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We report, for the first time, measurements of the third order, χ3 and fifth order, χ5, suscepti-
bilities in an itinerant oxide metamagnet, Sr3Ru2O7 for magnetic fields both parallel and perpen-
dicular to the c-axis. These susceptibilities exhibit maxima in their temperature dependence such
that T1 ≈ 2T3 ≈ 4T5 where the Ti are the position in temperature where a peak in the i-th order
susceptibility occurs. These features taken together with the scaling of the critical field with the
temperature T1 observed in a diverse variety of itinerant metamagnets find a natural explanation in
a single band model with one Van Hove singularity (VHS) and onsite repulsion U . The separation
of the VHS from the Fermi energy ∆, sets a single energy scale, which is the primary driver for the
observed features of itinerant metamagnetism at low temperatures.

PACS numbers: 75.30.Mb, 75.20.Hr

Metamagnetism (MM), the sudden rise of the mag-
netization at a critical field, is a phenomenon observed
in a diverse range of metals, and extensively studied in
both d and f-electron based itinerant systems.1 In many
itinerant metamagnets as is the case with heavy fermion
materials there is a clear presence of local moments, of-
ten antiferromagnetically coupled (as ascertained, for in-
stance, from a high temperature Curie Weiss plot), which
however develop a strong net moment at the critical field,
Bc. The predominant antiferromagnetic correlations are
strongly suppressed in high fields2 with possibly new fer-
romagnetic correlations arising3 in the vicinity of Bc. In
contrast, itinerant electron MM can also be found in sys-
tems where there is no clear evidence for local moments4

as in the case of the metallic oxide Sr3Ru2O7 (SRO).
Given this fundamental distinction between the two cases
it would be natural to ask what if any universal features
and/or significant differences exist in the nature of their
metamagnetism.

The bilayer ruthenate SRO shows a complex phase di-
agram where multiple MM transitions may be tuned by
varying the angle of the applied field with respect to the
crystal axes. Upon increasing temperature, these first-
order MM transitions end at critical end points, which
are themselves connected by a line of second order phase
transitions.5,6 Enclosed between these transition lines is
an anomalous phase with unusual transport properties.
The resistivity in this regime is anomalously high and
shows anisotropy. Earlier attempts to understand these
anomalous behaviors have been focused on the emer-
gence of a nematic phase associated with the MM tran-

sitions.8–10 It has also been proposed that the anoma-
lous phase can be viewed as a magnetic analogue of the
spatially inhomogeneous superconducting Fulde Ferrell
Larkin Ovchinnikov state.11,12 Interestingly, recent mag-
netic neutron scattering showed that a spin-density-wave
phase is induced in this regime of the phase diagram,5

which provides a natural explanation for the strong re-
sistivity anisotropy or the electronic nematic behavior.

Although the nature of the anomalous phase remains
to be solved, most theoretical models8–12 for the MM
transitions assume the presence of a Van Hove singular-
ity (VHS) that is proximate to the Fermi surface in SRO.
Experimentally, the existence of VHS within a few meV
distance from the Fermi level has indeed been observed in
recent high resolution ARPES measurements.13 Indeed,
Binz and Sigrist have demonstrated that MM transitions
can be produced in a minimum single-band model with
a logarithmically divergent VHS close to the Fermi sur-
face.14 Incorporating weak local Coulomb repulsion be-
tween the electrons, they showed that when the magnetic
field tunes the Fermi surface of one spin species close
enough to the VHS, there is a jump in magnetization.
The VHS also plays an important role in models of other
metamagnetic materials,15–17 such as the Kondo-lattice
model for heavy fermions. For example, divergent density
of states (DOS) at the edge of the so-called hybridization
gap is a generic feature of quasi-particle band structures
in heavy fermions.18

In this paper, we present new measurements of nonlin-
ear susceptibilities in high quality single-crystals of SRO
for magnetic fields both parallel and perpendicular to
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FIG. 1. The magnetization isotherms for B perpendicular to
the c-axis plotted as per Eq. (1) for various temperatures as
indicated. Since the slope yields χ3 in such a plot it is imme-
diately seen that χ3 is weakly negative at high temperatures,
T > 20 K, turns positive as T is lowered reaching a maximum
around 10 K and decreasing thereafter. Also noticeable be-
tween 3 K and 8 K is the positive curvature which implies a
non-zero (+ve) value for the next higher susceptibility, χ5.

the c-axis of the crystal. The experimental results bear
a surprising resemblance to the recent work reported by
us on heavy fermions and the universal behavior noted
there.19–21 We further show that the universal behavior
of the nonlinear susceptibilities is a generic feature of
Pauli paramagnetism for electronic systems whose Fermi
level lies close to a VHS.

For our study we used single crystals synthesized with
a flux growth technique at the University of Salerno.22

Their quality was checked by X-ray rocking curves and
only the best samples were selected for the present work.
Measurements of the DC magnetization were carried
out at Argonne in a commercial SQUID magnetome-
ter (Quantum Design MPMS-3). The magnetization
isotherms obtained at the lowest temperature for B per-
pendicular to c-axis exhibit apart from the large jump in
the magnetization at 5 T a smaller feature at 5.8 T thus
confirming the high quality of our samples in accordance
with previous work.23,24

In Fig.1 we show the experimental magnetization
isotherms plotted in a particular manner so that the
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FIG. 2. The values of χ1, χ3 and χ5 obtained from quadratic
fits to the lines such as those shown in Fig. 1. Note the distinct
peaks in all three of these susceptibilities with each higher
order susceptibility exhibiting a positive peak at temperatures
successively lower by approximately a factor of two.

extraction of the nonlinear susceptibilities is facilitated.
The equilibrium magnetization may be written as an ex-
pansion in odd powers of the applied field B as:

M = χ1B + χ3B
3 + χ5B

5 (1)

Dividing both sides of Eq. (1) by B indicates that a plot
of M/B vs B2 yields a straight line with the intercept
giving the linear susceptibility and the slope yielding the
leading nonlinear susceptibility χ3 (provided that χ5 is
negligible). A significant non-zero value of χ5 would show
up as a curvature in the lines in such a plot. It is indeed
observed in Fig. 1 that the lines have a negative slope at
the high temperature end, hence negative χ3 as might be
expected in any paramagnet. However, the slope turns
positive as the temperature is lowered and goes through
a maximum at a temperature T3 ≈ 10K. It is well known
through several previous measurements7 that the linear
susceptibility in SRO has a maximum at a temperature
T1 = 18 K. We thus observe that T3 ≈ 0.5T1. Fig. 1 also
demonstrates that the next higher order susceptibility
χ5 which is negligible at T > 10 K is non-zero for T <
10 K where it has a significant positive value. At the
lowest temperature measured T = 1.8 K the value of
χ5 is nearly zero again. Thus χ5 also goes through a
maximum albeit at an even lower temperature labelled
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T5 ≈ 0.25T1. Fig. 2 presents all the three susceptibilities
extracted from plots such as those in Fig. 1 for both
orientations of the magnetic field. The raw data plots for
the parallel orientation are shown in the supplementary
section.

Apart from the discussion above several additional
points about the behavior of the three susceptibilities
shown in Fig. 2 are noteworthy. The linear susceptibil-
ity has a large non-zero value as T → 0 as it should
be in a Pauli enhanced paramagnet.25,26 This is true for
both χ3 and χ5 as T → 0 for Bc. But the third or-
der susceptibility appears to approach zero at low T. In
addition, while the peak values of the linear susceptibili-
ties are nearly the same, the peak values of the nonlinear
susceptibilities are significantly different between the two
orientations. A magnetic field in the basal plane appears
to generate a higher nonlinearity as measured by χ3 and
χ5.

Experimental results analogous to the above in a com-
pletely different family of materials, the f-electron based
heavy fermion systems, were considered recently using a
simple phenomenological model, which can be thought
of as an effective spin-1 system with a large anisotropy
term at the single site level.19,27 This model reproduced
with a remarkable degree of success the experimental
correlations such as T5 ≈ 1/2T3 ≈ 1/4T1, the high
field magnetic response as well as the ultrasound veloc-
ity measurements21. While the same model could also
be applied to our present work, we note however that
this model produced all susceptibilities tending to zero
as T → 0, contrary to the observations here as well as
with the heavy fermions.

In an attempt to further understand results on the non-
linear susceptibilities, here we investigate the minimum
theoretical model that includes a VHS proximate to the
Fermi edge and a local Hubbard repulsion U .14,28 In the
Hartree-Fock mean-field approximation, the Gibbs free
energy of the system is given by

F = −T
∑
σ=↑,↓

∫
dε ρ(ε) ln

(
1 + e−β(ε−µσ)

)
+(µ↑n↑ + µ↓n↓) + Un↑n↓ −Bm, (2)

where m is the normalized magnetization along the field
direction, n↑,↓ = n/2 ± m are the densities of up- and
down-spin electrons, respectively, µ↑,↓ are the corre-
sponding chemical potentials, and ρ(ε) is DOS. Specifi-
cally, we consider a DOS with a logarithmically divergent
VHS: ρ(ε) = (1/W ) ln |W/(ε− εVHS)|, where the param-
eter W is of the order of the bandwidth. An important
term in the model is ∆ ≡ εVHS − µ which controls the
“distance” of the Fermi level to the singularity. For a
given external field B, the magnetization is determined
from the minimization ∂F/∂m = 0 subject to the condi-
tion that n↑ + n↓ = n.14,28,29 More details can be found
in the supplemental information.

Our numerical calculations find a number of remark-
able correlations relevant to the interpretation of our ex-
periments. Fig. 3 shows the calculated susceptibilities
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FIG. 3. Shows the calculated susceptibilities χ1, χ3, χ5 in
the model. For the results shown the difference between the
chemical potential at T = 0 and the van Hove singularity
∆/W = (εVHS − µ)/W = 0.0095, and U/W = 0.19.

from this model. The resemblance to the experimental
results of Fig. 2 is striking – the maxima in all the three
susceptibilities are reproduced fairly well. Moreover, we
have checked that similar curves are obtained with other
types of singularities, e.g. a power-law divergent DOS:
ρ(ε) ∼ 1/|ε− εc|α. We emphasize that our calculation is
based on a minimum yet very general theoretical model
which assumes a local Hubbard repulsion and a VHS in
the DOS; the model is characterized only by two dimen-
sionless parameters ∆/W and U/W . Consequently, the
results summarized in Fig. 4 represent generic behavior
of Pauli linear and nonlinear susceptibilities of electron
systems whose Fermi level lies close to a VHS.

It is worth noting that nonlinear susceptibility mea-
surements can offer unique information about the mag-
netic properties of materials. For example, a negatively
divergent χ3(T ) provides a direct signature of spin-glass
transitions.30,31 It has also been widely used as a probe
of quadrupolar spin fluctuations in rare-earth and heavy
fermion compounds.32–34 However, nonlinear susceptibil-
ities have not been systematically investigated in the con-
text of Pauli paramagnetism within a mean-field treat-
ment of Hubbard interaction. Our calculation here thus
provides a tell-tale signature of nonlinear Pauli suscep-
tibilities when the Fermi surface is close to a VHS. In
particular, the temperatures Ti at which the maximum
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FIG. 4. Parts (a) and (b) show the ratio T1/T3 computed
in the model for a range of values ∆ for specific values of U
(left panel) and for a range of values of U for specific values
of ∆ (right panel). Except for very small ∆/W . 0.01 and
very large U/W & 0.15 the values of this ratio cluster in the
range between 2.4 and 2.0. Part (c) demonstrates that T1 is
independent of U but depends only on ∆. Part (d) shows the
ratio χ1(T1)/χ1(0) as a function of U for four different values
of ∆ as indicated.

χi occur display a universal relation T5 ≈ 1/2T3 ≈ 1/4T1,
which indeed is observed in many itinerant metamagnets.

In parts (a) and (b) of Fig. 4, we show the ratio T1/T3
computed for a range of values of the parameters ∆ and
U . Remarkably we find that the values for this ratio
cluster in the range 2.0 to 2.4 over a wide range of ∆ (i.e.
for ∆ > 0.01W ) irrespective of the value of U and over
a large range of U < 0.15W irrespective of the value of
∆. As shown in Fig. 4(c), very significantly we find that
the peak temperature T1, which depends linearly on ∆,
does not depend on the value of U . Furthermore for a
noticeable peak to appear in the temperature dependence
of the linear susceptibility, the ratio χ1(T1)/χ1(0) must
be larger than unity. And as shown in Fig. 4(d), this
occurs for a value of U > 0.1W . Given the experimental
value of χ1(T1)/χ1(0) ≈ 1.7 this indicates a Hubbard
repulsion U ≈ 0.18W for SRO. This value is consistent
with those inferred in previous studies, indicating that
SRO is a moderately correlated system.

These theoretical results prompt us to consider to what
extent the current model extends to all itinerant MMs.
We have already noted the ratio T3/T1 approximates 1/2
in heavy fermion systems. The empirical correlation of T1
and Bc is a phenomenon that has been even more widely
established (Fig. 5). As stated earlier these correlations
were captured in a simple “local” S = 1 model.19 It is
remarkable that in the present model where we calculate
only the Pauli part, albeit with a specific band structure
feature, we find exactly the same correlations as in the
“local” model employed earlier. Such correlations are
also reproduced in an infinite range model for clusters
of spins worked out recently by Kumar and Wagner.35

These are unexpected and remarkable coincidences and

FIG. 5. Shows the linear correlation of T1 vs Bc in a wide
variety of heavy fermions, oxides, and pnictides.

could very well explain why the diverse set of materials,
with varying crystal structures and belonging to different
d and f-electron systems (Fig. 5) exhibit the same univer-
sal features. From the success of the present theoretical
work it appears that a common factor in all these ma-
terials is the occurrence of a Van Hove type singularity
and its proximity to the Fermi edge.

It is natural to ask whether experimentally there is ev-
idence for the existence of such singularities uniformly
across all systems. As discussed above, recent high reso-
lution ARPES measurements 13 in SRO have shown that
such a singularity in close proximity (within a few meV)
to the Fermi edge indeed exists. Its observation in heavy
fermion systems has also been noted in several systems.
In particular in CeCoGe2 the Kondo temperature is very
large, ∼250 K, and this facilitates the successful identifi-
cation/separation of a VHS/Kondo type resonance.36,37

Identifying similar features in the vast majority of the
compounds referred to in Fig. 5 is an experimental task
worth undertaking.

It is clear from the above discussion and the new ex-
perimental results on SRO that a simple microscopic
model with a single energy scale albeit with a specific
band structure feature is successful to a large extent in
providing a full explanation of the linear and nonlinear
magnetic response of this strongly correlated itinerant
MM. It is also remarkable that the observed behavior
in a system with no evidence for local moments bears a
strong resemblance to our earlier work on heavy fermions.
Other correlations related in general to the thermody-
namics of MMs originating from the current model will
be presented in a forthcoming longer paper.
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Supplemental Materials

Appendix A: Model

In this section, we present details of the nonlinear sus-
ceptibility calculation. We consider a minimum theoret-
ical single-band model with a local Hubbard repulsion,
described by the following Hamiltonian

H =
∑

k,σ=↑,↓

(εk − µ− σB)c†k,σck,σ + U
∑
i

ni,↑ni,↓(A1)

where εk denotes the band energy of electrons, µ is the
Fermi level, B is the external magnetic field, and U is
the Hubbard parameter. The density of states (DOS) is
given by the following summation

ρ(ε) =
1

V

∑
k

δ(ε− εk) (A2)

Here we employ the Hartree-Fock mean-field (MF) ap-
proximation to compute the itinerant magnetization of
the electrons. Since the only information about the
band-structure which enters the MF calculation is the
DOS, our calculation focuses on how the presence of
a Van Hove singularity (VHS) in ρ(ε) affects the Pauli
paramagnetism.

For a given ρ(ε), the electron density is expressed as

nσ =

∫
dερ(ε) f(ε− µσ) (A3)

where f(ε) = 1/(exp(βε)+1) is the Fermi-Dirac function,
β = 1/kBT is the inverse temperature, and µσ denotes
the chemical potential of electrons with spin σ =↑, ↓.
These two chemical potentials are determined from the
minimization of the Gibbs free energy subject to the con-
straint n↑ + n↓ = n, which is the filling fraction. To pro-
ceed, we first introduce the magnetization m such that
n↑,↓ = n

2 ± m. The Gibbs free energy density is then
written as:

F = −T
∑
σ=↑,↓

∫
dε ρ(ε) ln

(
1 + e−β(ε−µσ)

)
+(µ↑n↑ + µ↓n↓) + Un↑n↓ −Bm (A4)

Minimization of F with respect to m yields the following
self-consistent equation 1

B = µ↑(n,m)− µ↓(n,m)− 2Um (A5)

from which we can obtain implicitly the field dependence
of electron magnetization.

Following Ref. 2 and 3, we consider a logarithmically
divergent VHS for the DOS:

ρ(ε) =
1

W
ln

∣∣∣∣ W

ε− εVHS

∣∣∣∣ (A6)

Here W sets the energy scale of the model and also serves
as a measure of the bandwidth. Another important pa-
rameter is ∆ = εVHS − µ, which controls the distance
between the VHS and the Fermi edge.

We compute the linear and nonlinear susceptibilities
χ1, χ3, χ5 following exactly the same procedure as the
experimental one. Explicitly, the above mean-field cal-
culation is repeated for varying magnetic field to obtain
a magnetization curve m(B). Expanding m as a power
series of B (only the odd powers enter the expansion due
to time-reversal symmetry), we have

m = χ1B + χ3B
3 + χ5B

5 + · · · (A7)

By numerical values of χi are obtained via fitting the
m/B vs B2 curves: the intercept gives the linear suscep-
tibility χ1, the slope yields χ3, and the curvature χ5. The
temperature dependence of the extracted susceptibilities
is shown in Fig. 3 of the main text. In this calculation,
we have used parameters W = 10 (which sets the energy
scale), ∆/W = 0.0095, and U/W = 0.19.

Our calculation shows that the ratio χ1(T =
T1)/χ1(T = 0) is very sensitive to the Hubbard param-
eter U . This ratio grows with increasing U as shown in
Fig. 4(d) of the main text. It also becomes larger with
smaller ∆, i.e. when the Fermi energy is close to the VHS.
The experimentally observed ratio χ1(T = T1)/χ1(T =
0) ≈ 1.7 corresponds to a small Hubbard U ≈ 0.18W
relative to the bandwidth, thus justifying the mean-field
approach.

As shown in Fig. 4 in the main text, the value of T1/T3
lies in the interval between 2 and 2.4 as long as the inter-
actions are weak and the VHS is not located too close to
the fermi energy. We also find that T1 is proportional to
∆ (when ∆ is not too large) and is independent of Hub-
bard repulsion U . The independence of T1 on U can be
understood from the analytical expression for the linear
susceptibility for small temperature and field:

χ1 = −
∫
dερ (ε) f ′ (ε− µ)

2
[
1 + U

∫
dερ (ε) f ′ (ε− µ)

] (A8)

Numerically, the denominator is a rather smooth func-
tion of temperature. The occurrence of a peak at T1
comes from the temperature dependence of the numer-
ator. Consequently, the peak position T1 remains inde-
pendent of U as long as 1 + U

∫
dερ (ε) f ′ (ε− µ) > 0.
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Appendix B: Analytical Calculation of Linear and
nonlinear susceptibilities

Here we provide the analytical approximation for the
linear and nonlinear susceptibilities χ1, χ3 of our model.
For simplicity, we define a function

F (x) =

∫
dερ (ε) f (ε− x) (B1)

which depends implicitly on temperature through the
Fermi-Dirac function f(ε − x). In terms of F (x), the
density of electrons with spin-σ is nσ = F (µσ). For a
given total filling fraction n = n↑ + n↓ and magnetiza-
tion m = (n↑ − n↓)/2, the two chemical potentials µ↑
and µ↓ have to be determined self-consistently by the
following equations

F (µ↑) + F (µ↓) = n (B2)

µ↑ − µ↓ = B + 2Um (B3)

In our calculation, we assume a small B and introduce a
parameter x = µ↑ − µ, representing the deviation of the
chemical potential of up-spin electron from the one µ in
the absence of field. The chemical potential for down-
spin electron is µ↓ = µ + x − B − 2Um. For a filling
fraction n, the zero-field chemical potential µ is given by
µ = F−1(n/2). Next, we expand n↑,↓ in terms of the
small deviation parameter x:

n↑ = F (µ↑) = F (µ) + F ′ (µ)x+
1

2
F ′′ (µ)x2

+
1

6
F ′′′ (µ)x3 + · · · (B4)

n↓ = F (µ↓) = F (µ) + F ′ (µ) (x−B − 2Um)

+
1

2
F ′′ (µ) (x−B − 2Um)

2

+
1

6
F ′′′ (µ) (x−B − 2Um)

3
+ · · · (B5)

Plug these expressions into Eqs. (B2) and (B3), we have

0 = n↑ + n↓ − n = F ′ (µ) (2x−B − 2Um) +

+
1

2
F ′′ (µ)

[
x2 + (x−B − 2Um)

2
]

+ · · · (B6)

2m = n↑ − n↓ = F ′ (µ) (B + 2Um)

+
1

2
F ′′ (µ)

[
x2 − (x−B − 2Um)

2
]

+ · · · (B7)

To solve these two equations perturbatively, we introduce
a Taylor expansion in terms of B for both m and x. The
expansion coefficients of the magnetization are simply the
linear and nonlinear susceptibilities; see Eq. (A7), while
those for x are denoted as ck, i.e. x = c1B + c2B

2 +
c3B

3 + · · · . Substituting these expansion into the above

two equations, we obtain

c1 =
1

2 [1− UF ′ (µ)]
(B8)

c2 = − F ′′ (µ)

8F ′ (µ) [1− UF ′ (µ)]
2 (B9)

c3 =
−3U [F ′′ (µ)]

2
+ UF ′ (µ)F ′′′ (µ)

48F ′ (µ) [1− UF ′ (µ)]
4 (B10)

χ1 =
F ′ (µ)

2 [1− UF ′ (µ)]
(B11)

χ3 =
−3[F ′′ (µ)]

2
+ F ′ (µ)F ′′′ (µ)

48F ′ (µ) [1− UF ′ (µ)]
4 (B12)

where Eq. (B11) corresponds to Eq. (A8) in the Sec. A.
χ5 can be derived by the same calculation with higher
order Taylor expansions. A Taylor expansion in tem-
perature can be achieved by substituting F (µ) and its
derivatives with Sommerfeld expansion.

Appendix C: Additional experimental figures and
data

Shown in Fig. S1 is the raw data for the magnetiza-
tion for the parallel orientation plotted in a manner as
explained in the main text. The values of χ3 which start
out negative on the high tempeature end turn positive as
the temperature is lowered and reach a maximum at a
temperature of ∼10 K.

Finally, we note yet another result but this one being
model independent. Since all the three susceptibilities
χ1, χ3 and χ5 are measured in our work it is possible
to evaluate the term

(
3χ2

3 − χ1χ5

)
. Through a Landau

expansion of the free energy it can be shown that the
value of this term is constrained to be greater than zero
to ensure thermodynamic stability. This however is not
the case experimentally for both field orientations as
shown in Fig. S2 (top). The term dips below zero at
approximately 10 K and continues to be negative down
to the lowest temperatures measured. Such a feature
is also produced with the theoretical model employed
here, Fig. S2 (bottom). The breakdown of this stability
condition simply implies that other higher order terms
are needed in the expansion of the free energy.
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FIG. S1. Data similar to fig.1 of main text but for the B ‖ c-
axis case.

T
�10-30 2 4 6 8 10

T/W
FIG. S2. (Top) The thermodynamic stability parameter,
(3χ2

3−χ1χ5), vs temperature for both field orientations. (Bot-
tom) theoretical curve of same parameter vs temperature.
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