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Abstract

Carrier recombination due to defects can have a major impact on device
performance. The rate of defect-induced carrier recombination is determined by both
defect levels and carrier capture cross-sections. Kohn-Sham density functional theory
(DFT) has been widely and successfully used to predict defect levels in semiconductors
and insulators, but only recently has work begun to focus on using DFT to determine
carrier capture cross-sections. Lang and Henry worked out the fundamental theory of
carrier-capture cross-sections in the 1970s and showed that, in most cases, room
temperature carrier-capture cross-sections differ between defects primarily due to
differences in the carrier capture activation energies. We present an approach to using
DFT to calculate carrier capture activation energies that does not depend on perturbation
theory or an assumed configuration coordinate, and we demonstrate this approach for the

-3/-2 level of the Ga vacancy in wurtzite GaN.

1. Introduction

Point defects in semiconductors and insulators may exist in more than one charge

state. Defects can interact with the band edges by capturing and emitting carriers in order



to change between these charge states. These processes are technologically important
since they induce carrier recombination, which can have a dramatic influence on device
performance. 12 The rate of defect-induced carrier recombination is determined by both
the thermodynamic levels and carrier capture cross-sections associated with the particular
defect. Both of these types of parameters are needed in models that determine the rate of
recombination induced by defects.’>3 4 Both measurements and calculations of defect
levels are a mainstay of modern materials science. However, measurements and
calculations of carrier capture cross-sections have been performed much less frequently.

Furthermore, experiments that measure defect levels do not directly identify their
atomistic origin (e.g., vacancy, interstitial, antisite, etc.). Theoretical calculations of
defect levels for specific defects can be compared with experimental measurement, but it
often remains difficult to unambiguously assign measured defect levels to a particular
defect species. Calculations of additional defect properties, such as carrier capture cross-
sections, would allow the comparison of more than one property and greatly aid in this
identification.

The most widely used approach to calculating defect levels relies on Kohn-Sham
density functional theory (DFT).’ In cases where comparisons have been made between
theory and experiment, defect levels calculated by DFT (using periodic finite-size
supercells and then corrected a posterior for interactions between supercells and the

6,7,8,9,10

alignment of the delocalized band edge states to experiment ) often agree with

11,12,13,14,15,

experimental levels to within a few tenths of an electron volt (eV). " Given

the success of DFT in calculating defect levels and other properties of defects, it makes



sense to develop an approach by which DFT can be used to determine carrier capture
cross-sections.

In the 1970s, based on a combination of experiment and theory, Lang and Henry
developed the fundamental theory of non-radiative carrier capture by deep defect levels
in semiconductors. 1718 Building on previous work by Hwang and Rhys!?, Lax?0, and
Kubo and Toyazawa?!l, they established that multiphonon emission (MPE) is the
predominant mechanism by which carriers are captured by deep defect levels. This
mechanism will be reviewed in detail in Section 2 below, but a key result is that, at
moderate to high temperatures, typical carrier capture cross-sections ¢ have the form

0 = exp(—Ey/kpT), (1)
where g, is the high temperature limit of g, E, is a carrier capture activation energy, kg
is the Boltzmann constant, and T is the temperature. Lang and Henry found that o,
varies in a relatively small range with o, = (0.5 — 4.0) x 10~15 c¢m” for neutral defects,
an enhancement of 16-24 for an attractive Coulomb interaction between the defect and
the carrier, and a similar decrease for a repulsive interaction. However, room
temperature carrier capture cross-sections differ by many orders of magnitude due to
variations in E, between different defect and levels. Therefore, the focus of this article
will be on using DFT to determine carrier capture activation energies. At temperatures
where Eq. 1 is valid, the ions essentially move in a classical fashion as they climb the
barrier E, to the point where carrier capture can occur. Thus, one advantage of our focus
on carrier capture activation energies is that we will be able to treat the ions as classical

particles.



In contrast, other recent work on using DFT to determine carrier capture cross-
sections has focused on a fully quantum mechanical, perturbative approach to calculating

. . . 22,23
carrier capture cross-sections directly. “*

These sophisticated treatments allow effects
that require a quantum mechanical treatment of the ions, such as carrier capture by
tunneling at low temperature, to be correctly included, and they are likely to give accurate
answers in many cases. They should be particularly accurate when the structures of the
initial and final defect states are similar, and the defect does not have to move very far
from its relaxed configuration in order to capture the carrier. However, in some cases,
the defect might need to move quite far from its relaxed configuration in order to capture
a carrier. In such cases, it is not clear that quantities (e.g. electron-phonon coupling
constants, phonon modes and frequencies, etc.) calculated at the relaxed structure will
remain valid in the region where the electronic transition occurs. Likewise, when the
initial and final defect states are quite different (e.g., a split interstitial that changes into a
tetrahedral interstitial) it is unclear how to choose a configuration coordinate for the
capture process. Since our classical treatment of the ions allows us to explore
configuration space far from the relaxed defect structures, we can address these issues in
a straightforward manner.

The purpose of this paper is to seek a method to calculate carrier capture activation
energies using DFT. We develop this method as follows: In Section 2, we review the
fundamental theory of carrier capture activation energies as developed by Lang and

Henry. Then, in Section 3, we translate the key aspects of this fundamental theory into

quantities that can be determined using DFT. We proceed in Section 4 by presenting an



algorithm to construct an optimized configuration coordinate in multidimensional space,

before giving some concluding remarks in Section 5.

2. Fundamental Theory of Carrier Capture Activation Energies

As mentioned above, Lang and Henry established MPE as the most common
mechanism for non-radiative carrier capture at a deep defect level in semiconductors.17-18
Figure 1 describes the basic physical processes associated with MPE in schematic form.
In the basic theory, it is assumed that there exists a one-dimensional path in the
configuration space of the system, called the “configuration coordinate”, along which the
atoms move during the carrier capture or emission processes. In Fig. 1, motion along this
coordinate is parameterized by the x-coordinate, which applies to both the upper and
lower panels of the figure.

As shown in Fig. 1a (the upper panel of Fig. 1), the energy of the system changes as
the system moves along the configuration coordinate. Consider carrier capture or
emission by the ¢ —1/q level of a defect. Three energies, corresponding to different
charge states of the defect and different numbers of carriers in the band edges, are
important to the process. These energies are indicated by the three lines in Fig. 1a. The
blue line gives the energy of a defect in charge state g with no carriers in the band edges,
the black line gives the energy of the defect in charge state ¢ — 1 with a hole in the
valence band, and the red line gives the energy of the defect in charge state g with a hole

in the valence band and an electron in the conduction band.



It is assumed that the configuration coordinate passes through the minimum energy
configuration for both charge states. Thus, the minimum of the blue curve corresponds to
the fully relaxed structure and energy of the defect in charge state q. Likewise, the
minimum of the black line corresponds to the fully relaxed structure and energy of the
defect in charge state ¢ — 1, but the energy is increased by the (coordinate-independent)
energy of a hole in the valence band. The red line in the same as the blue line but shifted
upward by the energy of both a hole in the valence band and an electron in the
conduction band, which is equal to the band gap of the material. Since the process
depends only on differences in energies, the zero of the energy scale has been taken
arbitrarily to be the energy of the fully relaxed defect in charge state q.

The lower panel in Fig. 1 (Fig. 1b) shows the defect level (in black) as the system
moves along the configuration coordinate. We have chosen to reference the defect level
to the valence band edge (in blue), and thus, the defect level corresponds to the difference
between the black and blue curves in Fig. la. Likewise, the defect level crosses the
conduction band (in red), when the black curve crosses the red curve in Fig. la. This
defect level differs from the thermodynamic level that is usually discussed in defect
theory. In this case, both charge states are constrained to be in the same configuration,
which is determined by the configuration coordinate, while the thermodynamic level is
given by the difference in energy between the two charge states when each charge state is
separately relaxed to its minimum energy configuration. In Fig. 1, the q —1/q
thermodynamic level of the defect is given by the energy difference between the

minimum of the black line and the minimum of the blue line.



Each of the energies in Fig. 1a corresponds to a system with total charge g, and thus
these energies can be compared directly without consideration of the Fermi level. In
order for the system to make a non-radiative transition between two states, energy must
be conserved. In a simple classical picture of the MPE process, this can occur when the
black line crosses either the blue line or the red line in Fig. 1a. These points correspond
to the configurations where the defect level crosses into either the valence band or the
conduction band in Fig. 1b.

If the system consists of a defect in charge state ¢ — 1 along with a hole in the
valence band, it will thermally fluctuate along the configuration coordinate with its
potential energy given by the black line in Fig. 1a. Occasionally, it can reach the crossing
point where its energy is the same as a defect in charge state g, and at that point, the hole
can be captured with a commensurate change in defect charge state from g — 1 to q. In
order for this to happen, the motion along the configuration coordinate must have thermal
energy equal to the energy difference between the crossing point of the black and blue
curves and the minimum of the black curve. This energy difference corresponds to the
activation energy for the defect in charge state ¢ — 1 to capture a hole.17"18

Once the hole has been captured, the defect will begin to move with a new potential
energy function given by the blue line in Fig. la. As the system moves back down the
blue curve, an additional amount of kinetic energy equal to the energy difference between
the minima of the black and blue curves will be deposited into vibrations along the
configuration coordinate. Since this additional energy, which is equal to the depth of the
thermodynamic defect level relative to the valence band edge, is typically large compared

to the energy of the phonons in the system, this process results in the emission of many



phonons and leaves the system in a highly excited vibrational state. This behavior is the
essence of the MPE process and explains how a large number of photons can be emitted
in order to absorb the large electronic energy released during carrier capture by a deep
level. 1718

The reverse process occurs when a defect in charge state g thermally fluctuates along
the configuration coordinate with its potential energy given by the blue line in Fig. 1a. If
it can overcome a barrier given by the energy difference between the crossing point of the
black and blue curves and the minimum of the blue curve, it can reach the crossing point
and non-radiatively emit a hole with a commensurate change in defect charge state from
q to q — 1. The barrier for hole emission is larger than the barrier for hole capture by the
energy difference between the minima of the black and blue curves in Fig. la, which
again is equal to the depth of the thermodynamic defect level relative to the valence band
edge. If we follow the conventional procedure, we factor out this additional barrier for
carrier emission, so that capture and emission of a carrier have the same cross-section,
with carrier emission being suppressed by an additional factor that is exponential in the
thermodynamic defect level depth divided by the thermal energy.

Electron capture and emission occur by analogous processes. Note that the systems
used to define the black and red curves in Fig. 1a both contain a hole in the valence band,
which does not participate in these processes. The presence of this hole is important in
the above discussion of hole capture, but it shifts both the black and red curves in Fig. 1a
by the same constant factor and has no effect on the results for electron capture and
emission. A system containing a defect in charge state g along with an electron in the

conduction band can thermally fluctuate along the configuration coordinate with its



potential energy given by the red curve in Fig. la. If it reaches the crossing point
between the black and red curves, the defect can non-radiatively capture the electron with
the defect charge state changing to g — 1. In the process, it must overcome a barrier
given by the energy difference between the crossing point of the red and black curves and
the minimum of the red curve. This is the barrier for a defect in charge state g to capture
an electron. Likewise, a defect in charge state ¢ — 1 can thermally fluctuate along the
configuration coordinate with its potential energy given by the black curve in Fig. la. If
it reaches the crossing point between the black and red curves, it can emit an electron
with its charge state changing to gq. The additional energy kinetic energy deposited
during electron capture and the additional barrier that must be overcome during electron
emission is given by the energy difference between the minima of the red and black
curves, which is equal to the depth of the thermodynamic defect level relative to the

conduction band edge.

3. DFT Calculations of Carrier Capture Activation Energies

We wish to translate the above fundamental theory into the language of DFT
calculations in the hopes of using DFT to obtain carrier capture activation energies for
specific defect levels. There are two significant obstacles impeding this translation: (1)
DFT is a theory of electronic ground states, while, all but the lowest energy values in Fig.
la formally correspond to excited states of the defect containing system, and (2) The
configuration space in a DFT calculation consists of three coordinates for each atom in

the system while the above theory assumes that a one-dimensional configuration



coordinate has somehow been identified. Confronting the second obstacle will be the
subject of the next section, while this section will deal with the first concern.
In DFT calculations, it is not possible to create a system with a defect in charge state
q — 1 and a hole in the valence band (or a defect in charge state g + 1 and an electron in
the conduction band) independently from a system with a defect in charge state g. One
merely chooses the total charge of the system, and DFT will find the electronic
configuration that has the lowest energy. This prevents a direct calculation of the curves
in Fig. 1 using DFT. A partial solution to this problem lies in observing that a carrier in a
band edge of an infinite crystal is delocalized throughout the crystal and should have a
vanishing interaction with a localized defect. Thus, the energy of a system containing a
defect and a carrier should simply be the energy of a defect plus a constant energy for
adding the carrier. If a suitable energy for adding each carrier can be determined, this
should allow us to evaluate portions of the curves in Fig. 1a using DFT calculations.
However, the above procedure provides only a partial solution because a defect in
charge state g can equally well turn into a defect in charge state ¢ — 1 and a hole (or a
defect in charge state ¢ + 1 and an electron) if the energy of the latter system is lower.
Thus, DFT calculations cannot be used to evaluate the blue and red curves in Fig. la to
the right of the crossing point between the black and blue curves. Likewise, DFT
calculations cannot be used to evaluate the black curve in Fig. la to the left of the
crossing point between the black and red curves. Fortunately, the carrier capture
activation energies given by the above theory depend on the crossing point energies, but
not the behavior of the curves outside of the crossing points. Thus, there is hope that the

carrier capture activation energies can be obtained from DFT calculations. In fact, for
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DFT calculations in finite supercells, we will see that there is also a region inside the
crossing points where the calculated energies become undependable. However, when
this region is sufficiently small, we can extrapolate the curves obtained outside this
region to make reasonable estimates of the curves in Fig. 1 throughout the crossing point
regions, the crossing point energies, and the carrier capture activation energies.

We will now return to the question of determining suitable energies for adding a
hole in the valence band or an electron in the conduction band. One might think that the
Kohn-Sham eigenvalues at the valence band maximum and conduction band minimum,
or perhaps, the experimentally determined ionization potential and electron affinity,
would be appropriate. However, outside the crossing points in Fig. 1, our approach gives
us two different ways to calculate the energy of the defect plus a carrier. For example, to
the right of the crossing point between the black and blue curves, we can obtain the
energy of the defect in charge state ¢ — 1 plus a hole either by performing a DFT
calculation with a total excess charge g, or by performing a DFT calculation with a total
excess charge of ¢ — 1 and adding the (yet to be determined) energy for adding a hole.
For consistency and in order to help in interpreting our DFT results, we would like these
two approaches to, as nearly as possible, give the same energy.

In recent work, we have explored the case where charge added to a DFT calculation
for a defect-containing supercell (which might already be charged) goes into band-edge-
like states rather than localizing on the defect. 24 In this case, the energy for adding the
additional charge depends only slightly on the defect identity, with a repulsive interaction
between the defect and the added carrier giving a slightly higher energy that decreases

with increasing supercell size, and a long-range attractive interaction giving a small
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reduction in energy corresponding to formation of a shallow defect state. However, this
energy is a rather strong function of the supercell size and the Brillouin sampling
approach - An entire unit of charge is added to the band edge states, and for typical
supercell sizes used in DFT calculations, this corresponds to filling electron states
substantially above the conduction band minimum or hole states substantially below the
valence band maximum. This consequential dependence on the supercell size and the
other DFT technical parameters can be captured by approximating the energy for adding
the additional charge to the defect containing supercell by the energy for adding the same
charge to the corresponding defect-free bulk cell.?* This approximation is independent of
the particular defect under consideration or its specific configuration, and this is the
approach that we will use to define the energies for adding a hole in the valence band or
an electron in the conduction band when analyzing our DFT calculations for carrier
capture activation energies.

To be specific, consider a DFT calculation for a defect using a particular supercell

and set of technical parameters (Brillouin-zone sampling, basis set, pseudopotential set,
etc.). Let EP (q, I_?)) be the total energy of defect D in charge state g when the atomic

positions are given by the generalized coordinate R. We can perform DFT calculations
for a defect-free bulk supercell of the same size using the same set of technical
parameters. Suppose EZ(0) is the total energy of the neutral bulk supercell, EZ(—1) is
the total energy of the bulk supercell with one electron added, and EB(+1) is the total
energy of the bulk supercell with one electron removed. We can then define the energy to
add an electron to the bulk supercell

AP(-1) = EP(-1) — E®(0), )

12



and the negative of the energy to add a hole to the bulk supercell
AB(+1) = EB(0) — EB(+1). 3)

We have chosen the sign in the definition of AB(+1) to be consistent with our
previous work, where we have shown that AB(—1) and AP(+1) provide (approximate)
upper and lower bounds on the range of defect levels that can be obtained from DFT
calculations using a particular supercell and set of technical parameters.2*

We can then approximate the energy of a system with a defect in charge state ¢ — 1
and a hole in the valence band by

EP(q—1,R) = E’(q — 1,R) — AB(+1), (4)
Likewise, we can approximate the energy of a system with a defect in charge state g, an
electron in the conduction band, and a hole in the valence band by

ED.(q,R) = EP(q,R) + AB(=1) — AB(+1) (5)
The quantity

Eg.p = AB(—1) — AB(+1) = EB(-1) + EB(+1) — 2EB(0) (6)
is equivalent in form to the fundamental gap defined by Mori-Sanchez, Cohen, and
Yang® for an infinite bulk system, but here applied to a finite supercell. In the limit of an
infinite supercell, EZ,p becomes the difference in the valence band maximum and
conduction band minimum eigenvalues (the Kohn-Sham gap) for Kohn-Sham
calculations using semilocal exchange-correlation functionals (e.g., LDA or GGA) or for
generalized Kohn-Sham calculations with hybrid functionals (e.g., PBEO, B3LYP, or
HSE). However, for typical supercells used in DFT calculations, this quantity is
substantially larger than the Kohn-Sham gap and can approach the experimental gap even

with semilocal exchange-correlation functionals.?*
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We now have approximations for each of the energies appearing in Fig. la, and we
wish to define the defect level appearing in Fig. 1b. The defect level AP(q — 1/q)is
often defined to be the value of the Fermi level where the defect in charge state g has the
same formation energy as the defect in charge state g — 1. This definition can be
expressed in terms of supercell energies as 242’

AP(q —1/q,R) = E°(¢ = LR) = E®(q,R) — e, (7)
where the defect levels are defined relative to the reference energy p,. When calculating
defect levels using DFT, it is fairly common to take pi. = &, Where &u 1S the energy of
the bulk valence band maximum. Instead, we will take u, = AB(+1), which gives the
expression

AP(q —1/q,R) = E’(q — 1,R) — E(q,R) — AB(+1). (8)
This choice simply shifts all band edges and levels by a constant value, and it ensures that
our defect level corresponds to the difference between EP (q -1, 1_2)) and EP (q, 1_2)) With
this reference energy, our defect levels should be (approximately) bound between 0 and
E¢ap-2*

We now have DFT-based expressions for all of the quantities appearing in Fig. 1. In
order to demonstrate DFT calculations of these quantities and our subsequent analysis to
determine carrier capture activation energies, we have chosen an example system: the -3/-
2 level of the Ga vacancy (Vg,) in wurtzite GaN. This example is interesting because it is
one of the levels that possibly contributes to the broad yellow luminescence often seen in
GaN. *** Although other defects such as a carbon impurity on a nitrogen site are likely

30,31,32

to contribute also to luminescence in this frequency range, radiative capture of an

electron by Vg, in the -2 charge state, possibly in a complex with another defect species,
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has been considered as an important source of yellow luminescence. If radiative capture
is the dominant electron capture mechanism, the cross-section for non-radiative capture
must be small at the relevant temperature. Photoluminescence lifetime measurements
indicate a radiative electron capture cross-section of (2.7 + 0.5) X 10721 c¢m™ for the
defect responsible for yellow luminescence. > Using Eq. 1 along with typical values of
0w,718 we obtain E, > 14 kgT ~ 0.6 eV for the radiative process to remain the
dominant process at 500 K. A calculated electron capture barrier that is at least this large
would be consistent with -3/-2 level of Vg, being a possible contributor to yellow
luminescence.

Our DFT calculations were performed with the open-source Socorro code, ** using a
plane-wave basis with a 30 Rydberg cutoff to represent the Kohn-Sham orbitals, the
Projector Augmented Wave (PAW) method *°, and the LDAS® for exchange and
correlation. Thirteen electrons were treated as valence (3d10, 4s2, and 4p1) for Ga, and
five electrons were treated as valence (2s* and 2p’) for N. In order to model the Vg,
defect, we removed one Ga atom from a 72 atom supercell consisting of 3x3x2 primitive
wurtzite cells. A 2x2x2 Monkhorst-Pack *’ mesh was used to sample the Brillouin zone,
and occupations of the Kohn-Sham orbitals were calculated using a Fermi distribution
with kT = 6.8x107 eV. Structures were relaxed until the maximum force component was
less than 13 meV/A. A spatially uniform compensating background charge density was
used to neutralize the cell for charge state calculations. *® No attempt to realign or post-
process energies or levels in order to remove interactions between the periodically
repeated supercells or align the calculations to experimental band structure was made.

Detailed results for the gallium vacancy in wurtzite GaN using a similar set of

15



computational parameters with the VASP code *° and Vanderbilt ultrasoft
pseudopotentials ** can be found in Ref. 41.

Our example system is intended to provide a computationally undemanding
demonstration of our procedure for calculating carrier capture activation energies, and
our computational parameters are not intended to provide fully converged, quantitative
predictions of defect properties. In particular, the size of the supercell and the Brillouin
zone sampling would likely need to be increased in order to get-well converged results.
Furthermore, a better approximation for the exchange-correlation functional, such as one
of the hybrid functionals, might be needed in order to get details of the defect behavior
correct. 22 Drawing dependable physical conclusions from our calculations will require
future work testing whether these issues significantly affect our results.

In order to demonstrate our procedure for using DFT to calculate carrier capture
activation energies independently of the multidimensional search for an appropriate
configuration coordinate, which is the subject of the next section, we have chosen an
assumed configuration coordinate. Let 1_2)_2 and §_3 be generalized coordinates
describing the positions of all of the atoms in the relaxed Vg, structures for the -2 and -3
charge states respectively. Then, our configuration coordinate A parameterizes the set of

configurations given by

-

ﬁ(l) = 1_2)_2 + A (§_3 - 1_2)_2)/”1_2)_3 - R_2|

: €
which describes linear extrapolation along the line through I_?)_Z and I_?)_3. This is the

same configuration coordinate that is assumed in the perturbative approach described in

Ref. 23. The expression ||I_?)_3 —I_?)_ZH indicates the Euclidean norm of the vector
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§_3 — 1_2)_2, and therefore, A measures the generalized distance between the

configurations R(1) and §—2~

Our calculations indicate that the relaxed configurations of Vg, in both the -2 and -3
charge states have Cs;, symmetry with three equivalent neighboring N atoms and one
inequivalent neighboring N atom, which is located along the c axis from the vacancy site.
For purposes of defining directions, orient the Vg, structure so that the vacancy site is the
center, and the neighboring atom along the ¢ axis is above the vacancy. Relative to their
bulk positions, all of the neighboring atoms relax away from the vacancy site for both
charge states, with the ¢ axis atom moving up and the three equivalent atoms moving
down and outward. We find that the structures of the -2 and -3 charge states differ
slightly. In moving from -2 charge state to the -3 charge state, the ¢ axis neighbor moves
up by 0.028 A while the three equivalent neighbors move up by 0.003 A and inward by
0.019 A. As our configuration coordinate increases, these atoms will continue to move
along these directions, while negative values of the configuration coordinate correspond
to motion in the opposite directions.

Figure 2 shows the results of our DFT calculations for Vg, with this assumed
configuration coordinate. The upper panel (Fig. 2a) shows the three DFT energies that

we believe correspond to the energies that appear in the fundamental theory of non-
radiative carrier capture. The blue line plots EP (—2, R @) ), the black line plots
EP(-3,R(1)), and the red line plots EZ,(—2,R(1) ). In the lower panel (Fig. 2b), the
black line plots the defect level AP (—3 / —2,1_?) (/1)), while the blue and black lines give

the lower and upper (approximate) bounds on our defect levels, which are zero and EZ,,

respectively. Our DFT calculations give EZ,, = 3.35 eV, while the experimental band
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gap of wurtzite GaN is 3.47 eV at 0 K and 3.39 eV at 300K. ** We obtain a 2.18 eV
Kohn-Sham band gap at the I' point and a 2.67 eV Kohn-Sham band gap using our
Brillouin zone sampling, so the agreement between E5,, and experiment is a result of
both our Brillouin zone sampling and band filling effects.?*

We can compare Fig. 2 to Fig. 1. One of the most notable differences is that the
curves in Fig. 2 do not cross. As we discussed above, this reflects the fact that the -2
charge state becomes a -3 charge state plus a hole if we move far enough to the right, and
the -3 charge state becomes a -2 charge state plus an electron if we move far enough to
the left. The relative vertical positioning of the curves is independently determined from
calculations for the corresponding bulk system, so it is testament to the accuracy of our
approximations that the curves in Fig. 2 merge cleanly.

From Fig. 2a, it is difficult to determine where the curves would cross if this merging
did not occur. However, the defect level in Fig. 2b shows a clearly linear region that
bends over to follow the lower bound. This non-linear region near the bound indicates
that the -2 charge state is beginning to convert to a -3 charge state with the extra electron
coming from the valence band and that the calculated energy for the -2 charge state can
no longer be trusted in this region. In contrast, the defect level deviates from linear
behavior well before it reaches the upper bound. Reference to the Fig. 2a shows that
when this happens the defect has already gained about 5 eV of energy due to the
distortion as it moves along the configuration coordinate, and the deviation from linear
behavior probably results from a significant reorganization of the electronic structure in

response to this large distortion.
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The dotted line in Fig. 2b indicates a linear extrapolation of the defect level in the
linear region to the bounds. This linear extrapolation represents an attempt to determine
the behavior of the defect level if the defects in our calculations could not change charge
state, and the points where the linear extrapolation crosses the bounds approximately
indicate where the curves in Fig. 2a would cross if this were the case. One could equally
well extrapolate to experimentally determined band edges if the DFT results could be
aligned with the experimental band structure by, for example, aligning a carefully
converged defect level calculation with well-established experimental results. Given the
close agreement between EZ,, and the experimental band gap in this case and
remembering that our calculations are intended to illustrate our approach rather than
provide accurate predictions, we believe that it is reasonable to extrapolate to the bounds.

The vertical dotted lines in Fig. 2a indicate the values of the configuration coordinate
where our defect level extrapolation indicates that the curves should cross if the defect
charge state could be fixed. For the crossing point on the right, evaluating the difference
between the black curve (which cleanly represents a -3 charge state in this region) and its
minimum (the relaxed energy for the -3 charge state) gives a hole capture activation
energy of 0.89 eV. Similarly, for the crossing point on the left, evaluating the difference
between the blue curve (which cleanly represents a -2 charge state in this region) and its
minimum (the relaxed energy for the -2 charge state) gives an electron capture activation
energy of 10.1 eV. These are very large carrier capture activation energies, which in part
reflects the small difference in structure between the -2 and -3 charge states and the large
band gap of GaN. The enormous activation energy for non-radiative electron capture is

consistent with radiative capture being the dominant process. However, the very large
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activation energy for hole capture suggests that so few holes would be captured (at least
be a non-radiative process) that very little luminesce would be observed. Temperature
dependent photoluminescence measurements indicate a hole capture cross-section of
(2.7 +1.3) x 10~ cm™ for the main process responsible for yellow luminescence in
GaN near room-temperature.33 Even considering that the Coulomb attraction to a -3
defect would enhance the rate of hole capture, this suggests that the barrier for hole
capture could not be larger than a few kgT if the -3/-2 level of Vg, is this defect. In
addition, the activation energy for electron capture, and the associated distortion of the
defect structure, is so large that it is very difficult to believe that our assumed
configuration coordinate remains valid in this region. We will now present an approach
to optimizing the configuration coordinate used in our calculations and see whether it

significantly changes these results.

4. Multidimensional Optimization of Carrier Capture Processes

In this section, we wish to construct an algorithm for finding activation energies for
carrier capture similar to the various transition state finding algorithms that are widely

4344
*If we were not

used to find activation energies for fixed charge state processes.
concerned with the limitations of DFT, we could define the transition state for hole
capture by the g — 1/q level of a defect as the lowest energy point in configuration space
where the energy of the defect in charge state q is the same as the energy of the defect in
charge state g — 1 plus a hole in the valence band. Likewise, we could define the

transition state for electron capture as the lowest energy point in configuration space

where the energy of the defect in charge state g — 1 is the same as the energy of the
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defect in charge state g plus an electron in the conduction band. For the same reason that
we expect thermally activated, fixed charge state processes to be dominated by
trajectories whose energy exceeds the transition state energy by no more that the thermal
energy kgT, we could expect carrier capture processes to be dominated by trajectories
with energies within kgT of the relevant carrier capture transition state energy.
Therefore, the difference in energy between the carrier capture transition state and the
relaxed defect would give the activation energy for carrier capture. However, these
definitions cannot be used directly when DFT calculations are used to calculate our
defect energies.

We showed above that DFT calculations using finite supercells become unreliable as
the energy of one charge state approaches the energy of another charge state plus a
carrier, which is exactly the condition defining these transitions states. In fact, due to
anticrossing between adiabatic states, the above definitions might be problematical even
if we had access to a method that would allow us to efficiently perform the required
excited state calculations. In order to overcome this problem, we will generalize the
concept of a carrier capture transition state to a carrier capture transition pathway
consisting of a series of configurations that allow us to extrapolate to the carrier capture
transition state while remaining in a region of configuration space where DFT
calculations for both charge states are reliable. Like transition pathways for thermally
activated changes in configuration, we do not expect typical trajectories of systems
undergoing the transition, which involve non-negligible momentum, to coincide with the

transition pathway. In addition, there may be more than one useful definition of a carrier
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capture transition pathway. However, we will provide a definition that we believe is a
proper generalization of the configuration coordinate concept to multidimensional space.
What characterizes our “in theory” definitions of the carrier capture transition states
is that they are the lowest energy configurations consistent with a fixed energy difference
between the two charge states. By Eq. 8, this is equivalent to a constraint on the defect
level. The hole capture transition state is defined by a minimization over configurations
with the defect level at the valence band edge, while the electron capture transition state
is defined by a minimization over configurations with the defect level at the conduction
band edge. A logical extension of these definitions to a pathway is to consider the defect
level as a parameter that defines the configurations in the pathway. For each defect level,
we can perform a constrained energy minimization over all configurations consistent with
that defect level. As the defect level approaches the valence band edge, this pathway
should approach the hole capture transition state, while as the defect level approaches the
conduction band edge, the pathway should approach the electron capture transition state.
If we calculate this pathway using DFT energies, the results may become unreliable
close to the carrier capture transition states for the same reason that our DFT calculations
with an assumed configuration coordinate became unreliable close to the crossing points.
However, for defect levels intermediate between the upper and lower bounds, the
energies of both charge states should be accurately determined, and the carrier capture
transition pathway should be well defined. This well-behaved portion of the pathway can
then be used to extrapolate to the carrier capture transition states.
There are a couple of important properties of the carrier capture transition pathway

defined in this manner that make it suitable for use as a configuration coordinate in
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carrier capture calculations. First, if we consider only the constrained subspace of
configurations consistent with a specific defect level, the energies of the two charge states
differ only by a constant factor, which is determined by the defect level. Therefore,
within this subspace, minimization with respect to the energy of charge state g is exactly
equivalent to minimization with respect to the energy of charge state ¢ — 1. This ensures
that the calculated pathways for hole capture, electron emission, electron capture, and

hole emission are all the same. Also, when the defect level is constrained to the value
E”(q - 1,R,) — E®(q,R,) — A2(+1) (10)

where I_Q)q is the relaxed configuration of charge state g, the constrained subspace must

include the configuration I_?)q. Since the configuration I_?)q is the global minimum of

EP (q,ﬁ), it must also be the minimum over the constrained subspace. Therefore, the
pathway must include the relaxed configuration of charge state q. Likewise, when the
defect level is constrained to the value

EP(q—1,R,_1) — EP(q,Ry_1) — AB(+1) (11)
where I_?)q_l is the relaxed configuration of charge state g, the minimum over the

constrained subspace must be I_?)q_l. Therefore, the pathway must include the relaxed

configuration of charge state ¢ — 1. Together, these results satisfy the condition that the
configuration coordinate should pass through the minimum energy configurations of both
charge states.

Just as there may be local minima in the energy as a function defined on the space
of all configurations, there may be local minima in the energy as a function defined on

the constrained subspace. As the defect level defining the constraint varies, the global
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energy minimum may occasionally change from one local minimum to another leading to
a discontinuity in the pathway. This process is analogous to a first order phase transition
in thermodynamics where the global free energy minimum switches from one local free
energy minimum to another leading to a discontinuity in the order parameter. In this
sense, the carrier capture transition pathway considered in this work differs from a
conventional configuration coordinate. However, given the smoothness of the energy
function, we should expect few such discontinuities in our pathway, and unless such a
discontinuity occurs close to one of the carrier capture transition states, they should not
seriously impede our extrapolation to the transition state.

If energies and forces for the defect charge states are calculated using DFT, the
constrained minimization defining the configurations in the carrier capture transition
pathway can be easily accomplished by a combination of a relaxation step perpendicular

to the force difference and a Newton step parallel to the force difference. Let
FP (q,l_?)) be the force on charge state g and FP (q — 1,1_?)) be the force on charge state
q — 1. Consider a minimization with the defect level constrained to §. Define the sum
and difference forces ( = ﬁD(q, I_?)) + ﬁD(q — 1,1_?)) and © = I:")D(q,l_f) — ﬁD(q — 1,1_?)).
O is the gradient of AP (q —-1/q, I_Q)i), so moves perpendicular to © do not change

AP (q —-1/q, 1_2)1) to linear order. Let a be a damping parameter, which must be chosen

small enough to avoid oscillations in the relaxing system. Then, the iteration
Rinn= Ri+a(0-6(6-0)/(6-0)) +6(s -a°(¢ - 1/0.R))/(6-6).  (12)
where (0 and @ are recalculated at each I_Q)i, will accomplish the constrained minimization.

The first term relaxes the system in directions perpendicular to © in order to minimize the
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energy within the constrained subspace, while the second term moves along @ in order to
maintain the constraint. The steepest descent relaxation may be replaced by more

efficient methods such as quenched dynamics or conjugate gradient as long as all terms

are kept orthogonal to ©. As is usual with multidimensional minimization, the algorithm
should be started from a number of low symmetry configurations in order to make sure
that the global minimum has been located.

The carrier capture transition path is then calculated by performing this constrained
minimization for a series of defect levels §. If we wish to construct the entire path from
electron capture / emission to hole capture / emission, these values of § should range
between the lower and upper bounds (0 and EZ,, using our reference for the defect
levels). Given a series of configurations in the path, we can then construct a
configuration coordinate that measures the distance along the path by summing the
distances between sequential configurations in the path.

We have applied this multidimensional optimization procedure to our Vg, example.
The results are shown in Fig. 3. The general behavior of the results in Fig. 2 and Fig. 3
are similar, but there are some notable differences. Moving from the minimum of the
blue curve to the right (toward hole capture / emission), our results do not change
significantly from those we obtained with an assumed coordinate. In fact, if the data in
Figs. 2a and 3a were plotted together, the curves in Fig. 3a in this region would be only
slightly below the curves in Fig. 2a. This indicates that the assumed configuration
coordinate that we used in constructing Fig. 2 is actually a good approximation. Moving
to the left from the minimum of the blue curve, we initially find a similar picture. The

configurations retain C;, symmetry, and the energies of the two charge states are only
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slightly lower when following the optimized pathway. However, at a configuration
coordinate of about -0.4 A, the picture suddenly changes. The configurations in the
pathway begin a complex distortion that fully breaks the symmetry of the structure to C;.
Comparison with Fig. 2 shows that this distortion results in a major reduction in the
energy required to reach a given defect level, which we can expect to reduce the barrier
for electron capture.

In order to reveal the character of the electron capture pathway once the symmetry
breaking occurs, Fig. 4 shows the optimized configuration corresponding to a 3.22 eV
defect level. This value is close to the upper bound, but before the deviation from linear
behavior due to the loss of an electron from the -3 charge state to the conduction band
becomes significant. In Fig. 4, one of the N atom first neighbors of the missing Ga atom
has moved past its three Ga neighbors to form a dimer with another N atom. This second
N atom, which was originally a third neighbor of the missing Ga atom, has broken a N-
Ga back-bond in order to form the dimer. Since breaking this N-Ga bond leaves a Ga
dangling bond, the net effect of this structural reorganization is to convert a N dangling
bond into a Ga dangling bond while keeping the total number of bonds unchanged. In the
-3 charge state of Vg,, the initial N dangling bond is filled, while the final Ga dangling
bond prefers to be empty. Thus, when carried to completion, this process results in
electron emission, while the reverse process results in electron capture. Although the
energies associated with this process are sufficiently high that it would almost never
occur in practice, these results demonstrate the power of our multidimensional
optimization procedure to predict complex, but physically sensible pathways that might

be very difficult to identify otherwise.
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Fig. 3b shows that as the C; distortion progresses, the defect level eventually
resumes a nearly linear climb toward the upper bound. In this case, it does not make
sense to fit the data to a single linear expression. Instead, there are linear regions near
each bound, and we separately extrapolate the defect level to the bounds. These
extrapolations are indicated by the dotted lines in Fig. 3b. There is some ambiguity in
exactly which points should be included in these linear extrapolations, but it is easy to see
that different procedures do not lead to very big changes in the final results. The vertical
dotted lines in Fig. 3a indicate the values of the configuration coordinate where our
extrapolations indicates that the defect level should cross the bounds if the linear
behavior was maintained. For the crossing point on the right, evaluating the difference
between the black curve and its minimum gives a hole capture activation energy of 0.83
eV, which is only a slight reduction from the value we obtained with our assumed
configuration coordinate. Similarly, for the crossing point on the left, evaluating the
difference between the blue curve and its minimum gives an electron capture activation
energy of 3.45 eV. Thus, our optimization of the carrier capture pathway reduces the
electron capture activation energy by almost a factor of 3. However, the barrier still
easily exceeds the 0.6 eV value needed to be consistent with a radiative mechanism for
this process.

Finally, we would like to make a few comments on the behavior of the optimized
pathway when the defect level is very close to or beyond the bounds. The algorithm
described above does not limit the changes in configuration to the atoms near the defect.
As the bounds are reached and defect charge is lost to delocalized band edge states, the

bulk-like region surrounding the defect can begin to distort in an attempt to raise the
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energy of these delocalized states. In our example system, this is observed most
dramatically as the defect level reaches the lower bound. Trying to extend the carrier
capture pathway to values of the defect level below the last point shown in Fig. 3 leads to
a large, discontinuous, delocalized distortion in structure. The effect is less dramatic as
the defect level reaches the upper bound, and the calculated pathway remains continuous.
However, a delocalized distortion is observed, the defect level moves above the bound,
and correspondingly the black line moves above the red line in Fig. 3a. These anomalous
results are an artifact of the DFT calculations and the fact that the defect can lose charge
to band edge states. Thus, these results emphasize the importance of avoiding the

crossing regions in DFT calculations of carrier capture activation energies.

5. Conclusions

In this article, we have developed an approach to calculating carrier capture activation
energies using DFT that does not depend on a perturbation expansion around the relaxed
defect configurations. Therefore, it allows us to fully incorporate non-linear effects. In
the process, we addressed difficulties arising from the ground state nature of DFT and the
multidimensional nature of configuration space. Our approach allows us to calculate
rather than assume a configuration coordinate for the carrier capture process, and this
configuration coordinate can represent an arbitrary nonlinear pathway in configuration
space.

We demonstrated our approach with calculations for the-3/-2 level of the Ga vacancy
(Vga) in wurtzite GaN. In this case, our results suggest that approaches based on

perturbation theory or an assumed coordinate would work well for hole capture but fail
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dramatically for electron capture. We obtain an extremely large electron capture
activation energy, which is consistent with the suggestion that a radiative process is
responsible for electron capture by this defect level. We also obtain a very large hole
capture activation energy, which does not seem to be consistent with the measured hole
capture cross-section associated with yellow luminescence. It is possible that better
convergence of our calculations with respect to supercell size and Brillouin zone
sampling could reduce the activation energy for hole capture. A more accurate exchange-
correlation functional, such as one of the hybrid functionals, could also change our
results. Also, it has been suggested that yellow luminescence arises not from Vg, itself,
but from a complex of Vg, with another defect. It is easy to imagine how a nearby defect
could increase the displacement between the -2 and -3 charge states of the defect and
reduce the activation energy for hole capture. Finally, it is possible Vg, does not
contribute significantly to yellow luminescence, and another defect such as a carbon
impurity on a nitrogen site is exclusively responsible.30-31-32

Finally, we should note that our approach takes a purely classical view of ionic motion,
which contrasts with the very sophisticated, fully quantum mechanical calculations
involved in modern perturbative approaches to carrier capture. We believe that our work
is complementary to these perturbative treatments of the problem and that some

combination of the approaches is likely to provide the ultimate solution.
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Figure Captions

Figure 1: Schematic showing the basic physical mechanism of non-radiative carrier
capture at a deep defect level in a semiconductor by multiphonon emission. The x-
coordinate in both panels is a one-dimensional configuration coordinate that
parameterizes the motion of the atoms in the system along some path in configuration
space. The upper panel (Fig. 1a) shows the energy of the defect for various charge states
of the defect and occupations of the band edges, which are designated as follows: (blue)
defect charge state g with no carriers in the band edges, (black) defect charge state ¢ — 1
with a hole, and (red) defect charge state g with a hole and an electron. The lower panel
(Fig. 1b) shows the defect level (black) along with the valence band edge (blue) and the

conduction band edge (red).

Figure 2: Results of our DFT calculations for non-radiative carrier capture by the -3/-2
level of the Ga vacancy in wurtzite GaN with an assumed configuration coordinate. The
x-coordinate in both panels parameterizes the motion of the atoms along a straight line in
configuration space that passes through the relaxed structures of the -2 and -3 charge
states. The upper panel (Fig. 2a) shows the energy of the defect for various charge states
of the defect and occupations of the band edges, which are designated as follows: (blue)
defect charge state -2 with no carriers in the band edges, (black) defect charge state -3
with a hole, and (red) defect charge state -2 with a hole and an electron. The lower panel
(Fig. 2b) shows the -3/-2 defect level (black) along with the lower (blue) and upper (red)

bounds on the defect level. The dotted line in Fig. 2b shows a linear extrapolation of the
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defect level, and the vertical dotted lines in Fig. 2a indicate where this extrapolation

crosses the bounds.

Figure 3: Results of our DFT calculations for non-radiative carrier capture by the -3/-2
level of the Ga vacancy in wurtzite GaN with an optimized configuration coordinate.
The x-coordinate in both panels parameterizes the motion of the atoms along path
consisting of configurations that minimize the total energy of the defects for a particular
defect level. The upper panel (Fig. 3a) shows the energy of the defect for various charge
states of the defect and occupations of the band edges, which are designated as follows:
(blue) defect charge state -2 with no carriers in the band edges, (black) defect charge
state -3 with a hole, and (red) defect charge state -2 with a hole and an electron. The
lower panel (Fig. 3b) shows the -3/-2 defect level (black) along with the lower (blue) and
upper (red) bounds on the defect level. The dotted lines in Fig. 3b show a linear
extrapolation of the defect level near to each bound, and the vertical dotted lines in Fig.

3a indicate where these extrapolations cross the bounds.

Figure 4: A ball-and-stick model showing a configuration from the optimized electron
capture pathway for the -3/-2 level of the Ga vacancy in wurtzite GaN. The configuration
corresponds to a defect level close to the upper bound. The green balls represent Ga
atoms, while the brown balls represent N atoms. The 4 N atoms and 12 Ga atoms on the
left are the first and second neighbors, respectively, of the missing Ga atom, while the N

dimer that forms during the electron capture / emission process is apparent on the right.
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