 Libraries	

LAMMPS	
 Built-­‐in	
 BLCR	

pbzip2	
 zip	

System	
 Configura'on	

MTBF	

I/O	
 rate	

Node	
 count	

Checkpoint	
 size	

Job	
 length	

Checkpoint	
 Compression	
 Setup	
 Applica'on	
 Performance	
 Modeling	
 Applica'on	
 Efficiency	

7zip	
 bzip2	
 rzip	

Figure 1: Our Methodology: Empirically collected checkpoint compression data is input to an extension of Daly’s Model. The
results are used to compute application efficiency.

4.1. Collecting Checkpoint Compression Performance Data

To collect checkpoint compression performance data, we instrumented a set of exascale proxy appli-
cations and a full application with CR capabilities. We executed these applications with CR enabled to
collect the application checkpoints. Then in an offline manner, we used various compression utilities to
measure the extent to which the checkpoint files compress as well as the speed of checkpoint compression
and decompression.

4.1.1. The Proxy Applications

Proxy applications (or mini-applications or mini apps) are small, self-contained programs that em-
body essential performance characteristics of key applications. We chose four mini apps from the Mantevo
Project [28], namely HPCCG version 0.5, miniFE version 1.0, pHPCCG version 0.4 and phdMesh version
0.1. The first three are implicit finite element mini apps and phdMesh is an explicit finite element mini
app. HPCCG is a conjugate gradient benchmark code for a 3D chimney domain that can run on an arbi-
trary number of processors. This code generates a 27-point finite difference matrix with a user-prescribed
sub-block size on each processor. miniFE mimics the finite element generation assembly and solution for an
unstructured grid problem. pHPCCG is related to HPCCG, but has features for arbitrary scalar and integer
data types, as well as different sparse matrix data structures. PhdMesh is a full-featured, parallel, heteroge-
neous, dynamic, unstructured mesh library for evaluating the performance of operations like dynamic load
balancing, geometric proximity search or parallel synchronization for element-by-element operations.

4.1.2. A Full Application: LAMMPS

We use LAMMPS (the Large-scale Atomic/Molecular Massively Parallel Simulator [29, 30]) to evaluate
checkpoint compression on a full-featured scientific application. LAMMPS is a classical molecular dynamics
code developed at Sandia National Laboratories. LAMMPS is a key simulation workload for the U.S.
Department of Energy and is representative of many other molecular dynamics code. In addition, LAMMPS
has built-in checkpointing support that allows us to compare generic, system-based mechanisms with an
application specific mechanism. For our experiments, we used the embedded atom method (EAM) metallic
solid input script, which is used by the Sequoia benchmark suite.

4.1.3. The Compression Utilities

For this study, we used popular compression algorithms investigated in Morse’s comparison of compression
tools [31]. Here we present the results from the better-performing algorithms. Additionally, some algorithms
can be parameterized to trade off between execution time for compression factor. We only present the
parameter sets that represent the best observed trade-offs.

4

• zip: zip is an implementation of Deflate [32], a lossless data compression algorithm that uses the
LZ77 [33] compression algorithm and Huffman coding. It is highly optimized in terms of both speed
and compression efficiency.

zip takes an integer parameter that ranges from zero to nine, where zero means fastest compression
speed and nine means best compression factor. For our experiments, “zip(1)” represents the best
trade-off.

• 7zip[34]: 7zip is based on the Lempel-Ziv-Markov chain algorithm (LZMA) [35]. It uses a dictionary
scheme similar to LZ77.

• bzip2: bzip2 is an implementation of the Burrows-Wheeler transform [36], which utilizes a technique
called block-sorting to permute the sequence of bytes to an order that is easier to compress. The
algorithm converts frequently-recurring character sequences into strings of identical letters and then
applies move to front transform and Huffman coding.

In bzip2, compression performance varies with block size. bzip2 takes an integer parameter that
ranges from zero to nine, where a smaller value specifies a smaller block size. For our experiments,
“bzip2(1)” represents the best trade-off.

• pbzip2[36]: pbzip2 is a parallel implementation of bzip2. pbzip2 is multi-threaded and, therefore,
can leverage multiple processing cores to improve compression latency. The input file to be compressed
is partitioned into multiple files that can be compressed concurrently.

pbzip2 takes two parameters. The first parameter is the same block size parameter as in bzip2.
The second parameter defines the file block size into which the original input file is partitioned. For
our experiments, “pbzip2(1,5)” represents the best trade-off.

• rzip: rzip uses a very large buffer to take advantage of redundancies that span very long distances.
It finds and encodes large chunk of duplicate data and then uses bzip2 as a back-end to compress the
encoding.

Similar to zip, rzip takes an integer parameter that ranges from zero to nine, where zero means
fastest compression speed and nine means best compression factor. For our experiments, “rzip(3)”
represents the best trade-off.

4.1.4. Checkpoint/Restart Utilities

The Berkeley Lab Checkpoint/Restart library (BLCR) [37] is an open-source, system-level CR library
available on several HPC systems. For all of our experiments excluding the ones that required application-
specific checkpoints, we obtained checkpoints using BLCR. Furthermore, we use the OpenMPI [38] frame-
work, which has integrated BLCR support.

For our studies of application-specific and user-level checkpointing, we use the CR library built into
LAMMPS. LAMMPS can use application-specific mechanisms to save the minimal state needed to restart
its computation. More specifically, it saves each atom location and speed. The largest data structure in the
application, the neighbor structure used to calculate forces, is not saved in the checkpoint and is recalculated
upon restart. This scheme reduces per-process checkpoint files to about one eighth of the application’s
memory footprint.

4.2. Performance Models

4.2.1. Checkpoint Compression Viability Model

Checkpoint data compression is a viable approach when its benefits outweigh its costs. Our checkpoint
compression viability model is inspired by Plank et al’s [23]. Plank et al focused solely on the impact of
compression for the checkpoint commit phase. Our model accounts for the cost and benefits of compression
for both checkpoint and recovery phases.

We assume coordinated CR (cCR) in which all processes of a distributed application explicitly or implic-
itly coordinate at the beginning of each checkpoint interval to commit a globally consistent application state

5

comprised of one checkpoint per process2. cCR currently dominates CR protocols used in HPC practice.
We also assume an equal number of checkpoint and recovery operations. Our justification for this latter
assumption follows: optimally, an application averages a single checkpoint before each failure and only needs
to recover once per failure. Therefore, in the optimal case, the number of checkpoints equals the number of
failures, which also equals the number of recoveries. There are various works that define optimal checkpoint
intervals [5, 39]. Finally, we assume that checkpoint commit is synchronous; that is, the primary application
process is paused during the commit operation and is not resumed until checkpoint commit is complete.

Checkpoint compression is viable when the time to compress and write or commit a checkpoint and the
time to read and decompress that checkpoint is less than the time to commit and read the uncompressed
checkpoint. Assuming the times to read and write are the same (that is, the read and write transfer rates
are equal):

tcomp + 2tcc + tdecomp < 2tuc

where tcomp is compression latency, tdecomp is decompression latency, tcc is the time to read or write the
compressed checkpoint and tuc is the time to read or write the uncompressed checkpoint. This expression can
be rewritten as:

c

rcomp
+ (2 × (1 − α) × c

rcommit
) +

c

rdecomp
< 2 × c

rcommit

where c is the size of the original checkpoint, compression factor α is the percentage reduction due to data
compression, rcomp is compression speed or the rate of data compression, rdecomp is decompression speed, and
rcommit is commit speed or the rate of checkpoint commit or reading (including all associated overheads).
The last equation can be reduced to:

2α× rcomp × rdecomp

rcomp + rdecomp
> rcommit (1)

Equation 1 defines the minimal ratio between checkpoint commit rate and compression rate, decompres-
sion rate and compression factor in order for the overall time savings of checkpoint compression to outweigh
its costs. Of course, checkpoint compression has the additional benefit of saving storage space, but we do
not factor that into our model.

4.2.2. Application Efficiency Performance Model

Application efficiency is the ratio of an application’s time to solution when the application is using some
fault-tolerance mechanism to recover from failures as they occur to the application’s time to solution assuming
perfect conditions, that is, no failures and, therefore, no need to employ any fault-tolerance mechanisms. In
the context of CR protocols, the higher an application’s efficiency, the greater the time spent executing the
application’s intended computation and the less the time spent taking checkpoints, recovering from failures
or re-doing computations lost due to failures.

Modeling Checkpoint Compression. Daly’s higher order model [5], which assumes node failures are inde-
pendent and exponentially distributed, takes as input the system MTBF, the checkpoint commit time, the
checkpoint restart time, the number of nodes used in the application and the time the application’s exe-
cution time in a failure-free environment. We used this model and integrated checkpoint compression and
decompression: checkpoint commit times include the time to compress the checkpoint data and the time to
write this compressed data to stable storage. Similarly, restart times include the time to read the compressed
checkpoint data from stable storage and perform the decompression step.

2We can coarsely approximate the performance of uncoordinated CR by adjusting our model parameters to reflect different
commit and recovery costs due to independent local checkpoints and local recovery protocols.

6

Modeling Incremental Checkpointing. We also integrated incremental checkpointing into Daly’s performance
model. As such, the model takes two additional parameters. The first new parameter specifies the size ratio
of an incremental checkpoint to a full checkpoint. We assume that approximately the same fraction of
the address space changes between each checkpoint. This assumption is based on the results of a previous
incremental checkpointing study [21].

The second new parameter, the number of incremental checkpoints taken before taking the next full
checkpoint, reflects the periodic desire to take full checkpoints. Increased recovery latencies and increased
storage costs are two factors that motivate the desire for periodic full checkpoints. If an application fails and
is recovered from the ith incremental checkpoint after a full checkpoint, additional overhead is required to
either coalesce the full checkpoint and the i increments or to recover the full checkpoint and iteratively recover
the state in each increment. Incremental checkpointing necessarily increases storage costs since it requires
maintaining a full checkpoint as well as subsequent increments. If each increment is on average 1/s the size
of the full checkpoint, after s increments, storage costs would have doubled. We use Naksinehaboon et al’s

derivation of the optimal number of increments n between two full checkpoints as: n =
⌈
4c/5rcommit − 1

⌉
,

where c is the size of a full checkpoint and rcommit is the rate a file can be committed to stable storage [40].
For simplicity we assume that taking incremental checkpoints and reconstructing a checkpoint from the

increments do not incur additional costs. There are a number of techniques, such as concurrent coalescing,
that make this assumption reasonable. Additionally, we assume that checkpoint increments have similar
compression ratios as the full checkpoints. This assumption has been validated using the incremental check-
pointing library described in [21].

Other Assumptions. Apart from the emperically observed data we use to parameterize our performance
models, we assume each process uses 2 GB of memory (based on observed workloads at Sandia National
Laboratories) and checkpoints 1

3 of that memory [21], a five year node MTBF [41] and a per process I/O rate
of 1 MB/s. This latter value was chosen optimistically based on a performance study on Argonne National
Laboratory’s 557 TFlop Blue Gene/P system (Intrepid) [42].

4.2.3. Modeling System Performance considering Costs

In our comparison of checkpoint data compression optimizations to hardware-based SSD solutions, we
consider the relative financial costs of different system configurations. This study is meant to be instructive,
not necessarily definitive, allowing us to make simplifying assumptions and the use of a relatively simple
cost model. Using system cost factoring in the replacement of worn SSDs and amount of work completed in
a fixed time span based on the system’s hardare and software configuration, we create a performance-price
model.

System Cost Model. Unlike traditional storage technologies, SSDs suffer a wear or endurance problem: SSDs
have an endurance number that specifies the number of write/erase cycles before the device wears out. To
compute the final procurement cost of an SSD-based system, we compute the number of weeks between SSD
replacement based on their lifespan write capability and the average weekly checkpoint data commitment:

lifespanssd(weeks) =
ssd lifespan write capability

weekly checkpoint volume
(2)

where
ssd lifespan write capability = SSD capacity × SSD endurance number

and
weekly checkpoint volume = number of weekly checkpoints× checkpoint size.

We can now compute tcostnode, the total per node procurement cost, as:

tcostnode = costnode +

(
costssd ×

⌈
lifespansystem(weeks)

lifespanssd(weeks)

⌉)
(3)

7

where costnode is the cost of a node without SSD devices, costssd is the per node cost of new SSDs, and
lifespansystem(weeks) is the overall lifespan of the system in weeks. We assume only checkpoint data is
written to the SSD devices and that they wear uniformly and according to their specifications. Several
studies have shown that these devices can wear out as much as ten to 30 times faster than the device
specified rating [43]. As a result, our our model is optimistic as SSD devices may need to replaced more
often.

Also, we only consider procurement costs and ignore ongoing costs to run and maintain the system.
Effectively, we are estimating that any differences in expenses for running and maintaining systems of different
configurations are negligible.

A Performance-price Model. For a given system lifespan and different system configurations, our performance-
price model calculates the work per dollar ration using the amount of application work completed given the
application’s efficiency based on the effectiveness of its fault-tolerance mechanisms and the system’s cost:

Performance price =
work × efficiency

tcost(node) × number of nodes
(4)

We assume that the system is fully utilized (100% utilization) throughout its lifetime. Application efficiency
under various fault-tolerance configurations (including optimizations) will determine how much useful work
is achieved within the five year period.

5. Checkpoint Compression Performance

5.1. Checkpoint Compression Viability

To test the viability of compression, we only focused problem sizes that allowed each application to run
long enough to generate 5 checkpoints. The three implicit finite element mini apps, HPCCG, pHPCCG
and miniFE were given a 100x100x100 problem size. phdMesh and LAMMPS were given a 5x5x5 problem
size. Each application was run using 2–3 MPI processes, except for phdMesh, which was run without MPI
support. Checkpoint intervals for miniFE, pHPCCG, HPCCG and LAMMPS were 3, 3, 5 and 60 seconds,
respectively. For phdMesh the 5 checkpoints were taken at simulation time step boundaries. BLCR was
used to collect all checkpoints, which ranged in size from 311 MB to 393 MB for the mini apps to about 700
MB for LAMMPS.

We used compression factor, α as our metric to show how compressible checkpoint data are, where we
compute compression factor as: 1 − compressed size

uncompressed size

Figure 2(a) shows how effective the various algorithms are at compressing checkpoint data. We can see
that all the algorithms achieve a very high compression factor of about 70% or higher for the mini apps
and about 57-65% for LAMMPS. This means, then that the primary distinguishing factor becomes the
compression speed, that is, how quickly the algorithms can compress the checkpoint data.

Figures 2(b) and 2(c) show our empirically observed compression and decompression speeds, respectively.
In general, and not surprisingly, the parallel implementation of bzip2, pbzip2, generally outperforms all the
other algorithms. Decompression is a much faster operation than compression, since during the compression
phase, we must search for compression opportunities, while during decompression, we simply are using a
dictionary or lookup table to expand compressed items.

Based on the above results and Equation 1, which represents our viability model, Figure 3 demonstrates
the checkpoint read/write bandwidths that make compression viable. For each application, the highest bar of
all the compression algorithms represents its worse case scenario. For the worse case application, LAMMPS,
checkpoint compression is viable unless a system can sustain a per process checkpoint read/write bandwidth
of greater than about 34.6 MB/s. In the best case, phdMesh, the necessary per process checkpoint read/write
bandwidth raises to greater than about 114.2 MB/s.

The relationship between compression performance (compression factor and compression and decompres-
sion speeds) and checkpoint I/O bandwidth is the key factor of the viability of checkpoint compression. As
Figure 3 shows, for our worse case application, LAMMPS with pbzip2 compression, compression is viable if

8

(a) Compression Factor (b) Compression Speed (c) Decompression Speed

Figure 2: Checkpoint Compression Factors and Compression/Decompression Speeds. For compression factors, higher is better:
a factor of 90% means that file size was reduced by 90%.

Figure 3: Checkpoint Compression Viability: Unless, checkpoint read/write bandwidth exceeds our viability factor (y-axis),
checkpoint compression should be used.

per-process checkpoint bandwidths are less than 34.6 MB/s. In the best case, phdMesh with pbzip2 com-
pression, per process checkpoint bandwidths must exceed 114.2 MB/s. To compare this against real world
systems, we use a report based on a study of I/O performance on Argonne National Laboratory’s 557 TFlop
Blue Gene/P system (Intrepid) [42]. This work executes an I/O scaling study measuring maximum achieved
throughput for carefully selected read and write patterns. From this report, the best observable per process
I/O bandwidths 1 MB/s for both reading and writing. This performance scales to about 32,768 processes
and then decreases. For example, at 131,072 processes, per process read bandwidth is 385 KB/s and per
process write bandwidth is 328 KB/s. The Oak Ridge Cray XT5 Jaguar petascale system has peak per-node
and per-core checkpoint bandwidths of 5.3 MB/s and 1 MB/s, respectively, three orders of magnitude less
than needed. Similarly, the Lawrence Livermore Dawn IBM BG/P system has a peak per-node checkpoint
bandwidth of about 2 MB/s 3 As a result, aggressive use of checkpoint compression appears to be viable
and indeed desirable on current large-scale platforms.

3Oak Ridge’s Spider Lustre-based file system provides 240 GB/s of aggregate bandwidth[44], while Dawn’s Lustre file system
is listed as providing 70 GB/sec of peak bandwidth on LLNL reference pages [45].

9

5.2. Compressing System-level versus Application-level Checkpoints

Next, we examine the compression effectiveness of system-level checkpoints versus that of application
specific checkpoints. We use LAMMPS for this testing due to its optimized, application specific checkpointing
mechanism described in the previous section. For these tests we compare application generated restart files
with those generated by BLCR. In each case, we take 5 checkpoints equally spaced throughout the application
run.

System-level checkpointing saves a snapshot of the application context such that it can be restarted where
it left off. So it not only captures the application specific data but also saves shared library states etc. On
the other hand application specific checkpointing only needs to save the data needed to resume operation.
As a result, for a fixed problem, system level checkpoints are typically much larger in size. In our tests,
LAMMPS’ application specific checkpoints were 170MB in size compared to about 700MB BLCR generated
checkpoints. However, based on our results in Table 1, we observe that checkpoint compression is viable for
both application specific and system level checkpoints.

There is, however, a qualitative difference in the break-even points for checkpoint compression. Our data
reveals that the major reason is that, system level checkpoints compressed better than user level checkpoints
(for example, pbzip2 compression factors are 56.5% compared to 43.3%). This is because application level
checkpoints are optimized so that data that can be reconstructed on an application restart are omitted from
the checkpoints. This reduces the compressibility of the user level checkpoints. For the same reason, we
observed the differences in sizes for these two types of checkpoints. Additionally, the average compression
and decompression speeds were higher for system level checkpoints than for user level checkpoints (again for
pbzip2, 94.8 MB/s compared to 87 MB/s).

Compression
Factor %

Compression
Speed MB/s

Decompression
Speed MB/s

Compression Viabil-
ity Break-even point
MB/s

pbzip(1,5) zip(1) pbzip(1,5) zip(1) pbzip(1,5) zip(1) pbzip(1,5) zip(1)
System 56.46 52.49 38.46 27 150.8 90.52 34.6 21.84
Application 43.28 41.47 44.15 27.6 129.9 105.2 28.52 18.14

Table 1: Compression Break-even Points for System Level and Application Specific Checkpoints.

5.3. Checkpoint Compression Performance and Application Scale

For our scaling experiments, we use the LAMMPS and its built-in checkpoint mechanism. We observe
how checkpoint viability scales with (1) memory size; (2) time (between checkpoints); and (3) process counts.

In our first set of scaling experiments, we evaluate the first two scaling dimensions, checkpoint size and
time between checkpoints. We progressively increased the LAMMPS problem size while keeping the number
of application processes fixed at two. In this manner, memory footprint and checkpoint sizes increase. This
also means that the application runs for a longer time, since the per process workload has been increased.
For each LAMMPS process, five checkpoints were taken uniformly throughout the application run. The
checkpoints we collected from these tests averaged about 168MB, 336MB, 470MB and 671MB for the various
problem sizes. Figure 4(a) shows the viability results from these experiments. We readily observe that in no
case did checkpoint size show any impact on the viability of checkpoint compression for LAMMPS.

For the study of scaling in terms of process count, we compare the compression ratios for a weak scaling
LAMMPS EAM simulation for between 2 and 128 MPI processes. In each test, the per-process restart file
size is over 170 MB. In these runs we take 5 equally spaced checkpoints. Figure 4(b) shows once again that
application process counts did not bear an impact on checkpoint compression viability. We have no reason
to believe these results will be different for larger process count runs.

10

(a) Scaling Checkpoint Sizes and Application Runtime. (b) Scaling Process Counts.

Figure 4: Results from our Scaling Experiments.

6. Understanding Checkpoint Compression Performance

Given the viability results from the previous section that show checkpoint data compression can yield
significant improvements in application performance, a natural question is whether further improvements to
checkpoint compression can render even more benefits. We answered these questions by performing studies
that allow us to evaluate the performance impact of compression factor and compression speeds.

6.1. The Impact of Compression Factor

Checkpoint data volume reduction is arguably the most significant user-controllable factor that impacts
checkpoint-restart performance. Therefore, an important question is what are the limits of checkpoint data
volume reduction via compression. A secondary related question is whether it is worth considering compres-
sion algorithms that specifically target checkpoint data. We provide novel insights into these questions by
using information theory to theorize about the compression performance of off-the-shelf utilities and evalu-
ate the additional impact of a hypothetical, custom algorithm that achieves optimal compression. For this
discussion, we use the metric compression factor which, you may recall, is the inverse of the compression
ratio; therefore higher compression factors are better.

6.1.1. An Application-specific Case Study

Based on the compression performance results from Section 5.1, we focus on checkpoint/restart for the
LAMMPS application. LAMMPS exhibits the poorest checkpoint compressibility and, hypothetically, the
greatest opportunity for improvement for all the applications tested. We use knowledge of the LAMMPS
on-disk checkpoint format to translate application-specific checkpoint data into its composite data elements.
Using this, we compute the entropy of LAMMPS checkpoints using Shannon’s information theory [46].

Shannon’s theorem tells us the minimal number of bits needed to represent a certain amount of informa-
tion. Using our understanding of the LAMMPS checkpoint format, we calculated a frequency distribution
for the values in the checkpoint file. We calculated this distribution in a representation independent way; for
example, the double 0.0 is interpreted to be the same value as the integer, 0, as they contain the same infor-
mation. Using this frequency distribution, we then calculated the entropy of this newly created ”checkpoint
language” for LAMMPS checkpoints. This entropy calculation gives us a minimal encoding.

Table 2 shows the results of this minimal checkpoint encoding. This checkpoint contained about 3.5
million total symbols of which about 1 million were unique, resulting in an entropy of 10.59 or a theoretically
maximal compression factor of 79.5%. Comparatively, our bzip2-encoded strings for the same checkpoint

11

Total Symbols Unique Symbols Entropy Optimal Compression Factor Bzip Compression Factor
3,584,043 1,023,367 10.59 79.5% 67.6%

Table 2: Comparing a theoretical minimal encoding with bzip2.

A
p

p
lic

a
ti
o

n
 E

ff
ic

ie
n

c
y
 (

%
)

Compression factor

10k sockets
50k sockets

100k sockets

 0

 20

 40

 60

 80

 100

0 0.2
0.4

0.6
0.676

0.795

1

15.08%
18.37%

38.05%

44.41%

55.19%

62.35%

O
bs

er
ve

d

The
or

et
ic
al

Figure 5: Varying compression factor

(excluding the bzip2 dictionary and headers, as we do not include this information in the entropy calculation
above) had a compression factor of 67.6%, a significant difference in compression performance . Therefore,
a hypothetical optimal checkpoint compression algorithm tailored specifically for the information contained
within it will compress the checkpoint to 20% of its original size, in comparison to bzip2, which compressed
the checkpoint to 32%.

Next, we use this LAMMPS checkpoint compression comparison data to model how LAMMPS perfor-
mance would improve with this optimal algorithm that could better compress its checkpoints. Optimistically,
we keep compression speed constant, assuming that the optimal algorithm would take no longer to run than
bzip2. We look at three different scenarios, systems with 10K, 50K and 100K total sockets. Figure 5 shows
the impact on application efficiency as compression factor varies, highlighting our observed compression fac-
tor and our theoretic maximum compression factor. For each of the three scenarios, we observe that optimal
compression would yield a relatively small increases in application efficiency – the largest being an additional
7.2% of efficiency in the 100K socket scenario. Therefore, we conclude that exploring checkpoint-specific
compression algorithms is unlikely to yield significant improvement over standard text-based compression
algorithms. In fact, with the expected growth of I/O on future systems, these differences in efficiencies
will further decrease, supporting our position that current compression algorithms are sufficient for future
systems as well.

6.2. The Impact of Compression Speed

While compression factor likely is the biggest determinant of the performance impact of checkpoint com-
pression, we must also understand the importance of compression speed. We evaluate the potential benefits
of accelerating our top performing (in terms of compression factor) algorithm, either using algorithmic en-
hancements or hardware technologies, for example, GPUs. Using the compression performance exhibited by
pbzip2 on phpccg checkpoints (our top performer for compression factor) as a baseline, we varied compression
and decompression rates in a range from a slow-down of 100 to a speed-up of 10,000.

12

E
ff

ic
ie

n
c
y
 (

%
)

Compression/Decompression Rate Improvement

10k sockets
50k sockets

100k sockets
 0

 20

 40

 60

 80

 100

 0.001

 0.01
 0.1

 1 10
 100

 1000

 10000

Figure 6: Varying compression/decompression speed

The results, shown in Figure 6, show that a four orders of magnitude improvement in speed would yield an
insignificant improvement in application efficiency on current systems. While this is an important result, it
is not so surprising: given current checkpoint commit rates (based on available per process I/O bandwidth to
checkpoint storage), the time spent compressing a checkpoint is insignificant to the time spent committing
the checkpoint to stable storage. What is unclear is the impact of compression speed increases with the
expected I/O bandwidth increases expected in future systems.

These results suggest that attempting to improve compression rates is not worthwhile exploration as long
as our platforms checkpoint commit bandwidths remain less than the CPU viability bandwidths from the
previous section. For the vast majority of current leadership-class capability machines, the CPU viability
bandwidth is dramatically higher than that of the per-process checkpoint commit bandwidth.

Figure 7 shows the increase in application efficiency as a function of the per-node checkpoint commit
bandwidth. Similar to previous work in this paper, we assume a 5 year socket MTBF and use optimal
compression factors. The Y-axis in this is the difference in application efficiency in the accelerated and
non-accelerated case. For the accelerated case, we assume a hypothetical compression of 100 times the CPU
compression speeds. These optimal speedups have been observed with carefully crafted codes and workloads
with GPUs [47]. We model these overheads for a number of node counts between 10k and 200k. From
this figure, we see that a two order magnitude increase in compression/decompression speeds lead to only
marginal increases in application efficiency. This result suggests that the effort involved in accelerating
compression.decompression speeds may not be worth the performance return.

7. Checkpoint Compression and Other Optimizations

Finally, we put the performance of checkpoint compression in context by comparing against a number of
popular software, hardware, and mixed hardware/software solutions. Also, we investigate the performance
of scenarios where checkpoint compression can be combined with these techniques. We compare checkpoint
compression performance against a software-only, incremental checkpointing solution, showing performance
of the combination of both incremental checkpointing with compression. We then compare these software-
only checkpointing solutions against state-of-the-art and considerably more costly hardware-based solutions:
checkpointing to SSDs (solid-state device) and the multi-level checkpointing solution Scalable Checkpoint
Restart (SCR) [10].

7.1. Compression and Increment-based Optimizations

Figure 8 shows the comparison results of compression-based and increment-based scenarios alongside the
standard cCR performance and make make several observations:

13

E
ff

ic
ie

n
c
y
 D

if
fe

re
n

c
e

 (
A

c
c
e

l
-

B
a

s
e

)

Per-node Checkpoint Commit Bandwidth (bytes/sec.)

200k nodes
100k nodes

50k nodes
10k nodes

0 %

10 %

20 %

30 %

40 %

50 %

1MB 4MB 16MB 64MB 256MB 1GB 4GB

Figure 7: Efficiency increase for a number of node counts as a function per-node checkpoint commit speeds assuming a
compression/decompression speed a factor of 100 greater than what we see on current systems. The efficiency difference is
defined as the accelerated efficiency minus the efficiency using current speeds

1. Unsurprisingly, all combinations of compression-based and increment-based optimizations outperform
standard coordinated checkpointing (labeled “baseline” in the figure).

2. Compression yields greater application efficiency than pure, optimal incremental checkpoint (labeled
“ickpt”). This result is more notable than it may first appear: our model does not include the po-
tentially high-overhead of the mechanisms used in incremental checkpoints to detect updated memory
regions or introspective application knowledge. So in environments where this overhead is prohibitively
excessive or application characteristics unknown, checkpoint compression is a simple solution that can
achieve better performance and with no programmer burden.

3. The combination of compression-based and increment-based optimizations yields the best performance
of these software-only methods.

E
ff

ic
ie

n
c
y
 (

%
)

Socket Count

ickpt+compress
compress

ickpt
baseline

 0

 20

 40

 60

 80

 100

 0 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

Figure 8: Impact of the software-only optimizations checkpoint compression and incremental Checkpointing on application
efficiency.

14

From these results, we conclude that checkpoint compression can lead to significant performance improve-
ments for large-scale applications. Most importantly, this method can be combined with other checkpoint
optimizations to further improve application efficiency.

7.2. Compression and Other Optimizations

Next, we compare our checkpoint compression technique against the performance of two hardware-based
checkpoint optimizations. More specifically, we compare against a local SSD checkpointing solution [27]
and a multi-level solution(SCR) that uses local and remote memory, SSDs, a parallel file system, and a
software RAID to ensure reliability [10]. It is important to note that these hardware checkpointing solutions
are considerably more expensive than a software only solution such as incremental and compression-based
checkpointing. In fact, the device reliability required for the SSD only solution maybe prohibitively expensive
even at smaller scale as recent studies have shown that in 15% of failures, the checkpoint cannot be recovered
from current SSD technology [10] and may require a highly reliable backing store like a parallel file system.
Also, the SCR approach, in addition to using additional hardware, uses a portion of on-node memory to
store checkpoints. This point is especially important for future extreme-scale systems; with the dramatic
core count increases, we are moving from a compute-scare environment to one where we have an abundance
of compute cycles but a scarcity of memory.

Again, we assume each process uses 2GB of memory and checkpoints 1
3 of that memory. We also assume

a 5 year MTBF and a per-process I/O rate of 1MB/s for the compression and incremental checkpointing
case. For the SSD only case, we assume a 2GB/s checkpoint commit rate and a 8GB/sec checkpoint read
rate. Lastly, for SCR, we assume a per-process mean checkpoint commit rate of 211MB/s for both read and
write. This mean commit rate is calculated from [48], where the authors presented a user-space file system,
CRUISE, which dramatically improve the performance of SCR. The take-away here is that the per-process
checkpoint commit rates of these hardware based solutions are several orders of magnitude larger than the
software solutions.

Figure 9 shows a comparison of compression with the hardware-based techniques outlined in this section.
For comparison we also include the efficiency of standard rollback/recovery to the parallel filesystem shown
previously. From this figure we make the following observations:

1. Perhaps as expected, the hardware-based solutions perform significantly better than the software so-
lutions

2. The SSD only solution has nearly 100% efficiency through the socket count tested, though as pointed
out previously recent work suggests this solution may not be achievable.

3. The multi-level checkpointing approach which uses multiple levels of the system storage and can recover
from all observed failures, performs similarly to an SSD only approach.

4. The optimal software-only approach (ickpt+compress), though two orders magnitude slower commit
speeds, only performs 20% worse than the other approaches.

This set of results shows the benefit of this compression approach. With no application specific knowl-
edge, no additional hardware, minimal memory overhead, using standard and freely available compression
algorithms, and using checkpoint commit bandwidths observed on today’s systems, we can get within 20%
of a costly hardware solution. Compression based approach can be made to be readily available to existing
systems while for the hardware based solutions we need to make changes to existing systems and install
hardware to support it.

7.3. A Performance/Prive Evaluation of SSD-based Systems

In this section, we examine the cost efficiency of these hardware-based, software-based, and hybrid
methods CR optimization strategies. For this study, we compute and compare the performance-price for a
hypothetical cluster under different configurations that map to hardware-based CR optimizations, namely
SSD-enhanced, and software-based CR optimizations, namely compression and incremental checkpointing.
Recall our performance-price model from Section 4.2.3:

Performance price =
workload× efficiency

tcost(node) × number of nodes

15

E
ff

ic
ie

n
c
y
 (

%
)

Socket Count

SSD
SCR

ickpt+compress
compress

baseline
 0

 20

 40

 60

 80

 100

 0 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

Figure 9: Comparison of hardware/multi-level checkpointing techniques with pure software techniques like compression and
incremental checkpointing

where

tcostnode = costnode +

(
costssd ×

⌈
lifespansystem(weeks)

lifespanssd(weeks)

⌉)
and

lifespanssd(weeks) =
ssd lifespan write capability

weekly checkpoint volume

and
ssd lifespan write capability = SSD capacity × SSD endurance number

Our hypothetical cluster has 12,250 nodes, two sockets per node and eight cores per socket for a total of
16 cores per node. We assume a system lifespan of 260 weeks (five years) and our workload comprises one
process per core and executes for the entire 260 weeks. We use application efficiencies obtained from the
results in the previous section: 90.94% efficiency for the SSD-based optimizations and 71.025% efficiency for
the software-based optimizations.

We compute ssd lifespan write capability for different SSD technologies, namely single layer cell (SLC),
multi-level cell (MLC), and three-level cell (TLC), assuming 256 GB SSDs and the write endurance for specific
device instances shown in Table 3.

Type Name Price(USD) endurancerating endurancemax lifespan(weeks)
TLC Samsung 840Pro $200 750 2,500 47.4
MLC OCZ Revo drive 3 $460 3,000 10,000 189.5
SLC OCZ Z drive R2 $4800 100,000 100,000 6,315

Table 3: Endurance ratings and price for various SSDs

We compute the last column of Table 3, lifespanssd(weeks), assuming that there is one 256 GB SSD
per socket (per eight cores), that each process running on a core has 2 GB of memory available and each
checkpoint is one-third of 2 GB, and using Daly’s model to calculate the number of checkpoint commits to
each SSD per week.

Using the above method, Figure 10 shows the performance-price comparisons of the various hardware-

16

based and software-based CR optimizations for a range of baseline node costs from $500 to $3000. We see
that for lower baseline per-node costs a software based approach produces significantly more units of work per
dollar. However, as the node prices increases, SSD cost overheads are amortized such that hardware-based
become almost as cost-efficient as the software based one.

Figure 10: Comparison of work done per unit price per node for a system with different types of SSD device compared against
software-based solution. (higher is better).

8. Conclusion

In this article, we showed checkpoint data compression to be a very viable approach for CR protocol
optimization. We then studied the performance limits of checkpoint compression and put the results of this
technique in the context of the current state-of-the-art in checkpointing. Specifically, we used information
theory to show that current compression techniques are close enough to a theoretical optimal that improved
algorithms likely will render little to no difference in overall application performance. We also showed that
checkpoint compression outperforms another popular software-based checkpoint optimization, incremental
checkpointing, and a combination of both leads to further performance improvements. Together, compression
and increment-based optimizations can yield performance to within 20% of current state-of-the-art hardware-
based solutions. Finally, we showed that our software-based checkpoint/restart optimization produces more
work per unit cost than the hardware-based approaches as long as per-node procurement costs are kept low.

We believe that this work reveals many fundamental insights about the role checkpoint data compression
can and should have as a part of the solution space toward efficient application fault-tolerance strategies.
Perhaps the greatest outcome is the insight that this simple, application-agnostic approach can render
significant performance improvements when used in isolation or in combination with other software and
hardware-based optimizations. A remaining open question we are currently investigating is the power/energy
considerations of checkpoint data compression and their impact on large-scale systems.

[1] B. Schroeder and G. A. Gibson, “A Large-scale Study of Failures in High-performance Computing
Systems,” in Dependable Systems and Networks (DSN 2006), Philadelphia, PA, June 2006.

[2] K. Ferreira, R. Riesen, P. Bridges, D. Arnold, J. Stearley, J. H. L. III, R. Oldfield, K. Pedretti, and
R. Brightwell, “Evaluating the Viability of Process Replication Reliability for Exascale Systems,” in
SC. ACM, Nov 2011.

[3] E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson, “A Survey of Rollback-recovery Protocols
in Message-passing Systems,” ACM Computing Surveys, vol. 34, no. 3, pp. 375–408, 2002.

17

[4] D. Ibtesham, D. Arnold, P. G. Bridges, K. B. Ferreira, and R. Brightwell, “On the viability of compres-
sion for reducing the overheads of checkpoint/restart-based fault tolerance,” 2012 41st International
Conference on Parallel Processing, vol. 0, pp. 148–157, 2012.

[5] J. T. Daly, “A higher order estimate of the optimum checkpoint interval for restart dumps,” Future
Gener. Comput. Syst., vol. 22, no. 3, pp. 303–312, 2006.

[6] J. Plank, K. Li, and M. Puening, “Diskless checkpointing,” Parallel and Distributed Systems, IEEE
Transactions on, vol. 9, no. 10, pp. 972–986, oct 1998.

[7] J. Cornwell and A. Kongmunvattana, “Efficient System-Level Remote Checkpointing Technique for
BLCR,” in Information Technology: New Generations (ITNG), 2011 Eighth International Conference
on, april 2011, pp. 1002–1007.

[8] G. Stellner, “CoCheck: Checkpointing and Process Migration for MPI,” in International Parallel Pro-
cessing Symposium. Honolulu, HI: IEEE Computer Society, April 1996, pp. 526–531.

[9] V. C. Zandy, B. P. Miller, and M. Livny, “Process Hijacking,” in 8th International Symposium on High
Performance Distributed Computing (HPDC ’99), Redondo Beach, CA, August 1999, pp. 177–184.

[10] A. Moody, G. Bronevetsky, K. Mohror, and B. R. de Supinski, “Design, Modeling, and Evaluation
of a Scalable Multi-level Checkpointing System,” in ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis (SC ’10), 2010, pp. 1–11. [Online].
Available: http://dx.doi.org/10.1109/SC.2010.18

[11] N. H. Vaidya, “A case for two-level distributed recovery schemes,” in ACM SIGMETRICS Joint
International Conference on Measurement and Modeling of Computer Systems, ser. SIGMETRICS
’95/PERFORMANCE ’95. New York, NY, USA: ACM, 1995, pp. 64–73. [Online]. Available:
http://doi.acm.org/10.1145/223587.223596

[12] J. Bent, G. Gibson, G. Grider, B. McClelland, P. Nowoczynski, J. Nunez, M. Polte, and M. Wingate,
“PLFS: a checkpoint filesystem for parallel applications,” in Conference on High Performance
Computing Networking, Storage and Analysis (SC ’09), 2009, pp. 21:1–21:12. [Online]. Available:
http://doi.acm.org/10.1145/1654059.1654081

[13] J. S. Plank, Y. Chen, K. Li, M. Beck, and G. Kingsley, “Memory Exclusion: Optimizing the Performance
of Checkpointing Systems,” Software – Practice & Experience, vol. 29, no. 2, pp. 125–142, 1999.

[14] G. Bronevetsky, D. Marques, K. Pingali, S. McKee, and R. Rugina, “Compiler-enhanced incremental
checkpointing for OpenMP applications,” in IEEE International Symposium on Parallel&Distributed
Processing, 2009, pp. 1–12. [Online]. Available: http://portal.acm.org/citation.cfm?id=1586640.1587642

[15] Y. Chen, K. Li, and J. S. Plank, “CLIP: A Checkpointing Tool for Message-passing
Parallel Programs,” in SuperComputing ’97, San Jose, CA, 1997. [Online]. Available: http:
//citeseer.ist.psu.edu/chen97clip.html

[16] E. N. Elnozahy, D. B. Johnson, and W. Zwaenpoel, “The Performance of Consistent Checkpointing,”
in 11th IEEE Symposium on Reliable Distributed Systems, Houston, TX, 1992. [Online]. Available:
http://citeseer.ist.psu.edu/elnozahy92performance.html

[17] K. Li, J. F. Naughton, and J. S. Plank, “Low-Latency, Concurrent Checkpointing for Parallel Programs,”
IEEE Transactions on Parallel and Distributed Systems, vol. 5, no. 8, pp. 874–879, August 1994.

[18] J. S. Plank, M. Beck, G. Kingsley, and K. Li, “Libckpt: Transparent Checkpointing under Unix,” in
USENIX Winter 1995 Technical Conference, New Orleans, LA, January 1995, pp. 213–224.

18

[19] M. Paun, N. Naksinehaboon, R. Nassar, C. Leangsuksun, S. L. Scott, and N. Taerat, “Incremental
Checkpoint Schemes for Weibull Failure Distribution,” International Journal of Computer Science,
vol. 21, no. 3, pp. 329–344, 2010.

[20] S. Al-Kiswany, M. Ripeanu, S. Vazhkudai, and A. Gharaibeh, “stdchk: A Checkpoint Storage System for
Desktop Grid Computing,” in Distributed Computing Systems, 2008. ICDCS ’08. The 28th International
Conference on, june 2008, pp. 613–624.

[21] K. B. Ferreira, R. Riesen, R. Brightwell, P. G. Bridges, and D. Arnold, “Libhashckpt: Hash-based
Incremental Checkpointing Using GPUs,” in Proceedings of the 18th EuroMPI Conference, Santorini,
Greece, September 2011.

[22] C.-C. Li and W. Fuchs, “CATCH-compiler-assisted techniques for checkpointing,” in Fault-Tolerant
Computing, 1990. FTCS-20. Digest of Papers., 20th International Symposium, jun 1990, pp. 74–81.

[23] J. S. Plank and K. Li, “ickp: A Consistent Checkpointer for Multicomputers,” Parallel & Distributed
Technology: Systems & Applications, IEEE, vol. 2, no. 2, pp. 62–67, 1994.

[24] J. S. Plank, J. Xu, and R. H. B. Netzer, “Compressed Differences: An Algorithm for Fast Incremental
Checkpointing,” University of Tennessee, Tech. Rep. CS-95-302, August 1995. [Online]. Available:
http://web.eecs.utk.edu/∼plank/plank/papers/CS-95-302.html

[25] T. Z. Islam, K. Mohror, S. Bagchi, A. Moody, B. De Supinski, and R. Eigenmann, “MCRENGINE: A
Scalable Checkpointing System Using Data-Aware Aggregation and Compression,” in High Performance
Computing, Networking, Storage and Analysis (SC), 2012 International Conference for, 2012.

[26] A. Moshovos and A. Kostopoulos, “Cost-Effective, High-Performance Giga-Scale Checkpoint/Restore,”
University of Toronto, Tech. Rep., November 2004.

[27] S. Kannan, A. Gavrilovska, K. Schwan, and D. Milojicic, “Optimizing checkpoints using nvm as virtual
memory,” in Proceedings of the nternational Parallel and Distributed Processing Symposium, ser. IPDPS
’13. New York, NY, USA: ACM, 2013.

[28] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C. Edwards, A. Williams, M. Rajan,
E. R. Keiter, H. K. Thornquist, and R. W. Numrich, “Improving Performance via Mini-applications,”
Sandia National Laboratory, Tech. Rep. SAND2009-5574, 2009.

[29] S. J. Plimpton, “Fast Parallel Algorithms for Short-Range Molecular Dynamics,” Journal Computation
Physics, vol. 117, pp. 1–19, 1995.

[30] Sandia National Laboratories. (2010, April) The LAMMPS Molecular Dynamics Simulator. [Online].
Available: http://lammps.sandia.gov

[31] K. G. Morse Jr., “Compression Tools Compared,” Linux Journal, no. 137, September 2005.

[32] P. Deutsch, “Deflate Compressed Data Format Specification.” [Online]. Available: ftp://ftp.uu.net/
pub/archiving/zip/doc

[33] J. Ziv and A. Lempel, “A Universal Algorithm for Sequential Data Compression,” Information Theory,
IEEE Transactions on, vol. 23, no. 3, pp. 337–343, May 1977.

[34] “7Zip Project Official Home Page.” [Online]. Available: http://www.7-zip.org

[35] I. Pavlov, “LZMA SDK (Software Development Kit),” 2007. [Online]. Available: http:
//www.7-zip.org/sdk.html

[36] J. G. Elytra, “Parallel Data Compression With Bzip2.”

19

[37] P. H. Hargrove and J. C. Duell, “Berkeley Lab Checkpoint/restart (BLCR) for Linux Clusters,” Journal
of Physics: Conference Series, vol. 46, no. 1, 2006.

[38] E. Gabriel et al., “Open MPI: Goals, Concept, and Design of a Next Generation MPI Implementation,”
in Recent Advances in Parallel Virtual Machine and Message Passing Interface, ser. Lecture
Notes in Computer Science, D. Kranzlmüller, P. Kacsuk, and J. Dongarra, Eds. Springer Berlin
/ Heidelberg, 2004, vol. 3241, pp. 353–377, 10.1007/978-3-540-30218-6 19. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-30218-6 19

[39] M. Bougeret, H. Casanova, M. Rabie, Y. Robert, and F. Vivien, “Checkpointing strategies for parallel
jobs,” in SC, S. Lathrop, J. Costa, and W. Kramer, Eds. ACM, 2011, p. 33.

[40] N. Naksinehaboon, Y. Liu, C. B. Leangsuksun, R. Nassar, M. Paun, and S. L. Scott, “Reliability-Aware
Approach: An Incremental Checkpoint/Restart Model in HPC Environments,” in Proceedings of
the 2008 Eighth IEEE International Symposium on Cluster Computing and the Grid, ser. CCGRID
’08. Washington, DC, USA: IEEE Computer Society, 2008, pp. 783–788. [Online]. Available:
http://dx.doi.org/10.1109/CCGRID.2008.109

[41] B. Schroeder and G. A. Gibson, “Understanding Failures in Petascale Computers,” Journal of Physics
Conference Series, vol. 78, no. 1, 2007.

[42] S. Lang, P. Carns, R. Latham, R. Ross, K. Harms, and W. Allcock, “I/O performance challenges at
leadership scale,” in Conference on High Performance Computing Networking, Storage and Analysis
(SC ’09), 2009, pp. 40:1–40:12. [Online]. Available: http://doi.acm.org/10.1145/1654059.1654100

[43] R. Templeman and A. Kapadia, “Gangrene: Exploring the mortality of flash memory,” in Proceedings
of the 7th USENIX Conference on Hot Topics in Security, ser. HotSec’12. Berkeley, CA, USA: USENIX
Association, 2012, pp. 1–1. [Online]. Available: http://dl.acm.org/citation.cfm?id=2372387.2372388

[44] G. Shipman, D. Dillow, S. Oral, and F. Wang, “The Spider Center Wide File System: From Concept
to Reality,” in Proceedings of the 2009 Cray User Group (CUG) Conference, Atlanta, GA, May 2009.

[45] B. Barney. (2011, August) Introduction to Livermore Computing Resources. [Online]. Available:
http://computing.llnl.gov/tutorials/lc resources

[46] C. E. Shannon, “A mathematical theory of communication,” The Bell System Technical Journal, vol. 27,
pp. 379–423, 623–, july, october 1948.

[47] A. Colic, H. Kalva, and B. Furht, “Exploring nvidia-cuda for video coding,” in Proceedings of the
first annual ACM SIGMM conference on Multimedia systems, ser. MMSys ’10. New York, NY, USA:
ACM, 2010, pp. 13–22. [Online]. Available: http://doi.acm.org/10.1145/1730836.1730839

[48] R. Rajachandrasekar, A. Moody, K. Mohror, and D. K. D. Panda, “A 1 pb/s file system to checkpoint
three million mpi tasks,” in Proceedings of the 22nd international symposium on High-performance
parallel and distributed computing, 2013, pp. 143–154.

20

